qed: Fail driver load in 100g MSI mode.
[deliverable/linux.git] / drivers / of / fdt.c
1 /*
2 * Functions for working with the Flattened Device Tree data format
3 *
4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5 * benh@kernel.crashing.org
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28
29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31
32 /*
33 * of_fdt_limit_memory - limit the number of regions in the /memory node
34 * @limit: maximum entries
35 *
36 * Adjust the flattened device tree to have at most 'limit' number of
37 * memory entries in the /memory node. This function may be called
38 * any time after initial_boot_param is set.
39 */
40 void of_fdt_limit_memory(int limit)
41 {
42 int memory;
43 int len;
44 const void *val;
45 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
46 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
47 const uint32_t *addr_prop;
48 const uint32_t *size_prop;
49 int root_offset;
50 int cell_size;
51
52 root_offset = fdt_path_offset(initial_boot_params, "/");
53 if (root_offset < 0)
54 return;
55
56 addr_prop = fdt_getprop(initial_boot_params, root_offset,
57 "#address-cells", NULL);
58 if (addr_prop)
59 nr_address_cells = fdt32_to_cpu(*addr_prop);
60
61 size_prop = fdt_getprop(initial_boot_params, root_offset,
62 "#size-cells", NULL);
63 if (size_prop)
64 nr_size_cells = fdt32_to_cpu(*size_prop);
65
66 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
67
68 memory = fdt_path_offset(initial_boot_params, "/memory");
69 if (memory > 0) {
70 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
71 if (len > limit*cell_size) {
72 len = limit*cell_size;
73 pr_debug("Limiting number of entries to %d\n", limit);
74 fdt_setprop(initial_boot_params, memory, "reg", val,
75 len);
76 }
77 }
78 }
79
80 /**
81 * of_fdt_is_compatible - Return true if given node from the given blob has
82 * compat in its compatible list
83 * @blob: A device tree blob
84 * @node: node to test
85 * @compat: compatible string to compare with compatible list.
86 *
87 * On match, returns a non-zero value with smaller values returned for more
88 * specific compatible values.
89 */
90 int of_fdt_is_compatible(const void *blob,
91 unsigned long node, const char *compat)
92 {
93 const char *cp;
94 int cplen;
95 unsigned long l, score = 0;
96
97 cp = fdt_getprop(blob, node, "compatible", &cplen);
98 if (cp == NULL)
99 return 0;
100 while (cplen > 0) {
101 score++;
102 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
103 return score;
104 l = strlen(cp) + 1;
105 cp += l;
106 cplen -= l;
107 }
108
109 return 0;
110 }
111
112 /**
113 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
114 * @blob: A device tree blob
115 * @node: node to test
116 *
117 * Returns true if the node has a "big-endian" property, or if the kernel
118 * was compiled for BE *and* the node has a "native-endian" property.
119 * Returns false otherwise.
120 */
121 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
122 {
123 if (fdt_getprop(blob, node, "big-endian", NULL))
124 return true;
125 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
126 fdt_getprop(blob, node, "native-endian", NULL))
127 return true;
128 return false;
129 }
130
131 /**
132 * of_fdt_match - Return true if node matches a list of compatible values
133 */
134 int of_fdt_match(const void *blob, unsigned long node,
135 const char *const *compat)
136 {
137 unsigned int tmp, score = 0;
138
139 if (!compat)
140 return 0;
141
142 while (*compat) {
143 tmp = of_fdt_is_compatible(blob, node, *compat);
144 if (tmp && (score == 0 || (tmp < score)))
145 score = tmp;
146 compat++;
147 }
148
149 return score;
150 }
151
152 static void *unflatten_dt_alloc(void **mem, unsigned long size,
153 unsigned long align)
154 {
155 void *res;
156
157 *mem = PTR_ALIGN(*mem, align);
158 res = *mem;
159 *mem += size;
160
161 return res;
162 }
163
164 static void populate_properties(const void *blob,
165 int offset,
166 void **mem,
167 struct device_node *np,
168 const char *nodename,
169 bool dryrun)
170 {
171 struct property *pp, **pprev = NULL;
172 int cur;
173 bool has_name = false;
174
175 pprev = &np->properties;
176 for (cur = fdt_first_property_offset(blob, offset);
177 cur >= 0;
178 cur = fdt_next_property_offset(blob, cur)) {
179 const __be32 *val;
180 const char *pname;
181 u32 sz;
182
183 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
184 if (!val) {
185 pr_warn("%s: Cannot locate property at 0x%x\n",
186 __func__, cur);
187 continue;
188 }
189
190 if (!pname) {
191 pr_warn("%s: Cannot find property name at 0x%x\n",
192 __func__, cur);
193 continue;
194 }
195
196 if (!strcmp(pname, "name"))
197 has_name = true;
198
199 pp = unflatten_dt_alloc(mem, sizeof(struct property),
200 __alignof__(struct property));
201 if (dryrun)
202 continue;
203
204 /* We accept flattened tree phandles either in
205 * ePAPR-style "phandle" properties, or the
206 * legacy "linux,phandle" properties. If both
207 * appear and have different values, things
208 * will get weird. Don't do that.
209 */
210 if (!strcmp(pname, "phandle") ||
211 !strcmp(pname, "linux,phandle")) {
212 if (!np->phandle)
213 np->phandle = be32_to_cpup(val);
214 }
215
216 /* And we process the "ibm,phandle" property
217 * used in pSeries dynamic device tree
218 * stuff
219 */
220 if (!strcmp(pname, "ibm,phandle"))
221 np->phandle = be32_to_cpup(val);
222
223 pp->name = (char *)pname;
224 pp->length = sz;
225 pp->value = (__be32 *)val;
226 *pprev = pp;
227 pprev = &pp->next;
228 }
229
230 /* With version 0x10 we may not have the name property,
231 * recreate it here from the unit name if absent
232 */
233 if (!has_name) {
234 const char *p = nodename, *ps = p, *pa = NULL;
235 int len;
236
237 while (*p) {
238 if ((*p) == '@')
239 pa = p;
240 else if ((*p) == '/')
241 ps = p + 1;
242 p++;
243 }
244
245 if (pa < ps)
246 pa = p;
247 len = (pa - ps) + 1;
248 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
249 __alignof__(struct property));
250 if (!dryrun) {
251 pp->name = "name";
252 pp->length = len;
253 pp->value = pp + 1;
254 *pprev = pp;
255 pprev = &pp->next;
256 memcpy(pp->value, ps, len - 1);
257 ((char *)pp->value)[len - 1] = 0;
258 pr_debug("fixed up name for %s -> %s\n",
259 nodename, (char *)pp->value);
260 }
261 }
262
263 if (!dryrun)
264 *pprev = NULL;
265 }
266
267 static unsigned int populate_node(const void *blob,
268 int offset,
269 void **mem,
270 struct device_node *dad,
271 unsigned int fpsize,
272 struct device_node **pnp,
273 bool dryrun)
274 {
275 struct device_node *np;
276 const char *pathp;
277 unsigned int l, allocl;
278 int new_format = 0;
279
280 pathp = fdt_get_name(blob, offset, &l);
281 if (!pathp) {
282 *pnp = NULL;
283 return 0;
284 }
285
286 allocl = ++l;
287
288 /* version 0x10 has a more compact unit name here instead of the full
289 * path. we accumulate the full path size using "fpsize", we'll rebuild
290 * it later. We detect this because the first character of the name is
291 * not '/'.
292 */
293 if ((*pathp) != '/') {
294 new_format = 1;
295 if (fpsize == 0) {
296 /* root node: special case. fpsize accounts for path
297 * plus terminating zero. root node only has '/', so
298 * fpsize should be 2, but we want to avoid the first
299 * level nodes to have two '/' so we use fpsize 1 here
300 */
301 fpsize = 1;
302 allocl = 2;
303 l = 1;
304 pathp = "";
305 } else {
306 /* account for '/' and path size minus terminal 0
307 * already in 'l'
308 */
309 fpsize += l;
310 allocl = fpsize;
311 }
312 }
313
314 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
315 __alignof__(struct device_node));
316 if (!dryrun) {
317 char *fn;
318 of_node_init(np);
319 np->full_name = fn = ((char *)np) + sizeof(*np);
320 if (new_format) {
321 /* rebuild full path for new format */
322 if (dad && dad->parent) {
323 strcpy(fn, dad->full_name);
324 #ifdef DEBUG
325 if ((strlen(fn) + l + 1) != allocl) {
326 pr_debug("%s: p: %d, l: %d, a: %d\n",
327 pathp, (int)strlen(fn),
328 l, allocl);
329 }
330 #endif
331 fn += strlen(fn);
332 }
333 *(fn++) = '/';
334 }
335 memcpy(fn, pathp, l);
336
337 if (dad != NULL) {
338 np->parent = dad;
339 np->sibling = dad->child;
340 dad->child = np;
341 }
342 }
343
344 populate_properties(blob, offset, mem, np, pathp, dryrun);
345 if (!dryrun) {
346 np->name = of_get_property(np, "name", NULL);
347 np->type = of_get_property(np, "device_type", NULL);
348
349 if (!np->name)
350 np->name = "<NULL>";
351 if (!np->type)
352 np->type = "<NULL>";
353 }
354
355 *pnp = np;
356 return fpsize;
357 }
358
359 static void reverse_nodes(struct device_node *parent)
360 {
361 struct device_node *child, *next;
362
363 /* In-depth first */
364 child = parent->child;
365 while (child) {
366 reverse_nodes(child);
367
368 child = child->sibling;
369 }
370
371 /* Reverse the nodes in the child list */
372 child = parent->child;
373 parent->child = NULL;
374 while (child) {
375 next = child->sibling;
376
377 child->sibling = parent->child;
378 parent->child = child;
379 child = next;
380 }
381 }
382
383 /**
384 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
385 * @blob: The parent device tree blob
386 * @mem: Memory chunk to use for allocating device nodes and properties
387 * @dad: Parent struct device_node
388 * @nodepp: The device_node tree created by the call
389 *
390 * It returns the size of unflattened device tree or error code
391 */
392 static int unflatten_dt_nodes(const void *blob,
393 void *mem,
394 struct device_node *dad,
395 struct device_node **nodepp)
396 {
397 struct device_node *root;
398 int offset = 0, depth = 0, initial_depth = 0;
399 #define FDT_MAX_DEPTH 64
400 unsigned int fpsizes[FDT_MAX_DEPTH];
401 struct device_node *nps[FDT_MAX_DEPTH];
402 void *base = mem;
403 bool dryrun = !base;
404
405 if (nodepp)
406 *nodepp = NULL;
407
408 /*
409 * We're unflattening device sub-tree if @dad is valid. There are
410 * possibly multiple nodes in the first level of depth. We need
411 * set @depth to 1 to make fdt_next_node() happy as it bails
412 * immediately when negative @depth is found. Otherwise, the device
413 * nodes except the first one won't be unflattened successfully.
414 */
415 if (dad)
416 depth = initial_depth = 1;
417
418 root = dad;
419 fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
420 nps[depth] = dad;
421
422 for (offset = 0;
423 offset >= 0 && depth >= initial_depth;
424 offset = fdt_next_node(blob, offset, &depth)) {
425 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
426 continue;
427
428 fpsizes[depth+1] = populate_node(blob, offset, &mem,
429 nps[depth],
430 fpsizes[depth],
431 &nps[depth+1], dryrun);
432 if (!fpsizes[depth+1])
433 return mem - base;
434
435 if (!dryrun && nodepp && !*nodepp)
436 *nodepp = nps[depth+1];
437 if (!dryrun && !root)
438 root = nps[depth+1];
439 }
440
441 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
442 pr_err("%s: Error %d processing FDT\n", __func__, offset);
443 return -EINVAL;
444 }
445
446 /*
447 * Reverse the child list. Some drivers assumes node order matches .dts
448 * node order
449 */
450 if (!dryrun)
451 reverse_nodes(root);
452
453 return mem - base;
454 }
455
456 /**
457 * __unflatten_device_tree - create tree of device_nodes from flat blob
458 *
459 * unflattens a device-tree, creating the
460 * tree of struct device_node. It also fills the "name" and "type"
461 * pointers of the nodes so the normal device-tree walking functions
462 * can be used.
463 * @blob: The blob to expand
464 * @dad: Parent device node
465 * @mynodes: The device_node tree created by the call
466 * @dt_alloc: An allocator that provides a virtual address to memory
467 * for the resulting tree
468 *
469 * Returns NULL on failure or the memory chunk containing the unflattened
470 * device tree on success.
471 */
472 static void *__unflatten_device_tree(const void *blob,
473 struct device_node *dad,
474 struct device_node **mynodes,
475 void *(*dt_alloc)(u64 size, u64 align))
476 {
477 int size;
478 void *mem;
479
480 pr_debug(" -> unflatten_device_tree()\n");
481
482 if (!blob) {
483 pr_debug("No device tree pointer\n");
484 return NULL;
485 }
486
487 pr_debug("Unflattening device tree:\n");
488 pr_debug("magic: %08x\n", fdt_magic(blob));
489 pr_debug("size: %08x\n", fdt_totalsize(blob));
490 pr_debug("version: %08x\n", fdt_version(blob));
491
492 if (fdt_check_header(blob)) {
493 pr_err("Invalid device tree blob header\n");
494 return NULL;
495 }
496
497 /* First pass, scan for size */
498 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
499 if (size < 0)
500 return NULL;
501
502 size = ALIGN(size, 4);
503 pr_debug(" size is %d, allocating...\n", size);
504
505 /* Allocate memory for the expanded device tree */
506 mem = dt_alloc(size + 4, __alignof__(struct device_node));
507 memset(mem, 0, size);
508
509 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
510
511 pr_debug(" unflattening %p...\n", mem);
512
513 /* Second pass, do actual unflattening */
514 unflatten_dt_nodes(blob, mem, dad, mynodes);
515 if (be32_to_cpup(mem + size) != 0xdeadbeef)
516 pr_warning("End of tree marker overwritten: %08x\n",
517 be32_to_cpup(mem + size));
518
519 pr_debug(" <- unflatten_device_tree()\n");
520 return mem;
521 }
522
523 static void *kernel_tree_alloc(u64 size, u64 align)
524 {
525 return kzalloc(size, GFP_KERNEL);
526 }
527
528 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
529
530 /**
531 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
532 * @blob: Flat device tree blob
533 * @dad: Parent device node
534 * @mynodes: The device tree created by the call
535 *
536 * unflattens the device-tree passed by the firmware, creating the
537 * tree of struct device_node. It also fills the "name" and "type"
538 * pointers of the nodes so the normal device-tree walking functions
539 * can be used.
540 *
541 * Returns NULL on failure or the memory chunk containing the unflattened
542 * device tree on success.
543 */
544 void *of_fdt_unflatten_tree(const unsigned long *blob,
545 struct device_node *dad,
546 struct device_node **mynodes)
547 {
548 void *mem;
549
550 mutex_lock(&of_fdt_unflatten_mutex);
551 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc);
552 mutex_unlock(&of_fdt_unflatten_mutex);
553
554 return mem;
555 }
556 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
557
558 /* Everything below here references initial_boot_params directly. */
559 int __initdata dt_root_addr_cells;
560 int __initdata dt_root_size_cells;
561
562 void *initial_boot_params;
563
564 #ifdef CONFIG_OF_EARLY_FLATTREE
565
566 static u32 of_fdt_crc32;
567
568 /**
569 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
570 */
571 static int __init __reserved_mem_reserve_reg(unsigned long node,
572 const char *uname)
573 {
574 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
575 phys_addr_t base, size;
576 int len;
577 const __be32 *prop;
578 int nomap, first = 1;
579
580 prop = of_get_flat_dt_prop(node, "reg", &len);
581 if (!prop)
582 return -ENOENT;
583
584 if (len && len % t_len != 0) {
585 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
586 uname);
587 return -EINVAL;
588 }
589
590 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
591
592 while (len >= t_len) {
593 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
594 size = dt_mem_next_cell(dt_root_size_cells, &prop);
595
596 if (size &&
597 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
598 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
599 uname, &base, (unsigned long)size / SZ_1M);
600 else
601 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
602 uname, &base, (unsigned long)size / SZ_1M);
603
604 len -= t_len;
605 if (first) {
606 fdt_reserved_mem_save_node(node, uname, base, size);
607 first = 0;
608 }
609 }
610 return 0;
611 }
612
613 /**
614 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
615 * in /reserved-memory matches the values supported by the current implementation,
616 * also check if ranges property has been provided
617 */
618 static int __init __reserved_mem_check_root(unsigned long node)
619 {
620 const __be32 *prop;
621
622 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
623 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
624 return -EINVAL;
625
626 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
627 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
628 return -EINVAL;
629
630 prop = of_get_flat_dt_prop(node, "ranges", NULL);
631 if (!prop)
632 return -EINVAL;
633 return 0;
634 }
635
636 /**
637 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
638 */
639 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
640 int depth, void *data)
641 {
642 static int found;
643 const char *status;
644 int err;
645
646 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
647 if (__reserved_mem_check_root(node) != 0) {
648 pr_err("Reserved memory: unsupported node format, ignoring\n");
649 /* break scan */
650 return 1;
651 }
652 found = 1;
653 /* scan next node */
654 return 0;
655 } else if (!found) {
656 /* scan next node */
657 return 0;
658 } else if (found && depth < 2) {
659 /* scanning of /reserved-memory has been finished */
660 return 1;
661 }
662
663 status = of_get_flat_dt_prop(node, "status", NULL);
664 if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
665 return 0;
666
667 err = __reserved_mem_reserve_reg(node, uname);
668 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
669 fdt_reserved_mem_save_node(node, uname, 0, 0);
670
671 /* scan next node */
672 return 0;
673 }
674
675 /**
676 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
677 *
678 * This function grabs memory from early allocator for device exclusive use
679 * defined in device tree structures. It should be called by arch specific code
680 * once the early allocator (i.e. memblock) has been fully activated.
681 */
682 void __init early_init_fdt_scan_reserved_mem(void)
683 {
684 int n;
685 u64 base, size;
686
687 if (!initial_boot_params)
688 return;
689
690 /* Process header /memreserve/ fields */
691 for (n = 0; ; n++) {
692 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
693 if (!size)
694 break;
695 early_init_dt_reserve_memory_arch(base, size, 0);
696 }
697
698 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
699 fdt_init_reserved_mem();
700 }
701
702 /**
703 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
704 */
705 void __init early_init_fdt_reserve_self(void)
706 {
707 if (!initial_boot_params)
708 return;
709
710 /* Reserve the dtb region */
711 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
712 fdt_totalsize(initial_boot_params),
713 0);
714 }
715
716 /**
717 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
718 * @it: callback function
719 * @data: context data pointer
720 *
721 * This function is used to scan the flattened device-tree, it is
722 * used to extract the memory information at boot before we can
723 * unflatten the tree
724 */
725 int __init of_scan_flat_dt(int (*it)(unsigned long node,
726 const char *uname, int depth,
727 void *data),
728 void *data)
729 {
730 const void *blob = initial_boot_params;
731 const char *pathp;
732 int offset, rc = 0, depth = -1;
733
734 for (offset = fdt_next_node(blob, -1, &depth);
735 offset >= 0 && depth >= 0 && !rc;
736 offset = fdt_next_node(blob, offset, &depth)) {
737
738 pathp = fdt_get_name(blob, offset, NULL);
739 if (*pathp == '/')
740 pathp = kbasename(pathp);
741 rc = it(offset, pathp, depth, data);
742 }
743 return rc;
744 }
745
746 /**
747 * of_get_flat_dt_subnode_by_name - get the subnode by given name
748 *
749 * @node: the parent node
750 * @uname: the name of subnode
751 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
752 */
753
754 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
755 {
756 return fdt_subnode_offset(initial_boot_params, node, uname);
757 }
758
759 /**
760 * of_get_flat_dt_root - find the root node in the flat blob
761 */
762 unsigned long __init of_get_flat_dt_root(void)
763 {
764 return 0;
765 }
766
767 /**
768 * of_get_flat_dt_size - Return the total size of the FDT
769 */
770 int __init of_get_flat_dt_size(void)
771 {
772 return fdt_totalsize(initial_boot_params);
773 }
774
775 /**
776 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
777 *
778 * This function can be used within scan_flattened_dt callback to get
779 * access to properties
780 */
781 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
782 int *size)
783 {
784 return fdt_getprop(initial_boot_params, node, name, size);
785 }
786
787 /**
788 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
789 * @node: node to test
790 * @compat: compatible string to compare with compatible list.
791 */
792 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
793 {
794 return of_fdt_is_compatible(initial_boot_params, node, compat);
795 }
796
797 /**
798 * of_flat_dt_match - Return true if node matches a list of compatible values
799 */
800 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
801 {
802 return of_fdt_match(initial_boot_params, node, compat);
803 }
804
805 struct fdt_scan_status {
806 const char *name;
807 int namelen;
808 int depth;
809 int found;
810 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
811 void *data;
812 };
813
814 const char * __init of_flat_dt_get_machine_name(void)
815 {
816 const char *name;
817 unsigned long dt_root = of_get_flat_dt_root();
818
819 name = of_get_flat_dt_prop(dt_root, "model", NULL);
820 if (!name)
821 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
822 return name;
823 }
824
825 /**
826 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
827 *
828 * @default_match: A machine specific ptr to return in case of no match.
829 * @get_next_compat: callback function to return next compatible match table.
830 *
831 * Iterate through machine match tables to find the best match for the machine
832 * compatible string in the FDT.
833 */
834 const void * __init of_flat_dt_match_machine(const void *default_match,
835 const void * (*get_next_compat)(const char * const**))
836 {
837 const void *data = NULL;
838 const void *best_data = default_match;
839 const char *const *compat;
840 unsigned long dt_root;
841 unsigned int best_score = ~1, score = 0;
842
843 dt_root = of_get_flat_dt_root();
844 while ((data = get_next_compat(&compat))) {
845 score = of_flat_dt_match(dt_root, compat);
846 if (score > 0 && score < best_score) {
847 best_data = data;
848 best_score = score;
849 }
850 }
851 if (!best_data) {
852 const char *prop;
853 int size;
854
855 pr_err("\n unrecognized device tree list:\n[ ");
856
857 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
858 if (prop) {
859 while (size > 0) {
860 printk("'%s' ", prop);
861 size -= strlen(prop) + 1;
862 prop += strlen(prop) + 1;
863 }
864 }
865 printk("]\n\n");
866 return NULL;
867 }
868
869 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
870
871 return best_data;
872 }
873
874 #ifdef CONFIG_BLK_DEV_INITRD
875 #ifndef __early_init_dt_declare_initrd
876 static void __early_init_dt_declare_initrd(unsigned long start,
877 unsigned long end)
878 {
879 initrd_start = (unsigned long)__va(start);
880 initrd_end = (unsigned long)__va(end);
881 initrd_below_start_ok = 1;
882 }
883 #endif
884
885 /**
886 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
887 * @node: reference to node containing initrd location ('chosen')
888 */
889 static void __init early_init_dt_check_for_initrd(unsigned long node)
890 {
891 u64 start, end;
892 int len;
893 const __be32 *prop;
894
895 pr_debug("Looking for initrd properties... ");
896
897 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
898 if (!prop)
899 return;
900 start = of_read_number(prop, len/4);
901
902 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
903 if (!prop)
904 return;
905 end = of_read_number(prop, len/4);
906
907 __early_init_dt_declare_initrd(start, end);
908
909 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
910 (unsigned long long)start, (unsigned long long)end);
911 }
912 #else
913 static inline void early_init_dt_check_for_initrd(unsigned long node)
914 {
915 }
916 #endif /* CONFIG_BLK_DEV_INITRD */
917
918 #ifdef CONFIG_SERIAL_EARLYCON
919
920 static int __init early_init_dt_scan_chosen_serial(void)
921 {
922 int offset;
923 const char *p, *q, *options = NULL;
924 int l;
925 const struct earlycon_id *match;
926 const void *fdt = initial_boot_params;
927
928 offset = fdt_path_offset(fdt, "/chosen");
929 if (offset < 0)
930 offset = fdt_path_offset(fdt, "/chosen@0");
931 if (offset < 0)
932 return -ENOENT;
933
934 p = fdt_getprop(fdt, offset, "stdout-path", &l);
935 if (!p)
936 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
937 if (!p || !l)
938 return -ENOENT;
939
940 q = strchrnul(p, ':');
941 if (*q != '\0')
942 options = q + 1;
943 l = q - p;
944
945 /* Get the node specified by stdout-path */
946 offset = fdt_path_offset_namelen(fdt, p, l);
947 if (offset < 0) {
948 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
949 return 0;
950 }
951
952 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
953 if (!match->compatible[0])
954 continue;
955
956 if (fdt_node_check_compatible(fdt, offset, match->compatible))
957 continue;
958
959 of_setup_earlycon(match, offset, options);
960 return 0;
961 }
962 return -ENODEV;
963 }
964
965 static int __init setup_of_earlycon(char *buf)
966 {
967 if (buf)
968 return 0;
969
970 return early_init_dt_scan_chosen_serial();
971 }
972 early_param("earlycon", setup_of_earlycon);
973 #endif
974
975 /**
976 * early_init_dt_scan_root - fetch the top level address and size cells
977 */
978 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
979 int depth, void *data)
980 {
981 const __be32 *prop;
982
983 if (depth != 0)
984 return 0;
985
986 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
987 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
988
989 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
990 if (prop)
991 dt_root_size_cells = be32_to_cpup(prop);
992 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
993
994 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
995 if (prop)
996 dt_root_addr_cells = be32_to_cpup(prop);
997 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
998
999 /* break now */
1000 return 1;
1001 }
1002
1003 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1004 {
1005 const __be32 *p = *cellp;
1006
1007 *cellp = p + s;
1008 return of_read_number(p, s);
1009 }
1010
1011 /**
1012 * early_init_dt_scan_memory - Look for an parse memory nodes
1013 */
1014 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1015 int depth, void *data)
1016 {
1017 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1018 const __be32 *reg, *endp;
1019 int l;
1020
1021 /* We are scanning "memory" nodes only */
1022 if (type == NULL) {
1023 /*
1024 * The longtrail doesn't have a device_type on the
1025 * /memory node, so look for the node called /memory@0.
1026 */
1027 if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1028 return 0;
1029 } else if (strcmp(type, "memory") != 0)
1030 return 0;
1031
1032 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1033 if (reg == NULL)
1034 reg = of_get_flat_dt_prop(node, "reg", &l);
1035 if (reg == NULL)
1036 return 0;
1037
1038 endp = reg + (l / sizeof(__be32));
1039
1040 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1041
1042 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1043 u64 base, size;
1044
1045 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1046 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1047
1048 if (size == 0)
1049 continue;
1050 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1051 (unsigned long long)size);
1052
1053 early_init_dt_add_memory_arch(base, size);
1054 }
1055
1056 return 0;
1057 }
1058
1059 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1060 int depth, void *data)
1061 {
1062 int l;
1063 const char *p;
1064
1065 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1066
1067 if (depth != 1 || !data ||
1068 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1069 return 0;
1070
1071 early_init_dt_check_for_initrd(node);
1072
1073 /* Retrieve command line */
1074 p = of_get_flat_dt_prop(node, "bootargs", &l);
1075 if (p != NULL && l > 0)
1076 strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1077
1078 /*
1079 * CONFIG_CMDLINE is meant to be a default in case nothing else
1080 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1081 * is set in which case we override whatever was found earlier.
1082 */
1083 #ifdef CONFIG_CMDLINE
1084 #if defined(CONFIG_CMDLINE_EXTEND)
1085 strlcat(data, " ", COMMAND_LINE_SIZE);
1086 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1087 #elif defined(CONFIG_CMDLINE_FORCE)
1088 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1089 #else
1090 /* No arguments from boot loader, use kernel's cmdl*/
1091 if (!((char *)data)[0])
1092 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1093 #endif
1094 #endif /* CONFIG_CMDLINE */
1095
1096 pr_debug("Command line is: %s\n", (char*)data);
1097
1098 /* break now */
1099 return 1;
1100 }
1101
1102 #ifdef CONFIG_HAVE_MEMBLOCK
1103 #ifndef MIN_MEMBLOCK_ADDR
1104 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1105 #endif
1106 #ifndef MAX_MEMBLOCK_ADDR
1107 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1108 #endif
1109
1110 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1111 {
1112 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1113
1114 if (!PAGE_ALIGNED(base)) {
1115 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1116 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1117 base, base + size);
1118 return;
1119 }
1120 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1121 base = PAGE_ALIGN(base);
1122 }
1123 size &= PAGE_MASK;
1124
1125 if (base > MAX_MEMBLOCK_ADDR) {
1126 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1127 base, base + size);
1128 return;
1129 }
1130
1131 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1132 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1133 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1134 size = MAX_MEMBLOCK_ADDR - base + 1;
1135 }
1136
1137 if (base + size < phys_offset) {
1138 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1139 base, base + size);
1140 return;
1141 }
1142 if (base < phys_offset) {
1143 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1144 base, phys_offset);
1145 size -= phys_offset - base;
1146 base = phys_offset;
1147 }
1148 memblock_add(base, size);
1149 }
1150
1151 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1152 phys_addr_t size, bool nomap)
1153 {
1154 if (nomap)
1155 return memblock_remove(base, size);
1156 return memblock_reserve(base, size);
1157 }
1158
1159 /*
1160 * called from unflatten_device_tree() to bootstrap devicetree itself
1161 * Architectures can override this definition if memblock isn't used
1162 */
1163 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1164 {
1165 return __va(memblock_alloc(size, align));
1166 }
1167 #else
1168 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1169 {
1170 WARN_ON(1);
1171 }
1172
1173 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1174 phys_addr_t size, bool nomap)
1175 {
1176 pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1177 &base, &size, nomap ? " (nomap)" : "");
1178 return -ENOSYS;
1179 }
1180
1181 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1182 {
1183 WARN_ON(1);
1184 return NULL;
1185 }
1186 #endif
1187
1188 bool __init early_init_dt_verify(void *params)
1189 {
1190 if (!params)
1191 return false;
1192
1193 /* check device tree validity */
1194 if (fdt_check_header(params))
1195 return false;
1196
1197 /* Setup flat device-tree pointer */
1198 initial_boot_params = params;
1199 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1200 fdt_totalsize(initial_boot_params));
1201 return true;
1202 }
1203
1204
1205 void __init early_init_dt_scan_nodes(void)
1206 {
1207 /* Retrieve various information from the /chosen node */
1208 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1209
1210 /* Initialize {size,address}-cells info */
1211 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1212
1213 /* Setup memory, calling early_init_dt_add_memory_arch */
1214 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1215 }
1216
1217 bool __init early_init_dt_scan(void *params)
1218 {
1219 bool status;
1220
1221 status = early_init_dt_verify(params);
1222 if (!status)
1223 return false;
1224
1225 early_init_dt_scan_nodes();
1226 return true;
1227 }
1228
1229 /**
1230 * unflatten_device_tree - create tree of device_nodes from flat blob
1231 *
1232 * unflattens the device-tree passed by the firmware, creating the
1233 * tree of struct device_node. It also fills the "name" and "type"
1234 * pointers of the nodes so the normal device-tree walking functions
1235 * can be used.
1236 */
1237 void __init unflatten_device_tree(void)
1238 {
1239 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1240 early_init_dt_alloc_memory_arch);
1241
1242 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1243 of_alias_scan(early_init_dt_alloc_memory_arch);
1244 }
1245
1246 /**
1247 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1248 *
1249 * Copies and unflattens the device-tree passed by the firmware, creating the
1250 * tree of struct device_node. It also fills the "name" and "type"
1251 * pointers of the nodes so the normal device-tree walking functions
1252 * can be used. This should only be used when the FDT memory has not been
1253 * reserved such is the case when the FDT is built-in to the kernel init
1254 * section. If the FDT memory is reserved already then unflatten_device_tree
1255 * should be used instead.
1256 */
1257 void __init unflatten_and_copy_device_tree(void)
1258 {
1259 int size;
1260 void *dt;
1261
1262 if (!initial_boot_params) {
1263 pr_warn("No valid device tree found, continuing without\n");
1264 return;
1265 }
1266
1267 size = fdt_totalsize(initial_boot_params);
1268 dt = early_init_dt_alloc_memory_arch(size,
1269 roundup_pow_of_two(FDT_V17_SIZE));
1270
1271 if (dt) {
1272 memcpy(dt, initial_boot_params, size);
1273 initial_boot_params = dt;
1274 }
1275 unflatten_device_tree();
1276 }
1277
1278 #ifdef CONFIG_SYSFS
1279 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1280 struct bin_attribute *bin_attr,
1281 char *buf, loff_t off, size_t count)
1282 {
1283 memcpy(buf, initial_boot_params + off, count);
1284 return count;
1285 }
1286
1287 static int __init of_fdt_raw_init(void)
1288 {
1289 static struct bin_attribute of_fdt_raw_attr =
1290 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1291
1292 if (!initial_boot_params)
1293 return 0;
1294
1295 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1296 fdt_totalsize(initial_boot_params))) {
1297 pr_warn("fdt: not creating '/sys/firmware/fdt': CRC check failed\n");
1298 return 0;
1299 }
1300 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1301 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1302 }
1303 late_initcall(of_fdt_raw_init);
1304 #endif
1305
1306 #endif /* CONFIG_OF_EARLY_FLATTREE */
This page took 0.219481 seconds and 5 git commands to generate.