ASoC: TWL4030: Add functionalty to reset the registers
[deliverable/linux.git] / drivers / oprofile / cpu_buffer.c
1 /**
2 * @file cpu_buffer.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf <barry.kasindorf@amd.com>
9 * @author Robert Richter <robert.richter@amd.com>
10 *
11 * Each CPU has a local buffer that stores PC value/event
12 * pairs. We also log context switches when we notice them.
13 * Eventually each CPU's buffer is processed into the global
14 * event buffer by sync_buffer().
15 *
16 * We use a local buffer for two reasons: an NMI or similar
17 * interrupt cannot synchronise, and high sampling rates
18 * would lead to catastrophic global synchronisation if
19 * a global buffer was used.
20 */
21
22 #include <linux/sched.h>
23 #include <linux/oprofile.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 #define OP_BUFFER_FLAGS 0
32
33 /*
34 * Read and write access is using spin locking. Thus, writing to the
35 * buffer by NMI handler (x86) could occur also during critical
36 * sections when reading the buffer. To avoid this, there are 2
37 * buffers for independent read and write access. Read access is in
38 * process context only, write access only in the NMI handler. If the
39 * read buffer runs empty, both buffers are swapped atomically. There
40 * is potentially a small window during swapping where the buffers are
41 * disabled and samples could be lost.
42 *
43 * Using 2 buffers is a little bit overhead, but the solution is clear
44 * and does not require changes in the ring buffer implementation. It
45 * can be changed to a single buffer solution when the ring buffer
46 * access is implemented as non-locking atomic code.
47 */
48 static struct ring_buffer *op_ring_buffer_read;
49 static struct ring_buffer *op_ring_buffer_write;
50 DEFINE_PER_CPU(struct oprofile_cpu_buffer, op_cpu_buffer);
51
52 static void wq_sync_buffer(struct work_struct *work);
53
54 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
55 static int work_enabled;
56
57 unsigned long oprofile_get_cpu_buffer_size(void)
58 {
59 return oprofile_cpu_buffer_size;
60 }
61
62 void oprofile_cpu_buffer_inc_smpl_lost(void)
63 {
64 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
65
66 cpu_buf->sample_lost_overflow++;
67 }
68
69 void free_cpu_buffers(void)
70 {
71 if (op_ring_buffer_read)
72 ring_buffer_free(op_ring_buffer_read);
73 op_ring_buffer_read = NULL;
74 if (op_ring_buffer_write)
75 ring_buffer_free(op_ring_buffer_write);
76 op_ring_buffer_write = NULL;
77 }
78
79 #define RB_EVENT_HDR_SIZE 4
80
81 int alloc_cpu_buffers(void)
82 {
83 int i;
84
85 unsigned long buffer_size = oprofile_cpu_buffer_size;
86 unsigned long byte_size = buffer_size * (sizeof(struct op_sample) +
87 RB_EVENT_HDR_SIZE);
88
89 op_ring_buffer_read = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
90 if (!op_ring_buffer_read)
91 goto fail;
92 op_ring_buffer_write = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
93 if (!op_ring_buffer_write)
94 goto fail;
95
96 for_each_possible_cpu(i) {
97 struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
98
99 b->last_task = NULL;
100 b->last_is_kernel = -1;
101 b->tracing = 0;
102 b->buffer_size = buffer_size;
103 b->sample_received = 0;
104 b->sample_lost_overflow = 0;
105 b->backtrace_aborted = 0;
106 b->sample_invalid_eip = 0;
107 b->cpu = i;
108 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
109 }
110 return 0;
111
112 fail:
113 free_cpu_buffers();
114 return -ENOMEM;
115 }
116
117 void start_cpu_work(void)
118 {
119 int i;
120
121 work_enabled = 1;
122
123 for_each_online_cpu(i) {
124 struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
125
126 /*
127 * Spread the work by 1 jiffy per cpu so they dont all
128 * fire at once.
129 */
130 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
131 }
132 }
133
134 void end_cpu_work(void)
135 {
136 int i;
137
138 work_enabled = 0;
139
140 for_each_online_cpu(i) {
141 struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
142
143 cancel_delayed_work(&b->work);
144 }
145
146 flush_scheduled_work();
147 }
148
149 /*
150 * This function prepares the cpu buffer to write a sample.
151 *
152 * Struct op_entry is used during operations on the ring buffer while
153 * struct op_sample contains the data that is stored in the ring
154 * buffer. Struct entry can be uninitialized. The function reserves a
155 * data array that is specified by size. Use
156 * op_cpu_buffer_write_commit() after preparing the sample. In case of
157 * errors a null pointer is returned, otherwise the pointer to the
158 * sample.
159 *
160 */
161 struct op_sample
162 *op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
163 {
164 entry->event = ring_buffer_lock_reserve
165 (op_ring_buffer_write, sizeof(struct op_sample) +
166 size * sizeof(entry->sample->data[0]));
167 if (entry->event)
168 entry->sample = ring_buffer_event_data(entry->event);
169 else
170 entry->sample = NULL;
171
172 if (!entry->sample)
173 return NULL;
174
175 entry->size = size;
176 entry->data = entry->sample->data;
177
178 return entry->sample;
179 }
180
181 int op_cpu_buffer_write_commit(struct op_entry *entry)
182 {
183 return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event);
184 }
185
186 struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
187 {
188 struct ring_buffer_event *e;
189 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
190 if (e)
191 goto event;
192 if (ring_buffer_swap_cpu(op_ring_buffer_read,
193 op_ring_buffer_write,
194 cpu))
195 return NULL;
196 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
197 if (e)
198 goto event;
199 return NULL;
200
201 event:
202 entry->event = e;
203 entry->sample = ring_buffer_event_data(e);
204 entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
205 / sizeof(entry->sample->data[0]);
206 entry->data = entry->sample->data;
207 return entry->sample;
208 }
209
210 unsigned long op_cpu_buffer_entries(int cpu)
211 {
212 return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
213 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
214 }
215
216 static int
217 op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
218 int is_kernel, struct task_struct *task)
219 {
220 struct op_entry entry;
221 struct op_sample *sample;
222 unsigned long flags;
223 int size;
224
225 flags = 0;
226
227 if (backtrace)
228 flags |= TRACE_BEGIN;
229
230 /* notice a switch from user->kernel or vice versa */
231 is_kernel = !!is_kernel;
232 if (cpu_buf->last_is_kernel != is_kernel) {
233 cpu_buf->last_is_kernel = is_kernel;
234 flags |= KERNEL_CTX_SWITCH;
235 if (is_kernel)
236 flags |= IS_KERNEL;
237 }
238
239 /* notice a task switch */
240 if (cpu_buf->last_task != task) {
241 cpu_buf->last_task = task;
242 flags |= USER_CTX_SWITCH;
243 }
244
245 if (!flags)
246 /* nothing to do */
247 return 0;
248
249 if (flags & USER_CTX_SWITCH)
250 size = 1;
251 else
252 size = 0;
253
254 sample = op_cpu_buffer_write_reserve(&entry, size);
255 if (!sample)
256 return -ENOMEM;
257
258 sample->eip = ESCAPE_CODE;
259 sample->event = flags;
260
261 if (size)
262 op_cpu_buffer_add_data(&entry, (unsigned long)task);
263
264 op_cpu_buffer_write_commit(&entry);
265
266 return 0;
267 }
268
269 static inline int
270 op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
271 unsigned long pc, unsigned long event)
272 {
273 struct op_entry entry;
274 struct op_sample *sample;
275
276 sample = op_cpu_buffer_write_reserve(&entry, 0);
277 if (!sample)
278 return -ENOMEM;
279
280 sample->eip = pc;
281 sample->event = event;
282
283 return op_cpu_buffer_write_commit(&entry);
284 }
285
286 /*
287 * This must be safe from any context.
288 *
289 * is_kernel is needed because on some architectures you cannot
290 * tell if you are in kernel or user space simply by looking at
291 * pc. We tag this in the buffer by generating kernel enter/exit
292 * events whenever is_kernel changes
293 */
294 static int
295 log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
296 unsigned long backtrace, int is_kernel, unsigned long event)
297 {
298 cpu_buf->sample_received++;
299
300 if (pc == ESCAPE_CODE) {
301 cpu_buf->sample_invalid_eip++;
302 return 0;
303 }
304
305 if (op_add_code(cpu_buf, backtrace, is_kernel, current))
306 goto fail;
307
308 if (op_add_sample(cpu_buf, pc, event))
309 goto fail;
310
311 return 1;
312
313 fail:
314 cpu_buf->sample_lost_overflow++;
315 return 0;
316 }
317
318 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
319 {
320 cpu_buf->tracing = 1;
321 }
322
323 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
324 {
325 cpu_buf->tracing = 0;
326 }
327
328 static inline void
329 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
330 unsigned long event, int is_kernel)
331 {
332 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
333 unsigned long backtrace = oprofile_backtrace_depth;
334
335 /*
336 * if log_sample() fail we can't backtrace since we lost the
337 * source of this event
338 */
339 if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
340 /* failed */
341 return;
342
343 if (!backtrace)
344 return;
345
346 oprofile_begin_trace(cpu_buf);
347 oprofile_ops.backtrace(regs, backtrace);
348 oprofile_end_trace(cpu_buf);
349 }
350
351 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
352 unsigned long event, int is_kernel)
353 {
354 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
355 }
356
357 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
358 {
359 int is_kernel = !user_mode(regs);
360 unsigned long pc = profile_pc(regs);
361
362 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
363 }
364
365 /*
366 * Add samples with data to the ring buffer.
367 *
368 * Use oprofile_add_data(&entry, val) to add data and
369 * oprofile_write_commit(&entry) to commit the sample.
370 */
371 void
372 oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
373 unsigned long pc, int code, int size)
374 {
375 struct op_sample *sample;
376 int is_kernel = !user_mode(regs);
377 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
378
379 cpu_buf->sample_received++;
380
381 /* no backtraces for samples with data */
382 if (op_add_code(cpu_buf, 0, is_kernel, current))
383 goto fail;
384
385 sample = op_cpu_buffer_write_reserve(entry, size + 2);
386 if (!sample)
387 goto fail;
388 sample->eip = ESCAPE_CODE;
389 sample->event = 0; /* no flags */
390
391 op_cpu_buffer_add_data(entry, code);
392 op_cpu_buffer_add_data(entry, pc);
393
394 return;
395
396 fail:
397 entry->event = NULL;
398 cpu_buf->sample_lost_overflow++;
399 }
400
401 int oprofile_add_data(struct op_entry *entry, unsigned long val)
402 {
403 if (!entry->event)
404 return 0;
405 return op_cpu_buffer_add_data(entry, val);
406 }
407
408 int oprofile_add_data64(struct op_entry *entry, u64 val)
409 {
410 if (!entry->event)
411 return 0;
412 if (op_cpu_buffer_get_size(entry) < 2)
413 /*
414 * the function returns 0 to indicate a too small
415 * buffer, even if there is some space left
416 */
417 return 0;
418 if (!op_cpu_buffer_add_data(entry, (u32)val))
419 return 0;
420 return op_cpu_buffer_add_data(entry, (u32)(val >> 32));
421 }
422
423 int oprofile_write_commit(struct op_entry *entry)
424 {
425 if (!entry->event)
426 return -EINVAL;
427 return op_cpu_buffer_write_commit(entry);
428 }
429
430 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
431 {
432 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
433 log_sample(cpu_buf, pc, 0, is_kernel, event);
434 }
435
436 void oprofile_add_trace(unsigned long pc)
437 {
438 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
439
440 if (!cpu_buf->tracing)
441 return;
442
443 /*
444 * broken frame can give an eip with the same value as an
445 * escape code, abort the trace if we get it
446 */
447 if (pc == ESCAPE_CODE)
448 goto fail;
449
450 if (op_add_sample(cpu_buf, pc, 0))
451 goto fail;
452
453 return;
454 fail:
455 cpu_buf->tracing = 0;
456 cpu_buf->backtrace_aborted++;
457 return;
458 }
459
460 /*
461 * This serves to avoid cpu buffer overflow, and makes sure
462 * the task mortuary progresses
463 *
464 * By using schedule_delayed_work_on and then schedule_delayed_work
465 * we guarantee this will stay on the correct cpu
466 */
467 static void wq_sync_buffer(struct work_struct *work)
468 {
469 struct oprofile_cpu_buffer *b =
470 container_of(work, struct oprofile_cpu_buffer, work.work);
471 if (b->cpu != smp_processor_id()) {
472 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
473 smp_processor_id(), b->cpu);
474
475 if (!cpu_online(b->cpu)) {
476 cancel_delayed_work(&b->work);
477 return;
478 }
479 }
480 sync_buffer(b->cpu);
481
482 /* don't re-add the work if we're shutting down */
483 if (work_enabled)
484 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
485 }
This page took 0.054704 seconds and 5 git commands to generate.