of: correct of_console_check()'s return value
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_allnodes;
36 EXPORT_SYMBOL(of_allnodes);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40
41 struct kset *of_kset;
42
43 /*
44 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
45 * This mutex must be held whenever modifications are being made to the
46 * device tree. The of_{attach,detach}_node() and
47 * of_{add,remove,update}_property() helpers make sure this happens.
48 */
49 DEFINE_MUTEX(of_mutex);
50
51 /* use when traversing tree through the allnext, child, sibling,
52 * or parent members of struct device_node.
53 */
54 DEFINE_RAW_SPINLOCK(devtree_lock);
55
56 int of_n_addr_cells(struct device_node *np)
57 {
58 const __be32 *ip;
59
60 do {
61 if (np->parent)
62 np = np->parent;
63 ip = of_get_property(np, "#address-cells", NULL);
64 if (ip)
65 return be32_to_cpup(ip);
66 } while (np->parent);
67 /* No #address-cells property for the root node */
68 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69 }
70 EXPORT_SYMBOL(of_n_addr_cells);
71
72 int of_n_size_cells(struct device_node *np)
73 {
74 const __be32 *ip;
75
76 do {
77 if (np->parent)
78 np = np->parent;
79 ip = of_get_property(np, "#size-cells", NULL);
80 if (ip)
81 return be32_to_cpup(ip);
82 } while (np->parent);
83 /* No #size-cells property for the root node */
84 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
85 }
86 EXPORT_SYMBOL(of_n_size_cells);
87
88 #ifdef CONFIG_NUMA
89 int __weak of_node_to_nid(struct device_node *np)
90 {
91 return numa_node_id();
92 }
93 #endif
94
95 #ifndef CONFIG_OF_DYNAMIC
96 static void of_node_release(struct kobject *kobj)
97 {
98 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
99 }
100 #endif /* CONFIG_OF_DYNAMIC */
101
102 struct kobj_type of_node_ktype = {
103 .release = of_node_release,
104 };
105
106 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
107 struct bin_attribute *bin_attr, char *buf,
108 loff_t offset, size_t count)
109 {
110 struct property *pp = container_of(bin_attr, struct property, attr);
111 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
112 }
113
114 static const char *safe_name(struct kobject *kobj, const char *orig_name)
115 {
116 const char *name = orig_name;
117 struct kernfs_node *kn;
118 int i = 0;
119
120 /* don't be a hero. After 16 tries give up */
121 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
122 sysfs_put(kn);
123 if (name != orig_name)
124 kfree(name);
125 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
126 }
127
128 if (name != orig_name)
129 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
130 kobject_name(kobj), name);
131 return name;
132 }
133
134 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
135 {
136 int rc;
137
138 /* Important: Don't leak passwords */
139 bool secure = strncmp(pp->name, "security-", 9) == 0;
140
141 if (!of_kset || !of_node_is_attached(np))
142 return 0;
143
144 sysfs_bin_attr_init(&pp->attr);
145 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
146 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
147 pp->attr.size = secure ? 0 : pp->length;
148 pp->attr.read = of_node_property_read;
149
150 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
151 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
152 return rc;
153 }
154
155 int __of_attach_node_sysfs(struct device_node *np)
156 {
157 const char *name;
158 struct property *pp;
159 int rc;
160
161 if (!of_kset)
162 return 0;
163
164 np->kobj.kset = of_kset;
165 if (!np->parent) {
166 /* Nodes without parents are new top level trees */
167 rc = kobject_add(&np->kobj, NULL, "%s",
168 safe_name(&of_kset->kobj, "base"));
169 } else {
170 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
171 if (!name || !name[0])
172 return -EINVAL;
173
174 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
175 }
176 if (rc)
177 return rc;
178
179 for_each_property_of_node(np, pp)
180 __of_add_property_sysfs(np, pp);
181
182 return 0;
183 }
184
185 static int __init of_init(void)
186 {
187 struct device_node *np;
188
189 /* Create the kset, and register existing nodes */
190 mutex_lock(&of_mutex);
191 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
192 if (!of_kset) {
193 mutex_unlock(&of_mutex);
194 return -ENOMEM;
195 }
196 for_each_of_allnodes(np)
197 __of_attach_node_sysfs(np);
198 mutex_unlock(&of_mutex);
199
200 /* Symlink in /proc as required by userspace ABI */
201 if (of_allnodes)
202 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
203
204 return 0;
205 }
206 core_initcall(of_init);
207
208 static struct property *__of_find_property(const struct device_node *np,
209 const char *name, int *lenp)
210 {
211 struct property *pp;
212
213 if (!np)
214 return NULL;
215
216 for (pp = np->properties; pp; pp = pp->next) {
217 if (of_prop_cmp(pp->name, name) == 0) {
218 if (lenp)
219 *lenp = pp->length;
220 break;
221 }
222 }
223
224 return pp;
225 }
226
227 struct property *of_find_property(const struct device_node *np,
228 const char *name,
229 int *lenp)
230 {
231 struct property *pp;
232 unsigned long flags;
233
234 raw_spin_lock_irqsave(&devtree_lock, flags);
235 pp = __of_find_property(np, name, lenp);
236 raw_spin_unlock_irqrestore(&devtree_lock, flags);
237
238 return pp;
239 }
240 EXPORT_SYMBOL(of_find_property);
241
242 /**
243 * of_find_all_nodes - Get next node in global list
244 * @prev: Previous node or NULL to start iteration
245 * of_node_put() will be called on it
246 *
247 * Returns a node pointer with refcount incremented, use
248 * of_node_put() on it when done.
249 */
250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 struct device_node *np;
253 unsigned long flags;
254
255 raw_spin_lock_irqsave(&devtree_lock, flags);
256 np = prev ? prev->allnext : of_allnodes;
257 for (; np != NULL; np = np->allnext)
258 if (of_node_get(np))
259 break;
260 of_node_put(prev);
261 raw_spin_unlock_irqrestore(&devtree_lock, flags);
262 return np;
263 }
264 EXPORT_SYMBOL(of_find_all_nodes);
265
266 /*
267 * Find a property with a given name for a given node
268 * and return the value.
269 */
270 const void *__of_get_property(const struct device_node *np,
271 const char *name, int *lenp)
272 {
273 struct property *pp = __of_find_property(np, name, lenp);
274
275 return pp ? pp->value : NULL;
276 }
277
278 /*
279 * Find a property with a given name for a given node
280 * and return the value.
281 */
282 const void *of_get_property(const struct device_node *np, const char *name,
283 int *lenp)
284 {
285 struct property *pp = of_find_property(np, name, lenp);
286
287 return pp ? pp->value : NULL;
288 }
289 EXPORT_SYMBOL(of_get_property);
290
291 /*
292 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
293 *
294 * @cpu: logical cpu index of a core/thread
295 * @phys_id: physical identifier of a core/thread
296 *
297 * CPU logical to physical index mapping is architecture specific.
298 * However this __weak function provides a default match of physical
299 * id to logical cpu index. phys_id provided here is usually values read
300 * from the device tree which must match the hardware internal registers.
301 *
302 * Returns true if the physical identifier and the logical cpu index
303 * correspond to the same core/thread, false otherwise.
304 */
305 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
306 {
307 return (u32)phys_id == cpu;
308 }
309
310 /**
311 * Checks if the given "prop_name" property holds the physical id of the
312 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
313 * NULL, local thread number within the core is returned in it.
314 */
315 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
316 const char *prop_name, int cpu, unsigned int *thread)
317 {
318 const __be32 *cell;
319 int ac, prop_len, tid;
320 u64 hwid;
321
322 ac = of_n_addr_cells(cpun);
323 cell = of_get_property(cpun, prop_name, &prop_len);
324 if (!cell || !ac)
325 return false;
326 prop_len /= sizeof(*cell) * ac;
327 for (tid = 0; tid < prop_len; tid++) {
328 hwid = of_read_number(cell, ac);
329 if (arch_match_cpu_phys_id(cpu, hwid)) {
330 if (thread)
331 *thread = tid;
332 return true;
333 }
334 cell += ac;
335 }
336 return false;
337 }
338
339 /*
340 * arch_find_n_match_cpu_physical_id - See if the given device node is
341 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
342 * else false. If 'thread' is non-NULL, the local thread number within the
343 * core is returned in it.
344 */
345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 int cpu, unsigned int *thread)
347 {
348 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 * for thread ids on PowerPC. If it doesn't exist fallback to
350 * standard "reg" property.
351 */
352 if (IS_ENABLED(CONFIG_PPC) &&
353 __of_find_n_match_cpu_property(cpun,
354 "ibm,ppc-interrupt-server#s",
355 cpu, thread))
356 return true;
357
358 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
359 return true;
360
361 return false;
362 }
363
364 /**
365 * of_get_cpu_node - Get device node associated with the given logical CPU
366 *
367 * @cpu: CPU number(logical index) for which device node is required
368 * @thread: if not NULL, local thread number within the physical core is
369 * returned
370 *
371 * The main purpose of this function is to retrieve the device node for the
372 * given logical CPU index. It should be used to initialize the of_node in
373 * cpu device. Once of_node in cpu device is populated, all the further
374 * references can use that instead.
375 *
376 * CPU logical to physical index mapping is architecture specific and is built
377 * before booting secondary cores. This function uses arch_match_cpu_phys_id
378 * which can be overridden by architecture specific implementation.
379 *
380 * Returns a node pointer for the logical cpu if found, else NULL.
381 */
382 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
383 {
384 struct device_node *cpun;
385
386 for_each_node_by_type(cpun, "cpu") {
387 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
388 return cpun;
389 }
390 return NULL;
391 }
392 EXPORT_SYMBOL(of_get_cpu_node);
393
394 /**
395 * __of_device_is_compatible() - Check if the node matches given constraints
396 * @device: pointer to node
397 * @compat: required compatible string, NULL or "" for any match
398 * @type: required device_type value, NULL or "" for any match
399 * @name: required node name, NULL or "" for any match
400 *
401 * Checks if the given @compat, @type and @name strings match the
402 * properties of the given @device. A constraints can be skipped by
403 * passing NULL or an empty string as the constraint.
404 *
405 * Returns 0 for no match, and a positive integer on match. The return
406 * value is a relative score with larger values indicating better
407 * matches. The score is weighted for the most specific compatible value
408 * to get the highest score. Matching type is next, followed by matching
409 * name. Practically speaking, this results in the following priority
410 * order for matches:
411 *
412 * 1. specific compatible && type && name
413 * 2. specific compatible && type
414 * 3. specific compatible && name
415 * 4. specific compatible
416 * 5. general compatible && type && name
417 * 6. general compatible && type
418 * 7. general compatible && name
419 * 8. general compatible
420 * 9. type && name
421 * 10. type
422 * 11. name
423 */
424 static int __of_device_is_compatible(const struct device_node *device,
425 const char *compat, const char *type, const char *name)
426 {
427 struct property *prop;
428 const char *cp;
429 int index = 0, score = 0;
430
431 /* Compatible match has highest priority */
432 if (compat && compat[0]) {
433 prop = __of_find_property(device, "compatible", NULL);
434 for (cp = of_prop_next_string(prop, NULL); cp;
435 cp = of_prop_next_string(prop, cp), index++) {
436 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
437 score = INT_MAX/2 - (index << 2);
438 break;
439 }
440 }
441 if (!score)
442 return 0;
443 }
444
445 /* Matching type is better than matching name */
446 if (type && type[0]) {
447 if (!device->type || of_node_cmp(type, device->type))
448 return 0;
449 score += 2;
450 }
451
452 /* Matching name is a bit better than not */
453 if (name && name[0]) {
454 if (!device->name || of_node_cmp(name, device->name))
455 return 0;
456 score++;
457 }
458
459 return score;
460 }
461
462 /** Checks if the given "compat" string matches one of the strings in
463 * the device's "compatible" property
464 */
465 int of_device_is_compatible(const struct device_node *device,
466 const char *compat)
467 {
468 unsigned long flags;
469 int res;
470
471 raw_spin_lock_irqsave(&devtree_lock, flags);
472 res = __of_device_is_compatible(device, compat, NULL, NULL);
473 raw_spin_unlock_irqrestore(&devtree_lock, flags);
474 return res;
475 }
476 EXPORT_SYMBOL(of_device_is_compatible);
477
478 /**
479 * of_machine_is_compatible - Test root of device tree for a given compatible value
480 * @compat: compatible string to look for in root node's compatible property.
481 *
482 * Returns true if the root node has the given value in its
483 * compatible property.
484 */
485 int of_machine_is_compatible(const char *compat)
486 {
487 struct device_node *root;
488 int rc = 0;
489
490 root = of_find_node_by_path("/");
491 if (root) {
492 rc = of_device_is_compatible(root, compat);
493 of_node_put(root);
494 }
495 return rc;
496 }
497 EXPORT_SYMBOL(of_machine_is_compatible);
498
499 /**
500 * __of_device_is_available - check if a device is available for use
501 *
502 * @device: Node to check for availability, with locks already held
503 *
504 * Returns 1 if the status property is absent or set to "okay" or "ok",
505 * 0 otherwise
506 */
507 static int __of_device_is_available(const struct device_node *device)
508 {
509 const char *status;
510 int statlen;
511
512 if (!device)
513 return 0;
514
515 status = __of_get_property(device, "status", &statlen);
516 if (status == NULL)
517 return 1;
518
519 if (statlen > 0) {
520 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
521 return 1;
522 }
523
524 return 0;
525 }
526
527 /**
528 * of_device_is_available - check if a device is available for use
529 *
530 * @device: Node to check for availability
531 *
532 * Returns 1 if the status property is absent or set to "okay" or "ok",
533 * 0 otherwise
534 */
535 int of_device_is_available(const struct device_node *device)
536 {
537 unsigned long flags;
538 int res;
539
540 raw_spin_lock_irqsave(&devtree_lock, flags);
541 res = __of_device_is_available(device);
542 raw_spin_unlock_irqrestore(&devtree_lock, flags);
543 return res;
544
545 }
546 EXPORT_SYMBOL(of_device_is_available);
547
548 /**
549 * of_get_parent - Get a node's parent if any
550 * @node: Node to get parent
551 *
552 * Returns a node pointer with refcount incremented, use
553 * of_node_put() on it when done.
554 */
555 struct device_node *of_get_parent(const struct device_node *node)
556 {
557 struct device_node *np;
558 unsigned long flags;
559
560 if (!node)
561 return NULL;
562
563 raw_spin_lock_irqsave(&devtree_lock, flags);
564 np = of_node_get(node->parent);
565 raw_spin_unlock_irqrestore(&devtree_lock, flags);
566 return np;
567 }
568 EXPORT_SYMBOL(of_get_parent);
569
570 /**
571 * of_get_next_parent - Iterate to a node's parent
572 * @node: Node to get parent of
573 *
574 * This is like of_get_parent() except that it drops the
575 * refcount on the passed node, making it suitable for iterating
576 * through a node's parents.
577 *
578 * Returns a node pointer with refcount incremented, use
579 * of_node_put() on it when done.
580 */
581 struct device_node *of_get_next_parent(struct device_node *node)
582 {
583 struct device_node *parent;
584 unsigned long flags;
585
586 if (!node)
587 return NULL;
588
589 raw_spin_lock_irqsave(&devtree_lock, flags);
590 parent = of_node_get(node->parent);
591 of_node_put(node);
592 raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 return parent;
594 }
595 EXPORT_SYMBOL(of_get_next_parent);
596
597 static struct device_node *__of_get_next_child(const struct device_node *node,
598 struct device_node *prev)
599 {
600 struct device_node *next;
601
602 if (!node)
603 return NULL;
604
605 next = prev ? prev->sibling : node->child;
606 for (; next; next = next->sibling)
607 if (of_node_get(next))
608 break;
609 of_node_put(prev);
610 return next;
611 }
612 #define __for_each_child_of_node(parent, child) \
613 for (child = __of_get_next_child(parent, NULL); child != NULL; \
614 child = __of_get_next_child(parent, child))
615
616 /**
617 * of_get_next_child - Iterate a node childs
618 * @node: parent node
619 * @prev: previous child of the parent node, or NULL to get first
620 *
621 * Returns a node pointer with refcount incremented, use
622 * of_node_put() on it when done.
623 */
624 struct device_node *of_get_next_child(const struct device_node *node,
625 struct device_node *prev)
626 {
627 struct device_node *next;
628 unsigned long flags;
629
630 raw_spin_lock_irqsave(&devtree_lock, flags);
631 next = __of_get_next_child(node, prev);
632 raw_spin_unlock_irqrestore(&devtree_lock, flags);
633 return next;
634 }
635 EXPORT_SYMBOL(of_get_next_child);
636
637 /**
638 * of_get_next_available_child - Find the next available child node
639 * @node: parent node
640 * @prev: previous child of the parent node, or NULL to get first
641 *
642 * This function is like of_get_next_child(), except that it
643 * automatically skips any disabled nodes (i.e. status = "disabled").
644 */
645 struct device_node *of_get_next_available_child(const struct device_node *node,
646 struct device_node *prev)
647 {
648 struct device_node *next;
649 unsigned long flags;
650
651 if (!node)
652 return NULL;
653
654 raw_spin_lock_irqsave(&devtree_lock, flags);
655 next = prev ? prev->sibling : node->child;
656 for (; next; next = next->sibling) {
657 if (!__of_device_is_available(next))
658 continue;
659 if (of_node_get(next))
660 break;
661 }
662 of_node_put(prev);
663 raw_spin_unlock_irqrestore(&devtree_lock, flags);
664 return next;
665 }
666 EXPORT_SYMBOL(of_get_next_available_child);
667
668 /**
669 * of_get_child_by_name - Find the child node by name for a given parent
670 * @node: parent node
671 * @name: child name to look for.
672 *
673 * This function looks for child node for given matching name
674 *
675 * Returns a node pointer if found, with refcount incremented, use
676 * of_node_put() on it when done.
677 * Returns NULL if node is not found.
678 */
679 struct device_node *of_get_child_by_name(const struct device_node *node,
680 const char *name)
681 {
682 struct device_node *child;
683
684 for_each_child_of_node(node, child)
685 if (child->name && (of_node_cmp(child->name, name) == 0))
686 break;
687 return child;
688 }
689 EXPORT_SYMBOL(of_get_child_by_name);
690
691 static struct device_node *__of_find_node_by_path(struct device_node *parent,
692 const char *path)
693 {
694 struct device_node *child;
695 int len = strchrnul(path, '/') - path;
696
697 if (!len)
698 return NULL;
699
700 __for_each_child_of_node(parent, child) {
701 const char *name = strrchr(child->full_name, '/');
702 if (WARN(!name, "malformed device_node %s\n", child->full_name))
703 continue;
704 name++;
705 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
706 return child;
707 }
708 return NULL;
709 }
710
711 /**
712 * of_find_node_by_path - Find a node matching a full OF path
713 * @path: Either the full path to match, or if the path does not
714 * start with '/', the name of a property of the /aliases
715 * node (an alias). In the case of an alias, the node
716 * matching the alias' value will be returned.
717 *
718 * Valid paths:
719 * /foo/bar Full path
720 * foo Valid alias
721 * foo/bar Valid alias + relative path
722 *
723 * Returns a node pointer with refcount incremented, use
724 * of_node_put() on it when done.
725 */
726 struct device_node *of_find_node_by_path(const char *path)
727 {
728 struct device_node *np = NULL;
729 struct property *pp;
730 unsigned long flags;
731
732 if (strcmp(path, "/") == 0)
733 return of_node_get(of_allnodes);
734
735 /* The path could begin with an alias */
736 if (*path != '/') {
737 char *p = strchrnul(path, '/');
738 int len = p - path;
739
740 /* of_aliases must not be NULL */
741 if (!of_aliases)
742 return NULL;
743
744 for_each_property_of_node(of_aliases, pp) {
745 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
746 np = of_find_node_by_path(pp->value);
747 break;
748 }
749 }
750 if (!np)
751 return NULL;
752 path = p;
753 }
754
755 /* Step down the tree matching path components */
756 raw_spin_lock_irqsave(&devtree_lock, flags);
757 if (!np)
758 np = of_node_get(of_allnodes);
759 while (np && *path == '/') {
760 path++; /* Increment past '/' delimiter */
761 np = __of_find_node_by_path(np, path);
762 path = strchrnul(path, '/');
763 }
764 raw_spin_unlock_irqrestore(&devtree_lock, flags);
765 return np;
766 }
767 EXPORT_SYMBOL(of_find_node_by_path);
768
769 /**
770 * of_find_node_by_name - Find a node by its "name" property
771 * @from: The node to start searching from or NULL, the node
772 * you pass will not be searched, only the next one
773 * will; typically, you pass what the previous call
774 * returned. of_node_put() will be called on it
775 * @name: The name string to match against
776 *
777 * Returns a node pointer with refcount incremented, use
778 * of_node_put() on it when done.
779 */
780 struct device_node *of_find_node_by_name(struct device_node *from,
781 const char *name)
782 {
783 struct device_node *np;
784 unsigned long flags;
785
786 raw_spin_lock_irqsave(&devtree_lock, flags);
787 np = from ? from->allnext : of_allnodes;
788 for (; np; np = np->allnext)
789 if (np->name && (of_node_cmp(np->name, name) == 0)
790 && of_node_get(np))
791 break;
792 of_node_put(from);
793 raw_spin_unlock_irqrestore(&devtree_lock, flags);
794 return np;
795 }
796 EXPORT_SYMBOL(of_find_node_by_name);
797
798 /**
799 * of_find_node_by_type - Find a node by its "device_type" property
800 * @from: The node to start searching from, or NULL to start searching
801 * the entire device tree. The node you pass will not be
802 * searched, only the next one will; typically, you pass
803 * what the previous call returned. of_node_put() will be
804 * called on from for you.
805 * @type: The type string to match against
806 *
807 * Returns a node pointer with refcount incremented, use
808 * of_node_put() on it when done.
809 */
810 struct device_node *of_find_node_by_type(struct device_node *from,
811 const char *type)
812 {
813 struct device_node *np;
814 unsigned long flags;
815
816 raw_spin_lock_irqsave(&devtree_lock, flags);
817 np = from ? from->allnext : of_allnodes;
818 for (; np; np = np->allnext)
819 if (np->type && (of_node_cmp(np->type, type) == 0)
820 && of_node_get(np))
821 break;
822 of_node_put(from);
823 raw_spin_unlock_irqrestore(&devtree_lock, flags);
824 return np;
825 }
826 EXPORT_SYMBOL(of_find_node_by_type);
827
828 /**
829 * of_find_compatible_node - Find a node based on type and one of the
830 * tokens in its "compatible" property
831 * @from: The node to start searching from or NULL, the node
832 * you pass will not be searched, only the next one
833 * will; typically, you pass what the previous call
834 * returned. of_node_put() will be called on it
835 * @type: The type string to match "device_type" or NULL to ignore
836 * @compatible: The string to match to one of the tokens in the device
837 * "compatible" list.
838 *
839 * Returns a node pointer with refcount incremented, use
840 * of_node_put() on it when done.
841 */
842 struct device_node *of_find_compatible_node(struct device_node *from,
843 const char *type, const char *compatible)
844 {
845 struct device_node *np;
846 unsigned long flags;
847
848 raw_spin_lock_irqsave(&devtree_lock, flags);
849 np = from ? from->allnext : of_allnodes;
850 for (; np; np = np->allnext) {
851 if (__of_device_is_compatible(np, compatible, type, NULL) &&
852 of_node_get(np))
853 break;
854 }
855 of_node_put(from);
856 raw_spin_unlock_irqrestore(&devtree_lock, flags);
857 return np;
858 }
859 EXPORT_SYMBOL(of_find_compatible_node);
860
861 /**
862 * of_find_node_with_property - Find a node which has a property with
863 * the given name.
864 * @from: The node to start searching from or NULL, the node
865 * you pass will not be searched, only the next one
866 * will; typically, you pass what the previous call
867 * returned. of_node_put() will be called on it
868 * @prop_name: The name of the property to look for.
869 *
870 * Returns a node pointer with refcount incremented, use
871 * of_node_put() on it when done.
872 */
873 struct device_node *of_find_node_with_property(struct device_node *from,
874 const char *prop_name)
875 {
876 struct device_node *np;
877 struct property *pp;
878 unsigned long flags;
879
880 raw_spin_lock_irqsave(&devtree_lock, flags);
881 np = from ? from->allnext : of_allnodes;
882 for (; np; np = np->allnext) {
883 for (pp = np->properties; pp; pp = pp->next) {
884 if (of_prop_cmp(pp->name, prop_name) == 0) {
885 of_node_get(np);
886 goto out;
887 }
888 }
889 }
890 out:
891 of_node_put(from);
892 raw_spin_unlock_irqrestore(&devtree_lock, flags);
893 return np;
894 }
895 EXPORT_SYMBOL(of_find_node_with_property);
896
897 static
898 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
899 const struct device_node *node)
900 {
901 const struct of_device_id *best_match = NULL;
902 int score, best_score = 0;
903
904 if (!matches)
905 return NULL;
906
907 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
908 score = __of_device_is_compatible(node, matches->compatible,
909 matches->type, matches->name);
910 if (score > best_score) {
911 best_match = matches;
912 best_score = score;
913 }
914 }
915
916 return best_match;
917 }
918
919 /**
920 * of_match_node - Tell if an device_node has a matching of_match structure
921 * @matches: array of of device match structures to search in
922 * @node: the of device structure to match against
923 *
924 * Low level utility function used by device matching.
925 */
926 const struct of_device_id *of_match_node(const struct of_device_id *matches,
927 const struct device_node *node)
928 {
929 const struct of_device_id *match;
930 unsigned long flags;
931
932 raw_spin_lock_irqsave(&devtree_lock, flags);
933 match = __of_match_node(matches, node);
934 raw_spin_unlock_irqrestore(&devtree_lock, flags);
935 return match;
936 }
937 EXPORT_SYMBOL(of_match_node);
938
939 /**
940 * of_find_matching_node_and_match - Find a node based on an of_device_id
941 * match table.
942 * @from: The node to start searching from or NULL, the node
943 * you pass will not be searched, only the next one
944 * will; typically, you pass what the previous call
945 * returned. of_node_put() will be called on it
946 * @matches: array of of device match structures to search in
947 * @match Updated to point at the matches entry which matched
948 *
949 * Returns a node pointer with refcount incremented, use
950 * of_node_put() on it when done.
951 */
952 struct device_node *of_find_matching_node_and_match(struct device_node *from,
953 const struct of_device_id *matches,
954 const struct of_device_id **match)
955 {
956 struct device_node *np;
957 const struct of_device_id *m;
958 unsigned long flags;
959
960 if (match)
961 *match = NULL;
962
963 raw_spin_lock_irqsave(&devtree_lock, flags);
964 np = from ? from->allnext : of_allnodes;
965 for (; np; np = np->allnext) {
966 m = __of_match_node(matches, np);
967 if (m && of_node_get(np)) {
968 if (match)
969 *match = m;
970 break;
971 }
972 }
973 of_node_put(from);
974 raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 return np;
976 }
977 EXPORT_SYMBOL(of_find_matching_node_and_match);
978
979 /**
980 * of_modalias_node - Lookup appropriate modalias for a device node
981 * @node: pointer to a device tree node
982 * @modalias: Pointer to buffer that modalias value will be copied into
983 * @len: Length of modalias value
984 *
985 * Based on the value of the compatible property, this routine will attempt
986 * to choose an appropriate modalias value for a particular device tree node.
987 * It does this by stripping the manufacturer prefix (as delimited by a ',')
988 * from the first entry in the compatible list property.
989 *
990 * This routine returns 0 on success, <0 on failure.
991 */
992 int of_modalias_node(struct device_node *node, char *modalias, int len)
993 {
994 const char *compatible, *p;
995 int cplen;
996
997 compatible = of_get_property(node, "compatible", &cplen);
998 if (!compatible || strlen(compatible) > cplen)
999 return -ENODEV;
1000 p = strchr(compatible, ',');
1001 strlcpy(modalias, p ? p + 1 : compatible, len);
1002 return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(of_modalias_node);
1005
1006 /**
1007 * of_find_node_by_phandle - Find a node given a phandle
1008 * @handle: phandle of the node to find
1009 *
1010 * Returns a node pointer with refcount incremented, use
1011 * of_node_put() on it when done.
1012 */
1013 struct device_node *of_find_node_by_phandle(phandle handle)
1014 {
1015 struct device_node *np;
1016 unsigned long flags;
1017
1018 raw_spin_lock_irqsave(&devtree_lock, flags);
1019 for (np = of_allnodes; np; np = np->allnext)
1020 if (np->phandle == handle)
1021 break;
1022 of_node_get(np);
1023 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1024 return np;
1025 }
1026 EXPORT_SYMBOL(of_find_node_by_phandle);
1027
1028 /**
1029 * of_property_count_elems_of_size - Count the number of elements in a property
1030 *
1031 * @np: device node from which the property value is to be read.
1032 * @propname: name of the property to be searched.
1033 * @elem_size: size of the individual element
1034 *
1035 * Search for a property in a device node and count the number of elements of
1036 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1037 * property does not exist or its length does not match a multiple of elem_size
1038 * and -ENODATA if the property does not have a value.
1039 */
1040 int of_property_count_elems_of_size(const struct device_node *np,
1041 const char *propname, int elem_size)
1042 {
1043 struct property *prop = of_find_property(np, propname, NULL);
1044
1045 if (!prop)
1046 return -EINVAL;
1047 if (!prop->value)
1048 return -ENODATA;
1049
1050 if (prop->length % elem_size != 0) {
1051 pr_err("size of %s in node %s is not a multiple of %d\n",
1052 propname, np->full_name, elem_size);
1053 return -EINVAL;
1054 }
1055
1056 return prop->length / elem_size;
1057 }
1058 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1059
1060 /**
1061 * of_find_property_value_of_size
1062 *
1063 * @np: device node from which the property value is to be read.
1064 * @propname: name of the property to be searched.
1065 * @len: requested length of property value
1066 *
1067 * Search for a property in a device node and valid the requested size.
1068 * Returns the property value on success, -EINVAL if the property does not
1069 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1070 * property data isn't large enough.
1071 *
1072 */
1073 static void *of_find_property_value_of_size(const struct device_node *np,
1074 const char *propname, u32 len)
1075 {
1076 struct property *prop = of_find_property(np, propname, NULL);
1077
1078 if (!prop)
1079 return ERR_PTR(-EINVAL);
1080 if (!prop->value)
1081 return ERR_PTR(-ENODATA);
1082 if (len > prop->length)
1083 return ERR_PTR(-EOVERFLOW);
1084
1085 return prop->value;
1086 }
1087
1088 /**
1089 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1090 *
1091 * @np: device node from which the property value is to be read.
1092 * @propname: name of the property to be searched.
1093 * @index: index of the u32 in the list of values
1094 * @out_value: pointer to return value, modified only if no error.
1095 *
1096 * Search for a property in a device node and read nth 32-bit value from
1097 * it. Returns 0 on success, -EINVAL if the property does not exist,
1098 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1099 * property data isn't large enough.
1100 *
1101 * The out_value is modified only if a valid u32 value can be decoded.
1102 */
1103 int of_property_read_u32_index(const struct device_node *np,
1104 const char *propname,
1105 u32 index, u32 *out_value)
1106 {
1107 const u32 *val = of_find_property_value_of_size(np, propname,
1108 ((index + 1) * sizeof(*out_value)));
1109
1110 if (IS_ERR(val))
1111 return PTR_ERR(val);
1112
1113 *out_value = be32_to_cpup(((__be32 *)val) + index);
1114 return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1117
1118 /**
1119 * of_property_read_u8_array - Find and read an array of u8 from a property.
1120 *
1121 * @np: device node from which the property value is to be read.
1122 * @propname: name of the property to be searched.
1123 * @out_values: pointer to return value, modified only if return value is 0.
1124 * @sz: number of array elements to read
1125 *
1126 * Search for a property in a device node and read 8-bit value(s) from
1127 * it. Returns 0 on success, -EINVAL if the property does not exist,
1128 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1129 * property data isn't large enough.
1130 *
1131 * dts entry of array should be like:
1132 * property = /bits/ 8 <0x50 0x60 0x70>;
1133 *
1134 * The out_values is modified only if a valid u8 value can be decoded.
1135 */
1136 int of_property_read_u8_array(const struct device_node *np,
1137 const char *propname, u8 *out_values, size_t sz)
1138 {
1139 const u8 *val = of_find_property_value_of_size(np, propname,
1140 (sz * sizeof(*out_values)));
1141
1142 if (IS_ERR(val))
1143 return PTR_ERR(val);
1144
1145 while (sz--)
1146 *out_values++ = *val++;
1147 return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1150
1151 /**
1152 * of_property_read_u16_array - Find and read an array of u16 from a property.
1153 *
1154 * @np: device node from which the property value is to be read.
1155 * @propname: name of the property to be searched.
1156 * @out_values: pointer to return value, modified only if return value is 0.
1157 * @sz: number of array elements to read
1158 *
1159 * Search for a property in a device node and read 16-bit value(s) from
1160 * it. Returns 0 on success, -EINVAL if the property does not exist,
1161 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1162 * property data isn't large enough.
1163 *
1164 * dts entry of array should be like:
1165 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1166 *
1167 * The out_values is modified only if a valid u16 value can be decoded.
1168 */
1169 int of_property_read_u16_array(const struct device_node *np,
1170 const char *propname, u16 *out_values, size_t sz)
1171 {
1172 const __be16 *val = of_find_property_value_of_size(np, propname,
1173 (sz * sizeof(*out_values)));
1174
1175 if (IS_ERR(val))
1176 return PTR_ERR(val);
1177
1178 while (sz--)
1179 *out_values++ = be16_to_cpup(val++);
1180 return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1183
1184 /**
1185 * of_property_read_u32_array - Find and read an array of 32 bit integers
1186 * from a property.
1187 *
1188 * @np: device node from which the property value is to be read.
1189 * @propname: name of the property to be searched.
1190 * @out_values: pointer to return value, modified only if return value is 0.
1191 * @sz: number of array elements to read
1192 *
1193 * Search for a property in a device node and read 32-bit value(s) from
1194 * it. Returns 0 on success, -EINVAL if the property does not exist,
1195 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1196 * property data isn't large enough.
1197 *
1198 * The out_values is modified only if a valid u32 value can be decoded.
1199 */
1200 int of_property_read_u32_array(const struct device_node *np,
1201 const char *propname, u32 *out_values,
1202 size_t sz)
1203 {
1204 const __be32 *val = of_find_property_value_of_size(np, propname,
1205 (sz * sizeof(*out_values)));
1206
1207 if (IS_ERR(val))
1208 return PTR_ERR(val);
1209
1210 while (sz--)
1211 *out_values++ = be32_to_cpup(val++);
1212 return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1215
1216 /**
1217 * of_property_read_u64 - Find and read a 64 bit integer from a property
1218 * @np: device node from which the property value is to be read.
1219 * @propname: name of the property to be searched.
1220 * @out_value: pointer to return value, modified only if return value is 0.
1221 *
1222 * Search for a property in a device node and read a 64-bit value from
1223 * it. Returns 0 on success, -EINVAL if the property does not exist,
1224 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1225 * property data isn't large enough.
1226 *
1227 * The out_value is modified only if a valid u64 value can be decoded.
1228 */
1229 int of_property_read_u64(const struct device_node *np, const char *propname,
1230 u64 *out_value)
1231 {
1232 const __be32 *val = of_find_property_value_of_size(np, propname,
1233 sizeof(*out_value));
1234
1235 if (IS_ERR(val))
1236 return PTR_ERR(val);
1237
1238 *out_value = of_read_number(val, 2);
1239 return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(of_property_read_u64);
1242
1243 /**
1244 * of_property_read_string - Find and read a string from a property
1245 * @np: device node from which the property value is to be read.
1246 * @propname: name of the property to be searched.
1247 * @out_string: pointer to null terminated return string, modified only if
1248 * return value is 0.
1249 *
1250 * Search for a property in a device tree node and retrieve a null
1251 * terminated string value (pointer to data, not a copy). Returns 0 on
1252 * success, -EINVAL if the property does not exist, -ENODATA if property
1253 * does not have a value, and -EILSEQ if the string is not null-terminated
1254 * within the length of the property data.
1255 *
1256 * The out_string pointer is modified only if a valid string can be decoded.
1257 */
1258 int of_property_read_string(struct device_node *np, const char *propname,
1259 const char **out_string)
1260 {
1261 struct property *prop = of_find_property(np, propname, NULL);
1262 if (!prop)
1263 return -EINVAL;
1264 if (!prop->value)
1265 return -ENODATA;
1266 if (strnlen(prop->value, prop->length) >= prop->length)
1267 return -EILSEQ;
1268 *out_string = prop->value;
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(of_property_read_string);
1272
1273 /**
1274 * of_property_read_string_index - Find and read a string from a multiple
1275 * strings property.
1276 * @np: device node from which the property value is to be read.
1277 * @propname: name of the property to be searched.
1278 * @index: index of the string in the list of strings
1279 * @out_string: pointer to null terminated return string, modified only if
1280 * return value is 0.
1281 *
1282 * Search for a property in a device tree node and retrieve a null
1283 * terminated string value (pointer to data, not a copy) in the list of strings
1284 * contained in that property.
1285 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1286 * property does not have a value, and -EILSEQ if the string is not
1287 * null-terminated within the length of the property data.
1288 *
1289 * The out_string pointer is modified only if a valid string can be decoded.
1290 */
1291 int of_property_read_string_index(struct device_node *np, const char *propname,
1292 int index, const char **output)
1293 {
1294 struct property *prop = of_find_property(np, propname, NULL);
1295 int i = 0;
1296 size_t l = 0, total = 0;
1297 const char *p;
1298
1299 if (!prop)
1300 return -EINVAL;
1301 if (!prop->value)
1302 return -ENODATA;
1303 if (strnlen(prop->value, prop->length) >= prop->length)
1304 return -EILSEQ;
1305
1306 p = prop->value;
1307
1308 for (i = 0; total < prop->length; total += l, p += l) {
1309 l = strlen(p) + 1;
1310 if (i++ == index) {
1311 *output = p;
1312 return 0;
1313 }
1314 }
1315 return -ENODATA;
1316 }
1317 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1318
1319 /**
1320 * of_property_match_string() - Find string in a list and return index
1321 * @np: pointer to node containing string list property
1322 * @propname: string list property name
1323 * @string: pointer to string to search for in string list
1324 *
1325 * This function searches a string list property and returns the index
1326 * of a specific string value.
1327 */
1328 int of_property_match_string(struct device_node *np, const char *propname,
1329 const char *string)
1330 {
1331 struct property *prop = of_find_property(np, propname, NULL);
1332 size_t l;
1333 int i;
1334 const char *p, *end;
1335
1336 if (!prop)
1337 return -EINVAL;
1338 if (!prop->value)
1339 return -ENODATA;
1340
1341 p = prop->value;
1342 end = p + prop->length;
1343
1344 for (i = 0; p < end; i++, p += l) {
1345 l = strlen(p) + 1;
1346 if (p + l > end)
1347 return -EILSEQ;
1348 pr_debug("comparing %s with %s\n", string, p);
1349 if (strcmp(string, p) == 0)
1350 return i; /* Found it; return index */
1351 }
1352 return -ENODATA;
1353 }
1354 EXPORT_SYMBOL_GPL(of_property_match_string);
1355
1356 /**
1357 * of_property_count_strings - Find and return the number of strings from a
1358 * multiple strings property.
1359 * @np: device node from which the property value is to be read.
1360 * @propname: name of the property to be searched.
1361 *
1362 * Search for a property in a device tree node and retrieve the number of null
1363 * terminated string contain in it. Returns the number of strings on
1364 * success, -EINVAL if the property does not exist, -ENODATA if property
1365 * does not have a value, and -EILSEQ if the string is not null-terminated
1366 * within the length of the property data.
1367 */
1368 int of_property_count_strings(struct device_node *np, const char *propname)
1369 {
1370 struct property *prop = of_find_property(np, propname, NULL);
1371 int i = 0;
1372 size_t l = 0, total = 0;
1373 const char *p;
1374
1375 if (!prop)
1376 return -EINVAL;
1377 if (!prop->value)
1378 return -ENODATA;
1379 if (strnlen(prop->value, prop->length) >= prop->length)
1380 return -EILSEQ;
1381
1382 p = prop->value;
1383
1384 for (i = 0; total < prop->length; total += l, p += l, i++)
1385 l = strlen(p) + 1;
1386
1387 return i;
1388 }
1389 EXPORT_SYMBOL_GPL(of_property_count_strings);
1390
1391 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1392 {
1393 int i;
1394 printk("%s %s", msg, of_node_full_name(args->np));
1395 for (i = 0; i < args->args_count; i++)
1396 printk(i ? ",%08x" : ":%08x", args->args[i]);
1397 printk("\n");
1398 }
1399
1400 static int __of_parse_phandle_with_args(const struct device_node *np,
1401 const char *list_name,
1402 const char *cells_name,
1403 int cell_count, int index,
1404 struct of_phandle_args *out_args)
1405 {
1406 const __be32 *list, *list_end;
1407 int rc = 0, size, cur_index = 0;
1408 uint32_t count = 0;
1409 struct device_node *node = NULL;
1410 phandle phandle;
1411
1412 /* Retrieve the phandle list property */
1413 list = of_get_property(np, list_name, &size);
1414 if (!list)
1415 return -ENOENT;
1416 list_end = list + size / sizeof(*list);
1417
1418 /* Loop over the phandles until all the requested entry is found */
1419 while (list < list_end) {
1420 rc = -EINVAL;
1421 count = 0;
1422
1423 /*
1424 * If phandle is 0, then it is an empty entry with no
1425 * arguments. Skip forward to the next entry.
1426 */
1427 phandle = be32_to_cpup(list++);
1428 if (phandle) {
1429 /*
1430 * Find the provider node and parse the #*-cells
1431 * property to determine the argument length.
1432 *
1433 * This is not needed if the cell count is hard-coded
1434 * (i.e. cells_name not set, but cell_count is set),
1435 * except when we're going to return the found node
1436 * below.
1437 */
1438 if (cells_name || cur_index == index) {
1439 node = of_find_node_by_phandle(phandle);
1440 if (!node) {
1441 pr_err("%s: could not find phandle\n",
1442 np->full_name);
1443 goto err;
1444 }
1445 }
1446
1447 if (cells_name) {
1448 if (of_property_read_u32(node, cells_name,
1449 &count)) {
1450 pr_err("%s: could not get %s for %s\n",
1451 np->full_name, cells_name,
1452 node->full_name);
1453 goto err;
1454 }
1455 } else {
1456 count = cell_count;
1457 }
1458
1459 /*
1460 * Make sure that the arguments actually fit in the
1461 * remaining property data length
1462 */
1463 if (list + count > list_end) {
1464 pr_err("%s: arguments longer than property\n",
1465 np->full_name);
1466 goto err;
1467 }
1468 }
1469
1470 /*
1471 * All of the error cases above bail out of the loop, so at
1472 * this point, the parsing is successful. If the requested
1473 * index matches, then fill the out_args structure and return,
1474 * or return -ENOENT for an empty entry.
1475 */
1476 rc = -ENOENT;
1477 if (cur_index == index) {
1478 if (!phandle)
1479 goto err;
1480
1481 if (out_args) {
1482 int i;
1483 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1484 count = MAX_PHANDLE_ARGS;
1485 out_args->np = node;
1486 out_args->args_count = count;
1487 for (i = 0; i < count; i++)
1488 out_args->args[i] = be32_to_cpup(list++);
1489 } else {
1490 of_node_put(node);
1491 }
1492
1493 /* Found it! return success */
1494 return 0;
1495 }
1496
1497 of_node_put(node);
1498 node = NULL;
1499 list += count;
1500 cur_index++;
1501 }
1502
1503 /*
1504 * Unlock node before returning result; will be one of:
1505 * -ENOENT : index is for empty phandle
1506 * -EINVAL : parsing error on data
1507 * [1..n] : Number of phandle (count mode; when index = -1)
1508 */
1509 rc = index < 0 ? cur_index : -ENOENT;
1510 err:
1511 if (node)
1512 of_node_put(node);
1513 return rc;
1514 }
1515
1516 /**
1517 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1518 * @np: Pointer to device node holding phandle property
1519 * @phandle_name: Name of property holding a phandle value
1520 * @index: For properties holding a table of phandles, this is the index into
1521 * the table
1522 *
1523 * Returns the device_node pointer with refcount incremented. Use
1524 * of_node_put() on it when done.
1525 */
1526 struct device_node *of_parse_phandle(const struct device_node *np,
1527 const char *phandle_name, int index)
1528 {
1529 struct of_phandle_args args;
1530
1531 if (index < 0)
1532 return NULL;
1533
1534 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1535 index, &args))
1536 return NULL;
1537
1538 return args.np;
1539 }
1540 EXPORT_SYMBOL(of_parse_phandle);
1541
1542 /**
1543 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1544 * @np: pointer to a device tree node containing a list
1545 * @list_name: property name that contains a list
1546 * @cells_name: property name that specifies phandles' arguments count
1547 * @index: index of a phandle to parse out
1548 * @out_args: optional pointer to output arguments structure (will be filled)
1549 *
1550 * This function is useful to parse lists of phandles and their arguments.
1551 * Returns 0 on success and fills out_args, on error returns appropriate
1552 * errno value.
1553 *
1554 * Caller is responsible to call of_node_put() on the returned out_args->node
1555 * pointer.
1556 *
1557 * Example:
1558 *
1559 * phandle1: node1 {
1560 * #list-cells = <2>;
1561 * }
1562 *
1563 * phandle2: node2 {
1564 * #list-cells = <1>;
1565 * }
1566 *
1567 * node3 {
1568 * list = <&phandle1 1 2 &phandle2 3>;
1569 * }
1570 *
1571 * To get a device_node of the `node2' node you may call this:
1572 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1573 */
1574 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1575 const char *cells_name, int index,
1576 struct of_phandle_args *out_args)
1577 {
1578 if (index < 0)
1579 return -EINVAL;
1580 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1581 index, out_args);
1582 }
1583 EXPORT_SYMBOL(of_parse_phandle_with_args);
1584
1585 /**
1586 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1587 * @np: pointer to a device tree node containing a list
1588 * @list_name: property name that contains a list
1589 * @cell_count: number of argument cells following the phandle
1590 * @index: index of a phandle to parse out
1591 * @out_args: optional pointer to output arguments structure (will be filled)
1592 *
1593 * This function is useful to parse lists of phandles and their arguments.
1594 * Returns 0 on success and fills out_args, on error returns appropriate
1595 * errno value.
1596 *
1597 * Caller is responsible to call of_node_put() on the returned out_args->node
1598 * pointer.
1599 *
1600 * Example:
1601 *
1602 * phandle1: node1 {
1603 * }
1604 *
1605 * phandle2: node2 {
1606 * }
1607 *
1608 * node3 {
1609 * list = <&phandle1 0 2 &phandle2 2 3>;
1610 * }
1611 *
1612 * To get a device_node of the `node2' node you may call this:
1613 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1614 */
1615 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1616 const char *list_name, int cell_count,
1617 int index, struct of_phandle_args *out_args)
1618 {
1619 if (index < 0)
1620 return -EINVAL;
1621 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1622 index, out_args);
1623 }
1624 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1625
1626 /**
1627 * of_count_phandle_with_args() - Find the number of phandles references in a property
1628 * @np: pointer to a device tree node containing a list
1629 * @list_name: property name that contains a list
1630 * @cells_name: property name that specifies phandles' arguments count
1631 *
1632 * Returns the number of phandle + argument tuples within a property. It
1633 * is a typical pattern to encode a list of phandle and variable
1634 * arguments into a single property. The number of arguments is encoded
1635 * by a property in the phandle-target node. For example, a gpios
1636 * property would contain a list of GPIO specifies consisting of a
1637 * phandle and 1 or more arguments. The number of arguments are
1638 * determined by the #gpio-cells property in the node pointed to by the
1639 * phandle.
1640 */
1641 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1642 const char *cells_name)
1643 {
1644 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1645 NULL);
1646 }
1647 EXPORT_SYMBOL(of_count_phandle_with_args);
1648
1649 /**
1650 * __of_add_property - Add a property to a node without lock operations
1651 */
1652 int __of_add_property(struct device_node *np, struct property *prop)
1653 {
1654 struct property **next;
1655
1656 prop->next = NULL;
1657 next = &np->properties;
1658 while (*next) {
1659 if (strcmp(prop->name, (*next)->name) == 0)
1660 /* duplicate ! don't insert it */
1661 return -EEXIST;
1662
1663 next = &(*next)->next;
1664 }
1665 *next = prop;
1666
1667 return 0;
1668 }
1669
1670 /**
1671 * of_add_property - Add a property to a node
1672 */
1673 int of_add_property(struct device_node *np, struct property *prop)
1674 {
1675 unsigned long flags;
1676 int rc;
1677
1678 mutex_lock(&of_mutex);
1679
1680 raw_spin_lock_irqsave(&devtree_lock, flags);
1681 rc = __of_add_property(np, prop);
1682 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1683
1684 if (!rc)
1685 __of_add_property_sysfs(np, prop);
1686
1687 mutex_unlock(&of_mutex);
1688
1689 if (!rc)
1690 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1691
1692 return rc;
1693 }
1694
1695 int __of_remove_property(struct device_node *np, struct property *prop)
1696 {
1697 struct property **next;
1698
1699 for (next = &np->properties; *next; next = &(*next)->next) {
1700 if (*next == prop)
1701 break;
1702 }
1703 if (*next == NULL)
1704 return -ENODEV;
1705
1706 /* found the node */
1707 *next = prop->next;
1708 prop->next = np->deadprops;
1709 np->deadprops = prop;
1710
1711 return 0;
1712 }
1713
1714 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1715 {
1716 /* at early boot, bail here and defer setup to of_init() */
1717 if (of_kset && of_node_is_attached(np))
1718 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1719 }
1720
1721 /**
1722 * of_remove_property - Remove a property from a node.
1723 *
1724 * Note that we don't actually remove it, since we have given out
1725 * who-knows-how-many pointers to the data using get-property.
1726 * Instead we just move the property to the "dead properties"
1727 * list, so it won't be found any more.
1728 */
1729 int of_remove_property(struct device_node *np, struct property *prop)
1730 {
1731 unsigned long flags;
1732 int rc;
1733
1734 mutex_lock(&of_mutex);
1735
1736 raw_spin_lock_irqsave(&devtree_lock, flags);
1737 rc = __of_remove_property(np, prop);
1738 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1739
1740 if (!rc)
1741 __of_remove_property_sysfs(np, prop);
1742
1743 mutex_unlock(&of_mutex);
1744
1745 if (!rc)
1746 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1747
1748 return rc;
1749 }
1750
1751 int __of_update_property(struct device_node *np, struct property *newprop,
1752 struct property **oldpropp)
1753 {
1754 struct property **next, *oldprop;
1755
1756 for (next = &np->properties; *next; next = &(*next)->next) {
1757 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1758 break;
1759 }
1760 *oldpropp = oldprop = *next;
1761
1762 if (oldprop) {
1763 /* replace the node */
1764 newprop->next = oldprop->next;
1765 *next = newprop;
1766 oldprop->next = np->deadprops;
1767 np->deadprops = oldprop;
1768 } else {
1769 /* new node */
1770 newprop->next = NULL;
1771 *next = newprop;
1772 }
1773
1774 return 0;
1775 }
1776
1777 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1778 struct property *oldprop)
1779 {
1780 /* At early boot, bail out and defer setup to of_init() */
1781 if (!of_kset)
1782 return;
1783
1784 if (oldprop)
1785 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1786 __of_add_property_sysfs(np, newprop);
1787 }
1788
1789 /*
1790 * of_update_property - Update a property in a node, if the property does
1791 * not exist, add it.
1792 *
1793 * Note that we don't actually remove it, since we have given out
1794 * who-knows-how-many pointers to the data using get-property.
1795 * Instead we just move the property to the "dead properties" list,
1796 * and add the new property to the property list
1797 */
1798 int of_update_property(struct device_node *np, struct property *newprop)
1799 {
1800 struct property *oldprop;
1801 unsigned long flags;
1802 int rc;
1803
1804 if (!newprop->name)
1805 return -EINVAL;
1806
1807 mutex_lock(&of_mutex);
1808
1809 raw_spin_lock_irqsave(&devtree_lock, flags);
1810 rc = __of_update_property(np, newprop, &oldprop);
1811 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1812
1813 if (!rc)
1814 __of_update_property_sysfs(np, newprop, oldprop);
1815
1816 mutex_unlock(&of_mutex);
1817
1818 if (!rc)
1819 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1820
1821 return rc;
1822 }
1823
1824 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1825 int id, const char *stem, int stem_len)
1826 {
1827 ap->np = np;
1828 ap->id = id;
1829 strncpy(ap->stem, stem, stem_len);
1830 ap->stem[stem_len] = 0;
1831 list_add_tail(&ap->link, &aliases_lookup);
1832 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1833 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1834 }
1835
1836 /**
1837 * of_alias_scan - Scan all properties of 'aliases' node
1838 *
1839 * The function scans all the properties of 'aliases' node and populate
1840 * the the global lookup table with the properties. It returns the
1841 * number of alias_prop found, or error code in error case.
1842 *
1843 * @dt_alloc: An allocator that provides a virtual address to memory
1844 * for the resulting tree
1845 */
1846 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1847 {
1848 struct property *pp;
1849
1850 of_chosen = of_find_node_by_path("/chosen");
1851 if (of_chosen == NULL)
1852 of_chosen = of_find_node_by_path("/chosen@0");
1853
1854 if (of_chosen) {
1855 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1856 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1857 if (!name)
1858 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1859 if (IS_ENABLED(CONFIG_PPC) && !name)
1860 name = of_get_property(of_aliases, "stdout", NULL);
1861 if (name)
1862 of_stdout = of_find_node_by_path(name);
1863 }
1864
1865 of_aliases = of_find_node_by_path("/aliases");
1866 if (!of_aliases)
1867 return;
1868
1869 for_each_property_of_node(of_aliases, pp) {
1870 const char *start = pp->name;
1871 const char *end = start + strlen(start);
1872 struct device_node *np;
1873 struct alias_prop *ap;
1874 int id, len;
1875
1876 /* Skip those we do not want to proceed */
1877 if (!strcmp(pp->name, "name") ||
1878 !strcmp(pp->name, "phandle") ||
1879 !strcmp(pp->name, "linux,phandle"))
1880 continue;
1881
1882 np = of_find_node_by_path(pp->value);
1883 if (!np)
1884 continue;
1885
1886 /* walk the alias backwards to extract the id and work out
1887 * the 'stem' string */
1888 while (isdigit(*(end-1)) && end > start)
1889 end--;
1890 len = end - start;
1891
1892 if (kstrtoint(end, 10, &id) < 0)
1893 continue;
1894
1895 /* Allocate an alias_prop with enough space for the stem */
1896 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1897 if (!ap)
1898 continue;
1899 memset(ap, 0, sizeof(*ap) + len + 1);
1900 ap->alias = start;
1901 of_alias_add(ap, np, id, start, len);
1902 }
1903 }
1904
1905 /**
1906 * of_alias_get_id - Get alias id for the given device_node
1907 * @np: Pointer to the given device_node
1908 * @stem: Alias stem of the given device_node
1909 *
1910 * The function travels the lookup table to get the alias id for the given
1911 * device_node and alias stem. It returns the alias id if found.
1912 */
1913 int of_alias_get_id(struct device_node *np, const char *stem)
1914 {
1915 struct alias_prop *app;
1916 int id = -ENODEV;
1917
1918 mutex_lock(&of_mutex);
1919 list_for_each_entry(app, &aliases_lookup, link) {
1920 if (strcmp(app->stem, stem) != 0)
1921 continue;
1922
1923 if (np == app->np) {
1924 id = app->id;
1925 break;
1926 }
1927 }
1928 mutex_unlock(&of_mutex);
1929
1930 return id;
1931 }
1932 EXPORT_SYMBOL_GPL(of_alias_get_id);
1933
1934 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1935 u32 *pu)
1936 {
1937 const void *curv = cur;
1938
1939 if (!prop)
1940 return NULL;
1941
1942 if (!cur) {
1943 curv = prop->value;
1944 goto out_val;
1945 }
1946
1947 curv += sizeof(*cur);
1948 if (curv >= prop->value + prop->length)
1949 return NULL;
1950
1951 out_val:
1952 *pu = be32_to_cpup(curv);
1953 return curv;
1954 }
1955 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1956
1957 const char *of_prop_next_string(struct property *prop, const char *cur)
1958 {
1959 const void *curv = cur;
1960
1961 if (!prop)
1962 return NULL;
1963
1964 if (!cur)
1965 return prop->value;
1966
1967 curv += strlen(cur) + 1;
1968 if (curv >= prop->value + prop->length)
1969 return NULL;
1970
1971 return curv;
1972 }
1973 EXPORT_SYMBOL_GPL(of_prop_next_string);
1974
1975 /**
1976 * of_console_check() - Test and setup console for DT setup
1977 * @dn - Pointer to device node
1978 * @name - Name to use for preferred console without index. ex. "ttyS"
1979 * @index - Index to use for preferred console.
1980 *
1981 * Check if the given device node matches the stdout-path property in the
1982 * /chosen node. If it does then register it as the preferred console and return
1983 * TRUE. Otherwise return FALSE.
1984 */
1985 bool of_console_check(struct device_node *dn, char *name, int index)
1986 {
1987 if (!dn || dn != of_stdout || console_set_on_cmdline)
1988 return false;
1989 return !add_preferred_console(name, index, NULL);
1990 }
1991 EXPORT_SYMBOL_GPL(of_console_check);
1992
1993 /**
1994 * of_find_next_cache_node - Find a node's subsidiary cache
1995 * @np: node of type "cpu" or "cache"
1996 *
1997 * Returns a node pointer with refcount incremented, use
1998 * of_node_put() on it when done. Caller should hold a reference
1999 * to np.
2000 */
2001 struct device_node *of_find_next_cache_node(const struct device_node *np)
2002 {
2003 struct device_node *child;
2004 const phandle *handle;
2005
2006 handle = of_get_property(np, "l2-cache", NULL);
2007 if (!handle)
2008 handle = of_get_property(np, "next-level-cache", NULL);
2009
2010 if (handle)
2011 return of_find_node_by_phandle(be32_to_cpup(handle));
2012
2013 /* OF on pmac has nodes instead of properties named "l2-cache"
2014 * beneath CPU nodes.
2015 */
2016 if (!strcmp(np->type, "cpu"))
2017 for_each_child_of_node(np, child)
2018 if (!strcmp(child->type, "cache"))
2019 return child;
2020
2021 return NULL;
2022 }
2023
2024 /**
2025 * of_graph_parse_endpoint() - parse common endpoint node properties
2026 * @node: pointer to endpoint device_node
2027 * @endpoint: pointer to the OF endpoint data structure
2028 *
2029 * The caller should hold a reference to @node.
2030 */
2031 int of_graph_parse_endpoint(const struct device_node *node,
2032 struct of_endpoint *endpoint)
2033 {
2034 struct device_node *port_node = of_get_parent(node);
2035
2036 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2037 __func__, node->full_name);
2038
2039 memset(endpoint, 0, sizeof(*endpoint));
2040
2041 endpoint->local_node = node;
2042 /*
2043 * It doesn't matter whether the two calls below succeed.
2044 * If they don't then the default value 0 is used.
2045 */
2046 of_property_read_u32(port_node, "reg", &endpoint->port);
2047 of_property_read_u32(node, "reg", &endpoint->id);
2048
2049 of_node_put(port_node);
2050
2051 return 0;
2052 }
2053 EXPORT_SYMBOL(of_graph_parse_endpoint);
2054
2055 /**
2056 * of_graph_get_next_endpoint() - get next endpoint node
2057 * @parent: pointer to the parent device node
2058 * @prev: previous endpoint node, or NULL to get first
2059 *
2060 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2061 * of the passed @prev node is not decremented, the caller have to use
2062 * of_node_put() on it when done.
2063 */
2064 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2065 struct device_node *prev)
2066 {
2067 struct device_node *endpoint;
2068 struct device_node *port;
2069
2070 if (!parent)
2071 return NULL;
2072
2073 /*
2074 * Start by locating the port node. If no previous endpoint is specified
2075 * search for the first port node, otherwise get the previous endpoint
2076 * parent port node.
2077 */
2078 if (!prev) {
2079 struct device_node *node;
2080
2081 node = of_get_child_by_name(parent, "ports");
2082 if (node)
2083 parent = node;
2084
2085 port = of_get_child_by_name(parent, "port");
2086 of_node_put(node);
2087
2088 if (!port) {
2089 pr_err("%s(): no port node found in %s\n",
2090 __func__, parent->full_name);
2091 return NULL;
2092 }
2093 } else {
2094 port = of_get_parent(prev);
2095 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2096 __func__, prev->full_name))
2097 return NULL;
2098
2099 /*
2100 * Avoid dropping prev node refcount to 0 when getting the next
2101 * child below.
2102 */
2103 of_node_get(prev);
2104 }
2105
2106 while (1) {
2107 /*
2108 * Now that we have a port node, get the next endpoint by
2109 * getting the next child. If the previous endpoint is NULL this
2110 * will return the first child.
2111 */
2112 endpoint = of_get_next_child(port, prev);
2113 if (endpoint) {
2114 of_node_put(port);
2115 return endpoint;
2116 }
2117
2118 /* No more endpoints under this port, try the next one. */
2119 prev = NULL;
2120
2121 do {
2122 port = of_get_next_child(parent, port);
2123 if (!port)
2124 return NULL;
2125 } while (of_node_cmp(port->name, "port"));
2126 }
2127 }
2128 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2129
2130 /**
2131 * of_graph_get_remote_port_parent() - get remote port's parent node
2132 * @node: pointer to a local endpoint device_node
2133 *
2134 * Return: Remote device node associated with remote endpoint node linked
2135 * to @node. Use of_node_put() on it when done.
2136 */
2137 struct device_node *of_graph_get_remote_port_parent(
2138 const struct device_node *node)
2139 {
2140 struct device_node *np;
2141 unsigned int depth;
2142
2143 /* Get remote endpoint node. */
2144 np = of_parse_phandle(node, "remote-endpoint", 0);
2145
2146 /* Walk 3 levels up only if there is 'ports' node. */
2147 for (depth = 3; depth && np; depth--) {
2148 np = of_get_next_parent(np);
2149 if (depth == 2 && of_node_cmp(np->name, "ports"))
2150 break;
2151 }
2152 return np;
2153 }
2154 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2155
2156 /**
2157 * of_graph_get_remote_port() - get remote port node
2158 * @node: pointer to a local endpoint device_node
2159 *
2160 * Return: Remote port node associated with remote endpoint node linked
2161 * to @node. Use of_node_put() on it when done.
2162 */
2163 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2164 {
2165 struct device_node *np;
2166
2167 /* Get remote endpoint node. */
2168 np = of_parse_phandle(node, "remote-endpoint", 0);
2169 if (!np)
2170 return NULL;
2171 return of_get_next_parent(np);
2172 }
2173 EXPORT_SYMBOL(of_graph_get_remote_port);
This page took 0.078599 seconds and 5 git commands to generate.