bfbfda5437682c54a79e76cbb3cbacbbe0f43bd7
[deliverable/linux.git] / drivers / of / fdt.c
1 /*
2 * Functions for working with the Flattened Device Tree data format
3 *
4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5 * benh@kernel.crashing.org
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22
23 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
24 #ifdef CONFIG_PPC
25 #include <asm/machdep.h>
26 #endif /* CONFIG_PPC */
27
28 #include <asm/page.h>
29
30 char *of_fdt_get_string(struct boot_param_header *blob, u32 offset)
31 {
32 return ((char *)blob) +
33 be32_to_cpu(blob->off_dt_strings) + offset;
34 }
35
36 /**
37 * of_fdt_get_property - Given a node in the given flat blob, return
38 * the property ptr
39 */
40 void *of_fdt_get_property(struct boot_param_header *blob,
41 unsigned long node, const char *name,
42 unsigned long *size)
43 {
44 unsigned long p = node;
45
46 do {
47 u32 tag = be32_to_cpup((__be32 *)p);
48 u32 sz, noff;
49 const char *nstr;
50
51 p += 4;
52 if (tag == OF_DT_NOP)
53 continue;
54 if (tag != OF_DT_PROP)
55 return NULL;
56
57 sz = be32_to_cpup((__be32 *)p);
58 noff = be32_to_cpup((__be32 *)(p + 4));
59 p += 8;
60 if (be32_to_cpu(blob->version) < 0x10)
61 p = ALIGN(p, sz >= 8 ? 8 : 4);
62
63 nstr = of_fdt_get_string(blob, noff);
64 if (nstr == NULL) {
65 pr_warning("Can't find property index name !\n");
66 return NULL;
67 }
68 if (strcmp(name, nstr) == 0) {
69 if (size)
70 *size = sz;
71 return (void *)p;
72 }
73 p += sz;
74 p = ALIGN(p, 4);
75 } while (1);
76 }
77
78 /**
79 * of_fdt_is_compatible - Return true if given node from the given blob has
80 * compat in its compatible list
81 * @blob: A device tree blob
82 * @node: node to test
83 * @compat: compatible string to compare with compatible list.
84 *
85 * On match, returns a non-zero value with smaller values returned for more
86 * specific compatible values.
87 */
88 int of_fdt_is_compatible(struct boot_param_header *blob,
89 unsigned long node, const char *compat)
90 {
91 const char *cp;
92 unsigned long cplen, l, score = 0;
93
94 cp = of_fdt_get_property(blob, node, "compatible", &cplen);
95 if (cp == NULL)
96 return 0;
97 while (cplen > 0) {
98 score++;
99 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
100 return score;
101 l = strlen(cp) + 1;
102 cp += l;
103 cplen -= l;
104 }
105
106 return 0;
107 }
108
109 /**
110 * of_fdt_match - Return true if node matches a list of compatible values
111 */
112 int of_fdt_match(struct boot_param_header *blob, unsigned long node,
113 const char *const *compat)
114 {
115 unsigned int tmp, score = 0;
116
117 if (!compat)
118 return 0;
119
120 while (*compat) {
121 tmp = of_fdt_is_compatible(blob, node, *compat);
122 if (tmp && (score == 0 || (tmp < score)))
123 score = tmp;
124 compat++;
125 }
126
127 return score;
128 }
129
130 static void *unflatten_dt_alloc(void **mem, unsigned long size,
131 unsigned long align)
132 {
133 void *res;
134
135 *mem = PTR_ALIGN(*mem, align);
136 res = *mem;
137 *mem += size;
138
139 return res;
140 }
141
142 /**
143 * unflatten_dt_node - Alloc and populate a device_node from the flat tree
144 * @blob: The parent device tree blob
145 * @mem: Memory chunk to use for allocating device nodes and properties
146 * @p: pointer to node in flat tree
147 * @dad: Parent struct device_node
148 * @allnextpp: pointer to ->allnext from last allocated device_node
149 * @fpsize: Size of the node path up at the current depth.
150 */
151 static void * unflatten_dt_node(struct boot_param_header *blob,
152 void *mem,
153 void **p,
154 struct device_node *dad,
155 struct device_node ***allnextpp,
156 unsigned long fpsize)
157 {
158 struct device_node *np;
159 struct property *pp, **prev_pp = NULL;
160 char *pathp;
161 u32 tag;
162 unsigned int l, allocl;
163 int has_name = 0;
164 int new_format = 0;
165
166 tag = be32_to_cpup(*p);
167 if (tag != OF_DT_BEGIN_NODE) {
168 pr_err("Weird tag at start of node: %x\n", tag);
169 return mem;
170 }
171 *p += 4;
172 pathp = *p;
173 l = allocl = strlen(pathp) + 1;
174 *p = PTR_ALIGN(*p + l, 4);
175
176 /* version 0x10 has a more compact unit name here instead of the full
177 * path. we accumulate the full path size using "fpsize", we'll rebuild
178 * it later. We detect this because the first character of the name is
179 * not '/'.
180 */
181 if ((*pathp) != '/') {
182 new_format = 1;
183 if (fpsize == 0) {
184 /* root node: special case. fpsize accounts for path
185 * plus terminating zero. root node only has '/', so
186 * fpsize should be 2, but we want to avoid the first
187 * level nodes to have two '/' so we use fpsize 1 here
188 */
189 fpsize = 1;
190 allocl = 2;
191 l = 1;
192 *pathp = '\0';
193 } else {
194 /* account for '/' and path size minus terminal 0
195 * already in 'l'
196 */
197 fpsize += l;
198 allocl = fpsize;
199 }
200 }
201
202 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
203 __alignof__(struct device_node));
204 if (allnextpp) {
205 char *fn;
206 np->full_name = fn = ((char *)np) + sizeof(*np);
207 if (new_format) {
208 /* rebuild full path for new format */
209 if (dad && dad->parent) {
210 strcpy(fn, dad->full_name);
211 #ifdef DEBUG
212 if ((strlen(fn) + l + 1) != allocl) {
213 pr_debug("%s: p: %d, l: %d, a: %d\n",
214 pathp, (int)strlen(fn),
215 l, allocl);
216 }
217 #endif
218 fn += strlen(fn);
219 }
220 *(fn++) = '/';
221 }
222 memcpy(fn, pathp, l);
223
224 prev_pp = &np->properties;
225 **allnextpp = np;
226 *allnextpp = &np->allnext;
227 if (dad != NULL) {
228 np->parent = dad;
229 /* we temporarily use the next field as `last_child'*/
230 if (dad->next == NULL)
231 dad->child = np;
232 else
233 dad->next->sibling = np;
234 dad->next = np;
235 }
236 kref_init(&np->kref);
237 }
238 /* process properties */
239 while (1) {
240 u32 sz, noff;
241 char *pname;
242
243 tag = be32_to_cpup(*p);
244 if (tag == OF_DT_NOP) {
245 *p += 4;
246 continue;
247 }
248 if (tag != OF_DT_PROP)
249 break;
250 *p += 4;
251 sz = be32_to_cpup(*p);
252 noff = be32_to_cpup(*p + 4);
253 *p += 8;
254 if (be32_to_cpu(blob->version) < 0x10)
255 *p = PTR_ALIGN(*p, sz >= 8 ? 8 : 4);
256
257 pname = of_fdt_get_string(blob, noff);
258 if (pname == NULL) {
259 pr_info("Can't find property name in list !\n");
260 break;
261 }
262 if (strcmp(pname, "name") == 0)
263 has_name = 1;
264 l = strlen(pname) + 1;
265 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
266 __alignof__(struct property));
267 if (allnextpp) {
268 /* We accept flattened tree phandles either in
269 * ePAPR-style "phandle" properties, or the
270 * legacy "linux,phandle" properties. If both
271 * appear and have different values, things
272 * will get weird. Don't do that. */
273 if ((strcmp(pname, "phandle") == 0) ||
274 (strcmp(pname, "linux,phandle") == 0)) {
275 if (np->phandle == 0)
276 np->phandle = be32_to_cpup((__be32*)*p);
277 }
278 /* And we process the "ibm,phandle" property
279 * used in pSeries dynamic device tree
280 * stuff */
281 if (strcmp(pname, "ibm,phandle") == 0)
282 np->phandle = be32_to_cpup((__be32 *)*p);
283 pp->name = pname;
284 pp->length = sz;
285 pp->value = *p;
286 *prev_pp = pp;
287 prev_pp = &pp->next;
288 }
289 *p = PTR_ALIGN((*p) + sz, 4);
290 }
291 /* with version 0x10 we may not have the name property, recreate
292 * it here from the unit name if absent
293 */
294 if (!has_name) {
295 char *p1 = pathp, *ps = pathp, *pa = NULL;
296 int sz;
297
298 while (*p1) {
299 if ((*p1) == '@')
300 pa = p1;
301 if ((*p1) == '/')
302 ps = p1 + 1;
303 p1++;
304 }
305 if (pa < ps)
306 pa = p1;
307 sz = (pa - ps) + 1;
308 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
309 __alignof__(struct property));
310 if (allnextpp) {
311 pp->name = "name";
312 pp->length = sz;
313 pp->value = pp + 1;
314 *prev_pp = pp;
315 prev_pp = &pp->next;
316 memcpy(pp->value, ps, sz - 1);
317 ((char *)pp->value)[sz - 1] = 0;
318 pr_debug("fixed up name for %s -> %s\n", pathp,
319 (char *)pp->value);
320 }
321 }
322 if (allnextpp) {
323 *prev_pp = NULL;
324 np->name = of_get_property(np, "name", NULL);
325 np->type = of_get_property(np, "device_type", NULL);
326
327 if (!np->name)
328 np->name = "<NULL>";
329 if (!np->type)
330 np->type = "<NULL>";
331 }
332 while (tag == OF_DT_BEGIN_NODE || tag == OF_DT_NOP) {
333 if (tag == OF_DT_NOP)
334 *p += 4;
335 else
336 mem = unflatten_dt_node(blob, mem, p, np, allnextpp,
337 fpsize);
338 tag = be32_to_cpup(*p);
339 }
340 if (tag != OF_DT_END_NODE) {
341 pr_err("Weird tag at end of node: %x\n", tag);
342 return mem;
343 }
344 *p += 4;
345 return mem;
346 }
347
348 /**
349 * __unflatten_device_tree - create tree of device_nodes from flat blob
350 *
351 * unflattens a device-tree, creating the
352 * tree of struct device_node. It also fills the "name" and "type"
353 * pointers of the nodes so the normal device-tree walking functions
354 * can be used.
355 * @blob: The blob to expand
356 * @mynodes: The device_node tree created by the call
357 * @dt_alloc: An allocator that provides a virtual address to memory
358 * for the resulting tree
359 */
360 static void __unflatten_device_tree(struct boot_param_header *blob,
361 struct device_node **mynodes,
362 void * (*dt_alloc)(u64 size, u64 align))
363 {
364 unsigned long size;
365 void *start, *mem;
366 struct device_node **allnextp = mynodes;
367
368 pr_debug(" -> unflatten_device_tree()\n");
369
370 if (!blob) {
371 pr_debug("No device tree pointer\n");
372 return;
373 }
374
375 pr_debug("Unflattening device tree:\n");
376 pr_debug("magic: %08x\n", be32_to_cpu(blob->magic));
377 pr_debug("size: %08x\n", be32_to_cpu(blob->totalsize));
378 pr_debug("version: %08x\n", be32_to_cpu(blob->version));
379
380 if (be32_to_cpu(blob->magic) != OF_DT_HEADER) {
381 pr_err("Invalid device tree blob header\n");
382 return;
383 }
384
385 /* First pass, scan for size */
386 start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct);
387 size = (unsigned long)unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
388 size = ALIGN(size, 4);
389
390 pr_debug(" size is %lx, allocating...\n", size);
391
392 /* Allocate memory for the expanded device tree */
393 mem = dt_alloc(size + 4, __alignof__(struct device_node));
394 memset(mem, 0, size);
395
396 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
397
398 pr_debug(" unflattening %p...\n", mem);
399
400 /* Second pass, do actual unflattening */
401 start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct);
402 unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
403 if (be32_to_cpup(start) != OF_DT_END)
404 pr_warning("Weird tag at end of tree: %08x\n", be32_to_cpup(start));
405 if (be32_to_cpup(mem + size) != 0xdeadbeef)
406 pr_warning("End of tree marker overwritten: %08x\n",
407 be32_to_cpup(mem + size));
408 *allnextp = NULL;
409
410 pr_debug(" <- unflatten_device_tree()\n");
411 }
412
413 static void *kernel_tree_alloc(u64 size, u64 align)
414 {
415 return kzalloc(size, GFP_KERNEL);
416 }
417
418 /**
419 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
420 *
421 * unflattens the device-tree passed by the firmware, creating the
422 * tree of struct device_node. It also fills the "name" and "type"
423 * pointers of the nodes so the normal device-tree walking functions
424 * can be used.
425 */
426 void of_fdt_unflatten_tree(unsigned long *blob,
427 struct device_node **mynodes)
428 {
429 struct boot_param_header *device_tree =
430 (struct boot_param_header *)blob;
431 __unflatten_device_tree(device_tree, mynodes, &kernel_tree_alloc);
432 }
433 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
434
435 /* Everything below here references initial_boot_params directly. */
436 int __initdata dt_root_addr_cells;
437 int __initdata dt_root_size_cells;
438
439 struct boot_param_header *initial_boot_params;
440
441 #ifdef CONFIG_OF_EARLY_FLATTREE
442
443 /**
444 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
445 * @it: callback function
446 * @data: context data pointer
447 *
448 * This function is used to scan the flattened device-tree, it is
449 * used to extract the memory information at boot before we can
450 * unflatten the tree
451 */
452 int __init of_scan_flat_dt(int (*it)(unsigned long node,
453 const char *uname, int depth,
454 void *data),
455 void *data)
456 {
457 unsigned long p = ((unsigned long)initial_boot_params) +
458 be32_to_cpu(initial_boot_params->off_dt_struct);
459 int rc = 0;
460 int depth = -1;
461
462 do {
463 u32 tag = be32_to_cpup((__be32 *)p);
464 const char *pathp;
465
466 p += 4;
467 if (tag == OF_DT_END_NODE) {
468 depth--;
469 continue;
470 }
471 if (tag == OF_DT_NOP)
472 continue;
473 if (tag == OF_DT_END)
474 break;
475 if (tag == OF_DT_PROP) {
476 u32 sz = be32_to_cpup((__be32 *)p);
477 p += 8;
478 if (be32_to_cpu(initial_boot_params->version) < 0x10)
479 p = ALIGN(p, sz >= 8 ? 8 : 4);
480 p += sz;
481 p = ALIGN(p, 4);
482 continue;
483 }
484 if (tag != OF_DT_BEGIN_NODE) {
485 pr_err("Invalid tag %x in flat device tree!\n", tag);
486 return -EINVAL;
487 }
488 depth++;
489 pathp = (char *)p;
490 p = ALIGN(p + strlen(pathp) + 1, 4);
491 if (*pathp == '/')
492 pathp = kbasename(pathp);
493 rc = it(p, pathp, depth, data);
494 if (rc != 0)
495 break;
496 } while (1);
497
498 return rc;
499 }
500
501 /**
502 * of_get_flat_dt_root - find the root node in the flat blob
503 */
504 unsigned long __init of_get_flat_dt_root(void)
505 {
506 unsigned long p = ((unsigned long)initial_boot_params) +
507 be32_to_cpu(initial_boot_params->off_dt_struct);
508
509 while (be32_to_cpup((__be32 *)p) == OF_DT_NOP)
510 p += 4;
511 BUG_ON(be32_to_cpup((__be32 *)p) != OF_DT_BEGIN_NODE);
512 p += 4;
513 return ALIGN(p + strlen((char *)p) + 1, 4);
514 }
515
516 /**
517 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
518 *
519 * This function can be used within scan_flattened_dt callback to get
520 * access to properties
521 */
522 void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
523 unsigned long *size)
524 {
525 return of_fdt_get_property(initial_boot_params, node, name, size);
526 }
527
528 /**
529 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
530 * @node: node to test
531 * @compat: compatible string to compare with compatible list.
532 */
533 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
534 {
535 return of_fdt_is_compatible(initial_boot_params, node, compat);
536 }
537
538 /**
539 * of_flat_dt_match - Return true if node matches a list of compatible values
540 */
541 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
542 {
543 return of_fdt_match(initial_boot_params, node, compat);
544 }
545
546 struct fdt_scan_status {
547 const char *name;
548 int namelen;
549 int depth;
550 int found;
551 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
552 void *data;
553 };
554
555 /**
556 * fdt_scan_node_by_path - iterator for of_scan_flat_dt_by_path function
557 */
558 static int __init fdt_scan_node_by_path(unsigned long node, const char *uname,
559 int depth, void *data)
560 {
561 struct fdt_scan_status *st = data;
562
563 /*
564 * if scan at the requested fdt node has been completed,
565 * return -ENXIO to abort further scanning
566 */
567 if (depth <= st->depth)
568 return -ENXIO;
569
570 /* requested fdt node has been found, so call iterator function */
571 if (st->found)
572 return st->iterator(node, uname, depth, st->data);
573
574 /* check if scanning automata is entering next level of fdt nodes */
575 if (depth == st->depth + 1 &&
576 strncmp(st->name, uname, st->namelen) == 0 &&
577 uname[st->namelen] == 0) {
578 st->depth += 1;
579 if (st->name[st->namelen] == 0) {
580 st->found = 1;
581 } else {
582 const char *next = st->name + st->namelen + 1;
583 st->name = next;
584 st->namelen = strcspn(next, "/");
585 }
586 return 0;
587 }
588
589 /* scan next fdt node */
590 return 0;
591 }
592
593 /**
594 * of_scan_flat_dt_by_path - scan flattened tree blob and call callback on each
595 * child of the given path.
596 * @path: path to start searching for children
597 * @it: callback function
598 * @data: context data pointer
599 *
600 * This function is used to scan the flattened device-tree starting from the
601 * node given by path. It is used to extract information (like reserved
602 * memory), which is required on ealy boot before we can unflatten the tree.
603 */
604 int __init of_scan_flat_dt_by_path(const char *path,
605 int (*it)(unsigned long node, const char *name, int depth, void *data),
606 void *data)
607 {
608 struct fdt_scan_status st = {path, 0, -1, 0, it, data};
609 int ret = 0;
610
611 if (initial_boot_params)
612 ret = of_scan_flat_dt(fdt_scan_node_by_path, &st);
613
614 if (!st.found)
615 return -ENOENT;
616 else if (ret == -ENXIO) /* scan has been completed */
617 return 0;
618 else
619 return ret;
620 }
621
622 #ifdef CONFIG_BLK_DEV_INITRD
623 /**
624 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
625 * @node: reference to node containing initrd location ('chosen')
626 */
627 void __init early_init_dt_check_for_initrd(unsigned long node)
628 {
629 u64 start, end;
630 unsigned long len;
631 __be32 *prop;
632
633 pr_debug("Looking for initrd properties... ");
634
635 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
636 if (!prop)
637 return;
638 start = of_read_number(prop, len/4);
639
640 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
641 if (!prop)
642 return;
643 end = of_read_number(prop, len/4);
644
645 early_init_dt_setup_initrd_arch(start, end);
646 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
647 (unsigned long long)start, (unsigned long long)end);
648 }
649 #else
650 inline void early_init_dt_check_for_initrd(unsigned long node)
651 {
652 }
653 #endif /* CONFIG_BLK_DEV_INITRD */
654
655 /**
656 * early_init_dt_scan_root - fetch the top level address and size cells
657 */
658 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
659 int depth, void *data)
660 {
661 __be32 *prop;
662
663 if (depth != 0)
664 return 0;
665
666 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
667 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
668
669 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
670 if (prop)
671 dt_root_size_cells = be32_to_cpup(prop);
672 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
673
674 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
675 if (prop)
676 dt_root_addr_cells = be32_to_cpup(prop);
677 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
678
679 /* break now */
680 return 1;
681 }
682
683 u64 __init dt_mem_next_cell(int s, __be32 **cellp)
684 {
685 __be32 *p = *cellp;
686
687 *cellp = p + s;
688 return of_read_number(p, s);
689 }
690
691 /**
692 * early_init_dt_scan_memory - Look for an parse memory nodes
693 */
694 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
695 int depth, void *data)
696 {
697 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
698 __be32 *reg, *endp;
699 unsigned long l;
700
701 /* We are scanning "memory" nodes only */
702 if (type == NULL) {
703 /*
704 * The longtrail doesn't have a device_type on the
705 * /memory node, so look for the node called /memory@0.
706 */
707 if (depth != 1 || strcmp(uname, "memory@0") != 0)
708 return 0;
709 } else if (strcmp(type, "memory") != 0)
710 return 0;
711
712 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
713 if (reg == NULL)
714 reg = of_get_flat_dt_prop(node, "reg", &l);
715 if (reg == NULL)
716 return 0;
717
718 endp = reg + (l / sizeof(__be32));
719
720 pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
721 uname, l, reg[0], reg[1], reg[2], reg[3]);
722
723 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
724 u64 base, size;
725
726 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
727 size = dt_mem_next_cell(dt_root_size_cells, &reg);
728
729 if (size == 0)
730 continue;
731 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
732 (unsigned long long)size);
733
734 early_init_dt_add_memory_arch(base, size);
735 }
736
737 return 0;
738 }
739
740 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
741 int depth, void *data)
742 {
743 unsigned long l;
744 char *p;
745
746 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
747
748 if (depth != 1 || !data ||
749 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
750 return 0;
751
752 early_init_dt_check_for_initrd(node);
753
754 /* Retrieve command line */
755 p = of_get_flat_dt_prop(node, "bootargs", &l);
756 if (p != NULL && l > 0)
757 strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
758
759 /*
760 * CONFIG_CMDLINE is meant to be a default in case nothing else
761 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
762 * is set in which case we override whatever was found earlier.
763 */
764 #ifdef CONFIG_CMDLINE
765 #ifndef CONFIG_CMDLINE_FORCE
766 if (!((char *)data)[0])
767 #endif
768 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
769 #endif /* CONFIG_CMDLINE */
770
771 pr_debug("Command line is: %s\n", (char*)data);
772
773 /* break now */
774 return 1;
775 }
776
777 #ifdef CONFIG_HAVE_MEMBLOCK
778 /*
779 * called from unflatten_device_tree() to bootstrap devicetree itself
780 * Architectures can override this definition if memblock isn't used
781 */
782 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
783 {
784 return __va(memblock_alloc(size, align));
785 }
786 #endif
787
788 bool __init early_init_dt_scan(void *params)
789 {
790 if (!params)
791 return false;
792
793 /* Setup flat device-tree pointer */
794 initial_boot_params = params;
795
796 /* check device tree validity */
797 if (be32_to_cpu(initial_boot_params->magic) != OF_DT_HEADER) {
798 initial_boot_params = NULL;
799 return false;
800 }
801
802 /* Retrieve various information from the /chosen node */
803 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
804
805 /* Initialize {size,address}-cells info */
806 of_scan_flat_dt(early_init_dt_scan_root, NULL);
807
808 /* Setup memory, calling early_init_dt_add_memory_arch */
809 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
810
811 return true;
812 }
813
814 /**
815 * unflatten_device_tree - create tree of device_nodes from flat blob
816 *
817 * unflattens the device-tree passed by the firmware, creating the
818 * tree of struct device_node. It also fills the "name" and "type"
819 * pointers of the nodes so the normal device-tree walking functions
820 * can be used.
821 */
822 void __init unflatten_device_tree(void)
823 {
824 __unflatten_device_tree(initial_boot_params, &of_allnodes,
825 early_init_dt_alloc_memory_arch);
826
827 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
828 of_alias_scan(early_init_dt_alloc_memory_arch);
829 }
830
831 /**
832 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
833 *
834 * Copies and unflattens the device-tree passed by the firmware, creating the
835 * tree of struct device_node. It also fills the "name" and "type"
836 * pointers of the nodes so the normal device-tree walking functions
837 * can be used. This should only be used when the FDT memory has not been
838 * reserved such is the case when the FDT is built-in to the kernel init
839 * section. If the FDT memory is reserved already then unflatten_device_tree
840 * should be used instead.
841 */
842 void __init unflatten_and_copy_device_tree(void)
843 {
844 int size = __be32_to_cpu(initial_boot_params->totalsize);
845 void *dt = early_init_dt_alloc_memory_arch(size,
846 __alignof__(struct boot_param_header));
847
848 if (dt) {
849 memcpy(dt, initial_boot_params, size);
850 initial_boot_params = dt;
851 }
852 unflatten_device_tree();
853 }
854
855 #endif /* CONFIG_OF_EARLY_FLATTREE */
856
857 /* Feed entire flattened device tree into the random pool */
858 static int __init add_fdt_randomness(void)
859 {
860 if (initial_boot_params)
861 add_device_randomness(initial_boot_params,
862 be32_to_cpu(initial_boot_params->totalsize));
863
864 return 0;
865 }
866 core_initcall(add_fdt_randomness);
This page took 0.047366 seconds and 4 git commands to generate.