IB/hfi1: Remove unused function hfi1_mmu_rb_search
[deliverable/linux.git] / drivers / of / fdt.c
1 /*
2 * Functions for working with the Flattened Device Tree data format
3 *
4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5 * benh@kernel.crashing.org
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28
29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31
32 /*
33 * of_fdt_limit_memory - limit the number of regions in the /memory node
34 * @limit: maximum entries
35 *
36 * Adjust the flattened device tree to have at most 'limit' number of
37 * memory entries in the /memory node. This function may be called
38 * any time after initial_boot_param is set.
39 */
40 void of_fdt_limit_memory(int limit)
41 {
42 int memory;
43 int len;
44 const void *val;
45 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
46 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
47 const uint32_t *addr_prop;
48 const uint32_t *size_prop;
49 int root_offset;
50 int cell_size;
51
52 root_offset = fdt_path_offset(initial_boot_params, "/");
53 if (root_offset < 0)
54 return;
55
56 addr_prop = fdt_getprop(initial_boot_params, root_offset,
57 "#address-cells", NULL);
58 if (addr_prop)
59 nr_address_cells = fdt32_to_cpu(*addr_prop);
60
61 size_prop = fdt_getprop(initial_boot_params, root_offset,
62 "#size-cells", NULL);
63 if (size_prop)
64 nr_size_cells = fdt32_to_cpu(*size_prop);
65
66 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
67
68 memory = fdt_path_offset(initial_boot_params, "/memory");
69 if (memory > 0) {
70 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
71 if (len > limit*cell_size) {
72 len = limit*cell_size;
73 pr_debug("Limiting number of entries to %d\n", limit);
74 fdt_setprop(initial_boot_params, memory, "reg", val,
75 len);
76 }
77 }
78 }
79
80 /**
81 * of_fdt_is_compatible - Return true if given node from the given blob has
82 * compat in its compatible list
83 * @blob: A device tree blob
84 * @node: node to test
85 * @compat: compatible string to compare with compatible list.
86 *
87 * On match, returns a non-zero value with smaller values returned for more
88 * specific compatible values.
89 */
90 int of_fdt_is_compatible(const void *blob,
91 unsigned long node, const char *compat)
92 {
93 const char *cp;
94 int cplen;
95 unsigned long l, score = 0;
96
97 cp = fdt_getprop(blob, node, "compatible", &cplen);
98 if (cp == NULL)
99 return 0;
100 while (cplen > 0) {
101 score++;
102 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
103 return score;
104 l = strlen(cp) + 1;
105 cp += l;
106 cplen -= l;
107 }
108
109 return 0;
110 }
111
112 /**
113 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
114 * @blob: A device tree blob
115 * @node: node to test
116 *
117 * Returns true if the node has a "big-endian" property, or if the kernel
118 * was compiled for BE *and* the node has a "native-endian" property.
119 * Returns false otherwise.
120 */
121 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
122 {
123 if (fdt_getprop(blob, node, "big-endian", NULL))
124 return true;
125 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
126 fdt_getprop(blob, node, "native-endian", NULL))
127 return true;
128 return false;
129 }
130
131 /**
132 * of_fdt_match - Return true if node matches a list of compatible values
133 */
134 int of_fdt_match(const void *blob, unsigned long node,
135 const char *const *compat)
136 {
137 unsigned int tmp, score = 0;
138
139 if (!compat)
140 return 0;
141
142 while (*compat) {
143 tmp = of_fdt_is_compatible(blob, node, *compat);
144 if (tmp && (score == 0 || (tmp < score)))
145 score = tmp;
146 compat++;
147 }
148
149 return score;
150 }
151
152 static void *unflatten_dt_alloc(void **mem, unsigned long size,
153 unsigned long align)
154 {
155 void *res;
156
157 *mem = PTR_ALIGN(*mem, align);
158 res = *mem;
159 *mem += size;
160
161 return res;
162 }
163
164 static void populate_properties(const void *blob,
165 int offset,
166 void **mem,
167 struct device_node *np,
168 const char *nodename,
169 bool dryrun)
170 {
171 struct property *pp, **pprev = NULL;
172 int cur;
173 bool has_name = false;
174
175 pprev = &np->properties;
176 for (cur = fdt_first_property_offset(blob, offset);
177 cur >= 0;
178 cur = fdt_next_property_offset(blob, cur)) {
179 const __be32 *val;
180 const char *pname;
181 u32 sz;
182
183 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
184 if (!val) {
185 pr_warn("%s: Cannot locate property at 0x%x\n",
186 __func__, cur);
187 continue;
188 }
189
190 if (!pname) {
191 pr_warn("%s: Cannot find property name at 0x%x\n",
192 __func__, cur);
193 continue;
194 }
195
196 if (!strcmp(pname, "name"))
197 has_name = true;
198
199 pp = unflatten_dt_alloc(mem, sizeof(struct property),
200 __alignof__(struct property));
201 if (dryrun)
202 continue;
203
204 /* We accept flattened tree phandles either in
205 * ePAPR-style "phandle" properties, or the
206 * legacy "linux,phandle" properties. If both
207 * appear and have different values, things
208 * will get weird. Don't do that.
209 */
210 if (!strcmp(pname, "phandle") ||
211 !strcmp(pname, "linux,phandle")) {
212 if (!np->phandle)
213 np->phandle = be32_to_cpup(val);
214 }
215
216 /* And we process the "ibm,phandle" property
217 * used in pSeries dynamic device tree
218 * stuff
219 */
220 if (!strcmp(pname, "ibm,phandle"))
221 np->phandle = be32_to_cpup(val);
222
223 pp->name = (char *)pname;
224 pp->length = sz;
225 pp->value = (__be32 *)val;
226 *pprev = pp;
227 pprev = &pp->next;
228 }
229
230 /* With version 0x10 we may not have the name property,
231 * recreate it here from the unit name if absent
232 */
233 if (!has_name) {
234 const char *p = nodename, *ps = p, *pa = NULL;
235 int len;
236
237 while (*p) {
238 if ((*p) == '@')
239 pa = p;
240 else if ((*p) == '/')
241 ps = p + 1;
242 p++;
243 }
244
245 if (pa < ps)
246 pa = p;
247 len = (pa - ps) + 1;
248 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
249 __alignof__(struct property));
250 if (!dryrun) {
251 pp->name = "name";
252 pp->length = len;
253 pp->value = pp + 1;
254 *pprev = pp;
255 pprev = &pp->next;
256 memcpy(pp->value, ps, len - 1);
257 ((char *)pp->value)[len - 1] = 0;
258 pr_debug("fixed up name for %s -> %s\n",
259 nodename, (char *)pp->value);
260 }
261 }
262
263 if (!dryrun)
264 *pprev = NULL;
265 }
266
267 static unsigned int populate_node(const void *blob,
268 int offset,
269 void **mem,
270 struct device_node *dad,
271 unsigned int fpsize,
272 struct device_node **pnp,
273 bool dryrun)
274 {
275 struct device_node *np;
276 const char *pathp;
277 unsigned int l, allocl;
278 int new_format = 0;
279
280 pathp = fdt_get_name(blob, offset, &l);
281 if (!pathp) {
282 *pnp = NULL;
283 return 0;
284 }
285
286 allocl = ++l;
287
288 /* version 0x10 has a more compact unit name here instead of the full
289 * path. we accumulate the full path size using "fpsize", we'll rebuild
290 * it later. We detect this because the first character of the name is
291 * not '/'.
292 */
293 if ((*pathp) != '/') {
294 new_format = 1;
295 if (fpsize == 0) {
296 /* root node: special case. fpsize accounts for path
297 * plus terminating zero. root node only has '/', so
298 * fpsize should be 2, but we want to avoid the first
299 * level nodes to have two '/' so we use fpsize 1 here
300 */
301 fpsize = 1;
302 allocl = 2;
303 l = 1;
304 pathp = "";
305 } else {
306 /* account for '/' and path size minus terminal 0
307 * already in 'l'
308 */
309 fpsize += l;
310 allocl = fpsize;
311 }
312 }
313
314 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
315 __alignof__(struct device_node));
316 if (!dryrun) {
317 char *fn;
318 of_node_init(np);
319 np->full_name = fn = ((char *)np) + sizeof(*np);
320 if (new_format) {
321 /* rebuild full path for new format */
322 if (dad && dad->parent) {
323 strcpy(fn, dad->full_name);
324 #ifdef DEBUG
325 if ((strlen(fn) + l + 1) != allocl) {
326 pr_debug("%s: p: %d, l: %d, a: %d\n",
327 pathp, (int)strlen(fn),
328 l, allocl);
329 }
330 #endif
331 fn += strlen(fn);
332 }
333 *(fn++) = '/';
334 }
335 memcpy(fn, pathp, l);
336
337 if (dad != NULL) {
338 np->parent = dad;
339 np->sibling = dad->child;
340 dad->child = np;
341 }
342 }
343
344 populate_properties(blob, offset, mem, np, pathp, dryrun);
345 if (!dryrun) {
346 np->name = of_get_property(np, "name", NULL);
347 np->type = of_get_property(np, "device_type", NULL);
348
349 if (!np->name)
350 np->name = "<NULL>";
351 if (!np->type)
352 np->type = "<NULL>";
353 }
354
355 *pnp = np;
356 return fpsize;
357 }
358
359 static void reverse_nodes(struct device_node *parent)
360 {
361 struct device_node *child, *next;
362
363 /* In-depth first */
364 child = parent->child;
365 while (child) {
366 reverse_nodes(child);
367
368 child = child->sibling;
369 }
370
371 /* Reverse the nodes in the child list */
372 child = parent->child;
373 parent->child = NULL;
374 while (child) {
375 next = child->sibling;
376
377 child->sibling = parent->child;
378 parent->child = child;
379 child = next;
380 }
381 }
382
383 /**
384 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
385 * @blob: The parent device tree blob
386 * @mem: Memory chunk to use for allocating device nodes and properties
387 * @dad: Parent struct device_node
388 * @nodepp: The device_node tree created by the call
389 *
390 * It returns the size of unflattened device tree or error code
391 */
392 static int unflatten_dt_nodes(const void *blob,
393 void *mem,
394 struct device_node *dad,
395 struct device_node **nodepp)
396 {
397 struct device_node *root;
398 int offset = 0, depth = 0, initial_depth = 0;
399 #define FDT_MAX_DEPTH 64
400 unsigned int fpsizes[FDT_MAX_DEPTH];
401 struct device_node *nps[FDT_MAX_DEPTH];
402 void *base = mem;
403 bool dryrun = !base;
404
405 if (nodepp)
406 *nodepp = NULL;
407
408 /*
409 * We're unflattening device sub-tree if @dad is valid. There are
410 * possibly multiple nodes in the first level of depth. We need
411 * set @depth to 1 to make fdt_next_node() happy as it bails
412 * immediately when negative @depth is found. Otherwise, the device
413 * nodes except the first one won't be unflattened successfully.
414 */
415 if (dad)
416 depth = initial_depth = 1;
417
418 root = dad;
419 fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
420 nps[depth] = dad;
421
422 for (offset = 0;
423 offset >= 0 && depth >= initial_depth;
424 offset = fdt_next_node(blob, offset, &depth)) {
425 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
426 continue;
427
428 fpsizes[depth+1] = populate_node(blob, offset, &mem,
429 nps[depth],
430 fpsizes[depth],
431 &nps[depth+1], dryrun);
432 if (!fpsizes[depth+1])
433 return mem - base;
434
435 if (!dryrun && nodepp && !*nodepp)
436 *nodepp = nps[depth+1];
437 if (!dryrun && !root)
438 root = nps[depth+1];
439 }
440
441 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
442 pr_err("%s: Error %d processing FDT\n", __func__, offset);
443 return -EINVAL;
444 }
445
446 /*
447 * Reverse the child list. Some drivers assumes node order matches .dts
448 * node order
449 */
450 if (!dryrun)
451 reverse_nodes(root);
452
453 return mem - base;
454 }
455
456 /**
457 * __unflatten_device_tree - create tree of device_nodes from flat blob
458 *
459 * unflattens a device-tree, creating the
460 * tree of struct device_node. It also fills the "name" and "type"
461 * pointers of the nodes so the normal device-tree walking functions
462 * can be used.
463 * @blob: The blob to expand
464 * @dad: Parent device node
465 * @mynodes: The device_node tree created by the call
466 * @dt_alloc: An allocator that provides a virtual address to memory
467 * for the resulting tree
468 *
469 * Returns NULL on failure or the memory chunk containing the unflattened
470 * device tree on success.
471 */
472 static void *__unflatten_device_tree(const void *blob,
473 struct device_node *dad,
474 struct device_node **mynodes,
475 void *(*dt_alloc)(u64 size, u64 align))
476 {
477 int size;
478 void *mem;
479
480 pr_debug(" -> unflatten_device_tree()\n");
481
482 if (!blob) {
483 pr_debug("No device tree pointer\n");
484 return NULL;
485 }
486
487 pr_debug("Unflattening device tree:\n");
488 pr_debug("magic: %08x\n", fdt_magic(blob));
489 pr_debug("size: %08x\n", fdt_totalsize(blob));
490 pr_debug("version: %08x\n", fdt_version(blob));
491
492 if (fdt_check_header(blob)) {
493 pr_err("Invalid device tree blob header\n");
494 return NULL;
495 }
496
497 /* First pass, scan for size */
498 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
499 if (size < 0)
500 return NULL;
501
502 size = ALIGN(size, 4);
503 pr_debug(" size is %d, allocating...\n", size);
504
505 /* Allocate memory for the expanded device tree */
506 mem = dt_alloc(size + 4, __alignof__(struct device_node));
507 memset(mem, 0, size);
508
509 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
510
511 pr_debug(" unflattening %p...\n", mem);
512
513 /* Second pass, do actual unflattening */
514 unflatten_dt_nodes(blob, mem, dad, mynodes);
515 if (be32_to_cpup(mem + size) != 0xdeadbeef)
516 pr_warning("End of tree marker overwritten: %08x\n",
517 be32_to_cpup(mem + size));
518
519 pr_debug(" <- unflatten_device_tree()\n");
520 return mem;
521 }
522
523 static void *kernel_tree_alloc(u64 size, u64 align)
524 {
525 return kzalloc(size, GFP_KERNEL);
526 }
527
528 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
529
530 /**
531 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
532 * @blob: Flat device tree blob
533 * @dad: Parent device node
534 * @mynodes: The device tree created by the call
535 *
536 * unflattens the device-tree passed by the firmware, creating the
537 * tree of struct device_node. It also fills the "name" and "type"
538 * pointers of the nodes so the normal device-tree walking functions
539 * can be used.
540 *
541 * Returns NULL on failure or the memory chunk containing the unflattened
542 * device tree on success.
543 */
544 void *of_fdt_unflatten_tree(const unsigned long *blob,
545 struct device_node *dad,
546 struct device_node **mynodes)
547 {
548 void *mem;
549
550 mutex_lock(&of_fdt_unflatten_mutex);
551 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc);
552 mutex_unlock(&of_fdt_unflatten_mutex);
553
554 return mem;
555 }
556 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
557
558 /* Everything below here references initial_boot_params directly. */
559 int __initdata dt_root_addr_cells;
560 int __initdata dt_root_size_cells;
561
562 void *initial_boot_params;
563
564 #ifdef CONFIG_OF_EARLY_FLATTREE
565
566 static u32 of_fdt_crc32;
567
568 /**
569 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
570 */
571 static int __init __reserved_mem_reserve_reg(unsigned long node,
572 const char *uname)
573 {
574 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
575 phys_addr_t base, size;
576 int len;
577 const __be32 *prop;
578 int nomap, first = 1;
579
580 prop = of_get_flat_dt_prop(node, "reg", &len);
581 if (!prop)
582 return -ENOENT;
583
584 if (len && len % t_len != 0) {
585 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
586 uname);
587 return -EINVAL;
588 }
589
590 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
591
592 while (len >= t_len) {
593 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
594 size = dt_mem_next_cell(dt_root_size_cells, &prop);
595
596 if (size &&
597 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
598 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
599 uname, &base, (unsigned long)size / SZ_1M);
600 else
601 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
602 uname, &base, (unsigned long)size / SZ_1M);
603
604 len -= t_len;
605 if (first) {
606 fdt_reserved_mem_save_node(node, uname, base, size);
607 first = 0;
608 }
609 }
610 return 0;
611 }
612
613 /**
614 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
615 * in /reserved-memory matches the values supported by the current implementation,
616 * also check if ranges property has been provided
617 */
618 static int __init __reserved_mem_check_root(unsigned long node)
619 {
620 const __be32 *prop;
621
622 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
623 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
624 return -EINVAL;
625
626 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
627 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
628 return -EINVAL;
629
630 prop = of_get_flat_dt_prop(node, "ranges", NULL);
631 if (!prop)
632 return -EINVAL;
633 return 0;
634 }
635
636 /**
637 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
638 */
639 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
640 int depth, void *data)
641 {
642 static int found;
643 const char *status;
644 int err;
645
646 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
647 if (__reserved_mem_check_root(node) != 0) {
648 pr_err("Reserved memory: unsupported node format, ignoring\n");
649 /* break scan */
650 return 1;
651 }
652 found = 1;
653 /* scan next node */
654 return 0;
655 } else if (!found) {
656 /* scan next node */
657 return 0;
658 } else if (found && depth < 2) {
659 /* scanning of /reserved-memory has been finished */
660 return 1;
661 }
662
663 status = of_get_flat_dt_prop(node, "status", NULL);
664 if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
665 return 0;
666
667 err = __reserved_mem_reserve_reg(node, uname);
668 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
669 fdt_reserved_mem_save_node(node, uname, 0, 0);
670
671 /* scan next node */
672 return 0;
673 }
674
675 /**
676 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
677 *
678 * This function grabs memory from early allocator for device exclusive use
679 * defined in device tree structures. It should be called by arch specific code
680 * once the early allocator (i.e. memblock) has been fully activated.
681 */
682 void __init early_init_fdt_scan_reserved_mem(void)
683 {
684 int n;
685 u64 base, size;
686
687 if (!initial_boot_params)
688 return;
689
690 /* Process header /memreserve/ fields */
691 for (n = 0; ; n++) {
692 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
693 if (!size)
694 break;
695 early_init_dt_reserve_memory_arch(base, size, 0);
696 }
697
698 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
699 fdt_init_reserved_mem();
700 }
701
702 /**
703 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
704 */
705 void __init early_init_fdt_reserve_self(void)
706 {
707 if (!initial_boot_params)
708 return;
709
710 /* Reserve the dtb region */
711 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
712 fdt_totalsize(initial_boot_params),
713 0);
714 }
715
716 /**
717 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
718 * @it: callback function
719 * @data: context data pointer
720 *
721 * This function is used to scan the flattened device-tree, it is
722 * used to extract the memory information at boot before we can
723 * unflatten the tree
724 */
725 int __init of_scan_flat_dt(int (*it)(unsigned long node,
726 const char *uname, int depth,
727 void *data),
728 void *data)
729 {
730 const void *blob = initial_boot_params;
731 const char *pathp;
732 int offset, rc = 0, depth = -1;
733
734 for (offset = fdt_next_node(blob, -1, &depth);
735 offset >= 0 && depth >= 0 && !rc;
736 offset = fdt_next_node(blob, offset, &depth)) {
737
738 pathp = fdt_get_name(blob, offset, NULL);
739 if (*pathp == '/')
740 pathp = kbasename(pathp);
741 rc = it(offset, pathp, depth, data);
742 }
743 return rc;
744 }
745
746 /**
747 * of_get_flat_dt_root - find the root node in the flat blob
748 */
749 unsigned long __init of_get_flat_dt_root(void)
750 {
751 return 0;
752 }
753
754 /**
755 * of_get_flat_dt_size - Return the total size of the FDT
756 */
757 int __init of_get_flat_dt_size(void)
758 {
759 return fdt_totalsize(initial_boot_params);
760 }
761
762 /**
763 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
764 *
765 * This function can be used within scan_flattened_dt callback to get
766 * access to properties
767 */
768 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
769 int *size)
770 {
771 return fdt_getprop(initial_boot_params, node, name, size);
772 }
773
774 /**
775 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
776 * @node: node to test
777 * @compat: compatible string to compare with compatible list.
778 */
779 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
780 {
781 return of_fdt_is_compatible(initial_boot_params, node, compat);
782 }
783
784 /**
785 * of_flat_dt_match - Return true if node matches a list of compatible values
786 */
787 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
788 {
789 return of_fdt_match(initial_boot_params, node, compat);
790 }
791
792 struct fdt_scan_status {
793 const char *name;
794 int namelen;
795 int depth;
796 int found;
797 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
798 void *data;
799 };
800
801 const char * __init of_flat_dt_get_machine_name(void)
802 {
803 const char *name;
804 unsigned long dt_root = of_get_flat_dt_root();
805
806 name = of_get_flat_dt_prop(dt_root, "model", NULL);
807 if (!name)
808 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
809 return name;
810 }
811
812 /**
813 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
814 *
815 * @default_match: A machine specific ptr to return in case of no match.
816 * @get_next_compat: callback function to return next compatible match table.
817 *
818 * Iterate through machine match tables to find the best match for the machine
819 * compatible string in the FDT.
820 */
821 const void * __init of_flat_dt_match_machine(const void *default_match,
822 const void * (*get_next_compat)(const char * const**))
823 {
824 const void *data = NULL;
825 const void *best_data = default_match;
826 const char *const *compat;
827 unsigned long dt_root;
828 unsigned int best_score = ~1, score = 0;
829
830 dt_root = of_get_flat_dt_root();
831 while ((data = get_next_compat(&compat))) {
832 score = of_flat_dt_match(dt_root, compat);
833 if (score > 0 && score < best_score) {
834 best_data = data;
835 best_score = score;
836 }
837 }
838 if (!best_data) {
839 const char *prop;
840 int size;
841
842 pr_err("\n unrecognized device tree list:\n[ ");
843
844 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
845 if (prop) {
846 while (size > 0) {
847 printk("'%s' ", prop);
848 size -= strlen(prop) + 1;
849 prop += strlen(prop) + 1;
850 }
851 }
852 printk("]\n\n");
853 return NULL;
854 }
855
856 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
857
858 return best_data;
859 }
860
861 #ifdef CONFIG_BLK_DEV_INITRD
862 #ifndef __early_init_dt_declare_initrd
863 static void __early_init_dt_declare_initrd(unsigned long start,
864 unsigned long end)
865 {
866 initrd_start = (unsigned long)__va(start);
867 initrd_end = (unsigned long)__va(end);
868 initrd_below_start_ok = 1;
869 }
870 #endif
871
872 /**
873 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
874 * @node: reference to node containing initrd location ('chosen')
875 */
876 static void __init early_init_dt_check_for_initrd(unsigned long node)
877 {
878 u64 start, end;
879 int len;
880 const __be32 *prop;
881
882 pr_debug("Looking for initrd properties... ");
883
884 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
885 if (!prop)
886 return;
887 start = of_read_number(prop, len/4);
888
889 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
890 if (!prop)
891 return;
892 end = of_read_number(prop, len/4);
893
894 __early_init_dt_declare_initrd(start, end);
895
896 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
897 (unsigned long long)start, (unsigned long long)end);
898 }
899 #else
900 static inline void early_init_dt_check_for_initrd(unsigned long node)
901 {
902 }
903 #endif /* CONFIG_BLK_DEV_INITRD */
904
905 #ifdef CONFIG_SERIAL_EARLYCON
906
907 static int __init early_init_dt_scan_chosen_serial(void)
908 {
909 int offset;
910 const char *p, *q, *options = NULL;
911 int l;
912 const struct earlycon_id *match;
913 const void *fdt = initial_boot_params;
914
915 offset = fdt_path_offset(fdt, "/chosen");
916 if (offset < 0)
917 offset = fdt_path_offset(fdt, "/chosen@0");
918 if (offset < 0)
919 return -ENOENT;
920
921 p = fdt_getprop(fdt, offset, "stdout-path", &l);
922 if (!p)
923 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
924 if (!p || !l)
925 return -ENOENT;
926
927 q = strchrnul(p, ':');
928 if (*q != '\0')
929 options = q + 1;
930 l = q - p;
931
932 /* Get the node specified by stdout-path */
933 offset = fdt_path_offset_namelen(fdt, p, l);
934 if (offset < 0) {
935 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
936 return 0;
937 }
938
939 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
940 if (!match->compatible[0])
941 continue;
942
943 if (fdt_node_check_compatible(fdt, offset, match->compatible))
944 continue;
945
946 of_setup_earlycon(match, offset, options);
947 return 0;
948 }
949 return -ENODEV;
950 }
951
952 static int __init setup_of_earlycon(char *buf)
953 {
954 if (buf)
955 return 0;
956
957 return early_init_dt_scan_chosen_serial();
958 }
959 early_param("earlycon", setup_of_earlycon);
960 #endif
961
962 /**
963 * early_init_dt_scan_root - fetch the top level address and size cells
964 */
965 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
966 int depth, void *data)
967 {
968 const __be32 *prop;
969
970 if (depth != 0)
971 return 0;
972
973 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
974 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
975
976 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
977 if (prop)
978 dt_root_size_cells = be32_to_cpup(prop);
979 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
980
981 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
982 if (prop)
983 dt_root_addr_cells = be32_to_cpup(prop);
984 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
985
986 /* break now */
987 return 1;
988 }
989
990 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
991 {
992 const __be32 *p = *cellp;
993
994 *cellp = p + s;
995 return of_read_number(p, s);
996 }
997
998 /**
999 * early_init_dt_scan_memory - Look for an parse memory nodes
1000 */
1001 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1002 int depth, void *data)
1003 {
1004 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1005 const __be32 *reg, *endp;
1006 int l;
1007
1008 /* We are scanning "memory" nodes only */
1009 if (type == NULL) {
1010 /*
1011 * The longtrail doesn't have a device_type on the
1012 * /memory node, so look for the node called /memory@0.
1013 */
1014 if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1015 return 0;
1016 } else if (strcmp(type, "memory") != 0)
1017 return 0;
1018
1019 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1020 if (reg == NULL)
1021 reg = of_get_flat_dt_prop(node, "reg", &l);
1022 if (reg == NULL)
1023 return 0;
1024
1025 endp = reg + (l / sizeof(__be32));
1026
1027 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1028
1029 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1030 u64 base, size;
1031
1032 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1033 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1034
1035 if (size == 0)
1036 continue;
1037 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1038 (unsigned long long)size);
1039
1040 early_init_dt_add_memory_arch(base, size);
1041 }
1042
1043 return 0;
1044 }
1045
1046 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1047 int depth, void *data)
1048 {
1049 int l;
1050 const char *p;
1051
1052 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1053
1054 if (depth != 1 || !data ||
1055 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1056 return 0;
1057
1058 early_init_dt_check_for_initrd(node);
1059
1060 /* Retrieve command line */
1061 p = of_get_flat_dt_prop(node, "bootargs", &l);
1062 if (p != NULL && l > 0)
1063 strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1064
1065 /*
1066 * CONFIG_CMDLINE is meant to be a default in case nothing else
1067 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1068 * is set in which case we override whatever was found earlier.
1069 */
1070 #ifdef CONFIG_CMDLINE
1071 #if defined(CONFIG_CMDLINE_EXTEND)
1072 strlcat(data, " ", COMMAND_LINE_SIZE);
1073 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1074 #elif defined(CONFIG_CMDLINE_FORCE)
1075 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1076 #else
1077 /* No arguments from boot loader, use kernel's cmdl*/
1078 if (!((char *)data)[0])
1079 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1080 #endif
1081 #endif /* CONFIG_CMDLINE */
1082
1083 pr_debug("Command line is: %s\n", (char*)data);
1084
1085 /* break now */
1086 return 1;
1087 }
1088
1089 #ifdef CONFIG_HAVE_MEMBLOCK
1090 #ifndef MIN_MEMBLOCK_ADDR
1091 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1092 #endif
1093 #ifndef MAX_MEMBLOCK_ADDR
1094 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1095 #endif
1096
1097 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1098 {
1099 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1100
1101 if (!PAGE_ALIGNED(base)) {
1102 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1103 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1104 base, base + size);
1105 return;
1106 }
1107 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1108 base = PAGE_ALIGN(base);
1109 }
1110 size &= PAGE_MASK;
1111
1112 if (base > MAX_MEMBLOCK_ADDR) {
1113 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1114 base, base + size);
1115 return;
1116 }
1117
1118 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1119 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1120 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1121 size = MAX_MEMBLOCK_ADDR - base + 1;
1122 }
1123
1124 if (base + size < phys_offset) {
1125 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1126 base, base + size);
1127 return;
1128 }
1129 if (base < phys_offset) {
1130 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1131 base, phys_offset);
1132 size -= phys_offset - base;
1133 base = phys_offset;
1134 }
1135 memblock_add(base, size);
1136 }
1137
1138 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1139 phys_addr_t size, bool nomap)
1140 {
1141 if (nomap)
1142 return memblock_remove(base, size);
1143 return memblock_reserve(base, size);
1144 }
1145
1146 /*
1147 * called from unflatten_device_tree() to bootstrap devicetree itself
1148 * Architectures can override this definition if memblock isn't used
1149 */
1150 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1151 {
1152 return __va(memblock_alloc(size, align));
1153 }
1154 #else
1155 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1156 {
1157 WARN_ON(1);
1158 }
1159
1160 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1161 phys_addr_t size, bool nomap)
1162 {
1163 pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1164 &base, &size, nomap ? " (nomap)" : "");
1165 return -ENOSYS;
1166 }
1167
1168 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1169 {
1170 WARN_ON(1);
1171 return NULL;
1172 }
1173 #endif
1174
1175 bool __init early_init_dt_verify(void *params)
1176 {
1177 if (!params)
1178 return false;
1179
1180 /* check device tree validity */
1181 if (fdt_check_header(params))
1182 return false;
1183
1184 /* Setup flat device-tree pointer */
1185 initial_boot_params = params;
1186 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1187 fdt_totalsize(initial_boot_params));
1188 return true;
1189 }
1190
1191
1192 void __init early_init_dt_scan_nodes(void)
1193 {
1194 /* Retrieve various information from the /chosen node */
1195 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1196
1197 /* Initialize {size,address}-cells info */
1198 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1199
1200 /* Setup memory, calling early_init_dt_add_memory_arch */
1201 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1202 }
1203
1204 bool __init early_init_dt_scan(void *params)
1205 {
1206 bool status;
1207
1208 status = early_init_dt_verify(params);
1209 if (!status)
1210 return false;
1211
1212 early_init_dt_scan_nodes();
1213 return true;
1214 }
1215
1216 /**
1217 * unflatten_device_tree - create tree of device_nodes from flat blob
1218 *
1219 * unflattens the device-tree passed by the firmware, creating the
1220 * tree of struct device_node. It also fills the "name" and "type"
1221 * pointers of the nodes so the normal device-tree walking functions
1222 * can be used.
1223 */
1224 void __init unflatten_device_tree(void)
1225 {
1226 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1227 early_init_dt_alloc_memory_arch);
1228
1229 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1230 of_alias_scan(early_init_dt_alloc_memory_arch);
1231 }
1232
1233 /**
1234 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1235 *
1236 * Copies and unflattens the device-tree passed by the firmware, creating the
1237 * tree of struct device_node. It also fills the "name" and "type"
1238 * pointers of the nodes so the normal device-tree walking functions
1239 * can be used. This should only be used when the FDT memory has not been
1240 * reserved such is the case when the FDT is built-in to the kernel init
1241 * section. If the FDT memory is reserved already then unflatten_device_tree
1242 * should be used instead.
1243 */
1244 void __init unflatten_and_copy_device_tree(void)
1245 {
1246 int size;
1247 void *dt;
1248
1249 if (!initial_boot_params) {
1250 pr_warn("No valid device tree found, continuing without\n");
1251 return;
1252 }
1253
1254 size = fdt_totalsize(initial_boot_params);
1255 dt = early_init_dt_alloc_memory_arch(size,
1256 roundup_pow_of_two(FDT_V17_SIZE));
1257
1258 if (dt) {
1259 memcpy(dt, initial_boot_params, size);
1260 initial_boot_params = dt;
1261 }
1262 unflatten_device_tree();
1263 }
1264
1265 #ifdef CONFIG_SYSFS
1266 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1267 struct bin_attribute *bin_attr,
1268 char *buf, loff_t off, size_t count)
1269 {
1270 memcpy(buf, initial_boot_params + off, count);
1271 return count;
1272 }
1273
1274 static int __init of_fdt_raw_init(void)
1275 {
1276 static struct bin_attribute of_fdt_raw_attr =
1277 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1278
1279 if (!initial_boot_params)
1280 return 0;
1281
1282 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1283 fdt_totalsize(initial_boot_params))) {
1284 pr_warn("fdt: not creating '/sys/firmware/fdt': CRC check failed\n");
1285 return 0;
1286 }
1287 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1288 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1289 }
1290 late_initcall(of_fdt_raw_init);
1291 #endif
1292
1293 #endif /* CONFIG_OF_EARLY_FLATTREE */
This page took 0.072315 seconds and 5 git commands to generate.