Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41
42 struct kset *of_kset;
43
44 /*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50 DEFINE_MUTEX(of_mutex);
51
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56
57 int of_n_addr_cells(struct device_node *np)
58 {
59 const __be32 *ip;
60
61 do {
62 if (np->parent)
63 np = np->parent;
64 ip = of_get_property(np, "#address-cells", NULL);
65 if (ip)
66 return be32_to_cpup(ip);
67 } while (np->parent);
68 /* No #address-cells property for the root node */
69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72
73 int of_n_size_cells(struct device_node *np)
74 {
75 const __be32 *ip;
76
77 do {
78 if (np->parent)
79 np = np->parent;
80 ip = of_get_property(np, "#size-cells", NULL);
81 if (ip)
82 return be32_to_cpup(ip);
83 } while (np->parent);
84 /* No #size-cells property for the root node */
85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 return numa_node_id();
93 }
94 #endif
95
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102
103 struct kobj_type of_node_ktype = {
104 .release = of_node_release,
105 };
106
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 struct bin_attribute *bin_attr, char *buf,
109 loff_t offset, size_t count)
110 {
111 struct property *pp = container_of(bin_attr, struct property, attr);
112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 const char *name = orig_name;
118 struct kernfs_node *kn;
119 int i = 0;
120
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 sysfs_put(kn);
124 if (name != orig_name)
125 kfree(name);
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 }
128
129 if (name != orig_name)
130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 kobject_name(kobj), name);
132 return name;
133 }
134
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 int rc;
138
139 /* Important: Don't leak passwords */
140 bool secure = strncmp(pp->name, "security-", 9) == 0;
141
142 if (!IS_ENABLED(CONFIG_SYSFS))
143 return 0;
144
145 if (!of_kset || !of_node_is_attached(np))
146 return 0;
147
148 sysfs_bin_attr_init(&pp->attr);
149 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 pp->attr.size = secure ? 0 : pp->length;
152 pp->attr.read = of_node_property_read;
153
154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 return rc;
157 }
158
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 const char *name;
162 struct property *pp;
163 int rc;
164
165 if (!IS_ENABLED(CONFIG_SYSFS))
166 return 0;
167
168 if (!of_kset)
169 return 0;
170
171 np->kobj.kset = of_kset;
172 if (!np->parent) {
173 /* Nodes without parents are new top level trees */
174 rc = kobject_add(&np->kobj, NULL, "%s",
175 safe_name(&of_kset->kobj, "base"));
176 } else {
177 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 if (!name || !name[0])
179 return -EINVAL;
180
181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 }
183 if (rc)
184 return rc;
185
186 for_each_property_of_node(np, pp)
187 __of_add_property_sysfs(np, pp);
188
189 return 0;
190 }
191
192 static int __init of_init(void)
193 {
194 struct device_node *np;
195
196 /* Create the kset, and register existing nodes */
197 mutex_lock(&of_mutex);
198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 if (!of_kset) {
200 mutex_unlock(&of_mutex);
201 return -ENOMEM;
202 }
203 for_each_of_allnodes(np)
204 __of_attach_node_sysfs(np);
205 mutex_unlock(&of_mutex);
206
207 /* Symlink in /proc as required by userspace ABI */
208 if (of_root)
209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
210
211 return 0;
212 }
213 core_initcall(of_init);
214
215 static struct property *__of_find_property(const struct device_node *np,
216 const char *name, int *lenp)
217 {
218 struct property *pp;
219
220 if (!np)
221 return NULL;
222
223 for (pp = np->properties; pp; pp = pp->next) {
224 if (of_prop_cmp(pp->name, name) == 0) {
225 if (lenp)
226 *lenp = pp->length;
227 break;
228 }
229 }
230
231 return pp;
232 }
233
234 struct property *of_find_property(const struct device_node *np,
235 const char *name,
236 int *lenp)
237 {
238 struct property *pp;
239 unsigned long flags;
240
241 raw_spin_lock_irqsave(&devtree_lock, flags);
242 pp = __of_find_property(np, name, lenp);
243 raw_spin_unlock_irqrestore(&devtree_lock, flags);
244
245 return pp;
246 }
247 EXPORT_SYMBOL(of_find_property);
248
249 struct device_node *__of_find_all_nodes(struct device_node *prev)
250 {
251 struct device_node *np;
252 if (!prev) {
253 np = of_root;
254 } else if (prev->child) {
255 np = prev->child;
256 } else {
257 /* Walk back up looking for a sibling, or the end of the structure */
258 np = prev;
259 while (np->parent && !np->sibling)
260 np = np->parent;
261 np = np->sibling; /* Might be null at the end of the tree */
262 }
263 return np;
264 }
265
266 /**
267 * of_find_all_nodes - Get next node in global list
268 * @prev: Previous node or NULL to start iteration
269 * of_node_put() will be called on it
270 *
271 * Returns a node pointer with refcount incremented, use
272 * of_node_put() on it when done.
273 */
274 struct device_node *of_find_all_nodes(struct device_node *prev)
275 {
276 struct device_node *np;
277 unsigned long flags;
278
279 raw_spin_lock_irqsave(&devtree_lock, flags);
280 np = __of_find_all_nodes(prev);
281 of_node_get(np);
282 of_node_put(prev);
283 raw_spin_unlock_irqrestore(&devtree_lock, flags);
284 return np;
285 }
286 EXPORT_SYMBOL(of_find_all_nodes);
287
288 /*
289 * Find a property with a given name for a given node
290 * and return the value.
291 */
292 const void *__of_get_property(const struct device_node *np,
293 const char *name, int *lenp)
294 {
295 struct property *pp = __of_find_property(np, name, lenp);
296
297 return pp ? pp->value : NULL;
298 }
299
300 /*
301 * Find a property with a given name for a given node
302 * and return the value.
303 */
304 const void *of_get_property(const struct device_node *np, const char *name,
305 int *lenp)
306 {
307 struct property *pp = of_find_property(np, name, lenp);
308
309 return pp ? pp->value : NULL;
310 }
311 EXPORT_SYMBOL(of_get_property);
312
313 /*
314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
315 *
316 * @cpu: logical cpu index of a core/thread
317 * @phys_id: physical identifier of a core/thread
318 *
319 * CPU logical to physical index mapping is architecture specific.
320 * However this __weak function provides a default match of physical
321 * id to logical cpu index. phys_id provided here is usually values read
322 * from the device tree which must match the hardware internal registers.
323 *
324 * Returns true if the physical identifier and the logical cpu index
325 * correspond to the same core/thread, false otherwise.
326 */
327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
328 {
329 return (u32)phys_id == cpu;
330 }
331
332 /**
333 * Checks if the given "prop_name" property holds the physical id of the
334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
335 * NULL, local thread number within the core is returned in it.
336 */
337 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
338 const char *prop_name, int cpu, unsigned int *thread)
339 {
340 const __be32 *cell;
341 int ac, prop_len, tid;
342 u64 hwid;
343
344 ac = of_n_addr_cells(cpun);
345 cell = of_get_property(cpun, prop_name, &prop_len);
346 if (!cell || !ac)
347 return false;
348 prop_len /= sizeof(*cell) * ac;
349 for (tid = 0; tid < prop_len; tid++) {
350 hwid = of_read_number(cell, ac);
351 if (arch_match_cpu_phys_id(cpu, hwid)) {
352 if (thread)
353 *thread = tid;
354 return true;
355 }
356 cell += ac;
357 }
358 return false;
359 }
360
361 /*
362 * arch_find_n_match_cpu_physical_id - See if the given device node is
363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
364 * else false. If 'thread' is non-NULL, the local thread number within the
365 * core is returned in it.
366 */
367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 int cpu, unsigned int *thread)
369 {
370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 * for thread ids on PowerPC. If it doesn't exist fallback to
372 * standard "reg" property.
373 */
374 if (IS_ENABLED(CONFIG_PPC) &&
375 __of_find_n_match_cpu_property(cpun,
376 "ibm,ppc-interrupt-server#s",
377 cpu, thread))
378 return true;
379
380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
381 return true;
382
383 return false;
384 }
385
386 /**
387 * of_get_cpu_node - Get device node associated with the given logical CPU
388 *
389 * @cpu: CPU number(logical index) for which device node is required
390 * @thread: if not NULL, local thread number within the physical core is
391 * returned
392 *
393 * The main purpose of this function is to retrieve the device node for the
394 * given logical CPU index. It should be used to initialize the of_node in
395 * cpu device. Once of_node in cpu device is populated, all the further
396 * references can use that instead.
397 *
398 * CPU logical to physical index mapping is architecture specific and is built
399 * before booting secondary cores. This function uses arch_match_cpu_phys_id
400 * which can be overridden by architecture specific implementation.
401 *
402 * Returns a node pointer for the logical cpu if found, else NULL.
403 */
404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
405 {
406 struct device_node *cpun;
407
408 for_each_node_by_type(cpun, "cpu") {
409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
410 return cpun;
411 }
412 return NULL;
413 }
414 EXPORT_SYMBOL(of_get_cpu_node);
415
416 /**
417 * __of_device_is_compatible() - Check if the node matches given constraints
418 * @device: pointer to node
419 * @compat: required compatible string, NULL or "" for any match
420 * @type: required device_type value, NULL or "" for any match
421 * @name: required node name, NULL or "" for any match
422 *
423 * Checks if the given @compat, @type and @name strings match the
424 * properties of the given @device. A constraints can be skipped by
425 * passing NULL or an empty string as the constraint.
426 *
427 * Returns 0 for no match, and a positive integer on match. The return
428 * value is a relative score with larger values indicating better
429 * matches. The score is weighted for the most specific compatible value
430 * to get the highest score. Matching type is next, followed by matching
431 * name. Practically speaking, this results in the following priority
432 * order for matches:
433 *
434 * 1. specific compatible && type && name
435 * 2. specific compatible && type
436 * 3. specific compatible && name
437 * 4. specific compatible
438 * 5. general compatible && type && name
439 * 6. general compatible && type
440 * 7. general compatible && name
441 * 8. general compatible
442 * 9. type && name
443 * 10. type
444 * 11. name
445 */
446 static int __of_device_is_compatible(const struct device_node *device,
447 const char *compat, const char *type, const char *name)
448 {
449 struct property *prop;
450 const char *cp;
451 int index = 0, score = 0;
452
453 /* Compatible match has highest priority */
454 if (compat && compat[0]) {
455 prop = __of_find_property(device, "compatible", NULL);
456 for (cp = of_prop_next_string(prop, NULL); cp;
457 cp = of_prop_next_string(prop, cp), index++) {
458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
459 score = INT_MAX/2 - (index << 2);
460 break;
461 }
462 }
463 if (!score)
464 return 0;
465 }
466
467 /* Matching type is better than matching name */
468 if (type && type[0]) {
469 if (!device->type || of_node_cmp(type, device->type))
470 return 0;
471 score += 2;
472 }
473
474 /* Matching name is a bit better than not */
475 if (name && name[0]) {
476 if (!device->name || of_node_cmp(name, device->name))
477 return 0;
478 score++;
479 }
480
481 return score;
482 }
483
484 /** Checks if the given "compat" string matches one of the strings in
485 * the device's "compatible" property
486 */
487 int of_device_is_compatible(const struct device_node *device,
488 const char *compat)
489 {
490 unsigned long flags;
491 int res;
492
493 raw_spin_lock_irqsave(&devtree_lock, flags);
494 res = __of_device_is_compatible(device, compat, NULL, NULL);
495 raw_spin_unlock_irqrestore(&devtree_lock, flags);
496 return res;
497 }
498 EXPORT_SYMBOL(of_device_is_compatible);
499
500 /**
501 * of_machine_is_compatible - Test root of device tree for a given compatible value
502 * @compat: compatible string to look for in root node's compatible property.
503 *
504 * Returns a positive integer if the root node has the given value in its
505 * compatible property.
506 */
507 int of_machine_is_compatible(const char *compat)
508 {
509 struct device_node *root;
510 int rc = 0;
511
512 root = of_find_node_by_path("/");
513 if (root) {
514 rc = of_device_is_compatible(root, compat);
515 of_node_put(root);
516 }
517 return rc;
518 }
519 EXPORT_SYMBOL(of_machine_is_compatible);
520
521 /**
522 * __of_device_is_available - check if a device is available for use
523 *
524 * @device: Node to check for availability, with locks already held
525 *
526 * Returns true if the status property is absent or set to "okay" or "ok",
527 * false otherwise
528 */
529 static bool __of_device_is_available(const struct device_node *device)
530 {
531 const char *status;
532 int statlen;
533
534 if (!device)
535 return false;
536
537 status = __of_get_property(device, "status", &statlen);
538 if (status == NULL)
539 return true;
540
541 if (statlen > 0) {
542 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
543 return true;
544 }
545
546 return false;
547 }
548
549 /**
550 * of_device_is_available - check if a device is available for use
551 *
552 * @device: Node to check for availability
553 *
554 * Returns true if the status property is absent or set to "okay" or "ok",
555 * false otherwise
556 */
557 bool of_device_is_available(const struct device_node *device)
558 {
559 unsigned long flags;
560 bool res;
561
562 raw_spin_lock_irqsave(&devtree_lock, flags);
563 res = __of_device_is_available(device);
564 raw_spin_unlock_irqrestore(&devtree_lock, flags);
565 return res;
566
567 }
568 EXPORT_SYMBOL(of_device_is_available);
569
570 /**
571 * of_device_is_big_endian - check if a device has BE registers
572 *
573 * @device: Node to check for endianness
574 *
575 * Returns true if the device has a "big-endian" property, or if the kernel
576 * was compiled for BE *and* the device has a "native-endian" property.
577 * Returns false otherwise.
578 *
579 * Callers would nominally use ioread32be/iowrite32be if
580 * of_device_is_big_endian() == true, or readl/writel otherwise.
581 */
582 bool of_device_is_big_endian(const struct device_node *device)
583 {
584 if (of_property_read_bool(device, "big-endian"))
585 return true;
586 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
587 of_property_read_bool(device, "native-endian"))
588 return true;
589 return false;
590 }
591 EXPORT_SYMBOL(of_device_is_big_endian);
592
593 /**
594 * of_get_parent - Get a node's parent if any
595 * @node: Node to get parent
596 *
597 * Returns a node pointer with refcount incremented, use
598 * of_node_put() on it when done.
599 */
600 struct device_node *of_get_parent(const struct device_node *node)
601 {
602 struct device_node *np;
603 unsigned long flags;
604
605 if (!node)
606 return NULL;
607
608 raw_spin_lock_irqsave(&devtree_lock, flags);
609 np = of_node_get(node->parent);
610 raw_spin_unlock_irqrestore(&devtree_lock, flags);
611 return np;
612 }
613 EXPORT_SYMBOL(of_get_parent);
614
615 /**
616 * of_get_next_parent - Iterate to a node's parent
617 * @node: Node to get parent of
618 *
619 * This is like of_get_parent() except that it drops the
620 * refcount on the passed node, making it suitable for iterating
621 * through a node's parents.
622 *
623 * Returns a node pointer with refcount incremented, use
624 * of_node_put() on it when done.
625 */
626 struct device_node *of_get_next_parent(struct device_node *node)
627 {
628 struct device_node *parent;
629 unsigned long flags;
630
631 if (!node)
632 return NULL;
633
634 raw_spin_lock_irqsave(&devtree_lock, flags);
635 parent = of_node_get(node->parent);
636 of_node_put(node);
637 raw_spin_unlock_irqrestore(&devtree_lock, flags);
638 return parent;
639 }
640 EXPORT_SYMBOL(of_get_next_parent);
641
642 static struct device_node *__of_get_next_child(const struct device_node *node,
643 struct device_node *prev)
644 {
645 struct device_node *next;
646
647 if (!node)
648 return NULL;
649
650 next = prev ? prev->sibling : node->child;
651 for (; next; next = next->sibling)
652 if (of_node_get(next))
653 break;
654 of_node_put(prev);
655 return next;
656 }
657 #define __for_each_child_of_node(parent, child) \
658 for (child = __of_get_next_child(parent, NULL); child != NULL; \
659 child = __of_get_next_child(parent, child))
660
661 /**
662 * of_get_next_child - Iterate a node childs
663 * @node: parent node
664 * @prev: previous child of the parent node, or NULL to get first
665 *
666 * Returns a node pointer with refcount incremented, use of_node_put() on
667 * it when done. Returns NULL when prev is the last child. Decrements the
668 * refcount of prev.
669 */
670 struct device_node *of_get_next_child(const struct device_node *node,
671 struct device_node *prev)
672 {
673 struct device_node *next;
674 unsigned long flags;
675
676 raw_spin_lock_irqsave(&devtree_lock, flags);
677 next = __of_get_next_child(node, prev);
678 raw_spin_unlock_irqrestore(&devtree_lock, flags);
679 return next;
680 }
681 EXPORT_SYMBOL(of_get_next_child);
682
683 /**
684 * of_get_next_available_child - Find the next available child node
685 * @node: parent node
686 * @prev: previous child of the parent node, or NULL to get first
687 *
688 * This function is like of_get_next_child(), except that it
689 * automatically skips any disabled nodes (i.e. status = "disabled").
690 */
691 struct device_node *of_get_next_available_child(const struct device_node *node,
692 struct device_node *prev)
693 {
694 struct device_node *next;
695 unsigned long flags;
696
697 if (!node)
698 return NULL;
699
700 raw_spin_lock_irqsave(&devtree_lock, flags);
701 next = prev ? prev->sibling : node->child;
702 for (; next; next = next->sibling) {
703 if (!__of_device_is_available(next))
704 continue;
705 if (of_node_get(next))
706 break;
707 }
708 of_node_put(prev);
709 raw_spin_unlock_irqrestore(&devtree_lock, flags);
710 return next;
711 }
712 EXPORT_SYMBOL(of_get_next_available_child);
713
714 /**
715 * of_get_child_by_name - Find the child node by name for a given parent
716 * @node: parent node
717 * @name: child name to look for.
718 *
719 * This function looks for child node for given matching name
720 *
721 * Returns a node pointer if found, with refcount incremented, use
722 * of_node_put() on it when done.
723 * Returns NULL if node is not found.
724 */
725 struct device_node *of_get_child_by_name(const struct device_node *node,
726 const char *name)
727 {
728 struct device_node *child;
729
730 for_each_child_of_node(node, child)
731 if (child->name && (of_node_cmp(child->name, name) == 0))
732 break;
733 return child;
734 }
735 EXPORT_SYMBOL(of_get_child_by_name);
736
737 static struct device_node *__of_find_node_by_path(struct device_node *parent,
738 const char *path)
739 {
740 struct device_node *child;
741 int len;
742
743 len = strcspn(path, "/:");
744 if (!len)
745 return NULL;
746
747 __for_each_child_of_node(parent, child) {
748 const char *name = strrchr(child->full_name, '/');
749 if (WARN(!name, "malformed device_node %s\n", child->full_name))
750 continue;
751 name++;
752 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
753 return child;
754 }
755 return NULL;
756 }
757
758 /**
759 * of_find_node_opts_by_path - Find a node matching a full OF path
760 * @path: Either the full path to match, or if the path does not
761 * start with '/', the name of a property of the /aliases
762 * node (an alias). In the case of an alias, the node
763 * matching the alias' value will be returned.
764 * @opts: Address of a pointer into which to store the start of
765 * an options string appended to the end of the path with
766 * a ':' separator.
767 *
768 * Valid paths:
769 * /foo/bar Full path
770 * foo Valid alias
771 * foo/bar Valid alias + relative path
772 *
773 * Returns a node pointer with refcount incremented, use
774 * of_node_put() on it when done.
775 */
776 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
777 {
778 struct device_node *np = NULL;
779 struct property *pp;
780 unsigned long flags;
781 const char *separator = strchr(path, ':');
782
783 if (opts)
784 *opts = separator ? separator + 1 : NULL;
785
786 if (strcmp(path, "/") == 0)
787 return of_node_get(of_root);
788
789 /* The path could begin with an alias */
790 if (*path != '/') {
791 int len;
792 const char *p = separator;
793
794 if (!p)
795 p = strchrnul(path, '/');
796 len = p - path;
797
798 /* of_aliases must not be NULL */
799 if (!of_aliases)
800 return NULL;
801
802 for_each_property_of_node(of_aliases, pp) {
803 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
804 np = of_find_node_by_path(pp->value);
805 break;
806 }
807 }
808 if (!np)
809 return NULL;
810 path = p;
811 }
812
813 /* Step down the tree matching path components */
814 raw_spin_lock_irqsave(&devtree_lock, flags);
815 if (!np)
816 np = of_node_get(of_root);
817 while (np && *path == '/') {
818 path++; /* Increment past '/' delimiter */
819 np = __of_find_node_by_path(np, path);
820 path = strchrnul(path, '/');
821 if (separator && separator < path)
822 break;
823 }
824 raw_spin_unlock_irqrestore(&devtree_lock, flags);
825 return np;
826 }
827 EXPORT_SYMBOL(of_find_node_opts_by_path);
828
829 /**
830 * of_find_node_by_name - Find a node by its "name" property
831 * @from: The node to start searching from or NULL, the node
832 * you pass will not be searched, only the next one
833 * will; typically, you pass what the previous call
834 * returned. of_node_put() will be called on it
835 * @name: The name string to match against
836 *
837 * Returns a node pointer with refcount incremented, use
838 * of_node_put() on it when done.
839 */
840 struct device_node *of_find_node_by_name(struct device_node *from,
841 const char *name)
842 {
843 struct device_node *np;
844 unsigned long flags;
845
846 raw_spin_lock_irqsave(&devtree_lock, flags);
847 for_each_of_allnodes_from(from, np)
848 if (np->name && (of_node_cmp(np->name, name) == 0)
849 && of_node_get(np))
850 break;
851 of_node_put(from);
852 raw_spin_unlock_irqrestore(&devtree_lock, flags);
853 return np;
854 }
855 EXPORT_SYMBOL(of_find_node_by_name);
856
857 /**
858 * of_find_node_by_type - Find a node by its "device_type" property
859 * @from: The node to start searching from, or NULL to start searching
860 * the entire device tree. The node you pass will not be
861 * searched, only the next one will; typically, you pass
862 * what the previous call returned. of_node_put() will be
863 * called on from for you.
864 * @type: The type string to match against
865 *
866 * Returns a node pointer with refcount incremented, use
867 * of_node_put() on it when done.
868 */
869 struct device_node *of_find_node_by_type(struct device_node *from,
870 const char *type)
871 {
872 struct device_node *np;
873 unsigned long flags;
874
875 raw_spin_lock_irqsave(&devtree_lock, flags);
876 for_each_of_allnodes_from(from, np)
877 if (np->type && (of_node_cmp(np->type, type) == 0)
878 && of_node_get(np))
879 break;
880 of_node_put(from);
881 raw_spin_unlock_irqrestore(&devtree_lock, flags);
882 return np;
883 }
884 EXPORT_SYMBOL(of_find_node_by_type);
885
886 /**
887 * of_find_compatible_node - Find a node based on type and one of the
888 * tokens in its "compatible" property
889 * @from: The node to start searching from or NULL, the node
890 * you pass will not be searched, only the next one
891 * will; typically, you pass what the previous call
892 * returned. of_node_put() will be called on it
893 * @type: The type string to match "device_type" or NULL to ignore
894 * @compatible: The string to match to one of the tokens in the device
895 * "compatible" list.
896 *
897 * Returns a node pointer with refcount incremented, use
898 * of_node_put() on it when done.
899 */
900 struct device_node *of_find_compatible_node(struct device_node *from,
901 const char *type, const char *compatible)
902 {
903 struct device_node *np;
904 unsigned long flags;
905
906 raw_spin_lock_irqsave(&devtree_lock, flags);
907 for_each_of_allnodes_from(from, np)
908 if (__of_device_is_compatible(np, compatible, type, NULL) &&
909 of_node_get(np))
910 break;
911 of_node_put(from);
912 raw_spin_unlock_irqrestore(&devtree_lock, flags);
913 return np;
914 }
915 EXPORT_SYMBOL(of_find_compatible_node);
916
917 /**
918 * of_find_node_with_property - Find a node which has a property with
919 * the given name.
920 * @from: The node to start searching from or NULL, the node
921 * you pass will not be searched, only the next one
922 * will; typically, you pass what the previous call
923 * returned. of_node_put() will be called on it
924 * @prop_name: The name of the property to look for.
925 *
926 * Returns a node pointer with refcount incremented, use
927 * of_node_put() on it when done.
928 */
929 struct device_node *of_find_node_with_property(struct device_node *from,
930 const char *prop_name)
931 {
932 struct device_node *np;
933 struct property *pp;
934 unsigned long flags;
935
936 raw_spin_lock_irqsave(&devtree_lock, flags);
937 for_each_of_allnodes_from(from, np) {
938 for (pp = np->properties; pp; pp = pp->next) {
939 if (of_prop_cmp(pp->name, prop_name) == 0) {
940 of_node_get(np);
941 goto out;
942 }
943 }
944 }
945 out:
946 of_node_put(from);
947 raw_spin_unlock_irqrestore(&devtree_lock, flags);
948 return np;
949 }
950 EXPORT_SYMBOL(of_find_node_with_property);
951
952 static
953 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
954 const struct device_node *node)
955 {
956 const struct of_device_id *best_match = NULL;
957 int score, best_score = 0;
958
959 if (!matches)
960 return NULL;
961
962 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
963 score = __of_device_is_compatible(node, matches->compatible,
964 matches->type, matches->name);
965 if (score > best_score) {
966 best_match = matches;
967 best_score = score;
968 }
969 }
970
971 return best_match;
972 }
973
974 /**
975 * of_match_node - Tell if a device_node has a matching of_match structure
976 * @matches: array of of device match structures to search in
977 * @node: the of device structure to match against
978 *
979 * Low level utility function used by device matching.
980 */
981 const struct of_device_id *of_match_node(const struct of_device_id *matches,
982 const struct device_node *node)
983 {
984 const struct of_device_id *match;
985 unsigned long flags;
986
987 raw_spin_lock_irqsave(&devtree_lock, flags);
988 match = __of_match_node(matches, node);
989 raw_spin_unlock_irqrestore(&devtree_lock, flags);
990 return match;
991 }
992 EXPORT_SYMBOL(of_match_node);
993
994 /**
995 * of_find_matching_node_and_match - Find a node based on an of_device_id
996 * match table.
997 * @from: The node to start searching from or NULL, the node
998 * you pass will not be searched, only the next one
999 * will; typically, you pass what the previous call
1000 * returned. of_node_put() will be called on it
1001 * @matches: array of of device match structures to search in
1002 * @match Updated to point at the matches entry which matched
1003 *
1004 * Returns a node pointer with refcount incremented, use
1005 * of_node_put() on it when done.
1006 */
1007 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1008 const struct of_device_id *matches,
1009 const struct of_device_id **match)
1010 {
1011 struct device_node *np;
1012 const struct of_device_id *m;
1013 unsigned long flags;
1014
1015 if (match)
1016 *match = NULL;
1017
1018 raw_spin_lock_irqsave(&devtree_lock, flags);
1019 for_each_of_allnodes_from(from, np) {
1020 m = __of_match_node(matches, np);
1021 if (m && of_node_get(np)) {
1022 if (match)
1023 *match = m;
1024 break;
1025 }
1026 }
1027 of_node_put(from);
1028 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1029 return np;
1030 }
1031 EXPORT_SYMBOL(of_find_matching_node_and_match);
1032
1033 /**
1034 * of_modalias_node - Lookup appropriate modalias for a device node
1035 * @node: pointer to a device tree node
1036 * @modalias: Pointer to buffer that modalias value will be copied into
1037 * @len: Length of modalias value
1038 *
1039 * Based on the value of the compatible property, this routine will attempt
1040 * to choose an appropriate modalias value for a particular device tree node.
1041 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1042 * from the first entry in the compatible list property.
1043 *
1044 * This routine returns 0 on success, <0 on failure.
1045 */
1046 int of_modalias_node(struct device_node *node, char *modalias, int len)
1047 {
1048 const char *compatible, *p;
1049 int cplen;
1050
1051 compatible = of_get_property(node, "compatible", &cplen);
1052 if (!compatible || strlen(compatible) > cplen)
1053 return -ENODEV;
1054 p = strchr(compatible, ',');
1055 strlcpy(modalias, p ? p + 1 : compatible, len);
1056 return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(of_modalias_node);
1059
1060 /**
1061 * of_find_node_by_phandle - Find a node given a phandle
1062 * @handle: phandle of the node to find
1063 *
1064 * Returns a node pointer with refcount incremented, use
1065 * of_node_put() on it when done.
1066 */
1067 struct device_node *of_find_node_by_phandle(phandle handle)
1068 {
1069 struct device_node *np;
1070 unsigned long flags;
1071
1072 if (!handle)
1073 return NULL;
1074
1075 raw_spin_lock_irqsave(&devtree_lock, flags);
1076 for_each_of_allnodes(np)
1077 if (np->phandle == handle)
1078 break;
1079 of_node_get(np);
1080 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1081 return np;
1082 }
1083 EXPORT_SYMBOL(of_find_node_by_phandle);
1084
1085 /**
1086 * of_property_count_elems_of_size - Count the number of elements in a property
1087 *
1088 * @np: device node from which the property value is to be read.
1089 * @propname: name of the property to be searched.
1090 * @elem_size: size of the individual element
1091 *
1092 * Search for a property in a device node and count the number of elements of
1093 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1094 * property does not exist or its length does not match a multiple of elem_size
1095 * and -ENODATA if the property does not have a value.
1096 */
1097 int of_property_count_elems_of_size(const struct device_node *np,
1098 const char *propname, int elem_size)
1099 {
1100 struct property *prop = of_find_property(np, propname, NULL);
1101
1102 if (!prop)
1103 return -EINVAL;
1104 if (!prop->value)
1105 return -ENODATA;
1106
1107 if (prop->length % elem_size != 0) {
1108 pr_err("size of %s in node %s is not a multiple of %d\n",
1109 propname, np->full_name, elem_size);
1110 return -EINVAL;
1111 }
1112
1113 return prop->length / elem_size;
1114 }
1115 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1116
1117 /**
1118 * of_find_property_value_of_size
1119 *
1120 * @np: device node from which the property value is to be read.
1121 * @propname: name of the property to be searched.
1122 * @len: requested length of property value
1123 *
1124 * Search for a property in a device node and valid the requested size.
1125 * Returns the property value on success, -EINVAL if the property does not
1126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1127 * property data isn't large enough.
1128 *
1129 */
1130 static void *of_find_property_value_of_size(const struct device_node *np,
1131 const char *propname, u32 len)
1132 {
1133 struct property *prop = of_find_property(np, propname, NULL);
1134
1135 if (!prop)
1136 return ERR_PTR(-EINVAL);
1137 if (!prop->value)
1138 return ERR_PTR(-ENODATA);
1139 if (len > prop->length)
1140 return ERR_PTR(-EOVERFLOW);
1141
1142 return prop->value;
1143 }
1144
1145 /**
1146 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1147 *
1148 * @np: device node from which the property value is to be read.
1149 * @propname: name of the property to be searched.
1150 * @index: index of the u32 in the list of values
1151 * @out_value: pointer to return value, modified only if no error.
1152 *
1153 * Search for a property in a device node and read nth 32-bit value from
1154 * it. Returns 0 on success, -EINVAL if the property does not exist,
1155 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1156 * property data isn't large enough.
1157 *
1158 * The out_value is modified only if a valid u32 value can be decoded.
1159 */
1160 int of_property_read_u32_index(const struct device_node *np,
1161 const char *propname,
1162 u32 index, u32 *out_value)
1163 {
1164 const u32 *val = of_find_property_value_of_size(np, propname,
1165 ((index + 1) * sizeof(*out_value)));
1166
1167 if (IS_ERR(val))
1168 return PTR_ERR(val);
1169
1170 *out_value = be32_to_cpup(((__be32 *)val) + index);
1171 return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1174
1175 /**
1176 * of_property_read_u8_array - Find and read an array of u8 from a property.
1177 *
1178 * @np: device node from which the property value is to be read.
1179 * @propname: name of the property to be searched.
1180 * @out_values: pointer to return value, modified only if return value is 0.
1181 * @sz: number of array elements to read
1182 *
1183 * Search for a property in a device node and read 8-bit value(s) from
1184 * it. Returns 0 on success, -EINVAL if the property does not exist,
1185 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1186 * property data isn't large enough.
1187 *
1188 * dts entry of array should be like:
1189 * property = /bits/ 8 <0x50 0x60 0x70>;
1190 *
1191 * The out_values is modified only if a valid u8 value can be decoded.
1192 */
1193 int of_property_read_u8_array(const struct device_node *np,
1194 const char *propname, u8 *out_values, size_t sz)
1195 {
1196 const u8 *val = of_find_property_value_of_size(np, propname,
1197 (sz * sizeof(*out_values)));
1198
1199 if (IS_ERR(val))
1200 return PTR_ERR(val);
1201
1202 while (sz--)
1203 *out_values++ = *val++;
1204 return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1207
1208 /**
1209 * of_property_read_u16_array - Find and read an array of u16 from a property.
1210 *
1211 * @np: device node from which the property value is to be read.
1212 * @propname: name of the property to be searched.
1213 * @out_values: pointer to return value, modified only if return value is 0.
1214 * @sz: number of array elements to read
1215 *
1216 * Search for a property in a device node and read 16-bit value(s) from
1217 * it. Returns 0 on success, -EINVAL if the property does not exist,
1218 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1219 * property data isn't large enough.
1220 *
1221 * dts entry of array should be like:
1222 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1223 *
1224 * The out_values is modified only if a valid u16 value can be decoded.
1225 */
1226 int of_property_read_u16_array(const struct device_node *np,
1227 const char *propname, u16 *out_values, size_t sz)
1228 {
1229 const __be16 *val = of_find_property_value_of_size(np, propname,
1230 (sz * sizeof(*out_values)));
1231
1232 if (IS_ERR(val))
1233 return PTR_ERR(val);
1234
1235 while (sz--)
1236 *out_values++ = be16_to_cpup(val++);
1237 return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1240
1241 /**
1242 * of_property_read_u32_array - Find and read an array of 32 bit integers
1243 * from a property.
1244 *
1245 * @np: device node from which the property value is to be read.
1246 * @propname: name of the property to be searched.
1247 * @out_values: pointer to return value, modified only if return value is 0.
1248 * @sz: number of array elements to read
1249 *
1250 * Search for a property in a device node and read 32-bit value(s) from
1251 * it. Returns 0 on success, -EINVAL if the property does not exist,
1252 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1253 * property data isn't large enough.
1254 *
1255 * The out_values is modified only if a valid u32 value can be decoded.
1256 */
1257 int of_property_read_u32_array(const struct device_node *np,
1258 const char *propname, u32 *out_values,
1259 size_t sz)
1260 {
1261 const __be32 *val = of_find_property_value_of_size(np, propname,
1262 (sz * sizeof(*out_values)));
1263
1264 if (IS_ERR(val))
1265 return PTR_ERR(val);
1266
1267 while (sz--)
1268 *out_values++ = be32_to_cpup(val++);
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1272
1273 /**
1274 * of_property_read_u64 - Find and read a 64 bit integer from a property
1275 * @np: device node from which the property value is to be read.
1276 * @propname: name of the property to be searched.
1277 * @out_value: pointer to return value, modified only if return value is 0.
1278 *
1279 * Search for a property in a device node and read a 64-bit value from
1280 * it. Returns 0 on success, -EINVAL if the property does not exist,
1281 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1282 * property data isn't large enough.
1283 *
1284 * The out_value is modified only if a valid u64 value can be decoded.
1285 */
1286 int of_property_read_u64(const struct device_node *np, const char *propname,
1287 u64 *out_value)
1288 {
1289 const __be32 *val = of_find_property_value_of_size(np, propname,
1290 sizeof(*out_value));
1291
1292 if (IS_ERR(val))
1293 return PTR_ERR(val);
1294
1295 *out_value = of_read_number(val, 2);
1296 return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(of_property_read_u64);
1299
1300 /**
1301 * of_property_read_u64_array - Find and read an array of 64 bit integers
1302 * from a property.
1303 *
1304 * @np: device node from which the property value is to be read.
1305 * @propname: name of the property to be searched.
1306 * @out_values: pointer to return value, modified only if return value is 0.
1307 * @sz: number of array elements to read
1308 *
1309 * Search for a property in a device node and read 64-bit value(s) from
1310 * it. Returns 0 on success, -EINVAL if the property does not exist,
1311 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1312 * property data isn't large enough.
1313 *
1314 * The out_values is modified only if a valid u64 value can be decoded.
1315 */
1316 int of_property_read_u64_array(const struct device_node *np,
1317 const char *propname, u64 *out_values,
1318 size_t sz)
1319 {
1320 const __be32 *val = of_find_property_value_of_size(np, propname,
1321 (sz * sizeof(*out_values)));
1322
1323 if (IS_ERR(val))
1324 return PTR_ERR(val);
1325
1326 while (sz--) {
1327 *out_values++ = of_read_number(val, 2);
1328 val += 2;
1329 }
1330 return 0;
1331 }
1332 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1333
1334 /**
1335 * of_property_read_string - Find and read a string from a property
1336 * @np: device node from which the property value is to be read.
1337 * @propname: name of the property to be searched.
1338 * @out_string: pointer to null terminated return string, modified only if
1339 * return value is 0.
1340 *
1341 * Search for a property in a device tree node and retrieve a null
1342 * terminated string value (pointer to data, not a copy). Returns 0 on
1343 * success, -EINVAL if the property does not exist, -ENODATA if property
1344 * does not have a value, and -EILSEQ if the string is not null-terminated
1345 * within the length of the property data.
1346 *
1347 * The out_string pointer is modified only if a valid string can be decoded.
1348 */
1349 int of_property_read_string(struct device_node *np, const char *propname,
1350 const char **out_string)
1351 {
1352 struct property *prop = of_find_property(np, propname, NULL);
1353 if (!prop)
1354 return -EINVAL;
1355 if (!prop->value)
1356 return -ENODATA;
1357 if (strnlen(prop->value, prop->length) >= prop->length)
1358 return -EILSEQ;
1359 *out_string = prop->value;
1360 return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(of_property_read_string);
1363
1364 /**
1365 * of_property_match_string() - Find string in a list and return index
1366 * @np: pointer to node containing string list property
1367 * @propname: string list property name
1368 * @string: pointer to string to search for in string list
1369 *
1370 * This function searches a string list property and returns the index
1371 * of a specific string value.
1372 */
1373 int of_property_match_string(struct device_node *np, const char *propname,
1374 const char *string)
1375 {
1376 struct property *prop = of_find_property(np, propname, NULL);
1377 size_t l;
1378 int i;
1379 const char *p, *end;
1380
1381 if (!prop)
1382 return -EINVAL;
1383 if (!prop->value)
1384 return -ENODATA;
1385
1386 p = prop->value;
1387 end = p + prop->length;
1388
1389 for (i = 0; p < end; i++, p += l) {
1390 l = strnlen(p, end - p) + 1;
1391 if (p + l > end)
1392 return -EILSEQ;
1393 pr_debug("comparing %s with %s\n", string, p);
1394 if (strcmp(string, p) == 0)
1395 return i; /* Found it; return index */
1396 }
1397 return -ENODATA;
1398 }
1399 EXPORT_SYMBOL_GPL(of_property_match_string);
1400
1401 /**
1402 * of_property_read_string_helper() - Utility helper for parsing string properties
1403 * @np: device node from which the property value is to be read.
1404 * @propname: name of the property to be searched.
1405 * @out_strs: output array of string pointers.
1406 * @sz: number of array elements to read.
1407 * @skip: Number of strings to skip over at beginning of list.
1408 *
1409 * Don't call this function directly. It is a utility helper for the
1410 * of_property_read_string*() family of functions.
1411 */
1412 int of_property_read_string_helper(struct device_node *np, const char *propname,
1413 const char **out_strs, size_t sz, int skip)
1414 {
1415 struct property *prop = of_find_property(np, propname, NULL);
1416 int l = 0, i = 0;
1417 const char *p, *end;
1418
1419 if (!prop)
1420 return -EINVAL;
1421 if (!prop->value)
1422 return -ENODATA;
1423 p = prop->value;
1424 end = p + prop->length;
1425
1426 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1427 l = strnlen(p, end - p) + 1;
1428 if (p + l > end)
1429 return -EILSEQ;
1430 if (out_strs && i >= skip)
1431 *out_strs++ = p;
1432 }
1433 i -= skip;
1434 return i <= 0 ? -ENODATA : i;
1435 }
1436 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1437
1438 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1439 {
1440 int i;
1441 printk("%s %s", msg, of_node_full_name(args->np));
1442 for (i = 0; i < args->args_count; i++)
1443 printk(i ? ",%08x" : ":%08x", args->args[i]);
1444 printk("\n");
1445 }
1446
1447 static int __of_parse_phandle_with_args(const struct device_node *np,
1448 const char *list_name,
1449 const char *cells_name,
1450 int cell_count, int index,
1451 struct of_phandle_args *out_args)
1452 {
1453 const __be32 *list, *list_end;
1454 int rc = 0, size, cur_index = 0;
1455 uint32_t count = 0;
1456 struct device_node *node = NULL;
1457 phandle phandle;
1458
1459 /* Retrieve the phandle list property */
1460 list = of_get_property(np, list_name, &size);
1461 if (!list)
1462 return -ENOENT;
1463 list_end = list + size / sizeof(*list);
1464
1465 /* Loop over the phandles until all the requested entry is found */
1466 while (list < list_end) {
1467 rc = -EINVAL;
1468 count = 0;
1469
1470 /*
1471 * If phandle is 0, then it is an empty entry with no
1472 * arguments. Skip forward to the next entry.
1473 */
1474 phandle = be32_to_cpup(list++);
1475 if (phandle) {
1476 /*
1477 * Find the provider node and parse the #*-cells
1478 * property to determine the argument length.
1479 *
1480 * This is not needed if the cell count is hard-coded
1481 * (i.e. cells_name not set, but cell_count is set),
1482 * except when we're going to return the found node
1483 * below.
1484 */
1485 if (cells_name || cur_index == index) {
1486 node = of_find_node_by_phandle(phandle);
1487 if (!node) {
1488 pr_err("%s: could not find phandle\n",
1489 np->full_name);
1490 goto err;
1491 }
1492 }
1493
1494 if (cells_name) {
1495 if (of_property_read_u32(node, cells_name,
1496 &count)) {
1497 pr_err("%s: could not get %s for %s\n",
1498 np->full_name, cells_name,
1499 node->full_name);
1500 goto err;
1501 }
1502 } else {
1503 count = cell_count;
1504 }
1505
1506 /*
1507 * Make sure that the arguments actually fit in the
1508 * remaining property data length
1509 */
1510 if (list + count > list_end) {
1511 pr_err("%s: arguments longer than property\n",
1512 np->full_name);
1513 goto err;
1514 }
1515 }
1516
1517 /*
1518 * All of the error cases above bail out of the loop, so at
1519 * this point, the parsing is successful. If the requested
1520 * index matches, then fill the out_args structure and return,
1521 * or return -ENOENT for an empty entry.
1522 */
1523 rc = -ENOENT;
1524 if (cur_index == index) {
1525 if (!phandle)
1526 goto err;
1527
1528 if (out_args) {
1529 int i;
1530 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1531 count = MAX_PHANDLE_ARGS;
1532 out_args->np = node;
1533 out_args->args_count = count;
1534 for (i = 0; i < count; i++)
1535 out_args->args[i] = be32_to_cpup(list++);
1536 } else {
1537 of_node_put(node);
1538 }
1539
1540 /* Found it! return success */
1541 return 0;
1542 }
1543
1544 of_node_put(node);
1545 node = NULL;
1546 list += count;
1547 cur_index++;
1548 }
1549
1550 /*
1551 * Unlock node before returning result; will be one of:
1552 * -ENOENT : index is for empty phandle
1553 * -EINVAL : parsing error on data
1554 * [1..n] : Number of phandle (count mode; when index = -1)
1555 */
1556 rc = index < 0 ? cur_index : -ENOENT;
1557 err:
1558 if (node)
1559 of_node_put(node);
1560 return rc;
1561 }
1562
1563 /**
1564 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1565 * @np: Pointer to device node holding phandle property
1566 * @phandle_name: Name of property holding a phandle value
1567 * @index: For properties holding a table of phandles, this is the index into
1568 * the table
1569 *
1570 * Returns the device_node pointer with refcount incremented. Use
1571 * of_node_put() on it when done.
1572 */
1573 struct device_node *of_parse_phandle(const struct device_node *np,
1574 const char *phandle_name, int index)
1575 {
1576 struct of_phandle_args args;
1577
1578 if (index < 0)
1579 return NULL;
1580
1581 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1582 index, &args))
1583 return NULL;
1584
1585 return args.np;
1586 }
1587 EXPORT_SYMBOL(of_parse_phandle);
1588
1589 /**
1590 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1591 * @np: pointer to a device tree node containing a list
1592 * @list_name: property name that contains a list
1593 * @cells_name: property name that specifies phandles' arguments count
1594 * @index: index of a phandle to parse out
1595 * @out_args: optional pointer to output arguments structure (will be filled)
1596 *
1597 * This function is useful to parse lists of phandles and their arguments.
1598 * Returns 0 on success and fills out_args, on error returns appropriate
1599 * errno value.
1600 *
1601 * Caller is responsible to call of_node_put() on the returned out_args->np
1602 * pointer.
1603 *
1604 * Example:
1605 *
1606 * phandle1: node1 {
1607 * #list-cells = <2>;
1608 * }
1609 *
1610 * phandle2: node2 {
1611 * #list-cells = <1>;
1612 * }
1613 *
1614 * node3 {
1615 * list = <&phandle1 1 2 &phandle2 3>;
1616 * }
1617 *
1618 * To get a device_node of the `node2' node you may call this:
1619 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1620 */
1621 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1622 const char *cells_name, int index,
1623 struct of_phandle_args *out_args)
1624 {
1625 if (index < 0)
1626 return -EINVAL;
1627 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1628 index, out_args);
1629 }
1630 EXPORT_SYMBOL(of_parse_phandle_with_args);
1631
1632 /**
1633 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1634 * @np: pointer to a device tree node containing a list
1635 * @list_name: property name that contains a list
1636 * @cell_count: number of argument cells following the phandle
1637 * @index: index of a phandle to parse out
1638 * @out_args: optional pointer to output arguments structure (will be filled)
1639 *
1640 * This function is useful to parse lists of phandles and their arguments.
1641 * Returns 0 on success and fills out_args, on error returns appropriate
1642 * errno value.
1643 *
1644 * Caller is responsible to call of_node_put() on the returned out_args->np
1645 * pointer.
1646 *
1647 * Example:
1648 *
1649 * phandle1: node1 {
1650 * }
1651 *
1652 * phandle2: node2 {
1653 * }
1654 *
1655 * node3 {
1656 * list = <&phandle1 0 2 &phandle2 2 3>;
1657 * }
1658 *
1659 * To get a device_node of the `node2' node you may call this:
1660 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1661 */
1662 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1663 const char *list_name, int cell_count,
1664 int index, struct of_phandle_args *out_args)
1665 {
1666 if (index < 0)
1667 return -EINVAL;
1668 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1669 index, out_args);
1670 }
1671 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1672
1673 /**
1674 * of_count_phandle_with_args() - Find the number of phandles references in a property
1675 * @np: pointer to a device tree node containing a list
1676 * @list_name: property name that contains a list
1677 * @cells_name: property name that specifies phandles' arguments count
1678 *
1679 * Returns the number of phandle + argument tuples within a property. It
1680 * is a typical pattern to encode a list of phandle and variable
1681 * arguments into a single property. The number of arguments is encoded
1682 * by a property in the phandle-target node. For example, a gpios
1683 * property would contain a list of GPIO specifies consisting of a
1684 * phandle and 1 or more arguments. The number of arguments are
1685 * determined by the #gpio-cells property in the node pointed to by the
1686 * phandle.
1687 */
1688 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1689 const char *cells_name)
1690 {
1691 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1692 NULL);
1693 }
1694 EXPORT_SYMBOL(of_count_phandle_with_args);
1695
1696 /**
1697 * __of_add_property - Add a property to a node without lock operations
1698 */
1699 int __of_add_property(struct device_node *np, struct property *prop)
1700 {
1701 struct property **next;
1702
1703 prop->next = NULL;
1704 next = &np->properties;
1705 while (*next) {
1706 if (strcmp(prop->name, (*next)->name) == 0)
1707 /* duplicate ! don't insert it */
1708 return -EEXIST;
1709
1710 next = &(*next)->next;
1711 }
1712 *next = prop;
1713
1714 return 0;
1715 }
1716
1717 /**
1718 * of_add_property - Add a property to a node
1719 */
1720 int of_add_property(struct device_node *np, struct property *prop)
1721 {
1722 unsigned long flags;
1723 int rc;
1724
1725 mutex_lock(&of_mutex);
1726
1727 raw_spin_lock_irqsave(&devtree_lock, flags);
1728 rc = __of_add_property(np, prop);
1729 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1730
1731 if (!rc)
1732 __of_add_property_sysfs(np, prop);
1733
1734 mutex_unlock(&of_mutex);
1735
1736 if (!rc)
1737 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1738
1739 return rc;
1740 }
1741
1742 int __of_remove_property(struct device_node *np, struct property *prop)
1743 {
1744 struct property **next;
1745
1746 for (next = &np->properties; *next; next = &(*next)->next) {
1747 if (*next == prop)
1748 break;
1749 }
1750 if (*next == NULL)
1751 return -ENODEV;
1752
1753 /* found the node */
1754 *next = prop->next;
1755 prop->next = np->deadprops;
1756 np->deadprops = prop;
1757
1758 return 0;
1759 }
1760
1761 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1762 {
1763 if (!IS_ENABLED(CONFIG_SYSFS))
1764 return;
1765
1766 /* at early boot, bail here and defer setup to of_init() */
1767 if (of_kset && of_node_is_attached(np))
1768 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1769 }
1770
1771 /**
1772 * of_remove_property - Remove a property from a node.
1773 *
1774 * Note that we don't actually remove it, since we have given out
1775 * who-knows-how-many pointers to the data using get-property.
1776 * Instead we just move the property to the "dead properties"
1777 * list, so it won't be found any more.
1778 */
1779 int of_remove_property(struct device_node *np, struct property *prop)
1780 {
1781 unsigned long flags;
1782 int rc;
1783
1784 mutex_lock(&of_mutex);
1785
1786 raw_spin_lock_irqsave(&devtree_lock, flags);
1787 rc = __of_remove_property(np, prop);
1788 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1789
1790 if (!rc)
1791 __of_remove_property_sysfs(np, prop);
1792
1793 mutex_unlock(&of_mutex);
1794
1795 if (!rc)
1796 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1797
1798 return rc;
1799 }
1800
1801 int __of_update_property(struct device_node *np, struct property *newprop,
1802 struct property **oldpropp)
1803 {
1804 struct property **next, *oldprop;
1805
1806 for (next = &np->properties; *next; next = &(*next)->next) {
1807 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1808 break;
1809 }
1810 *oldpropp = oldprop = *next;
1811
1812 if (oldprop) {
1813 /* replace the node */
1814 newprop->next = oldprop->next;
1815 *next = newprop;
1816 oldprop->next = np->deadprops;
1817 np->deadprops = oldprop;
1818 } else {
1819 /* new node */
1820 newprop->next = NULL;
1821 *next = newprop;
1822 }
1823
1824 return 0;
1825 }
1826
1827 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1828 struct property *oldprop)
1829 {
1830 if (!IS_ENABLED(CONFIG_SYSFS))
1831 return;
1832
1833 /* At early boot, bail out and defer setup to of_init() */
1834 if (!of_kset)
1835 return;
1836
1837 if (oldprop)
1838 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1839 __of_add_property_sysfs(np, newprop);
1840 }
1841
1842 /*
1843 * of_update_property - Update a property in a node, if the property does
1844 * not exist, add it.
1845 *
1846 * Note that we don't actually remove it, since we have given out
1847 * who-knows-how-many pointers to the data using get-property.
1848 * Instead we just move the property to the "dead properties" list,
1849 * and add the new property to the property list
1850 */
1851 int of_update_property(struct device_node *np, struct property *newprop)
1852 {
1853 struct property *oldprop;
1854 unsigned long flags;
1855 int rc;
1856
1857 if (!newprop->name)
1858 return -EINVAL;
1859
1860 mutex_lock(&of_mutex);
1861
1862 raw_spin_lock_irqsave(&devtree_lock, flags);
1863 rc = __of_update_property(np, newprop, &oldprop);
1864 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1865
1866 if (!rc)
1867 __of_update_property_sysfs(np, newprop, oldprop);
1868
1869 mutex_unlock(&of_mutex);
1870
1871 if (!rc)
1872 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1873
1874 return rc;
1875 }
1876
1877 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1878 int id, const char *stem, int stem_len)
1879 {
1880 ap->np = np;
1881 ap->id = id;
1882 strncpy(ap->stem, stem, stem_len);
1883 ap->stem[stem_len] = 0;
1884 list_add_tail(&ap->link, &aliases_lookup);
1885 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1886 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1887 }
1888
1889 /**
1890 * of_alias_scan - Scan all properties of the 'aliases' node
1891 *
1892 * The function scans all the properties of the 'aliases' node and populates
1893 * the global lookup table with the properties. It returns the
1894 * number of alias properties found, or an error code in case of failure.
1895 *
1896 * @dt_alloc: An allocator that provides a virtual address to memory
1897 * for storing the resulting tree
1898 */
1899 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1900 {
1901 struct property *pp;
1902
1903 of_aliases = of_find_node_by_path("/aliases");
1904 of_chosen = of_find_node_by_path("/chosen");
1905 if (of_chosen == NULL)
1906 of_chosen = of_find_node_by_path("/chosen@0");
1907
1908 if (of_chosen) {
1909 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1910 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1911 if (!name)
1912 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1913 if (IS_ENABLED(CONFIG_PPC) && !name)
1914 name = of_get_property(of_aliases, "stdout", NULL);
1915 if (name)
1916 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1917 }
1918
1919 if (!of_aliases)
1920 return;
1921
1922 for_each_property_of_node(of_aliases, pp) {
1923 const char *start = pp->name;
1924 const char *end = start + strlen(start);
1925 struct device_node *np;
1926 struct alias_prop *ap;
1927 int id, len;
1928
1929 /* Skip those we do not want to proceed */
1930 if (!strcmp(pp->name, "name") ||
1931 !strcmp(pp->name, "phandle") ||
1932 !strcmp(pp->name, "linux,phandle"))
1933 continue;
1934
1935 np = of_find_node_by_path(pp->value);
1936 if (!np)
1937 continue;
1938
1939 /* walk the alias backwards to extract the id and work out
1940 * the 'stem' string */
1941 while (isdigit(*(end-1)) && end > start)
1942 end--;
1943 len = end - start;
1944
1945 if (kstrtoint(end, 10, &id) < 0)
1946 continue;
1947
1948 /* Allocate an alias_prop with enough space for the stem */
1949 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1950 if (!ap)
1951 continue;
1952 memset(ap, 0, sizeof(*ap) + len + 1);
1953 ap->alias = start;
1954 of_alias_add(ap, np, id, start, len);
1955 }
1956 }
1957
1958 /**
1959 * of_alias_get_id - Get alias id for the given device_node
1960 * @np: Pointer to the given device_node
1961 * @stem: Alias stem of the given device_node
1962 *
1963 * The function travels the lookup table to get the alias id for the given
1964 * device_node and alias stem. It returns the alias id if found.
1965 */
1966 int of_alias_get_id(struct device_node *np, const char *stem)
1967 {
1968 struct alias_prop *app;
1969 int id = -ENODEV;
1970
1971 mutex_lock(&of_mutex);
1972 list_for_each_entry(app, &aliases_lookup, link) {
1973 if (strcmp(app->stem, stem) != 0)
1974 continue;
1975
1976 if (np == app->np) {
1977 id = app->id;
1978 break;
1979 }
1980 }
1981 mutex_unlock(&of_mutex);
1982
1983 return id;
1984 }
1985 EXPORT_SYMBOL_GPL(of_alias_get_id);
1986
1987 /**
1988 * of_alias_get_highest_id - Get highest alias id for the given stem
1989 * @stem: Alias stem to be examined
1990 *
1991 * The function travels the lookup table to get the highest alias id for the
1992 * given alias stem. It returns the alias id if found.
1993 */
1994 int of_alias_get_highest_id(const char *stem)
1995 {
1996 struct alias_prop *app;
1997 int id = -ENODEV;
1998
1999 mutex_lock(&of_mutex);
2000 list_for_each_entry(app, &aliases_lookup, link) {
2001 if (strcmp(app->stem, stem) != 0)
2002 continue;
2003
2004 if (app->id > id)
2005 id = app->id;
2006 }
2007 mutex_unlock(&of_mutex);
2008
2009 return id;
2010 }
2011 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2012
2013 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2014 u32 *pu)
2015 {
2016 const void *curv = cur;
2017
2018 if (!prop)
2019 return NULL;
2020
2021 if (!cur) {
2022 curv = prop->value;
2023 goto out_val;
2024 }
2025
2026 curv += sizeof(*cur);
2027 if (curv >= prop->value + prop->length)
2028 return NULL;
2029
2030 out_val:
2031 *pu = be32_to_cpup(curv);
2032 return curv;
2033 }
2034 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2035
2036 const char *of_prop_next_string(struct property *prop, const char *cur)
2037 {
2038 const void *curv = cur;
2039
2040 if (!prop)
2041 return NULL;
2042
2043 if (!cur)
2044 return prop->value;
2045
2046 curv += strlen(cur) + 1;
2047 if (curv >= prop->value + prop->length)
2048 return NULL;
2049
2050 return curv;
2051 }
2052 EXPORT_SYMBOL_GPL(of_prop_next_string);
2053
2054 /**
2055 * of_console_check() - Test and setup console for DT setup
2056 * @dn - Pointer to device node
2057 * @name - Name to use for preferred console without index. ex. "ttyS"
2058 * @index - Index to use for preferred console.
2059 *
2060 * Check if the given device node matches the stdout-path property in the
2061 * /chosen node. If it does then register it as the preferred console and return
2062 * TRUE. Otherwise return FALSE.
2063 */
2064 bool of_console_check(struct device_node *dn, char *name, int index)
2065 {
2066 if (!dn || dn != of_stdout || console_set_on_cmdline)
2067 return false;
2068 return !add_preferred_console(name, index,
2069 kstrdup(of_stdout_options, GFP_KERNEL));
2070 }
2071 EXPORT_SYMBOL_GPL(of_console_check);
2072
2073 /**
2074 * of_find_next_cache_node - Find a node's subsidiary cache
2075 * @np: node of type "cpu" or "cache"
2076 *
2077 * Returns a node pointer with refcount incremented, use
2078 * of_node_put() on it when done. Caller should hold a reference
2079 * to np.
2080 */
2081 struct device_node *of_find_next_cache_node(const struct device_node *np)
2082 {
2083 struct device_node *child;
2084 const phandle *handle;
2085
2086 handle = of_get_property(np, "l2-cache", NULL);
2087 if (!handle)
2088 handle = of_get_property(np, "next-level-cache", NULL);
2089
2090 if (handle)
2091 return of_find_node_by_phandle(be32_to_cpup(handle));
2092
2093 /* OF on pmac has nodes instead of properties named "l2-cache"
2094 * beneath CPU nodes.
2095 */
2096 if (!strcmp(np->type, "cpu"))
2097 for_each_child_of_node(np, child)
2098 if (!strcmp(child->type, "cache"))
2099 return child;
2100
2101 return NULL;
2102 }
2103
2104 /**
2105 * of_graph_parse_endpoint() - parse common endpoint node properties
2106 * @node: pointer to endpoint device_node
2107 * @endpoint: pointer to the OF endpoint data structure
2108 *
2109 * The caller should hold a reference to @node.
2110 */
2111 int of_graph_parse_endpoint(const struct device_node *node,
2112 struct of_endpoint *endpoint)
2113 {
2114 struct device_node *port_node = of_get_parent(node);
2115
2116 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2117 __func__, node->full_name);
2118
2119 memset(endpoint, 0, sizeof(*endpoint));
2120
2121 endpoint->local_node = node;
2122 /*
2123 * It doesn't matter whether the two calls below succeed.
2124 * If they don't then the default value 0 is used.
2125 */
2126 of_property_read_u32(port_node, "reg", &endpoint->port);
2127 of_property_read_u32(node, "reg", &endpoint->id);
2128
2129 of_node_put(port_node);
2130
2131 return 0;
2132 }
2133 EXPORT_SYMBOL(of_graph_parse_endpoint);
2134
2135 /**
2136 * of_graph_get_port_by_id() - get the port matching a given id
2137 * @parent: pointer to the parent device node
2138 * @id: id of the port
2139 *
2140 * Return: A 'port' node pointer with refcount incremented. The caller
2141 * has to use of_node_put() on it when done.
2142 */
2143 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2144 {
2145 struct device_node *node, *port;
2146
2147 node = of_get_child_by_name(parent, "ports");
2148 if (node)
2149 parent = node;
2150
2151 for_each_child_of_node(parent, port) {
2152 u32 port_id = 0;
2153
2154 if (of_node_cmp(port->name, "port") != 0)
2155 continue;
2156 of_property_read_u32(port, "reg", &port_id);
2157 if (id == port_id)
2158 break;
2159 }
2160
2161 of_node_put(node);
2162
2163 return port;
2164 }
2165 EXPORT_SYMBOL(of_graph_get_port_by_id);
2166
2167 /**
2168 * of_graph_get_next_endpoint() - get next endpoint node
2169 * @parent: pointer to the parent device node
2170 * @prev: previous endpoint node, or NULL to get first
2171 *
2172 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2173 * of the passed @prev node is decremented.
2174 */
2175 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2176 struct device_node *prev)
2177 {
2178 struct device_node *endpoint;
2179 struct device_node *port;
2180
2181 if (!parent)
2182 return NULL;
2183
2184 /*
2185 * Start by locating the port node. If no previous endpoint is specified
2186 * search for the first port node, otherwise get the previous endpoint
2187 * parent port node.
2188 */
2189 if (!prev) {
2190 struct device_node *node;
2191
2192 node = of_get_child_by_name(parent, "ports");
2193 if (node)
2194 parent = node;
2195
2196 port = of_get_child_by_name(parent, "port");
2197 of_node_put(node);
2198
2199 if (!port) {
2200 pr_err("%s(): no port node found in %s\n",
2201 __func__, parent->full_name);
2202 return NULL;
2203 }
2204 } else {
2205 port = of_get_parent(prev);
2206 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2207 __func__, prev->full_name))
2208 return NULL;
2209 }
2210
2211 while (1) {
2212 /*
2213 * Now that we have a port node, get the next endpoint by
2214 * getting the next child. If the previous endpoint is NULL this
2215 * will return the first child.
2216 */
2217 endpoint = of_get_next_child(port, prev);
2218 if (endpoint) {
2219 of_node_put(port);
2220 return endpoint;
2221 }
2222
2223 /* No more endpoints under this port, try the next one. */
2224 prev = NULL;
2225
2226 do {
2227 port = of_get_next_child(parent, port);
2228 if (!port)
2229 return NULL;
2230 } while (of_node_cmp(port->name, "port"));
2231 }
2232 }
2233 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2234
2235 /**
2236 * of_graph_get_remote_port_parent() - get remote port's parent node
2237 * @node: pointer to a local endpoint device_node
2238 *
2239 * Return: Remote device node associated with remote endpoint node linked
2240 * to @node. Use of_node_put() on it when done.
2241 */
2242 struct device_node *of_graph_get_remote_port_parent(
2243 const struct device_node *node)
2244 {
2245 struct device_node *np;
2246 unsigned int depth;
2247
2248 /* Get remote endpoint node. */
2249 np = of_parse_phandle(node, "remote-endpoint", 0);
2250
2251 /* Walk 3 levels up only if there is 'ports' node. */
2252 for (depth = 3; depth && np; depth--) {
2253 np = of_get_next_parent(np);
2254 if (depth == 2 && of_node_cmp(np->name, "ports"))
2255 break;
2256 }
2257 return np;
2258 }
2259 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2260
2261 /**
2262 * of_graph_get_remote_port() - get remote port node
2263 * @node: pointer to a local endpoint device_node
2264 *
2265 * Return: Remote port node associated with remote endpoint node linked
2266 * to @node. Use of_node_put() on it when done.
2267 */
2268 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2269 {
2270 struct device_node *np;
2271
2272 /* Get remote endpoint node. */
2273 np = of_parse_phandle(node, "remote-endpoint", 0);
2274 if (!np)
2275 return NULL;
2276 return of_get_next_parent(np);
2277 }
2278 EXPORT_SYMBOL(of_graph_get_remote_port);
This page took 0.082091 seconds and 5 git commands to generate.