Merge tag 'v3.5-rc6' into irqdomain/next
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26
27 /**
28 * struct alias_prop - Alias property in 'aliases' node
29 * @link: List node to link the structure in aliases_lookup list
30 * @alias: Alias property name
31 * @np: Pointer to device_node that the alias stands for
32 * @id: Index value from end of alias name
33 * @stem: Alias string without the index
34 *
35 * The structure represents one alias property of 'aliases' node as
36 * an entry in aliases_lookup list.
37 */
38 struct alias_prop {
39 struct list_head link;
40 const char *alias;
41 struct device_node *np;
42 int id;
43 char stem[0];
44 };
45
46 static LIST_HEAD(aliases_lookup);
47
48 struct device_node *allnodes;
49 struct device_node *of_chosen;
50 struct device_node *of_aliases;
51
52 static DEFINE_MUTEX(of_aliases_mutex);
53
54 /* use when traversing tree through the allnext, child, sibling,
55 * or parent members of struct device_node.
56 */
57 DEFINE_RWLOCK(devtree_lock);
58
59 int of_n_addr_cells(struct device_node *np)
60 {
61 const __be32 *ip;
62
63 do {
64 if (np->parent)
65 np = np->parent;
66 ip = of_get_property(np, "#address-cells", NULL);
67 if (ip)
68 return be32_to_cpup(ip);
69 } while (np->parent);
70 /* No #address-cells property for the root node */
71 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_addr_cells);
74
75 int of_n_size_cells(struct device_node *np)
76 {
77 const __be32 *ip;
78
79 do {
80 if (np->parent)
81 np = np->parent;
82 ip = of_get_property(np, "#size-cells", NULL);
83 if (ip)
84 return be32_to_cpup(ip);
85 } while (np->parent);
86 /* No #size-cells property for the root node */
87 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90
91 #if defined(CONFIG_OF_DYNAMIC)
92 /**
93 * of_node_get - Increment refcount of a node
94 * @node: Node to inc refcount, NULL is supported to
95 * simplify writing of callers
96 *
97 * Returns node.
98 */
99 struct device_node *of_node_get(struct device_node *node)
100 {
101 if (node)
102 kref_get(&node->kref);
103 return node;
104 }
105 EXPORT_SYMBOL(of_node_get);
106
107 static inline struct device_node *kref_to_device_node(struct kref *kref)
108 {
109 return container_of(kref, struct device_node, kref);
110 }
111
112 /**
113 * of_node_release - release a dynamically allocated node
114 * @kref: kref element of the node to be released
115 *
116 * In of_node_put() this function is passed to kref_put()
117 * as the destructor.
118 */
119 static void of_node_release(struct kref *kref)
120 {
121 struct device_node *node = kref_to_device_node(kref);
122 struct property *prop = node->properties;
123
124 /* We should never be releasing nodes that haven't been detached. */
125 if (!of_node_check_flag(node, OF_DETACHED)) {
126 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
127 dump_stack();
128 kref_init(&node->kref);
129 return;
130 }
131
132 if (!of_node_check_flag(node, OF_DYNAMIC))
133 return;
134
135 while (prop) {
136 struct property *next = prop->next;
137 kfree(prop->name);
138 kfree(prop->value);
139 kfree(prop);
140 prop = next;
141
142 if (!prop) {
143 prop = node->deadprops;
144 node->deadprops = NULL;
145 }
146 }
147 kfree(node->full_name);
148 kfree(node->data);
149 kfree(node);
150 }
151
152 /**
153 * of_node_put - Decrement refcount of a node
154 * @node: Node to dec refcount, NULL is supported to
155 * simplify writing of callers
156 *
157 */
158 void of_node_put(struct device_node *node)
159 {
160 if (node)
161 kref_put(&node->kref, of_node_release);
162 }
163 EXPORT_SYMBOL(of_node_put);
164 #endif /* CONFIG_OF_DYNAMIC */
165
166 struct property *of_find_property(const struct device_node *np,
167 const char *name,
168 int *lenp)
169 {
170 struct property *pp;
171
172 if (!np)
173 return NULL;
174
175 read_lock(&devtree_lock);
176 for (pp = np->properties; pp != 0; pp = pp->next) {
177 if (of_prop_cmp(pp->name, name) == 0) {
178 if (lenp != 0)
179 *lenp = pp->length;
180 break;
181 }
182 }
183 read_unlock(&devtree_lock);
184
185 return pp;
186 }
187 EXPORT_SYMBOL(of_find_property);
188
189 /**
190 * of_find_all_nodes - Get next node in global list
191 * @prev: Previous node or NULL to start iteration
192 * of_node_put() will be called on it
193 *
194 * Returns a node pointer with refcount incremented, use
195 * of_node_put() on it when done.
196 */
197 struct device_node *of_find_all_nodes(struct device_node *prev)
198 {
199 struct device_node *np;
200
201 read_lock(&devtree_lock);
202 np = prev ? prev->allnext : allnodes;
203 for (; np != NULL; np = np->allnext)
204 if (of_node_get(np))
205 break;
206 of_node_put(prev);
207 read_unlock(&devtree_lock);
208 return np;
209 }
210 EXPORT_SYMBOL(of_find_all_nodes);
211
212 /*
213 * Find a property with a given name for a given node
214 * and return the value.
215 */
216 const void *of_get_property(const struct device_node *np, const char *name,
217 int *lenp)
218 {
219 struct property *pp = of_find_property(np, name, lenp);
220
221 return pp ? pp->value : NULL;
222 }
223 EXPORT_SYMBOL(of_get_property);
224
225 /** Checks if the given "compat" string matches one of the strings in
226 * the device's "compatible" property
227 */
228 int of_device_is_compatible(const struct device_node *device,
229 const char *compat)
230 {
231 const char* cp;
232 int cplen, l;
233
234 cp = of_get_property(device, "compatible", &cplen);
235 if (cp == NULL)
236 return 0;
237 while (cplen > 0) {
238 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
239 return 1;
240 l = strlen(cp) + 1;
241 cp += l;
242 cplen -= l;
243 }
244
245 return 0;
246 }
247 EXPORT_SYMBOL(of_device_is_compatible);
248
249 /**
250 * of_machine_is_compatible - Test root of device tree for a given compatible value
251 * @compat: compatible string to look for in root node's compatible property.
252 *
253 * Returns true if the root node has the given value in its
254 * compatible property.
255 */
256 int of_machine_is_compatible(const char *compat)
257 {
258 struct device_node *root;
259 int rc = 0;
260
261 root = of_find_node_by_path("/");
262 if (root) {
263 rc = of_device_is_compatible(root, compat);
264 of_node_put(root);
265 }
266 return rc;
267 }
268 EXPORT_SYMBOL(of_machine_is_compatible);
269
270 /**
271 * of_device_is_available - check if a device is available for use
272 *
273 * @device: Node to check for availability
274 *
275 * Returns 1 if the status property is absent or set to "okay" or "ok",
276 * 0 otherwise
277 */
278 int of_device_is_available(const struct device_node *device)
279 {
280 const char *status;
281 int statlen;
282
283 status = of_get_property(device, "status", &statlen);
284 if (status == NULL)
285 return 1;
286
287 if (statlen > 0) {
288 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
289 return 1;
290 }
291
292 return 0;
293 }
294 EXPORT_SYMBOL(of_device_is_available);
295
296 /**
297 * of_get_parent - Get a node's parent if any
298 * @node: Node to get parent
299 *
300 * Returns a node pointer with refcount incremented, use
301 * of_node_put() on it when done.
302 */
303 struct device_node *of_get_parent(const struct device_node *node)
304 {
305 struct device_node *np;
306
307 if (!node)
308 return NULL;
309
310 read_lock(&devtree_lock);
311 np = of_node_get(node->parent);
312 read_unlock(&devtree_lock);
313 return np;
314 }
315 EXPORT_SYMBOL(of_get_parent);
316
317 /**
318 * of_get_next_parent - Iterate to a node's parent
319 * @node: Node to get parent of
320 *
321 * This is like of_get_parent() except that it drops the
322 * refcount on the passed node, making it suitable for iterating
323 * through a node's parents.
324 *
325 * Returns a node pointer with refcount incremented, use
326 * of_node_put() on it when done.
327 */
328 struct device_node *of_get_next_parent(struct device_node *node)
329 {
330 struct device_node *parent;
331
332 if (!node)
333 return NULL;
334
335 read_lock(&devtree_lock);
336 parent = of_node_get(node->parent);
337 of_node_put(node);
338 read_unlock(&devtree_lock);
339 return parent;
340 }
341
342 /**
343 * of_get_next_child - Iterate a node childs
344 * @node: parent node
345 * @prev: previous child of the parent node, or NULL to get first
346 *
347 * Returns a node pointer with refcount incremented, use
348 * of_node_put() on it when done.
349 */
350 struct device_node *of_get_next_child(const struct device_node *node,
351 struct device_node *prev)
352 {
353 struct device_node *next;
354
355 read_lock(&devtree_lock);
356 next = prev ? prev->sibling : node->child;
357 for (; next; next = next->sibling)
358 if (of_node_get(next))
359 break;
360 of_node_put(prev);
361 read_unlock(&devtree_lock);
362 return next;
363 }
364 EXPORT_SYMBOL(of_get_next_child);
365
366 /**
367 * of_find_node_by_path - Find a node matching a full OF path
368 * @path: The full path to match
369 *
370 * Returns a node pointer with refcount incremented, use
371 * of_node_put() on it when done.
372 */
373 struct device_node *of_find_node_by_path(const char *path)
374 {
375 struct device_node *np = allnodes;
376
377 read_lock(&devtree_lock);
378 for (; np; np = np->allnext) {
379 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
380 && of_node_get(np))
381 break;
382 }
383 read_unlock(&devtree_lock);
384 return np;
385 }
386 EXPORT_SYMBOL(of_find_node_by_path);
387
388 /**
389 * of_find_node_by_name - Find a node by its "name" property
390 * @from: The node to start searching from or NULL, the node
391 * you pass will not be searched, only the next one
392 * will; typically, you pass what the previous call
393 * returned. of_node_put() will be called on it
394 * @name: The name string to match against
395 *
396 * Returns a node pointer with refcount incremented, use
397 * of_node_put() on it when done.
398 */
399 struct device_node *of_find_node_by_name(struct device_node *from,
400 const char *name)
401 {
402 struct device_node *np;
403
404 read_lock(&devtree_lock);
405 np = from ? from->allnext : allnodes;
406 for (; np; np = np->allnext)
407 if (np->name && (of_node_cmp(np->name, name) == 0)
408 && of_node_get(np))
409 break;
410 of_node_put(from);
411 read_unlock(&devtree_lock);
412 return np;
413 }
414 EXPORT_SYMBOL(of_find_node_by_name);
415
416 /**
417 * of_find_node_by_type - Find a node by its "device_type" property
418 * @from: The node to start searching from, or NULL to start searching
419 * the entire device tree. The node you pass will not be
420 * searched, only the next one will; typically, you pass
421 * what the previous call returned. of_node_put() will be
422 * called on from for you.
423 * @type: The type string to match against
424 *
425 * Returns a node pointer with refcount incremented, use
426 * of_node_put() on it when done.
427 */
428 struct device_node *of_find_node_by_type(struct device_node *from,
429 const char *type)
430 {
431 struct device_node *np;
432
433 read_lock(&devtree_lock);
434 np = from ? from->allnext : allnodes;
435 for (; np; np = np->allnext)
436 if (np->type && (of_node_cmp(np->type, type) == 0)
437 && of_node_get(np))
438 break;
439 of_node_put(from);
440 read_unlock(&devtree_lock);
441 return np;
442 }
443 EXPORT_SYMBOL(of_find_node_by_type);
444
445 /**
446 * of_find_compatible_node - Find a node based on type and one of the
447 * tokens in its "compatible" property
448 * @from: The node to start searching from or NULL, the node
449 * you pass will not be searched, only the next one
450 * will; typically, you pass what the previous call
451 * returned. of_node_put() will be called on it
452 * @type: The type string to match "device_type" or NULL to ignore
453 * @compatible: The string to match to one of the tokens in the device
454 * "compatible" list.
455 *
456 * Returns a node pointer with refcount incremented, use
457 * of_node_put() on it when done.
458 */
459 struct device_node *of_find_compatible_node(struct device_node *from,
460 const char *type, const char *compatible)
461 {
462 struct device_node *np;
463
464 read_lock(&devtree_lock);
465 np = from ? from->allnext : allnodes;
466 for (; np; np = np->allnext) {
467 if (type
468 && !(np->type && (of_node_cmp(np->type, type) == 0)))
469 continue;
470 if (of_device_is_compatible(np, compatible) && of_node_get(np))
471 break;
472 }
473 of_node_put(from);
474 read_unlock(&devtree_lock);
475 return np;
476 }
477 EXPORT_SYMBOL(of_find_compatible_node);
478
479 /**
480 * of_find_node_with_property - Find a node which has a property with
481 * the given name.
482 * @from: The node to start searching from or NULL, the node
483 * you pass will not be searched, only the next one
484 * will; typically, you pass what the previous call
485 * returned. of_node_put() will be called on it
486 * @prop_name: The name of the property to look for.
487 *
488 * Returns a node pointer with refcount incremented, use
489 * of_node_put() on it when done.
490 */
491 struct device_node *of_find_node_with_property(struct device_node *from,
492 const char *prop_name)
493 {
494 struct device_node *np;
495 struct property *pp;
496
497 read_lock(&devtree_lock);
498 np = from ? from->allnext : allnodes;
499 for (; np; np = np->allnext) {
500 for (pp = np->properties; pp != 0; pp = pp->next) {
501 if (of_prop_cmp(pp->name, prop_name) == 0) {
502 of_node_get(np);
503 goto out;
504 }
505 }
506 }
507 out:
508 of_node_put(from);
509 read_unlock(&devtree_lock);
510 return np;
511 }
512 EXPORT_SYMBOL(of_find_node_with_property);
513
514 static const struct of_device_id *of_match_compat(const struct of_device_id *matches,
515 const char *compat)
516 {
517 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
518 const char *cp = matches->compatible;
519 int len = strlen(cp);
520
521 if (len > 0 && of_compat_cmp(compat, cp, len) == 0)
522 return matches;
523
524 matches++;
525 }
526
527 return NULL;
528 }
529
530 /**
531 * of_match_node - Tell if an device_node has a matching of_match structure
532 * @matches: array of of device match structures to search in
533 * @node: the of device structure to match against
534 *
535 * Low level utility function used by device matching.
536 */
537 const struct of_device_id *of_match_node(const struct of_device_id *matches,
538 const struct device_node *node)
539 {
540 struct property *prop;
541 const char *cp;
542
543 if (!matches)
544 return NULL;
545
546 of_property_for_each_string(node, "compatible", prop, cp) {
547 const struct of_device_id *match = of_match_compat(matches, cp);
548 if (match)
549 return match;
550 }
551
552 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
553 int match = 1;
554 if (matches->name[0])
555 match &= node->name
556 && !strcmp(matches->name, node->name);
557 if (matches->type[0])
558 match &= node->type
559 && !strcmp(matches->type, node->type);
560 if (match && !matches->compatible[0])
561 return matches;
562 matches++;
563 }
564 return NULL;
565 }
566 EXPORT_SYMBOL(of_match_node);
567
568 /**
569 * of_find_matching_node - Find a node based on an of_device_id match
570 * table.
571 * @from: The node to start searching from or NULL, the node
572 * you pass will not be searched, only the next one
573 * will; typically, you pass what the previous call
574 * returned. of_node_put() will be called on it
575 * @matches: array of of device match structures to search in
576 *
577 * Returns a node pointer with refcount incremented, use
578 * of_node_put() on it when done.
579 */
580 struct device_node *of_find_matching_node(struct device_node *from,
581 const struct of_device_id *matches)
582 {
583 struct device_node *np;
584
585 read_lock(&devtree_lock);
586 np = from ? from->allnext : allnodes;
587 for (; np; np = np->allnext) {
588 if (of_match_node(matches, np) && of_node_get(np))
589 break;
590 }
591 of_node_put(from);
592 read_unlock(&devtree_lock);
593 return np;
594 }
595 EXPORT_SYMBOL(of_find_matching_node);
596
597 /**
598 * of_modalias_node - Lookup appropriate modalias for a device node
599 * @node: pointer to a device tree node
600 * @modalias: Pointer to buffer that modalias value will be copied into
601 * @len: Length of modalias value
602 *
603 * Based on the value of the compatible property, this routine will attempt
604 * to choose an appropriate modalias value for a particular device tree node.
605 * It does this by stripping the manufacturer prefix (as delimited by a ',')
606 * from the first entry in the compatible list property.
607 *
608 * This routine returns 0 on success, <0 on failure.
609 */
610 int of_modalias_node(struct device_node *node, char *modalias, int len)
611 {
612 const char *compatible, *p;
613 int cplen;
614
615 compatible = of_get_property(node, "compatible", &cplen);
616 if (!compatible || strlen(compatible) > cplen)
617 return -ENODEV;
618 p = strchr(compatible, ',');
619 strlcpy(modalias, p ? p + 1 : compatible, len);
620 return 0;
621 }
622 EXPORT_SYMBOL_GPL(of_modalias_node);
623
624 /**
625 * of_find_node_by_phandle - Find a node given a phandle
626 * @handle: phandle of the node to find
627 *
628 * Returns a node pointer with refcount incremented, use
629 * of_node_put() on it when done.
630 */
631 struct device_node *of_find_node_by_phandle(phandle handle)
632 {
633 struct device_node *np;
634
635 read_lock(&devtree_lock);
636 for (np = allnodes; np; np = np->allnext)
637 if (np->phandle == handle)
638 break;
639 of_node_get(np);
640 read_unlock(&devtree_lock);
641 return np;
642 }
643 EXPORT_SYMBOL(of_find_node_by_phandle);
644
645 /**
646 * of_property_read_u32_array - Find and read an array of 32 bit integers
647 * from a property.
648 *
649 * @np: device node from which the property value is to be read.
650 * @propname: name of the property to be searched.
651 * @out_value: pointer to return value, modified only if return value is 0.
652 *
653 * Search for a property in a device node and read 32-bit value(s) from
654 * it. Returns 0 on success, -EINVAL if the property does not exist,
655 * -ENODATA if property does not have a value, and -EOVERFLOW if the
656 * property data isn't large enough.
657 *
658 * The out_value is modified only if a valid u32 value can be decoded.
659 */
660 int of_property_read_u32_array(const struct device_node *np,
661 const char *propname, u32 *out_values,
662 size_t sz)
663 {
664 struct property *prop = of_find_property(np, propname, NULL);
665 const __be32 *val;
666
667 if (!prop)
668 return -EINVAL;
669 if (!prop->value)
670 return -ENODATA;
671 if ((sz * sizeof(*out_values)) > prop->length)
672 return -EOVERFLOW;
673
674 val = prop->value;
675 while (sz--)
676 *out_values++ = be32_to_cpup(val++);
677 return 0;
678 }
679 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
680
681 /**
682 * of_property_read_u64 - Find and read a 64 bit integer from a property
683 * @np: device node from which the property value is to be read.
684 * @propname: name of the property to be searched.
685 * @out_value: pointer to return value, modified only if return value is 0.
686 *
687 * Search for a property in a device node and read a 64-bit value from
688 * it. Returns 0 on success, -EINVAL if the property does not exist,
689 * -ENODATA if property does not have a value, and -EOVERFLOW if the
690 * property data isn't large enough.
691 *
692 * The out_value is modified only if a valid u64 value can be decoded.
693 */
694 int of_property_read_u64(const struct device_node *np, const char *propname,
695 u64 *out_value)
696 {
697 struct property *prop = of_find_property(np, propname, NULL);
698
699 if (!prop)
700 return -EINVAL;
701 if (!prop->value)
702 return -ENODATA;
703 if (sizeof(*out_value) > prop->length)
704 return -EOVERFLOW;
705 *out_value = of_read_number(prop->value, 2);
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(of_property_read_u64);
709
710 /**
711 * of_property_read_string - Find and read a string from a property
712 * @np: device node from which the property value is to be read.
713 * @propname: name of the property to be searched.
714 * @out_string: pointer to null terminated return string, modified only if
715 * return value is 0.
716 *
717 * Search for a property in a device tree node and retrieve a null
718 * terminated string value (pointer to data, not a copy). Returns 0 on
719 * success, -EINVAL if the property does not exist, -ENODATA if property
720 * does not have a value, and -EILSEQ if the string is not null-terminated
721 * within the length of the property data.
722 *
723 * The out_string pointer is modified only if a valid string can be decoded.
724 */
725 int of_property_read_string(struct device_node *np, const char *propname,
726 const char **out_string)
727 {
728 struct property *prop = of_find_property(np, propname, NULL);
729 if (!prop)
730 return -EINVAL;
731 if (!prop->value)
732 return -ENODATA;
733 if (strnlen(prop->value, prop->length) >= prop->length)
734 return -EILSEQ;
735 *out_string = prop->value;
736 return 0;
737 }
738 EXPORT_SYMBOL_GPL(of_property_read_string);
739
740 /**
741 * of_property_read_string_index - Find and read a string from a multiple
742 * strings property.
743 * @np: device node from which the property value is to be read.
744 * @propname: name of the property to be searched.
745 * @index: index of the string in the list of strings
746 * @out_string: pointer to null terminated return string, modified only if
747 * return value is 0.
748 *
749 * Search for a property in a device tree node and retrieve a null
750 * terminated string value (pointer to data, not a copy) in the list of strings
751 * contained in that property.
752 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
753 * property does not have a value, and -EILSEQ if the string is not
754 * null-terminated within the length of the property data.
755 *
756 * The out_string pointer is modified only if a valid string can be decoded.
757 */
758 int of_property_read_string_index(struct device_node *np, const char *propname,
759 int index, const char **output)
760 {
761 struct property *prop = of_find_property(np, propname, NULL);
762 int i = 0;
763 size_t l = 0, total = 0;
764 const char *p;
765
766 if (!prop)
767 return -EINVAL;
768 if (!prop->value)
769 return -ENODATA;
770 if (strnlen(prop->value, prop->length) >= prop->length)
771 return -EILSEQ;
772
773 p = prop->value;
774
775 for (i = 0; total < prop->length; total += l, p += l) {
776 l = strlen(p) + 1;
777 if (i++ == index) {
778 *output = p;
779 return 0;
780 }
781 }
782 return -ENODATA;
783 }
784 EXPORT_SYMBOL_GPL(of_property_read_string_index);
785
786 /**
787 * of_property_match_string() - Find string in a list and return index
788 * @np: pointer to node containing string list property
789 * @propname: string list property name
790 * @string: pointer to string to search for in string list
791 *
792 * This function searches a string list property and returns the index
793 * of a specific string value.
794 */
795 int of_property_match_string(struct device_node *np, const char *propname,
796 const char *string)
797 {
798 struct property *prop = of_find_property(np, propname, NULL);
799 size_t l;
800 int i;
801 const char *p, *end;
802
803 if (!prop)
804 return -EINVAL;
805 if (!prop->value)
806 return -ENODATA;
807
808 p = prop->value;
809 end = p + prop->length;
810
811 for (i = 0; p < end; i++, p += l) {
812 l = strlen(p) + 1;
813 if (p + l > end)
814 return -EILSEQ;
815 pr_debug("comparing %s with %s\n", string, p);
816 if (strcmp(string, p) == 0)
817 return i; /* Found it; return index */
818 }
819 return -ENODATA;
820 }
821 EXPORT_SYMBOL_GPL(of_property_match_string);
822
823 /**
824 * of_property_count_strings - Find and return the number of strings from a
825 * multiple strings property.
826 * @np: device node from which the property value is to be read.
827 * @propname: name of the property to be searched.
828 *
829 * Search for a property in a device tree node and retrieve the number of null
830 * terminated string contain in it. Returns the number of strings on
831 * success, -EINVAL if the property does not exist, -ENODATA if property
832 * does not have a value, and -EILSEQ if the string is not null-terminated
833 * within the length of the property data.
834 */
835 int of_property_count_strings(struct device_node *np, const char *propname)
836 {
837 struct property *prop = of_find_property(np, propname, NULL);
838 int i = 0;
839 size_t l = 0, total = 0;
840 const char *p;
841
842 if (!prop)
843 return -EINVAL;
844 if (!prop->value)
845 return -ENODATA;
846 if (strnlen(prop->value, prop->length) >= prop->length)
847 return -EILSEQ;
848
849 p = prop->value;
850
851 for (i = 0; total < prop->length; total += l, p += l, i++)
852 l = strlen(p) + 1;
853
854 return i;
855 }
856 EXPORT_SYMBOL_GPL(of_property_count_strings);
857
858 /**
859 * of_parse_phandle - Resolve a phandle property to a device_node pointer
860 * @np: Pointer to device node holding phandle property
861 * @phandle_name: Name of property holding a phandle value
862 * @index: For properties holding a table of phandles, this is the index into
863 * the table
864 *
865 * Returns the device_node pointer with refcount incremented. Use
866 * of_node_put() on it when done.
867 */
868 struct device_node *
869 of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
870 {
871 const __be32 *phandle;
872 int size;
873
874 phandle = of_get_property(np, phandle_name, &size);
875 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
876 return NULL;
877
878 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
879 }
880 EXPORT_SYMBOL(of_parse_phandle);
881
882 /**
883 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
884 * @np: pointer to a device tree node containing a list
885 * @list_name: property name that contains a list
886 * @cells_name: property name that specifies phandles' arguments count
887 * @index: index of a phandle to parse out
888 * @out_args: optional pointer to output arguments structure (will be filled)
889 *
890 * This function is useful to parse lists of phandles and their arguments.
891 * Returns 0 on success and fills out_args, on error returns appropriate
892 * errno value.
893 *
894 * Caller is responsible to call of_node_put() on the returned out_args->node
895 * pointer.
896 *
897 * Example:
898 *
899 * phandle1: node1 {
900 * #list-cells = <2>;
901 * }
902 *
903 * phandle2: node2 {
904 * #list-cells = <1>;
905 * }
906 *
907 * node3 {
908 * list = <&phandle1 1 2 &phandle2 3>;
909 * }
910 *
911 * To get a device_node of the `node2' node you may call this:
912 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
913 */
914 int of_parse_phandle_with_args(struct device_node *np, const char *list_name,
915 const char *cells_name, int index,
916 struct of_phandle_args *out_args)
917 {
918 const __be32 *list, *list_end;
919 int size, cur_index = 0;
920 uint32_t count = 0;
921 struct device_node *node = NULL;
922 phandle phandle;
923
924 /* Retrieve the phandle list property */
925 list = of_get_property(np, list_name, &size);
926 if (!list)
927 return -EINVAL;
928 list_end = list + size / sizeof(*list);
929
930 /* Loop over the phandles until all the requested entry is found */
931 while (list < list_end) {
932 count = 0;
933
934 /*
935 * If phandle is 0, then it is an empty entry with no
936 * arguments. Skip forward to the next entry.
937 */
938 phandle = be32_to_cpup(list++);
939 if (phandle) {
940 /*
941 * Find the provider node and parse the #*-cells
942 * property to determine the argument length
943 */
944 node = of_find_node_by_phandle(phandle);
945 if (!node) {
946 pr_err("%s: could not find phandle\n",
947 np->full_name);
948 break;
949 }
950 if (of_property_read_u32(node, cells_name, &count)) {
951 pr_err("%s: could not get %s for %s\n",
952 np->full_name, cells_name,
953 node->full_name);
954 break;
955 }
956
957 /*
958 * Make sure that the arguments actually fit in the
959 * remaining property data length
960 */
961 if (list + count > list_end) {
962 pr_err("%s: arguments longer than property\n",
963 np->full_name);
964 break;
965 }
966 }
967
968 /*
969 * All of the error cases above bail out of the loop, so at
970 * this point, the parsing is successful. If the requested
971 * index matches, then fill the out_args structure and return,
972 * or return -ENOENT for an empty entry.
973 */
974 if (cur_index == index) {
975 if (!phandle)
976 return -ENOENT;
977
978 if (out_args) {
979 int i;
980 if (WARN_ON(count > MAX_PHANDLE_ARGS))
981 count = MAX_PHANDLE_ARGS;
982 out_args->np = node;
983 out_args->args_count = count;
984 for (i = 0; i < count; i++)
985 out_args->args[i] = be32_to_cpup(list++);
986 }
987 return 0;
988 }
989
990 of_node_put(node);
991 node = NULL;
992 list += count;
993 cur_index++;
994 }
995
996 /* Loop exited without finding a valid entry; return an error */
997 if (node)
998 of_node_put(node);
999 return -EINVAL;
1000 }
1001 EXPORT_SYMBOL(of_parse_phandle_with_args);
1002
1003 /**
1004 * prom_add_property - Add a property to a node
1005 */
1006 int prom_add_property(struct device_node *np, struct property *prop)
1007 {
1008 struct property **next;
1009 unsigned long flags;
1010
1011 prop->next = NULL;
1012 write_lock_irqsave(&devtree_lock, flags);
1013 next = &np->properties;
1014 while (*next) {
1015 if (strcmp(prop->name, (*next)->name) == 0) {
1016 /* duplicate ! don't insert it */
1017 write_unlock_irqrestore(&devtree_lock, flags);
1018 return -1;
1019 }
1020 next = &(*next)->next;
1021 }
1022 *next = prop;
1023 write_unlock_irqrestore(&devtree_lock, flags);
1024
1025 #ifdef CONFIG_PROC_DEVICETREE
1026 /* try to add to proc as well if it was initialized */
1027 if (np->pde)
1028 proc_device_tree_add_prop(np->pde, prop);
1029 #endif /* CONFIG_PROC_DEVICETREE */
1030
1031 return 0;
1032 }
1033
1034 /**
1035 * prom_remove_property - Remove a property from a node.
1036 *
1037 * Note that we don't actually remove it, since we have given out
1038 * who-knows-how-many pointers to the data using get-property.
1039 * Instead we just move the property to the "dead properties"
1040 * list, so it won't be found any more.
1041 */
1042 int prom_remove_property(struct device_node *np, struct property *prop)
1043 {
1044 struct property **next;
1045 unsigned long flags;
1046 int found = 0;
1047
1048 write_lock_irqsave(&devtree_lock, flags);
1049 next = &np->properties;
1050 while (*next) {
1051 if (*next == prop) {
1052 /* found the node */
1053 *next = prop->next;
1054 prop->next = np->deadprops;
1055 np->deadprops = prop;
1056 found = 1;
1057 break;
1058 }
1059 next = &(*next)->next;
1060 }
1061 write_unlock_irqrestore(&devtree_lock, flags);
1062
1063 if (!found)
1064 return -ENODEV;
1065
1066 #ifdef CONFIG_PROC_DEVICETREE
1067 /* try to remove the proc node as well */
1068 if (np->pde)
1069 proc_device_tree_remove_prop(np->pde, prop);
1070 #endif /* CONFIG_PROC_DEVICETREE */
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * prom_update_property - Update a property in a node.
1077 *
1078 * Note that we don't actually remove it, since we have given out
1079 * who-knows-how-many pointers to the data using get-property.
1080 * Instead we just move the property to the "dead properties" list,
1081 * and add the new property to the property list
1082 */
1083 int prom_update_property(struct device_node *np,
1084 struct property *newprop,
1085 struct property *oldprop)
1086 {
1087 struct property **next;
1088 unsigned long flags;
1089 int found = 0;
1090
1091 write_lock_irqsave(&devtree_lock, flags);
1092 next = &np->properties;
1093 while (*next) {
1094 if (*next == oldprop) {
1095 /* found the node */
1096 newprop->next = oldprop->next;
1097 *next = newprop;
1098 oldprop->next = np->deadprops;
1099 np->deadprops = oldprop;
1100 found = 1;
1101 break;
1102 }
1103 next = &(*next)->next;
1104 }
1105 write_unlock_irqrestore(&devtree_lock, flags);
1106
1107 if (!found)
1108 return -ENODEV;
1109
1110 #ifdef CONFIG_PROC_DEVICETREE
1111 /* try to add to proc as well if it was initialized */
1112 if (np->pde)
1113 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1114 #endif /* CONFIG_PROC_DEVICETREE */
1115
1116 return 0;
1117 }
1118
1119 #if defined(CONFIG_OF_DYNAMIC)
1120 /*
1121 * Support for dynamic device trees.
1122 *
1123 * On some platforms, the device tree can be manipulated at runtime.
1124 * The routines in this section support adding, removing and changing
1125 * device tree nodes.
1126 */
1127
1128 /**
1129 * of_attach_node - Plug a device node into the tree and global list.
1130 */
1131 void of_attach_node(struct device_node *np)
1132 {
1133 unsigned long flags;
1134
1135 write_lock_irqsave(&devtree_lock, flags);
1136 np->sibling = np->parent->child;
1137 np->allnext = allnodes;
1138 np->parent->child = np;
1139 allnodes = np;
1140 write_unlock_irqrestore(&devtree_lock, flags);
1141 }
1142
1143 /**
1144 * of_detach_node - "Unplug" a node from the device tree.
1145 *
1146 * The caller must hold a reference to the node. The memory associated with
1147 * the node is not freed until its refcount goes to zero.
1148 */
1149 void of_detach_node(struct device_node *np)
1150 {
1151 struct device_node *parent;
1152 unsigned long flags;
1153
1154 write_lock_irqsave(&devtree_lock, flags);
1155
1156 parent = np->parent;
1157 if (!parent)
1158 goto out_unlock;
1159
1160 if (allnodes == np)
1161 allnodes = np->allnext;
1162 else {
1163 struct device_node *prev;
1164 for (prev = allnodes;
1165 prev->allnext != np;
1166 prev = prev->allnext)
1167 ;
1168 prev->allnext = np->allnext;
1169 }
1170
1171 if (parent->child == np)
1172 parent->child = np->sibling;
1173 else {
1174 struct device_node *prevsib;
1175 for (prevsib = np->parent->child;
1176 prevsib->sibling != np;
1177 prevsib = prevsib->sibling)
1178 ;
1179 prevsib->sibling = np->sibling;
1180 }
1181
1182 of_node_set_flag(np, OF_DETACHED);
1183
1184 out_unlock:
1185 write_unlock_irqrestore(&devtree_lock, flags);
1186 }
1187 #endif /* defined(CONFIG_OF_DYNAMIC) */
1188
1189 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1190 int id, const char *stem, int stem_len)
1191 {
1192 ap->np = np;
1193 ap->id = id;
1194 strncpy(ap->stem, stem, stem_len);
1195 ap->stem[stem_len] = 0;
1196 list_add_tail(&ap->link, &aliases_lookup);
1197 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1198 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1199 }
1200
1201 /**
1202 * of_alias_scan - Scan all properties of 'aliases' node
1203 *
1204 * The function scans all the properties of 'aliases' node and populate
1205 * the the global lookup table with the properties. It returns the
1206 * number of alias_prop found, or error code in error case.
1207 *
1208 * @dt_alloc: An allocator that provides a virtual address to memory
1209 * for the resulting tree
1210 */
1211 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1212 {
1213 struct property *pp;
1214
1215 of_chosen = of_find_node_by_path("/chosen");
1216 if (of_chosen == NULL)
1217 of_chosen = of_find_node_by_path("/chosen@0");
1218 of_aliases = of_find_node_by_path("/aliases");
1219 if (!of_aliases)
1220 return;
1221
1222 for_each_property_of_node(of_aliases, pp) {
1223 const char *start = pp->name;
1224 const char *end = start + strlen(start);
1225 struct device_node *np;
1226 struct alias_prop *ap;
1227 int id, len;
1228
1229 /* Skip those we do not want to proceed */
1230 if (!strcmp(pp->name, "name") ||
1231 !strcmp(pp->name, "phandle") ||
1232 !strcmp(pp->name, "linux,phandle"))
1233 continue;
1234
1235 np = of_find_node_by_path(pp->value);
1236 if (!np)
1237 continue;
1238
1239 /* walk the alias backwards to extract the id and work out
1240 * the 'stem' string */
1241 while (isdigit(*(end-1)) && end > start)
1242 end--;
1243 len = end - start;
1244
1245 if (kstrtoint(end, 10, &id) < 0)
1246 continue;
1247
1248 /* Allocate an alias_prop with enough space for the stem */
1249 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1250 if (!ap)
1251 continue;
1252 ap->alias = start;
1253 of_alias_add(ap, np, id, start, len);
1254 }
1255 }
1256
1257 /**
1258 * of_alias_get_id - Get alias id for the given device_node
1259 * @np: Pointer to the given device_node
1260 * @stem: Alias stem of the given device_node
1261 *
1262 * The function travels the lookup table to get alias id for the given
1263 * device_node and alias stem. It returns the alias id if find it.
1264 */
1265 int of_alias_get_id(struct device_node *np, const char *stem)
1266 {
1267 struct alias_prop *app;
1268 int id = -ENODEV;
1269
1270 mutex_lock(&of_aliases_mutex);
1271 list_for_each_entry(app, &aliases_lookup, link) {
1272 if (strcmp(app->stem, stem) != 0)
1273 continue;
1274
1275 if (np == app->np) {
1276 id = app->id;
1277 break;
1278 }
1279 }
1280 mutex_unlock(&of_aliases_mutex);
1281
1282 return id;
1283 }
1284 EXPORT_SYMBOL_GPL(of_alias_get_id);
1285
1286 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1287 u32 *pu)
1288 {
1289 const void *curv = cur;
1290
1291 if (!prop)
1292 return NULL;
1293
1294 if (!cur) {
1295 curv = prop->value;
1296 goto out_val;
1297 }
1298
1299 curv += sizeof(*cur);
1300 if (curv >= prop->value + prop->length)
1301 return NULL;
1302
1303 out_val:
1304 *pu = be32_to_cpup(curv);
1305 return curv;
1306 }
1307 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1308
1309 const char *of_prop_next_string(struct property *prop, const char *cur)
1310 {
1311 const void *curv = cur;
1312
1313 if (!prop)
1314 return NULL;
1315
1316 if (!cur)
1317 return prop->value;
1318
1319 curv += strlen(cur) + 1;
1320 if (curv >= prop->value + prop->length)
1321 return NULL;
1322
1323 return curv;
1324 }
1325 EXPORT_SYMBOL_GPL(of_prop_next_string);
This page took 0.057894 seconds and 5 git commands to generate.