Merge tag 'cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27
28 #include "of_private.h"
29
30 LIST_HEAD(aliases_lookup);
31
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37
38 DEFINE_MUTEX(of_aliases_mutex);
39
40 /* use when traversing tree through the allnext, child, sibling,
41 * or parent members of struct device_node.
42 */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44
45 int of_n_addr_cells(struct device_node *np)
46 {
47 const __be32 *ip;
48
49 do {
50 if (np->parent)
51 np = np->parent;
52 ip = of_get_property(np, "#address-cells", NULL);
53 if (ip)
54 return be32_to_cpup(ip);
55 } while (np->parent);
56 /* No #address-cells property for the root node */
57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60
61 int of_n_size_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#size-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #size-cells property for the root node */
73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76
77 #ifdef CONFIG_NUMA
78 int __weak of_node_to_nid(struct device_node *np)
79 {
80 return numa_node_id();
81 }
82 #endif
83
84 #if defined(CONFIG_OF_DYNAMIC)
85 /**
86 * of_node_get - Increment refcount of a node
87 * @node: Node to inc refcount, NULL is supported to
88 * simplify writing of callers
89 *
90 * Returns node.
91 */
92 struct device_node *of_node_get(struct device_node *node)
93 {
94 if (node)
95 kref_get(&node->kref);
96 return node;
97 }
98 EXPORT_SYMBOL(of_node_get);
99
100 static inline struct device_node *kref_to_device_node(struct kref *kref)
101 {
102 return container_of(kref, struct device_node, kref);
103 }
104
105 /**
106 * of_node_release - release a dynamically allocated node
107 * @kref: kref element of the node to be released
108 *
109 * In of_node_put() this function is passed to kref_put()
110 * as the destructor.
111 */
112 static void of_node_release(struct kref *kref)
113 {
114 struct device_node *node = kref_to_device_node(kref);
115 struct property *prop = node->properties;
116
117 /* We should never be releasing nodes that haven't been detached. */
118 if (!of_node_check_flag(node, OF_DETACHED)) {
119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
120 dump_stack();
121 kref_init(&node->kref);
122 return;
123 }
124
125 if (!of_node_check_flag(node, OF_DYNAMIC))
126 return;
127
128 while (prop) {
129 struct property *next = prop->next;
130 kfree(prop->name);
131 kfree(prop->value);
132 kfree(prop);
133 prop = next;
134
135 if (!prop) {
136 prop = node->deadprops;
137 node->deadprops = NULL;
138 }
139 }
140 kfree(node->full_name);
141 kfree(node->data);
142 kfree(node);
143 }
144
145 /**
146 * of_node_put - Decrement refcount of a node
147 * @node: Node to dec refcount, NULL is supported to
148 * simplify writing of callers
149 *
150 */
151 void of_node_put(struct device_node *node)
152 {
153 if (node)
154 kref_put(&node->kref, of_node_release);
155 }
156 EXPORT_SYMBOL(of_node_put);
157 #endif /* CONFIG_OF_DYNAMIC */
158
159 static struct property *__of_find_property(const struct device_node *np,
160 const char *name, int *lenp)
161 {
162 struct property *pp;
163
164 if (!np)
165 return NULL;
166
167 for (pp = np->properties; pp; pp = pp->next) {
168 if (of_prop_cmp(pp->name, name) == 0) {
169 if (lenp)
170 *lenp = pp->length;
171 break;
172 }
173 }
174
175 return pp;
176 }
177
178 struct property *of_find_property(const struct device_node *np,
179 const char *name,
180 int *lenp)
181 {
182 struct property *pp;
183 unsigned long flags;
184
185 raw_spin_lock_irqsave(&devtree_lock, flags);
186 pp = __of_find_property(np, name, lenp);
187 raw_spin_unlock_irqrestore(&devtree_lock, flags);
188
189 return pp;
190 }
191 EXPORT_SYMBOL(of_find_property);
192
193 /**
194 * of_find_all_nodes - Get next node in global list
195 * @prev: Previous node or NULL to start iteration
196 * of_node_put() will be called on it
197 *
198 * Returns a node pointer with refcount incremented, use
199 * of_node_put() on it when done.
200 */
201 struct device_node *of_find_all_nodes(struct device_node *prev)
202 {
203 struct device_node *np;
204 unsigned long flags;
205
206 raw_spin_lock_irqsave(&devtree_lock, flags);
207 np = prev ? prev->allnext : of_allnodes;
208 for (; np != NULL; np = np->allnext)
209 if (of_node_get(np))
210 break;
211 of_node_put(prev);
212 raw_spin_unlock_irqrestore(&devtree_lock, flags);
213 return np;
214 }
215 EXPORT_SYMBOL(of_find_all_nodes);
216
217 /*
218 * Find a property with a given name for a given node
219 * and return the value.
220 */
221 static const void *__of_get_property(const struct device_node *np,
222 const char *name, int *lenp)
223 {
224 struct property *pp = __of_find_property(np, name, lenp);
225
226 return pp ? pp->value : NULL;
227 }
228
229 /*
230 * Find a property with a given name for a given node
231 * and return the value.
232 */
233 const void *of_get_property(const struct device_node *np, const char *name,
234 int *lenp)
235 {
236 struct property *pp = of_find_property(np, name, lenp);
237
238 return pp ? pp->value : NULL;
239 }
240 EXPORT_SYMBOL(of_get_property);
241
242 /*
243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
244 *
245 * @cpu: logical cpu index of a core/thread
246 * @phys_id: physical identifier of a core/thread
247 *
248 * CPU logical to physical index mapping is architecture specific.
249 * However this __weak function provides a default match of physical
250 * id to logical cpu index. phys_id provided here is usually values read
251 * from the device tree which must match the hardware internal registers.
252 *
253 * Returns true if the physical identifier and the logical cpu index
254 * correspond to the same core/thread, false otherwise.
255 */
256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
257 {
258 return (u32)phys_id == cpu;
259 }
260
261 /**
262 * Checks if the given "prop_name" property holds the physical id of the
263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
264 * NULL, local thread number within the core is returned in it.
265 */
266 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
267 const char *prop_name, int cpu, unsigned int *thread)
268 {
269 const __be32 *cell;
270 int ac, prop_len, tid;
271 u64 hwid;
272
273 ac = of_n_addr_cells(cpun);
274 cell = of_get_property(cpun, prop_name, &prop_len);
275 if (!cell || !ac)
276 return false;
277 prop_len /= sizeof(*cell) * ac;
278 for (tid = 0; tid < prop_len; tid++) {
279 hwid = of_read_number(cell, ac);
280 if (arch_match_cpu_phys_id(cpu, hwid)) {
281 if (thread)
282 *thread = tid;
283 return true;
284 }
285 cell += ac;
286 }
287 return false;
288 }
289
290 /*
291 * arch_find_n_match_cpu_physical_id - See if the given device node is
292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
293 * else false. If 'thread' is non-NULL, the local thread number within the
294 * core is returned in it.
295 */
296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
297 int cpu, unsigned int *thread)
298 {
299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
300 * for thread ids on PowerPC. If it doesn't exist fallback to
301 * standard "reg" property.
302 */
303 if (IS_ENABLED(CONFIG_PPC) &&
304 __of_find_n_match_cpu_property(cpun,
305 "ibm,ppc-interrupt-server#s",
306 cpu, thread))
307 return true;
308
309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
310 return true;
311
312 return false;
313 }
314
315 /**
316 * of_get_cpu_node - Get device node associated with the given logical CPU
317 *
318 * @cpu: CPU number(logical index) for which device node is required
319 * @thread: if not NULL, local thread number within the physical core is
320 * returned
321 *
322 * The main purpose of this function is to retrieve the device node for the
323 * given logical CPU index. It should be used to initialize the of_node in
324 * cpu device. Once of_node in cpu device is populated, all the further
325 * references can use that instead.
326 *
327 * CPU logical to physical index mapping is architecture specific and is built
328 * before booting secondary cores. This function uses arch_match_cpu_phys_id
329 * which can be overridden by architecture specific implementation.
330 *
331 * Returns a node pointer for the logical cpu if found, else NULL.
332 */
333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
334 {
335 struct device_node *cpun;
336
337 for_each_node_by_type(cpun, "cpu") {
338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
339 return cpun;
340 }
341 return NULL;
342 }
343 EXPORT_SYMBOL(of_get_cpu_node);
344
345 /** Checks if the given "compat" string matches one of the strings in
346 * the device's "compatible" property
347 */
348 static int __of_device_is_compatible(const struct device_node *device,
349 const char *compat)
350 {
351 const char* cp;
352 int cplen, l;
353
354 cp = __of_get_property(device, "compatible", &cplen);
355 if (cp == NULL)
356 return 0;
357 while (cplen > 0) {
358 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
359 return 1;
360 l = strlen(cp) + 1;
361 cp += l;
362 cplen -= l;
363 }
364
365 return 0;
366 }
367
368 /** Checks if the given "compat" string matches one of the strings in
369 * the device's "compatible" property
370 */
371 int of_device_is_compatible(const struct device_node *device,
372 const char *compat)
373 {
374 unsigned long flags;
375 int res;
376
377 raw_spin_lock_irqsave(&devtree_lock, flags);
378 res = __of_device_is_compatible(device, compat);
379 raw_spin_unlock_irqrestore(&devtree_lock, flags);
380 return res;
381 }
382 EXPORT_SYMBOL(of_device_is_compatible);
383
384 /**
385 * of_machine_is_compatible - Test root of device tree for a given compatible value
386 * @compat: compatible string to look for in root node's compatible property.
387 *
388 * Returns true if the root node has the given value in its
389 * compatible property.
390 */
391 int of_machine_is_compatible(const char *compat)
392 {
393 struct device_node *root;
394 int rc = 0;
395
396 root = of_find_node_by_path("/");
397 if (root) {
398 rc = of_device_is_compatible(root, compat);
399 of_node_put(root);
400 }
401 return rc;
402 }
403 EXPORT_SYMBOL(of_machine_is_compatible);
404
405 /**
406 * __of_device_is_available - check if a device is available for use
407 *
408 * @device: Node to check for availability, with locks already held
409 *
410 * Returns 1 if the status property is absent or set to "okay" or "ok",
411 * 0 otherwise
412 */
413 static int __of_device_is_available(const struct device_node *device)
414 {
415 const char *status;
416 int statlen;
417
418 status = __of_get_property(device, "status", &statlen);
419 if (status == NULL)
420 return 1;
421
422 if (statlen > 0) {
423 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
424 return 1;
425 }
426
427 return 0;
428 }
429
430 /**
431 * of_device_is_available - check if a device is available for use
432 *
433 * @device: Node to check for availability
434 *
435 * Returns 1 if the status property is absent or set to "okay" or "ok",
436 * 0 otherwise
437 */
438 int of_device_is_available(const struct device_node *device)
439 {
440 unsigned long flags;
441 int res;
442
443 raw_spin_lock_irqsave(&devtree_lock, flags);
444 res = __of_device_is_available(device);
445 raw_spin_unlock_irqrestore(&devtree_lock, flags);
446 return res;
447
448 }
449 EXPORT_SYMBOL(of_device_is_available);
450
451 /**
452 * of_get_parent - Get a node's parent if any
453 * @node: Node to get parent
454 *
455 * Returns a node pointer with refcount incremented, use
456 * of_node_put() on it when done.
457 */
458 struct device_node *of_get_parent(const struct device_node *node)
459 {
460 struct device_node *np;
461 unsigned long flags;
462
463 if (!node)
464 return NULL;
465
466 raw_spin_lock_irqsave(&devtree_lock, flags);
467 np = of_node_get(node->parent);
468 raw_spin_unlock_irqrestore(&devtree_lock, flags);
469 return np;
470 }
471 EXPORT_SYMBOL(of_get_parent);
472
473 /**
474 * of_get_next_parent - Iterate to a node's parent
475 * @node: Node to get parent of
476 *
477 * This is like of_get_parent() except that it drops the
478 * refcount on the passed node, making it suitable for iterating
479 * through a node's parents.
480 *
481 * Returns a node pointer with refcount incremented, use
482 * of_node_put() on it when done.
483 */
484 struct device_node *of_get_next_parent(struct device_node *node)
485 {
486 struct device_node *parent;
487 unsigned long flags;
488
489 if (!node)
490 return NULL;
491
492 raw_spin_lock_irqsave(&devtree_lock, flags);
493 parent = of_node_get(node->parent);
494 of_node_put(node);
495 raw_spin_unlock_irqrestore(&devtree_lock, flags);
496 return parent;
497 }
498 EXPORT_SYMBOL(of_get_next_parent);
499
500 /**
501 * of_get_next_child - Iterate a node childs
502 * @node: parent node
503 * @prev: previous child of the parent node, or NULL to get first
504 *
505 * Returns a node pointer with refcount incremented, use
506 * of_node_put() on it when done.
507 */
508 struct device_node *of_get_next_child(const struct device_node *node,
509 struct device_node *prev)
510 {
511 struct device_node *next;
512 unsigned long flags;
513
514 raw_spin_lock_irqsave(&devtree_lock, flags);
515 next = prev ? prev->sibling : node->child;
516 for (; next; next = next->sibling)
517 if (of_node_get(next))
518 break;
519 of_node_put(prev);
520 raw_spin_unlock_irqrestore(&devtree_lock, flags);
521 return next;
522 }
523 EXPORT_SYMBOL(of_get_next_child);
524
525 /**
526 * of_get_next_available_child - Find the next available child node
527 * @node: parent node
528 * @prev: previous child of the parent node, or NULL to get first
529 *
530 * This function is like of_get_next_child(), except that it
531 * automatically skips any disabled nodes (i.e. status = "disabled").
532 */
533 struct device_node *of_get_next_available_child(const struct device_node *node,
534 struct device_node *prev)
535 {
536 struct device_node *next;
537 unsigned long flags;
538
539 raw_spin_lock_irqsave(&devtree_lock, flags);
540 next = prev ? prev->sibling : node->child;
541 for (; next; next = next->sibling) {
542 if (!__of_device_is_available(next))
543 continue;
544 if (of_node_get(next))
545 break;
546 }
547 of_node_put(prev);
548 raw_spin_unlock_irqrestore(&devtree_lock, flags);
549 return next;
550 }
551 EXPORT_SYMBOL(of_get_next_available_child);
552
553 /**
554 * of_get_child_by_name - Find the child node by name for a given parent
555 * @node: parent node
556 * @name: child name to look for.
557 *
558 * This function looks for child node for given matching name
559 *
560 * Returns a node pointer if found, with refcount incremented, use
561 * of_node_put() on it when done.
562 * Returns NULL if node is not found.
563 */
564 struct device_node *of_get_child_by_name(const struct device_node *node,
565 const char *name)
566 {
567 struct device_node *child;
568
569 for_each_child_of_node(node, child)
570 if (child->name && (of_node_cmp(child->name, name) == 0))
571 break;
572 return child;
573 }
574 EXPORT_SYMBOL(of_get_child_by_name);
575
576 /**
577 * of_find_node_by_path - Find a node matching a full OF path
578 * @path: The full path to match
579 *
580 * Returns a node pointer with refcount incremented, use
581 * of_node_put() on it when done.
582 */
583 struct device_node *of_find_node_by_path(const char *path)
584 {
585 struct device_node *np = of_allnodes;
586 unsigned long flags;
587
588 raw_spin_lock_irqsave(&devtree_lock, flags);
589 for (; np; np = np->allnext) {
590 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
591 && of_node_get(np))
592 break;
593 }
594 raw_spin_unlock_irqrestore(&devtree_lock, flags);
595 return np;
596 }
597 EXPORT_SYMBOL(of_find_node_by_path);
598
599 /**
600 * of_find_node_by_name - Find a node by its "name" property
601 * @from: The node to start searching from or NULL, the node
602 * you pass will not be searched, only the next one
603 * will; typically, you pass what the previous call
604 * returned. of_node_put() will be called on it
605 * @name: The name string to match against
606 *
607 * Returns a node pointer with refcount incremented, use
608 * of_node_put() on it when done.
609 */
610 struct device_node *of_find_node_by_name(struct device_node *from,
611 const char *name)
612 {
613 struct device_node *np;
614 unsigned long flags;
615
616 raw_spin_lock_irqsave(&devtree_lock, flags);
617 np = from ? from->allnext : of_allnodes;
618 for (; np; np = np->allnext)
619 if (np->name && (of_node_cmp(np->name, name) == 0)
620 && of_node_get(np))
621 break;
622 of_node_put(from);
623 raw_spin_unlock_irqrestore(&devtree_lock, flags);
624 return np;
625 }
626 EXPORT_SYMBOL(of_find_node_by_name);
627
628 /**
629 * of_find_node_by_type - Find a node by its "device_type" property
630 * @from: The node to start searching from, or NULL to start searching
631 * the entire device tree. The node you pass will not be
632 * searched, only the next one will; typically, you pass
633 * what the previous call returned. of_node_put() will be
634 * called on from for you.
635 * @type: The type string to match against
636 *
637 * Returns a node pointer with refcount incremented, use
638 * of_node_put() on it when done.
639 */
640 struct device_node *of_find_node_by_type(struct device_node *from,
641 const char *type)
642 {
643 struct device_node *np;
644 unsigned long flags;
645
646 raw_spin_lock_irqsave(&devtree_lock, flags);
647 np = from ? from->allnext : of_allnodes;
648 for (; np; np = np->allnext)
649 if (np->type && (of_node_cmp(np->type, type) == 0)
650 && of_node_get(np))
651 break;
652 of_node_put(from);
653 raw_spin_unlock_irqrestore(&devtree_lock, flags);
654 return np;
655 }
656 EXPORT_SYMBOL(of_find_node_by_type);
657
658 /**
659 * of_find_compatible_node - Find a node based on type and one of the
660 * tokens in its "compatible" property
661 * @from: The node to start searching from or NULL, the node
662 * you pass will not be searched, only the next one
663 * will; typically, you pass what the previous call
664 * returned. of_node_put() will be called on it
665 * @type: The type string to match "device_type" or NULL to ignore
666 * @compatible: The string to match to one of the tokens in the device
667 * "compatible" list.
668 *
669 * Returns a node pointer with refcount incremented, use
670 * of_node_put() on it when done.
671 */
672 struct device_node *of_find_compatible_node(struct device_node *from,
673 const char *type, const char *compatible)
674 {
675 struct device_node *np;
676 unsigned long flags;
677
678 raw_spin_lock_irqsave(&devtree_lock, flags);
679 np = from ? from->allnext : of_allnodes;
680 for (; np; np = np->allnext) {
681 if (type
682 && !(np->type && (of_node_cmp(np->type, type) == 0)))
683 continue;
684 if (__of_device_is_compatible(np, compatible) &&
685 of_node_get(np))
686 break;
687 }
688 of_node_put(from);
689 raw_spin_unlock_irqrestore(&devtree_lock, flags);
690 return np;
691 }
692 EXPORT_SYMBOL(of_find_compatible_node);
693
694 /**
695 * of_find_node_with_property - Find a node which has a property with
696 * the given name.
697 * @from: The node to start searching from or NULL, the node
698 * you pass will not be searched, only the next one
699 * will; typically, you pass what the previous call
700 * returned. of_node_put() will be called on it
701 * @prop_name: The name of the property to look for.
702 *
703 * Returns a node pointer with refcount incremented, use
704 * of_node_put() on it when done.
705 */
706 struct device_node *of_find_node_with_property(struct device_node *from,
707 const char *prop_name)
708 {
709 struct device_node *np;
710 struct property *pp;
711 unsigned long flags;
712
713 raw_spin_lock_irqsave(&devtree_lock, flags);
714 np = from ? from->allnext : of_allnodes;
715 for (; np; np = np->allnext) {
716 for (pp = np->properties; pp; pp = pp->next) {
717 if (of_prop_cmp(pp->name, prop_name) == 0) {
718 of_node_get(np);
719 goto out;
720 }
721 }
722 }
723 out:
724 of_node_put(from);
725 raw_spin_unlock_irqrestore(&devtree_lock, flags);
726 return np;
727 }
728 EXPORT_SYMBOL(of_find_node_with_property);
729
730 static
731 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
732 const struct device_node *node)
733 {
734 if (!matches)
735 return NULL;
736
737 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
738 int match = 1;
739 if (matches->name[0])
740 match &= node->name
741 && !strcmp(matches->name, node->name);
742 if (matches->type[0])
743 match &= node->type
744 && !strcmp(matches->type, node->type);
745 if (matches->compatible[0])
746 match &= __of_device_is_compatible(node,
747 matches->compatible);
748 if (match)
749 return matches;
750 matches++;
751 }
752 return NULL;
753 }
754
755 /**
756 * of_match_node - Tell if an device_node has a matching of_match structure
757 * @matches: array of of device match structures to search in
758 * @node: the of device structure to match against
759 *
760 * Low level utility function used by device matching.
761 */
762 const struct of_device_id *of_match_node(const struct of_device_id *matches,
763 const struct device_node *node)
764 {
765 const struct of_device_id *match;
766 unsigned long flags;
767
768 raw_spin_lock_irqsave(&devtree_lock, flags);
769 match = __of_match_node(matches, node);
770 raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 return match;
772 }
773 EXPORT_SYMBOL(of_match_node);
774
775 /**
776 * of_find_matching_node_and_match - Find a node based on an of_device_id
777 * match table.
778 * @from: The node to start searching from or NULL, the node
779 * you pass will not be searched, only the next one
780 * will; typically, you pass what the previous call
781 * returned. of_node_put() will be called on it
782 * @matches: array of of device match structures to search in
783 * @match Updated to point at the matches entry which matched
784 *
785 * Returns a node pointer with refcount incremented, use
786 * of_node_put() on it when done.
787 */
788 struct device_node *of_find_matching_node_and_match(struct device_node *from,
789 const struct of_device_id *matches,
790 const struct of_device_id **match)
791 {
792 struct device_node *np;
793 const struct of_device_id *m;
794 unsigned long flags;
795
796 if (match)
797 *match = NULL;
798
799 raw_spin_lock_irqsave(&devtree_lock, flags);
800 np = from ? from->allnext : of_allnodes;
801 for (; np; np = np->allnext) {
802 m = __of_match_node(matches, np);
803 if (m && of_node_get(np)) {
804 if (match)
805 *match = m;
806 break;
807 }
808 }
809 of_node_put(from);
810 raw_spin_unlock_irqrestore(&devtree_lock, flags);
811 return np;
812 }
813 EXPORT_SYMBOL(of_find_matching_node_and_match);
814
815 /**
816 * of_modalias_node - Lookup appropriate modalias for a device node
817 * @node: pointer to a device tree node
818 * @modalias: Pointer to buffer that modalias value will be copied into
819 * @len: Length of modalias value
820 *
821 * Based on the value of the compatible property, this routine will attempt
822 * to choose an appropriate modalias value for a particular device tree node.
823 * It does this by stripping the manufacturer prefix (as delimited by a ',')
824 * from the first entry in the compatible list property.
825 *
826 * This routine returns 0 on success, <0 on failure.
827 */
828 int of_modalias_node(struct device_node *node, char *modalias, int len)
829 {
830 const char *compatible, *p;
831 int cplen;
832
833 compatible = of_get_property(node, "compatible", &cplen);
834 if (!compatible || strlen(compatible) > cplen)
835 return -ENODEV;
836 p = strchr(compatible, ',');
837 strlcpy(modalias, p ? p + 1 : compatible, len);
838 return 0;
839 }
840 EXPORT_SYMBOL_GPL(of_modalias_node);
841
842 /**
843 * of_find_node_by_phandle - Find a node given a phandle
844 * @handle: phandle of the node to find
845 *
846 * Returns a node pointer with refcount incremented, use
847 * of_node_put() on it when done.
848 */
849 struct device_node *of_find_node_by_phandle(phandle handle)
850 {
851 struct device_node *np;
852 unsigned long flags;
853
854 raw_spin_lock_irqsave(&devtree_lock, flags);
855 for (np = of_allnodes; np; np = np->allnext)
856 if (np->phandle == handle)
857 break;
858 of_node_get(np);
859 raw_spin_unlock_irqrestore(&devtree_lock, flags);
860 return np;
861 }
862 EXPORT_SYMBOL(of_find_node_by_phandle);
863
864 /**
865 * of_find_property_value_of_size
866 *
867 * @np: device node from which the property value is to be read.
868 * @propname: name of the property to be searched.
869 * @len: requested length of property value
870 *
871 * Search for a property in a device node and valid the requested size.
872 * Returns the property value on success, -EINVAL if the property does not
873 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
874 * property data isn't large enough.
875 *
876 */
877 static void *of_find_property_value_of_size(const struct device_node *np,
878 const char *propname, u32 len)
879 {
880 struct property *prop = of_find_property(np, propname, NULL);
881
882 if (!prop)
883 return ERR_PTR(-EINVAL);
884 if (!prop->value)
885 return ERR_PTR(-ENODATA);
886 if (len > prop->length)
887 return ERR_PTR(-EOVERFLOW);
888
889 return prop->value;
890 }
891
892 /**
893 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
894 *
895 * @np: device node from which the property value is to be read.
896 * @propname: name of the property to be searched.
897 * @index: index of the u32 in the list of values
898 * @out_value: pointer to return value, modified only if no error.
899 *
900 * Search for a property in a device node and read nth 32-bit value from
901 * it. Returns 0 on success, -EINVAL if the property does not exist,
902 * -ENODATA if property does not have a value, and -EOVERFLOW if the
903 * property data isn't large enough.
904 *
905 * The out_value is modified only if a valid u32 value can be decoded.
906 */
907 int of_property_read_u32_index(const struct device_node *np,
908 const char *propname,
909 u32 index, u32 *out_value)
910 {
911 const u32 *val = of_find_property_value_of_size(np, propname,
912 ((index + 1) * sizeof(*out_value)));
913
914 if (IS_ERR(val))
915 return PTR_ERR(val);
916
917 *out_value = be32_to_cpup(((__be32 *)val) + index);
918 return 0;
919 }
920 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
921
922 /**
923 * of_property_read_u8_array - Find and read an array of u8 from a property.
924 *
925 * @np: device node from which the property value is to be read.
926 * @propname: name of the property to be searched.
927 * @out_values: pointer to return value, modified only if return value is 0.
928 * @sz: number of array elements to read
929 *
930 * Search for a property in a device node and read 8-bit value(s) from
931 * it. Returns 0 on success, -EINVAL if the property does not exist,
932 * -ENODATA if property does not have a value, and -EOVERFLOW if the
933 * property data isn't large enough.
934 *
935 * dts entry of array should be like:
936 * property = /bits/ 8 <0x50 0x60 0x70>;
937 *
938 * The out_values is modified only if a valid u8 value can be decoded.
939 */
940 int of_property_read_u8_array(const struct device_node *np,
941 const char *propname, u8 *out_values, size_t sz)
942 {
943 const u8 *val = of_find_property_value_of_size(np, propname,
944 (sz * sizeof(*out_values)));
945
946 if (IS_ERR(val))
947 return PTR_ERR(val);
948
949 while (sz--)
950 *out_values++ = *val++;
951 return 0;
952 }
953 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
954
955 /**
956 * of_property_read_u16_array - Find and read an array of u16 from a property.
957 *
958 * @np: device node from which the property value is to be read.
959 * @propname: name of the property to be searched.
960 * @out_values: pointer to return value, modified only if return value is 0.
961 * @sz: number of array elements to read
962 *
963 * Search for a property in a device node and read 16-bit value(s) from
964 * it. Returns 0 on success, -EINVAL if the property does not exist,
965 * -ENODATA if property does not have a value, and -EOVERFLOW if the
966 * property data isn't large enough.
967 *
968 * dts entry of array should be like:
969 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
970 *
971 * The out_values is modified only if a valid u16 value can be decoded.
972 */
973 int of_property_read_u16_array(const struct device_node *np,
974 const char *propname, u16 *out_values, size_t sz)
975 {
976 const __be16 *val = of_find_property_value_of_size(np, propname,
977 (sz * sizeof(*out_values)));
978
979 if (IS_ERR(val))
980 return PTR_ERR(val);
981
982 while (sz--)
983 *out_values++ = be16_to_cpup(val++);
984 return 0;
985 }
986 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
987
988 /**
989 * of_property_read_u32_array - Find and read an array of 32 bit integers
990 * from a property.
991 *
992 * @np: device node from which the property value is to be read.
993 * @propname: name of the property to be searched.
994 * @out_values: pointer to return value, modified only if return value is 0.
995 * @sz: number of array elements to read
996 *
997 * Search for a property in a device node and read 32-bit value(s) from
998 * it. Returns 0 on success, -EINVAL if the property does not exist,
999 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1000 * property data isn't large enough.
1001 *
1002 * The out_values is modified only if a valid u32 value can be decoded.
1003 */
1004 int of_property_read_u32_array(const struct device_node *np,
1005 const char *propname, u32 *out_values,
1006 size_t sz)
1007 {
1008 const __be32 *val = of_find_property_value_of_size(np, propname,
1009 (sz * sizeof(*out_values)));
1010
1011 if (IS_ERR(val))
1012 return PTR_ERR(val);
1013
1014 while (sz--)
1015 *out_values++ = be32_to_cpup(val++);
1016 return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1019
1020 /**
1021 * of_property_read_u64 - Find and read a 64 bit integer from a property
1022 * @np: device node from which the property value is to be read.
1023 * @propname: name of the property to be searched.
1024 * @out_value: pointer to return value, modified only if return value is 0.
1025 *
1026 * Search for a property in a device node and read a 64-bit value from
1027 * it. Returns 0 on success, -EINVAL if the property does not exist,
1028 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1029 * property data isn't large enough.
1030 *
1031 * The out_value is modified only if a valid u64 value can be decoded.
1032 */
1033 int of_property_read_u64(const struct device_node *np, const char *propname,
1034 u64 *out_value)
1035 {
1036 const __be32 *val = of_find_property_value_of_size(np, propname,
1037 sizeof(*out_value));
1038
1039 if (IS_ERR(val))
1040 return PTR_ERR(val);
1041
1042 *out_value = of_read_number(val, 2);
1043 return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(of_property_read_u64);
1046
1047 /**
1048 * of_property_read_string - Find and read a string from a property
1049 * @np: device node from which the property value is to be read.
1050 * @propname: name of the property to be searched.
1051 * @out_string: pointer to null terminated return string, modified only if
1052 * return value is 0.
1053 *
1054 * Search for a property in a device tree node and retrieve a null
1055 * terminated string value (pointer to data, not a copy). Returns 0 on
1056 * success, -EINVAL if the property does not exist, -ENODATA if property
1057 * does not have a value, and -EILSEQ if the string is not null-terminated
1058 * within the length of the property data.
1059 *
1060 * The out_string pointer is modified only if a valid string can be decoded.
1061 */
1062 int of_property_read_string(struct device_node *np, const char *propname,
1063 const char **out_string)
1064 {
1065 struct property *prop = of_find_property(np, propname, NULL);
1066 if (!prop)
1067 return -EINVAL;
1068 if (!prop->value)
1069 return -ENODATA;
1070 if (strnlen(prop->value, prop->length) >= prop->length)
1071 return -EILSEQ;
1072 *out_string = prop->value;
1073 return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(of_property_read_string);
1076
1077 /**
1078 * of_property_read_string_index - Find and read a string from a multiple
1079 * strings property.
1080 * @np: device node from which the property value is to be read.
1081 * @propname: name of the property to be searched.
1082 * @index: index of the string in the list of strings
1083 * @out_string: pointer to null terminated return string, modified only if
1084 * return value is 0.
1085 *
1086 * Search for a property in a device tree node and retrieve a null
1087 * terminated string value (pointer to data, not a copy) in the list of strings
1088 * contained in that property.
1089 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1090 * property does not have a value, and -EILSEQ if the string is not
1091 * null-terminated within the length of the property data.
1092 *
1093 * The out_string pointer is modified only if a valid string can be decoded.
1094 */
1095 int of_property_read_string_index(struct device_node *np, const char *propname,
1096 int index, const char **output)
1097 {
1098 struct property *prop = of_find_property(np, propname, NULL);
1099 int i = 0;
1100 size_t l = 0, total = 0;
1101 const char *p;
1102
1103 if (!prop)
1104 return -EINVAL;
1105 if (!prop->value)
1106 return -ENODATA;
1107 if (strnlen(prop->value, prop->length) >= prop->length)
1108 return -EILSEQ;
1109
1110 p = prop->value;
1111
1112 for (i = 0; total < prop->length; total += l, p += l) {
1113 l = strlen(p) + 1;
1114 if (i++ == index) {
1115 *output = p;
1116 return 0;
1117 }
1118 }
1119 return -ENODATA;
1120 }
1121 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1122
1123 /**
1124 * of_property_match_string() - Find string in a list and return index
1125 * @np: pointer to node containing string list property
1126 * @propname: string list property name
1127 * @string: pointer to string to search for in string list
1128 *
1129 * This function searches a string list property and returns the index
1130 * of a specific string value.
1131 */
1132 int of_property_match_string(struct device_node *np, const char *propname,
1133 const char *string)
1134 {
1135 struct property *prop = of_find_property(np, propname, NULL);
1136 size_t l;
1137 int i;
1138 const char *p, *end;
1139
1140 if (!prop)
1141 return -EINVAL;
1142 if (!prop->value)
1143 return -ENODATA;
1144
1145 p = prop->value;
1146 end = p + prop->length;
1147
1148 for (i = 0; p < end; i++, p += l) {
1149 l = strlen(p) + 1;
1150 if (p + l > end)
1151 return -EILSEQ;
1152 pr_debug("comparing %s with %s\n", string, p);
1153 if (strcmp(string, p) == 0)
1154 return i; /* Found it; return index */
1155 }
1156 return -ENODATA;
1157 }
1158 EXPORT_SYMBOL_GPL(of_property_match_string);
1159
1160 /**
1161 * of_property_count_strings - Find and return the number of strings from a
1162 * multiple strings property.
1163 * @np: device node from which the property value is to be read.
1164 * @propname: name of the property to be searched.
1165 *
1166 * Search for a property in a device tree node and retrieve the number of null
1167 * terminated string contain in it. Returns the number of strings on
1168 * success, -EINVAL if the property does not exist, -ENODATA if property
1169 * does not have a value, and -EILSEQ if the string is not null-terminated
1170 * within the length of the property data.
1171 */
1172 int of_property_count_strings(struct device_node *np, const char *propname)
1173 {
1174 struct property *prop = of_find_property(np, propname, NULL);
1175 int i = 0;
1176 size_t l = 0, total = 0;
1177 const char *p;
1178
1179 if (!prop)
1180 return -EINVAL;
1181 if (!prop->value)
1182 return -ENODATA;
1183 if (strnlen(prop->value, prop->length) >= prop->length)
1184 return -EILSEQ;
1185
1186 p = prop->value;
1187
1188 for (i = 0; total < prop->length; total += l, p += l, i++)
1189 l = strlen(p) + 1;
1190
1191 return i;
1192 }
1193 EXPORT_SYMBOL_GPL(of_property_count_strings);
1194
1195 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1196 {
1197 int i;
1198 printk("%s %s", msg, of_node_full_name(args->np));
1199 for (i = 0; i < args->args_count; i++)
1200 printk(i ? ",%08x" : ":%08x", args->args[i]);
1201 printk("\n");
1202 }
1203
1204 static int __of_parse_phandle_with_args(const struct device_node *np,
1205 const char *list_name,
1206 const char *cells_name,
1207 int cell_count, int index,
1208 struct of_phandle_args *out_args)
1209 {
1210 const __be32 *list, *list_end;
1211 int rc = 0, size, cur_index = 0;
1212 uint32_t count = 0;
1213 struct device_node *node = NULL;
1214 phandle phandle;
1215
1216 /* Retrieve the phandle list property */
1217 list = of_get_property(np, list_name, &size);
1218 if (!list)
1219 return -ENOENT;
1220 list_end = list + size / sizeof(*list);
1221
1222 /* Loop over the phandles until all the requested entry is found */
1223 while (list < list_end) {
1224 rc = -EINVAL;
1225 count = 0;
1226
1227 /*
1228 * If phandle is 0, then it is an empty entry with no
1229 * arguments. Skip forward to the next entry.
1230 */
1231 phandle = be32_to_cpup(list++);
1232 if (phandle) {
1233 /*
1234 * Find the provider node and parse the #*-cells
1235 * property to determine the argument length.
1236 *
1237 * This is not needed if the cell count is hard-coded
1238 * (i.e. cells_name not set, but cell_count is set),
1239 * except when we're going to return the found node
1240 * below.
1241 */
1242 if (cells_name || cur_index == index) {
1243 node = of_find_node_by_phandle(phandle);
1244 if (!node) {
1245 pr_err("%s: could not find phandle\n",
1246 np->full_name);
1247 goto err;
1248 }
1249 }
1250
1251 if (cells_name) {
1252 if (of_property_read_u32(node, cells_name,
1253 &count)) {
1254 pr_err("%s: could not get %s for %s\n",
1255 np->full_name, cells_name,
1256 node->full_name);
1257 goto err;
1258 }
1259 } else {
1260 count = cell_count;
1261 }
1262
1263 /*
1264 * Make sure that the arguments actually fit in the
1265 * remaining property data length
1266 */
1267 if (list + count > list_end) {
1268 pr_err("%s: arguments longer than property\n",
1269 np->full_name);
1270 goto err;
1271 }
1272 }
1273
1274 /*
1275 * All of the error cases above bail out of the loop, so at
1276 * this point, the parsing is successful. If the requested
1277 * index matches, then fill the out_args structure and return,
1278 * or return -ENOENT for an empty entry.
1279 */
1280 rc = -ENOENT;
1281 if (cur_index == index) {
1282 if (!phandle)
1283 goto err;
1284
1285 if (out_args) {
1286 int i;
1287 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1288 count = MAX_PHANDLE_ARGS;
1289 out_args->np = node;
1290 out_args->args_count = count;
1291 for (i = 0; i < count; i++)
1292 out_args->args[i] = be32_to_cpup(list++);
1293 } else {
1294 of_node_put(node);
1295 }
1296
1297 /* Found it! return success */
1298 return 0;
1299 }
1300
1301 of_node_put(node);
1302 node = NULL;
1303 list += count;
1304 cur_index++;
1305 }
1306
1307 /*
1308 * Unlock node before returning result; will be one of:
1309 * -ENOENT : index is for empty phandle
1310 * -EINVAL : parsing error on data
1311 * [1..n] : Number of phandle (count mode; when index = -1)
1312 */
1313 rc = index < 0 ? cur_index : -ENOENT;
1314 err:
1315 if (node)
1316 of_node_put(node);
1317 return rc;
1318 }
1319
1320 /**
1321 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1322 * @np: Pointer to device node holding phandle property
1323 * @phandle_name: Name of property holding a phandle value
1324 * @index: For properties holding a table of phandles, this is the index into
1325 * the table
1326 *
1327 * Returns the device_node pointer with refcount incremented. Use
1328 * of_node_put() on it when done.
1329 */
1330 struct device_node *of_parse_phandle(const struct device_node *np,
1331 const char *phandle_name, int index)
1332 {
1333 struct of_phandle_args args;
1334
1335 if (index < 0)
1336 return NULL;
1337
1338 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1339 index, &args))
1340 return NULL;
1341
1342 return args.np;
1343 }
1344 EXPORT_SYMBOL(of_parse_phandle);
1345
1346 /**
1347 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1348 * @np: pointer to a device tree node containing a list
1349 * @list_name: property name that contains a list
1350 * @cells_name: property name that specifies phandles' arguments count
1351 * @index: index of a phandle to parse out
1352 * @out_args: optional pointer to output arguments structure (will be filled)
1353 *
1354 * This function is useful to parse lists of phandles and their arguments.
1355 * Returns 0 on success and fills out_args, on error returns appropriate
1356 * errno value.
1357 *
1358 * Caller is responsible to call of_node_put() on the returned out_args->node
1359 * pointer.
1360 *
1361 * Example:
1362 *
1363 * phandle1: node1 {
1364 * #list-cells = <2>;
1365 * }
1366 *
1367 * phandle2: node2 {
1368 * #list-cells = <1>;
1369 * }
1370 *
1371 * node3 {
1372 * list = <&phandle1 1 2 &phandle2 3>;
1373 * }
1374 *
1375 * To get a device_node of the `node2' node you may call this:
1376 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1377 */
1378 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1379 const char *cells_name, int index,
1380 struct of_phandle_args *out_args)
1381 {
1382 if (index < 0)
1383 return -EINVAL;
1384 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1385 index, out_args);
1386 }
1387 EXPORT_SYMBOL(of_parse_phandle_with_args);
1388
1389 /**
1390 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1391 * @np: pointer to a device tree node containing a list
1392 * @list_name: property name that contains a list
1393 * @cell_count: number of argument cells following the phandle
1394 * @index: index of a phandle to parse out
1395 * @out_args: optional pointer to output arguments structure (will be filled)
1396 *
1397 * This function is useful to parse lists of phandles and their arguments.
1398 * Returns 0 on success and fills out_args, on error returns appropriate
1399 * errno value.
1400 *
1401 * Caller is responsible to call of_node_put() on the returned out_args->node
1402 * pointer.
1403 *
1404 * Example:
1405 *
1406 * phandle1: node1 {
1407 * }
1408 *
1409 * phandle2: node2 {
1410 * }
1411 *
1412 * node3 {
1413 * list = <&phandle1 0 2 &phandle2 2 3>;
1414 * }
1415 *
1416 * To get a device_node of the `node2' node you may call this:
1417 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1418 */
1419 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1420 const char *list_name, int cell_count,
1421 int index, struct of_phandle_args *out_args)
1422 {
1423 if (index < 0)
1424 return -EINVAL;
1425 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1426 index, out_args);
1427 }
1428 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1429
1430 /**
1431 * of_count_phandle_with_args() - Find the number of phandles references in a property
1432 * @np: pointer to a device tree node containing a list
1433 * @list_name: property name that contains a list
1434 * @cells_name: property name that specifies phandles' arguments count
1435 *
1436 * Returns the number of phandle + argument tuples within a property. It
1437 * is a typical pattern to encode a list of phandle and variable
1438 * arguments into a single property. The number of arguments is encoded
1439 * by a property in the phandle-target node. For example, a gpios
1440 * property would contain a list of GPIO specifies consisting of a
1441 * phandle and 1 or more arguments. The number of arguments are
1442 * determined by the #gpio-cells property in the node pointed to by the
1443 * phandle.
1444 */
1445 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1446 const char *cells_name)
1447 {
1448 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1449 NULL);
1450 }
1451 EXPORT_SYMBOL(of_count_phandle_with_args);
1452
1453 #if defined(CONFIG_OF_DYNAMIC)
1454 static int of_property_notify(int action, struct device_node *np,
1455 struct property *prop)
1456 {
1457 struct of_prop_reconfig pr;
1458
1459 pr.dn = np;
1460 pr.prop = prop;
1461 return of_reconfig_notify(action, &pr);
1462 }
1463 #else
1464 static int of_property_notify(int action, struct device_node *np,
1465 struct property *prop)
1466 {
1467 return 0;
1468 }
1469 #endif
1470
1471 /**
1472 * of_add_property - Add a property to a node
1473 */
1474 int of_add_property(struct device_node *np, struct property *prop)
1475 {
1476 struct property **next;
1477 unsigned long flags;
1478 int rc;
1479
1480 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1481 if (rc)
1482 return rc;
1483
1484 prop->next = NULL;
1485 raw_spin_lock_irqsave(&devtree_lock, flags);
1486 next = &np->properties;
1487 while (*next) {
1488 if (strcmp(prop->name, (*next)->name) == 0) {
1489 /* duplicate ! don't insert it */
1490 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1491 return -1;
1492 }
1493 next = &(*next)->next;
1494 }
1495 *next = prop;
1496 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1497
1498 #ifdef CONFIG_PROC_DEVICETREE
1499 /* try to add to proc as well if it was initialized */
1500 if (np->pde)
1501 proc_device_tree_add_prop(np->pde, prop);
1502 #endif /* CONFIG_PROC_DEVICETREE */
1503
1504 return 0;
1505 }
1506
1507 /**
1508 * of_remove_property - Remove a property from a node.
1509 *
1510 * Note that we don't actually remove it, since we have given out
1511 * who-knows-how-many pointers to the data using get-property.
1512 * Instead we just move the property to the "dead properties"
1513 * list, so it won't be found any more.
1514 */
1515 int of_remove_property(struct device_node *np, struct property *prop)
1516 {
1517 struct property **next;
1518 unsigned long flags;
1519 int found = 0;
1520 int rc;
1521
1522 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1523 if (rc)
1524 return rc;
1525
1526 raw_spin_lock_irqsave(&devtree_lock, flags);
1527 next = &np->properties;
1528 while (*next) {
1529 if (*next == prop) {
1530 /* found the node */
1531 *next = prop->next;
1532 prop->next = np->deadprops;
1533 np->deadprops = prop;
1534 found = 1;
1535 break;
1536 }
1537 next = &(*next)->next;
1538 }
1539 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1540
1541 if (!found)
1542 return -ENODEV;
1543
1544 #ifdef CONFIG_PROC_DEVICETREE
1545 /* try to remove the proc node as well */
1546 if (np->pde)
1547 proc_device_tree_remove_prop(np->pde, prop);
1548 #endif /* CONFIG_PROC_DEVICETREE */
1549
1550 return 0;
1551 }
1552
1553 /*
1554 * of_update_property - Update a property in a node, if the property does
1555 * not exist, add it.
1556 *
1557 * Note that we don't actually remove it, since we have given out
1558 * who-knows-how-many pointers to the data using get-property.
1559 * Instead we just move the property to the "dead properties" list,
1560 * and add the new property to the property list
1561 */
1562 int of_update_property(struct device_node *np, struct property *newprop)
1563 {
1564 struct property **next, *oldprop;
1565 unsigned long flags;
1566 int rc, found = 0;
1567
1568 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1569 if (rc)
1570 return rc;
1571
1572 if (!newprop->name)
1573 return -EINVAL;
1574
1575 oldprop = of_find_property(np, newprop->name, NULL);
1576 if (!oldprop)
1577 return of_add_property(np, newprop);
1578
1579 raw_spin_lock_irqsave(&devtree_lock, flags);
1580 next = &np->properties;
1581 while (*next) {
1582 if (*next == oldprop) {
1583 /* found the node */
1584 newprop->next = oldprop->next;
1585 *next = newprop;
1586 oldprop->next = np->deadprops;
1587 np->deadprops = oldprop;
1588 found = 1;
1589 break;
1590 }
1591 next = &(*next)->next;
1592 }
1593 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1594
1595 if (!found)
1596 return -ENODEV;
1597
1598 #ifdef CONFIG_PROC_DEVICETREE
1599 /* try to add to proc as well if it was initialized */
1600 if (np->pde)
1601 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1602 #endif /* CONFIG_PROC_DEVICETREE */
1603
1604 return 0;
1605 }
1606
1607 #if defined(CONFIG_OF_DYNAMIC)
1608 /*
1609 * Support for dynamic device trees.
1610 *
1611 * On some platforms, the device tree can be manipulated at runtime.
1612 * The routines in this section support adding, removing and changing
1613 * device tree nodes.
1614 */
1615
1616 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1617
1618 int of_reconfig_notifier_register(struct notifier_block *nb)
1619 {
1620 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1621 }
1622 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1623
1624 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1625 {
1626 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1627 }
1628 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1629
1630 int of_reconfig_notify(unsigned long action, void *p)
1631 {
1632 int rc;
1633
1634 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1635 return notifier_to_errno(rc);
1636 }
1637
1638 #ifdef CONFIG_PROC_DEVICETREE
1639 static void of_add_proc_dt_entry(struct device_node *dn)
1640 {
1641 struct proc_dir_entry *ent;
1642
1643 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1644 if (ent)
1645 proc_device_tree_add_node(dn, ent);
1646 }
1647 #else
1648 static void of_add_proc_dt_entry(struct device_node *dn)
1649 {
1650 return;
1651 }
1652 #endif
1653
1654 /**
1655 * of_attach_node - Plug a device node into the tree and global list.
1656 */
1657 int of_attach_node(struct device_node *np)
1658 {
1659 unsigned long flags;
1660 int rc;
1661
1662 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1663 if (rc)
1664 return rc;
1665
1666 raw_spin_lock_irqsave(&devtree_lock, flags);
1667 np->sibling = np->parent->child;
1668 np->allnext = of_allnodes;
1669 np->parent->child = np;
1670 of_allnodes = np;
1671 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1672
1673 of_add_proc_dt_entry(np);
1674 return 0;
1675 }
1676
1677 #ifdef CONFIG_PROC_DEVICETREE
1678 static void of_remove_proc_dt_entry(struct device_node *dn)
1679 {
1680 proc_remove(dn->pde);
1681 }
1682 #else
1683 static void of_remove_proc_dt_entry(struct device_node *dn)
1684 {
1685 return;
1686 }
1687 #endif
1688
1689 /**
1690 * of_detach_node - "Unplug" a node from the device tree.
1691 *
1692 * The caller must hold a reference to the node. The memory associated with
1693 * the node is not freed until its refcount goes to zero.
1694 */
1695 int of_detach_node(struct device_node *np)
1696 {
1697 struct device_node *parent;
1698 unsigned long flags;
1699 int rc = 0;
1700
1701 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1702 if (rc)
1703 return rc;
1704
1705 raw_spin_lock_irqsave(&devtree_lock, flags);
1706
1707 if (of_node_check_flag(np, OF_DETACHED)) {
1708 /* someone already detached it */
1709 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1710 return rc;
1711 }
1712
1713 parent = np->parent;
1714 if (!parent) {
1715 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1716 return rc;
1717 }
1718
1719 if (of_allnodes == np)
1720 of_allnodes = np->allnext;
1721 else {
1722 struct device_node *prev;
1723 for (prev = of_allnodes;
1724 prev->allnext != np;
1725 prev = prev->allnext)
1726 ;
1727 prev->allnext = np->allnext;
1728 }
1729
1730 if (parent->child == np)
1731 parent->child = np->sibling;
1732 else {
1733 struct device_node *prevsib;
1734 for (prevsib = np->parent->child;
1735 prevsib->sibling != np;
1736 prevsib = prevsib->sibling)
1737 ;
1738 prevsib->sibling = np->sibling;
1739 }
1740
1741 of_node_set_flag(np, OF_DETACHED);
1742 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1743
1744 of_remove_proc_dt_entry(np);
1745 return rc;
1746 }
1747 #endif /* defined(CONFIG_OF_DYNAMIC) */
1748
1749 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1750 int id, const char *stem, int stem_len)
1751 {
1752 ap->np = np;
1753 ap->id = id;
1754 strncpy(ap->stem, stem, stem_len);
1755 ap->stem[stem_len] = 0;
1756 list_add_tail(&ap->link, &aliases_lookup);
1757 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1758 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1759 }
1760
1761 /**
1762 * of_alias_scan - Scan all properties of 'aliases' node
1763 *
1764 * The function scans all the properties of 'aliases' node and populate
1765 * the the global lookup table with the properties. It returns the
1766 * number of alias_prop found, or error code in error case.
1767 *
1768 * @dt_alloc: An allocator that provides a virtual address to memory
1769 * for the resulting tree
1770 */
1771 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1772 {
1773 struct property *pp;
1774
1775 of_chosen = of_find_node_by_path("/chosen");
1776 if (of_chosen == NULL)
1777 of_chosen = of_find_node_by_path("/chosen@0");
1778
1779 if (of_chosen) {
1780 const char *name;
1781
1782 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1783 if (name)
1784 of_stdout = of_find_node_by_path(name);
1785 }
1786
1787 of_aliases = of_find_node_by_path("/aliases");
1788 if (!of_aliases)
1789 return;
1790
1791 for_each_property_of_node(of_aliases, pp) {
1792 const char *start = pp->name;
1793 const char *end = start + strlen(start);
1794 struct device_node *np;
1795 struct alias_prop *ap;
1796 int id, len;
1797
1798 /* Skip those we do not want to proceed */
1799 if (!strcmp(pp->name, "name") ||
1800 !strcmp(pp->name, "phandle") ||
1801 !strcmp(pp->name, "linux,phandle"))
1802 continue;
1803
1804 np = of_find_node_by_path(pp->value);
1805 if (!np)
1806 continue;
1807
1808 /* walk the alias backwards to extract the id and work out
1809 * the 'stem' string */
1810 while (isdigit(*(end-1)) && end > start)
1811 end--;
1812 len = end - start;
1813
1814 if (kstrtoint(end, 10, &id) < 0)
1815 continue;
1816
1817 /* Allocate an alias_prop with enough space for the stem */
1818 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1819 if (!ap)
1820 continue;
1821 memset(ap, 0, sizeof(*ap) + len + 1);
1822 ap->alias = start;
1823 of_alias_add(ap, np, id, start, len);
1824 }
1825 }
1826
1827 /**
1828 * of_alias_get_id - Get alias id for the given device_node
1829 * @np: Pointer to the given device_node
1830 * @stem: Alias stem of the given device_node
1831 *
1832 * The function travels the lookup table to get alias id for the given
1833 * device_node and alias stem. It returns the alias id if find it.
1834 */
1835 int of_alias_get_id(struct device_node *np, const char *stem)
1836 {
1837 struct alias_prop *app;
1838 int id = -ENODEV;
1839
1840 mutex_lock(&of_aliases_mutex);
1841 list_for_each_entry(app, &aliases_lookup, link) {
1842 if (strcmp(app->stem, stem) != 0)
1843 continue;
1844
1845 if (np == app->np) {
1846 id = app->id;
1847 break;
1848 }
1849 }
1850 mutex_unlock(&of_aliases_mutex);
1851
1852 return id;
1853 }
1854 EXPORT_SYMBOL_GPL(of_alias_get_id);
1855
1856 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1857 u32 *pu)
1858 {
1859 const void *curv = cur;
1860
1861 if (!prop)
1862 return NULL;
1863
1864 if (!cur) {
1865 curv = prop->value;
1866 goto out_val;
1867 }
1868
1869 curv += sizeof(*cur);
1870 if (curv >= prop->value + prop->length)
1871 return NULL;
1872
1873 out_val:
1874 *pu = be32_to_cpup(curv);
1875 return curv;
1876 }
1877 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1878
1879 const char *of_prop_next_string(struct property *prop, const char *cur)
1880 {
1881 const void *curv = cur;
1882
1883 if (!prop)
1884 return NULL;
1885
1886 if (!cur)
1887 return prop->value;
1888
1889 curv += strlen(cur) + 1;
1890 if (curv >= prop->value + prop->length)
1891 return NULL;
1892
1893 return curv;
1894 }
1895 EXPORT_SYMBOL_GPL(of_prop_next_string);
1896
1897 /**
1898 * of_device_is_stdout_path - check if a device node matches the
1899 * linux,stdout-path property
1900 *
1901 * Check if this device node matches the linux,stdout-path property
1902 * in the chosen node. return true if yes, false otherwise.
1903 */
1904 int of_device_is_stdout_path(struct device_node *dn)
1905 {
1906 if (!of_stdout)
1907 return false;
1908
1909 return of_stdout == dn;
1910 }
1911 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1912
1913 /**
1914 * of_find_next_cache_node - Find a node's subsidiary cache
1915 * @np: node of type "cpu" or "cache"
1916 *
1917 * Returns a node pointer with refcount incremented, use
1918 * of_node_put() on it when done. Caller should hold a reference
1919 * to np.
1920 */
1921 struct device_node *of_find_next_cache_node(const struct device_node *np)
1922 {
1923 struct device_node *child;
1924 const phandle *handle;
1925
1926 handle = of_get_property(np, "l2-cache", NULL);
1927 if (!handle)
1928 handle = of_get_property(np, "next-level-cache", NULL);
1929
1930 if (handle)
1931 return of_find_node_by_phandle(be32_to_cpup(handle));
1932
1933 /* OF on pmac has nodes instead of properties named "l2-cache"
1934 * beneath CPU nodes.
1935 */
1936 if (!strcmp(np->type, "cpu"))
1937 for_each_child_of_node(np, child)
1938 if (!strcmp(child->type, "cache"))
1939 return child;
1940
1941 return NULL;
1942 }
This page took 0.093493 seconds and 5 git commands to generate.