Merge branch 'for-viro' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[deliverable/linux.git] / drivers / of / of_reserved_mem.c
1 /*
2 * Device tree based initialization code for reserved memory.
3 *
4 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com
7 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8 * Author: Josh Cartwright <joshc@codeaurora.org>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License or (at your optional) any later version of the license.
14 */
15
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 #include <linux/slab.h>
25
26 #define MAX_RESERVED_REGIONS 16
27 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
28 static int reserved_mem_count;
29
30 #if defined(CONFIG_HAVE_MEMBLOCK)
31 #include <linux/memblock.h>
32 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
33 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
34 phys_addr_t *res_base)
35 {
36 phys_addr_t base;
37 /*
38 * We use __memblock_alloc_base() because memblock_alloc_base()
39 * panic()s on allocation failure.
40 */
41 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
42 base = __memblock_alloc_base(size, align, end);
43 if (!base)
44 return -ENOMEM;
45
46 /*
47 * Check if the allocated region fits in to start..end window
48 */
49 if (base < start) {
50 memblock_free(base, size);
51 return -ENOMEM;
52 }
53
54 *res_base = base;
55 if (nomap)
56 return memblock_remove(base, size);
57 return 0;
58 }
59 #else
60 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
61 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
62 phys_addr_t *res_base)
63 {
64 pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
65 size, nomap ? " (nomap)" : "");
66 return -ENOSYS;
67 }
68 #endif
69
70 /**
71 * res_mem_save_node() - save fdt node for second pass initialization
72 */
73 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
74 phys_addr_t base, phys_addr_t size)
75 {
76 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
77
78 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
79 pr_err("Reserved memory: not enough space all defined regions.\n");
80 return;
81 }
82
83 rmem->fdt_node = node;
84 rmem->name = uname;
85 rmem->base = base;
86 rmem->size = size;
87
88 reserved_mem_count++;
89 return;
90 }
91
92 /**
93 * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
94 * and 'alloc-ranges' properties
95 */
96 static int __init __reserved_mem_alloc_size(unsigned long node,
97 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
98 {
99 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
100 phys_addr_t start = 0, end = 0;
101 phys_addr_t base = 0, align = 0, size;
102 int len;
103 const __be32 *prop;
104 int nomap;
105 int ret;
106
107 prop = of_get_flat_dt_prop(node, "size", &len);
108 if (!prop)
109 return -EINVAL;
110
111 if (len != dt_root_size_cells * sizeof(__be32)) {
112 pr_err("Reserved memory: invalid size property in '%s' node.\n",
113 uname);
114 return -EINVAL;
115 }
116 size = dt_mem_next_cell(dt_root_size_cells, &prop);
117
118 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
119
120 prop = of_get_flat_dt_prop(node, "alignment", &len);
121 if (prop) {
122 if (len != dt_root_addr_cells * sizeof(__be32)) {
123 pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
124 uname);
125 return -EINVAL;
126 }
127 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
128 }
129
130 /* Need adjust the alignment to satisfy the CMA requirement */
131 if (IS_ENABLED(CONFIG_CMA)
132 && of_flat_dt_is_compatible(node, "shared-dma-pool")
133 && of_get_flat_dt_prop(node, "reusable", NULL)
134 && !of_get_flat_dt_prop(node, "no-map", NULL)) {
135 unsigned long order =
136 max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
137
138 align = max(align, (phys_addr_t)PAGE_SIZE << order);
139 }
140
141 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
142 if (prop) {
143
144 if (len % t_len != 0) {
145 pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
146 uname);
147 return -EINVAL;
148 }
149
150 base = 0;
151
152 while (len > 0) {
153 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
154 end = start + dt_mem_next_cell(dt_root_size_cells,
155 &prop);
156
157 ret = early_init_dt_alloc_reserved_memory_arch(size,
158 align, start, end, nomap, &base);
159 if (ret == 0) {
160 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
161 uname, &base,
162 (unsigned long)size / SZ_1M);
163 break;
164 }
165 len -= t_len;
166 }
167
168 } else {
169 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
170 0, 0, nomap, &base);
171 if (ret == 0)
172 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
173 uname, &base, (unsigned long)size / SZ_1M);
174 }
175
176 if (base == 0) {
177 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
178 uname);
179 return -ENOMEM;
180 }
181
182 *res_base = base;
183 *res_size = size;
184
185 return 0;
186 }
187
188 static const struct of_device_id __rmem_of_table_sentinel
189 __used __section(__reservedmem_of_table_end);
190
191 /**
192 * res_mem_init_node() - call region specific reserved memory init code
193 */
194 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
195 {
196 extern const struct of_device_id __reservedmem_of_table[];
197 const struct of_device_id *i;
198
199 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
200 reservedmem_of_init_fn initfn = i->data;
201 const char *compat = i->compatible;
202
203 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
204 continue;
205
206 if (initfn(rmem) == 0) {
207 pr_info("Reserved memory: initialized node %s, compatible id %s\n",
208 rmem->name, compat);
209 return 0;
210 }
211 }
212 return -ENOENT;
213 }
214
215 static int __init __rmem_cmp(const void *a, const void *b)
216 {
217 const struct reserved_mem *ra = a, *rb = b;
218
219 if (ra->base < rb->base)
220 return -1;
221
222 if (ra->base > rb->base)
223 return 1;
224
225 return 0;
226 }
227
228 static void __init __rmem_check_for_overlap(void)
229 {
230 int i;
231
232 if (reserved_mem_count < 2)
233 return;
234
235 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
236 __rmem_cmp, NULL);
237 for (i = 0; i < reserved_mem_count - 1; i++) {
238 struct reserved_mem *this, *next;
239
240 this = &reserved_mem[i];
241 next = &reserved_mem[i + 1];
242 if (!(this->base && next->base))
243 continue;
244 if (this->base + this->size > next->base) {
245 phys_addr_t this_end, next_end;
246
247 this_end = this->base + this->size;
248 next_end = next->base + next->size;
249 pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
250 this->name, &this->base, &this_end,
251 next->name, &next->base, &next_end);
252 }
253 }
254 }
255
256 /**
257 * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
258 */
259 void __init fdt_init_reserved_mem(void)
260 {
261 int i;
262
263 /* check for overlapping reserved regions */
264 __rmem_check_for_overlap();
265
266 for (i = 0; i < reserved_mem_count; i++) {
267 struct reserved_mem *rmem = &reserved_mem[i];
268 unsigned long node = rmem->fdt_node;
269 int len;
270 const __be32 *prop;
271 int err = 0;
272
273 prop = of_get_flat_dt_prop(node, "phandle", &len);
274 if (!prop)
275 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
276 if (prop)
277 rmem->phandle = of_read_number(prop, len/4);
278
279 if (rmem->size == 0)
280 err = __reserved_mem_alloc_size(node, rmem->name,
281 &rmem->base, &rmem->size);
282 if (err == 0)
283 __reserved_mem_init_node(rmem);
284 }
285 }
286
287 static inline struct reserved_mem *__find_rmem(struct device_node *node)
288 {
289 unsigned int i;
290
291 if (!node->phandle)
292 return NULL;
293
294 for (i = 0; i < reserved_mem_count; i++)
295 if (reserved_mem[i].phandle == node->phandle)
296 return &reserved_mem[i];
297 return NULL;
298 }
299
300 struct rmem_assigned_device {
301 struct device *dev;
302 struct reserved_mem *rmem;
303 struct list_head list;
304 };
305
306 static LIST_HEAD(of_rmem_assigned_device_list);
307 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
308
309 /**
310 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
311 * given device
312 * @dev: Pointer to the device to configure
313 * @np: Pointer to the device_node with 'reserved-memory' property
314 * @idx: Index of selected region
315 *
316 * This function assigns respective DMA-mapping operations based on reserved
317 * memory region specified by 'memory-region' property in @np node to the @dev
318 * device. When driver needs to use more than one reserved memory region, it
319 * should allocate child devices and initialize regions by name for each of
320 * child device.
321 *
322 * Returns error code or zero on success.
323 */
324 int of_reserved_mem_device_init_by_idx(struct device *dev,
325 struct device_node *np, int idx)
326 {
327 struct rmem_assigned_device *rd;
328 struct device_node *target;
329 struct reserved_mem *rmem;
330 int ret;
331
332 if (!np || !dev)
333 return -EINVAL;
334
335 target = of_parse_phandle(np, "memory-region", idx);
336 if (!target)
337 return -ENODEV;
338
339 rmem = __find_rmem(target);
340 of_node_put(target);
341
342 if (!rmem || !rmem->ops || !rmem->ops->device_init)
343 return -EINVAL;
344
345 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
346 if (!rd)
347 return -ENOMEM;
348
349 ret = rmem->ops->device_init(rmem, dev);
350 if (ret == 0) {
351 rd->dev = dev;
352 rd->rmem = rmem;
353
354 mutex_lock(&of_rmem_assigned_device_mutex);
355 list_add(&rd->list, &of_rmem_assigned_device_list);
356 mutex_unlock(&of_rmem_assigned_device_mutex);
357
358 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
359 } else {
360 kfree(rd);
361 }
362
363 return ret;
364 }
365 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
366
367 /**
368 * of_reserved_mem_device_release() - release reserved memory device structures
369 * @dev: Pointer to the device to deconfigure
370 *
371 * This function releases structures allocated for memory region handling for
372 * the given device.
373 */
374 void of_reserved_mem_device_release(struct device *dev)
375 {
376 struct rmem_assigned_device *rd;
377 struct reserved_mem *rmem = NULL;
378
379 mutex_lock(&of_rmem_assigned_device_mutex);
380 list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
381 if (rd->dev == dev) {
382 rmem = rd->rmem;
383 list_del(&rd->list);
384 kfree(rd);
385 break;
386 }
387 }
388 mutex_unlock(&of_rmem_assigned_device_mutex);
389
390 if (!rmem || !rmem->ops || !rmem->ops->device_release)
391 return;
392
393 rmem->ops->device_release(rmem, dev);
394 }
395 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
This page took 0.045494 seconds and 6 git commands to generate.