x86, x2apic: fix lock ordering during IRQ migration
[deliverable/linux.git] / drivers / pci / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34
35 #undef PREFIX
36 #define PREFIX "DMAR:"
37
38 /* No locks are needed as DMA remapping hardware unit
39 * list is constructed at boot time and hotplug of
40 * these units are not supported by the architecture.
41 */
42 LIST_HEAD(dmar_drhd_units);
43
44 static struct acpi_table_header * __initdata dmar_tbl;
45 static acpi_size dmar_tbl_size;
46
47 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
48 {
49 /*
50 * add INCLUDE_ALL at the tail, so scan the list will find it at
51 * the very end.
52 */
53 if (drhd->include_all)
54 list_add_tail(&drhd->list, &dmar_drhd_units);
55 else
56 list_add(&drhd->list, &dmar_drhd_units);
57 }
58
59 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
60 struct pci_dev **dev, u16 segment)
61 {
62 struct pci_bus *bus;
63 struct pci_dev *pdev = NULL;
64 struct acpi_dmar_pci_path *path;
65 int count;
66
67 bus = pci_find_bus(segment, scope->bus);
68 path = (struct acpi_dmar_pci_path *)(scope + 1);
69 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
70 / sizeof(struct acpi_dmar_pci_path);
71
72 while (count) {
73 if (pdev)
74 pci_dev_put(pdev);
75 /*
76 * Some BIOSes list non-exist devices in DMAR table, just
77 * ignore it
78 */
79 if (!bus) {
80 printk(KERN_WARNING
81 PREFIX "Device scope bus [%d] not found\n",
82 scope->bus);
83 break;
84 }
85 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
86 if (!pdev) {
87 printk(KERN_WARNING PREFIX
88 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
89 segment, bus->number, path->dev, path->fn);
90 break;
91 }
92 path ++;
93 count --;
94 bus = pdev->subordinate;
95 }
96 if (!pdev) {
97 printk(KERN_WARNING PREFIX
98 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
99 segment, scope->bus, path->dev, path->fn);
100 *dev = NULL;
101 return 0;
102 }
103 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
104 pdev->subordinate) || (scope->entry_type == \
105 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
106 pci_dev_put(pdev);
107 printk(KERN_WARNING PREFIX
108 "Device scope type does not match for %s\n",
109 pci_name(pdev));
110 return -EINVAL;
111 }
112 *dev = pdev;
113 return 0;
114 }
115
116 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
117 struct pci_dev ***devices, u16 segment)
118 {
119 struct acpi_dmar_device_scope *scope;
120 void * tmp = start;
121 int index;
122 int ret;
123
124 *cnt = 0;
125 while (start < end) {
126 scope = start;
127 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
128 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
129 (*cnt)++;
130 else
131 printk(KERN_WARNING PREFIX
132 "Unsupported device scope\n");
133 start += scope->length;
134 }
135 if (*cnt == 0)
136 return 0;
137
138 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
139 if (!*devices)
140 return -ENOMEM;
141
142 start = tmp;
143 index = 0;
144 while (start < end) {
145 scope = start;
146 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
147 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
148 ret = dmar_parse_one_dev_scope(scope,
149 &(*devices)[index], segment);
150 if (ret) {
151 kfree(*devices);
152 return ret;
153 }
154 index ++;
155 }
156 start += scope->length;
157 }
158
159 return 0;
160 }
161
162 /**
163 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
164 * structure which uniquely represent one DMA remapping hardware unit
165 * present in the platform
166 */
167 static int __init
168 dmar_parse_one_drhd(struct acpi_dmar_header *header)
169 {
170 struct acpi_dmar_hardware_unit *drhd;
171 struct dmar_drhd_unit *dmaru;
172 int ret = 0;
173
174 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
175 if (!dmaru)
176 return -ENOMEM;
177
178 dmaru->hdr = header;
179 drhd = (struct acpi_dmar_hardware_unit *)header;
180 dmaru->reg_base_addr = drhd->address;
181 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
182
183 ret = alloc_iommu(dmaru);
184 if (ret) {
185 kfree(dmaru);
186 return ret;
187 }
188 dmar_register_drhd_unit(dmaru);
189 return 0;
190 }
191
192 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
193 {
194 struct acpi_dmar_hardware_unit *drhd;
195 int ret = 0;
196
197 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
198
199 if (dmaru->include_all)
200 return 0;
201
202 ret = dmar_parse_dev_scope((void *)(drhd + 1),
203 ((void *)drhd) + drhd->header.length,
204 &dmaru->devices_cnt, &dmaru->devices,
205 drhd->segment);
206 if (ret) {
207 list_del(&dmaru->list);
208 kfree(dmaru);
209 }
210 return ret;
211 }
212
213 #ifdef CONFIG_DMAR
214 LIST_HEAD(dmar_rmrr_units);
215
216 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
217 {
218 list_add(&rmrr->list, &dmar_rmrr_units);
219 }
220
221
222 static int __init
223 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
224 {
225 struct acpi_dmar_reserved_memory *rmrr;
226 struct dmar_rmrr_unit *rmrru;
227
228 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
229 if (!rmrru)
230 return -ENOMEM;
231
232 rmrru->hdr = header;
233 rmrr = (struct acpi_dmar_reserved_memory *)header;
234 rmrru->base_address = rmrr->base_address;
235 rmrru->end_address = rmrr->end_address;
236
237 dmar_register_rmrr_unit(rmrru);
238 return 0;
239 }
240
241 static int __init
242 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
243 {
244 struct acpi_dmar_reserved_memory *rmrr;
245 int ret;
246
247 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
248 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
249 ((void *)rmrr) + rmrr->header.length,
250 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
251
252 if (ret || (rmrru->devices_cnt == 0)) {
253 list_del(&rmrru->list);
254 kfree(rmrru);
255 }
256 return ret;
257 }
258 #endif
259
260 static void __init
261 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
262 {
263 struct acpi_dmar_hardware_unit *drhd;
264 struct acpi_dmar_reserved_memory *rmrr;
265
266 switch (header->type) {
267 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
268 drhd = (struct acpi_dmar_hardware_unit *)header;
269 printk (KERN_INFO PREFIX
270 "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
271 drhd->flags, (unsigned long long)drhd->address);
272 break;
273 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
274 rmrr = (struct acpi_dmar_reserved_memory *)header;
275
276 printk (KERN_INFO PREFIX
277 "RMRR base: 0x%016Lx end: 0x%016Lx\n",
278 (unsigned long long)rmrr->base_address,
279 (unsigned long long)rmrr->end_address);
280 break;
281 }
282 }
283
284 /**
285 * dmar_table_detect - checks to see if the platform supports DMAR devices
286 */
287 static int __init dmar_table_detect(void)
288 {
289 acpi_status status = AE_OK;
290
291 /* if we could find DMAR table, then there are DMAR devices */
292 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
293 (struct acpi_table_header **)&dmar_tbl,
294 &dmar_tbl_size);
295
296 if (ACPI_SUCCESS(status) && !dmar_tbl) {
297 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
298 status = AE_NOT_FOUND;
299 }
300
301 return (ACPI_SUCCESS(status) ? 1 : 0);
302 }
303
304 /**
305 * parse_dmar_table - parses the DMA reporting table
306 */
307 static int __init
308 parse_dmar_table(void)
309 {
310 struct acpi_table_dmar *dmar;
311 struct acpi_dmar_header *entry_header;
312 int ret = 0;
313
314 /*
315 * Do it again, earlier dmar_tbl mapping could be mapped with
316 * fixed map.
317 */
318 dmar_table_detect();
319
320 dmar = (struct acpi_table_dmar *)dmar_tbl;
321 if (!dmar)
322 return -ENODEV;
323
324 if (dmar->width < PAGE_SHIFT - 1) {
325 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
326 return -EINVAL;
327 }
328
329 printk (KERN_INFO PREFIX "Host address width %d\n",
330 dmar->width + 1);
331
332 entry_header = (struct acpi_dmar_header *)(dmar + 1);
333 while (((unsigned long)entry_header) <
334 (((unsigned long)dmar) + dmar_tbl->length)) {
335 /* Avoid looping forever on bad ACPI tables */
336 if (entry_header->length == 0) {
337 printk(KERN_WARNING PREFIX
338 "Invalid 0-length structure\n");
339 ret = -EINVAL;
340 break;
341 }
342
343 dmar_table_print_dmar_entry(entry_header);
344
345 switch (entry_header->type) {
346 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
347 ret = dmar_parse_one_drhd(entry_header);
348 break;
349 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
350 #ifdef CONFIG_DMAR
351 ret = dmar_parse_one_rmrr(entry_header);
352 #endif
353 break;
354 default:
355 printk(KERN_WARNING PREFIX
356 "Unknown DMAR structure type\n");
357 ret = 0; /* for forward compatibility */
358 break;
359 }
360 if (ret)
361 break;
362
363 entry_header = ((void *)entry_header + entry_header->length);
364 }
365 return ret;
366 }
367
368 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
369 struct pci_dev *dev)
370 {
371 int index;
372
373 while (dev) {
374 for (index = 0; index < cnt; index++)
375 if (dev == devices[index])
376 return 1;
377
378 /* Check our parent */
379 dev = dev->bus->self;
380 }
381
382 return 0;
383 }
384
385 struct dmar_drhd_unit *
386 dmar_find_matched_drhd_unit(struct pci_dev *dev)
387 {
388 struct dmar_drhd_unit *dmaru = NULL;
389 struct acpi_dmar_hardware_unit *drhd;
390
391 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
392 drhd = container_of(dmaru->hdr,
393 struct acpi_dmar_hardware_unit,
394 header);
395
396 if (dmaru->include_all &&
397 drhd->segment == pci_domain_nr(dev->bus))
398 return dmaru;
399
400 if (dmar_pci_device_match(dmaru->devices,
401 dmaru->devices_cnt, dev))
402 return dmaru;
403 }
404
405 return NULL;
406 }
407
408 int __init dmar_dev_scope_init(void)
409 {
410 struct dmar_drhd_unit *drhd, *drhd_n;
411 int ret = -ENODEV;
412
413 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
414 ret = dmar_parse_dev(drhd);
415 if (ret)
416 return ret;
417 }
418
419 #ifdef CONFIG_DMAR
420 {
421 struct dmar_rmrr_unit *rmrr, *rmrr_n;
422 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
423 ret = rmrr_parse_dev(rmrr);
424 if (ret)
425 return ret;
426 }
427 }
428 #endif
429
430 return ret;
431 }
432
433
434 int __init dmar_table_init(void)
435 {
436 static int dmar_table_initialized;
437 int ret;
438
439 if (dmar_table_initialized)
440 return 0;
441
442 dmar_table_initialized = 1;
443
444 ret = parse_dmar_table();
445 if (ret) {
446 if (ret != -ENODEV)
447 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
448 return ret;
449 }
450
451 if (list_empty(&dmar_drhd_units)) {
452 printk(KERN_INFO PREFIX "No DMAR devices found\n");
453 return -ENODEV;
454 }
455
456 #ifdef CONFIG_DMAR
457 if (list_empty(&dmar_rmrr_units))
458 printk(KERN_INFO PREFIX "No RMRR found\n");
459 #endif
460
461 #ifdef CONFIG_INTR_REMAP
462 parse_ioapics_under_ir();
463 #endif
464 return 0;
465 }
466
467 void __init detect_intel_iommu(void)
468 {
469 int ret;
470
471 ret = dmar_table_detect();
472
473 {
474 #ifdef CONFIG_INTR_REMAP
475 struct acpi_table_dmar *dmar;
476 /*
477 * for now we will disable dma-remapping when interrupt
478 * remapping is enabled.
479 * When support for queued invalidation for IOTLB invalidation
480 * is added, we will not need this any more.
481 */
482 dmar = (struct acpi_table_dmar *) dmar_tbl;
483 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
484 printk(KERN_INFO
485 "Queued invalidation will be enabled to support "
486 "x2apic and Intr-remapping.\n");
487 #endif
488 #ifdef CONFIG_DMAR
489 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
490 !dmar_disabled)
491 iommu_detected = 1;
492 #endif
493 }
494 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
495 dmar_tbl = NULL;
496 }
497
498
499 int alloc_iommu(struct dmar_drhd_unit *drhd)
500 {
501 struct intel_iommu *iommu;
502 int map_size;
503 u32 ver;
504 static int iommu_allocated = 0;
505 int agaw = 0;
506
507 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
508 if (!iommu)
509 return -ENOMEM;
510
511 iommu->seq_id = iommu_allocated++;
512
513 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
514 if (!iommu->reg) {
515 printk(KERN_ERR "IOMMU: can't map the region\n");
516 goto error;
517 }
518 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
519 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
520
521 #ifdef CONFIG_DMAR
522 agaw = iommu_calculate_agaw(iommu);
523 if (agaw < 0) {
524 printk(KERN_ERR
525 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
526 iommu->seq_id);
527 goto error;
528 }
529 #endif
530 iommu->agaw = agaw;
531
532 /* the registers might be more than one page */
533 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
534 cap_max_fault_reg_offset(iommu->cap));
535 map_size = VTD_PAGE_ALIGN(map_size);
536 if (map_size > VTD_PAGE_SIZE) {
537 iounmap(iommu->reg);
538 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
539 if (!iommu->reg) {
540 printk(KERN_ERR "IOMMU: can't map the region\n");
541 goto error;
542 }
543 }
544
545 ver = readl(iommu->reg + DMAR_VER_REG);
546 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
547 (unsigned long long)drhd->reg_base_addr,
548 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
549 (unsigned long long)iommu->cap,
550 (unsigned long long)iommu->ecap);
551
552 spin_lock_init(&iommu->register_lock);
553
554 drhd->iommu = iommu;
555 return 0;
556 error:
557 kfree(iommu);
558 return -1;
559 }
560
561 void free_iommu(struct intel_iommu *iommu)
562 {
563 if (!iommu)
564 return;
565
566 #ifdef CONFIG_DMAR
567 free_dmar_iommu(iommu);
568 #endif
569
570 if (iommu->reg)
571 iounmap(iommu->reg);
572 kfree(iommu);
573 }
574
575 /*
576 * Reclaim all the submitted descriptors which have completed its work.
577 */
578 static inline void reclaim_free_desc(struct q_inval *qi)
579 {
580 while (qi->desc_status[qi->free_tail] == QI_DONE) {
581 qi->desc_status[qi->free_tail] = QI_FREE;
582 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
583 qi->free_cnt++;
584 }
585 }
586
587 static int qi_check_fault(struct intel_iommu *iommu, int index)
588 {
589 u32 fault;
590 int head;
591 struct q_inval *qi = iommu->qi;
592 int wait_index = (index + 1) % QI_LENGTH;
593
594 fault = readl(iommu->reg + DMAR_FSTS_REG);
595
596 /*
597 * If IQE happens, the head points to the descriptor associated
598 * with the error. No new descriptors are fetched until the IQE
599 * is cleared.
600 */
601 if (fault & DMA_FSTS_IQE) {
602 head = readl(iommu->reg + DMAR_IQH_REG);
603 if ((head >> 4) == index) {
604 memcpy(&qi->desc[index], &qi->desc[wait_index],
605 sizeof(struct qi_desc));
606 __iommu_flush_cache(iommu, &qi->desc[index],
607 sizeof(struct qi_desc));
608 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
609 return -EINVAL;
610 }
611 }
612
613 return 0;
614 }
615
616 /*
617 * Submit the queued invalidation descriptor to the remapping
618 * hardware unit and wait for its completion.
619 */
620 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
621 {
622 int rc = 0;
623 struct q_inval *qi = iommu->qi;
624 struct qi_desc *hw, wait_desc;
625 int wait_index, index;
626 unsigned long flags;
627
628 if (!qi)
629 return 0;
630
631 hw = qi->desc;
632
633 spin_lock_irqsave(&qi->q_lock, flags);
634 while (qi->free_cnt < 3) {
635 spin_unlock_irqrestore(&qi->q_lock, flags);
636 cpu_relax();
637 spin_lock_irqsave(&qi->q_lock, flags);
638 }
639
640 index = qi->free_head;
641 wait_index = (index + 1) % QI_LENGTH;
642
643 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
644
645 hw[index] = *desc;
646
647 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
648 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
649 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
650
651 hw[wait_index] = wait_desc;
652
653 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
654 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
655
656 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
657 qi->free_cnt -= 2;
658
659 /*
660 * update the HW tail register indicating the presence of
661 * new descriptors.
662 */
663 writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
664
665 while (qi->desc_status[wait_index] != QI_DONE) {
666 /*
667 * We will leave the interrupts disabled, to prevent interrupt
668 * context to queue another cmd while a cmd is already submitted
669 * and waiting for completion on this cpu. This is to avoid
670 * a deadlock where the interrupt context can wait indefinitely
671 * for free slots in the queue.
672 */
673 rc = qi_check_fault(iommu, index);
674 if (rc)
675 goto out;
676
677 spin_unlock(&qi->q_lock);
678 cpu_relax();
679 spin_lock(&qi->q_lock);
680 }
681 out:
682 qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
683
684 reclaim_free_desc(qi);
685 spin_unlock_irqrestore(&qi->q_lock, flags);
686
687 return rc;
688 }
689
690 /*
691 * Flush the global interrupt entry cache.
692 */
693 void qi_global_iec(struct intel_iommu *iommu)
694 {
695 struct qi_desc desc;
696
697 desc.low = QI_IEC_TYPE;
698 desc.high = 0;
699
700 /* should never fail */
701 qi_submit_sync(&desc, iommu);
702 }
703
704 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
705 u64 type, int non_present_entry_flush)
706 {
707 struct qi_desc desc;
708
709 if (non_present_entry_flush) {
710 if (!cap_caching_mode(iommu->cap))
711 return 1;
712 else
713 did = 0;
714 }
715
716 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
717 | QI_CC_GRAN(type) | QI_CC_TYPE;
718 desc.high = 0;
719
720 return qi_submit_sync(&desc, iommu);
721 }
722
723 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
724 unsigned int size_order, u64 type,
725 int non_present_entry_flush)
726 {
727 u8 dw = 0, dr = 0;
728
729 struct qi_desc desc;
730 int ih = 0;
731
732 if (non_present_entry_flush) {
733 if (!cap_caching_mode(iommu->cap))
734 return 1;
735 else
736 did = 0;
737 }
738
739 if (cap_write_drain(iommu->cap))
740 dw = 1;
741
742 if (cap_read_drain(iommu->cap))
743 dr = 1;
744
745 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
746 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
747 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
748 | QI_IOTLB_AM(size_order);
749
750 return qi_submit_sync(&desc, iommu);
751 }
752
753 /*
754 * Enable Queued Invalidation interface. This is a must to support
755 * interrupt-remapping. Also used by DMA-remapping, which replaces
756 * register based IOTLB invalidation.
757 */
758 int dmar_enable_qi(struct intel_iommu *iommu)
759 {
760 u32 cmd, sts;
761 unsigned long flags;
762 struct q_inval *qi;
763
764 if (!ecap_qis(iommu->ecap))
765 return -ENOENT;
766
767 /*
768 * queued invalidation is already setup and enabled.
769 */
770 if (iommu->qi)
771 return 0;
772
773 iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
774 if (!iommu->qi)
775 return -ENOMEM;
776
777 qi = iommu->qi;
778
779 qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
780 if (!qi->desc) {
781 kfree(qi);
782 iommu->qi = 0;
783 return -ENOMEM;
784 }
785
786 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
787 if (!qi->desc_status) {
788 free_page((unsigned long) qi->desc);
789 kfree(qi);
790 iommu->qi = 0;
791 return -ENOMEM;
792 }
793
794 qi->free_head = qi->free_tail = 0;
795 qi->free_cnt = QI_LENGTH;
796
797 spin_lock_init(&qi->q_lock);
798
799 spin_lock_irqsave(&iommu->register_lock, flags);
800 /* write zero to the tail reg */
801 writel(0, iommu->reg + DMAR_IQT_REG);
802
803 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
804
805 cmd = iommu->gcmd | DMA_GCMD_QIE;
806 iommu->gcmd |= DMA_GCMD_QIE;
807 writel(cmd, iommu->reg + DMAR_GCMD_REG);
808
809 /* Make sure hardware complete it */
810 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
811 spin_unlock_irqrestore(&iommu->register_lock, flags);
812
813 return 0;
814 }
This page took 0.057917 seconds and 6 git commands to generate.