PCI: generic,versatile: Remove unused pci_sys_data structures
[deliverable/linux.git] / drivers / pci / host / pci-tegra.c
1 /*
2 * PCIe host controller driver for Tegra SoCs
3 *
4 * Copyright (c) 2010, CompuLab, Ltd.
5 * Author: Mike Rapoport <mike@compulab.co.il>
6 *
7 * Based on NVIDIA PCIe driver
8 * Copyright (c) 2008-2009, NVIDIA Corporation.
9 *
10 * Bits taken from arch/arm/mach-dove/pcie.c
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
25 */
26
27 #include <linux/clk.h>
28 #include <linux/debugfs.h>
29 #include <linux/delay.h>
30 #include <linux/export.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/irqdomain.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/msi.h>
37 #include <linux/of_address.h>
38 #include <linux/of_pci.h>
39 #include <linux/of_platform.h>
40 #include <linux/pci.h>
41 #include <linux/phy/phy.h>
42 #include <linux/platform_device.h>
43 #include <linux/reset.h>
44 #include <linux/sizes.h>
45 #include <linux/slab.h>
46 #include <linux/vmalloc.h>
47 #include <linux/regulator/consumer.h>
48
49 #include <soc/tegra/cpuidle.h>
50 #include <soc/tegra/pmc.h>
51
52 #include <asm/mach/irq.h>
53 #include <asm/mach/map.h>
54 #include <asm/mach/pci.h>
55
56 #define INT_PCI_MSI_NR (8 * 32)
57
58 /* register definitions */
59
60 #define AFI_AXI_BAR0_SZ 0x00
61 #define AFI_AXI_BAR1_SZ 0x04
62 #define AFI_AXI_BAR2_SZ 0x08
63 #define AFI_AXI_BAR3_SZ 0x0c
64 #define AFI_AXI_BAR4_SZ 0x10
65 #define AFI_AXI_BAR5_SZ 0x14
66
67 #define AFI_AXI_BAR0_START 0x18
68 #define AFI_AXI_BAR1_START 0x1c
69 #define AFI_AXI_BAR2_START 0x20
70 #define AFI_AXI_BAR3_START 0x24
71 #define AFI_AXI_BAR4_START 0x28
72 #define AFI_AXI_BAR5_START 0x2c
73
74 #define AFI_FPCI_BAR0 0x30
75 #define AFI_FPCI_BAR1 0x34
76 #define AFI_FPCI_BAR2 0x38
77 #define AFI_FPCI_BAR3 0x3c
78 #define AFI_FPCI_BAR4 0x40
79 #define AFI_FPCI_BAR5 0x44
80
81 #define AFI_CACHE_BAR0_SZ 0x48
82 #define AFI_CACHE_BAR0_ST 0x4c
83 #define AFI_CACHE_BAR1_SZ 0x50
84 #define AFI_CACHE_BAR1_ST 0x54
85
86 #define AFI_MSI_BAR_SZ 0x60
87 #define AFI_MSI_FPCI_BAR_ST 0x64
88 #define AFI_MSI_AXI_BAR_ST 0x68
89
90 #define AFI_MSI_VEC0 0x6c
91 #define AFI_MSI_VEC1 0x70
92 #define AFI_MSI_VEC2 0x74
93 #define AFI_MSI_VEC3 0x78
94 #define AFI_MSI_VEC4 0x7c
95 #define AFI_MSI_VEC5 0x80
96 #define AFI_MSI_VEC6 0x84
97 #define AFI_MSI_VEC7 0x88
98
99 #define AFI_MSI_EN_VEC0 0x8c
100 #define AFI_MSI_EN_VEC1 0x90
101 #define AFI_MSI_EN_VEC2 0x94
102 #define AFI_MSI_EN_VEC3 0x98
103 #define AFI_MSI_EN_VEC4 0x9c
104 #define AFI_MSI_EN_VEC5 0xa0
105 #define AFI_MSI_EN_VEC6 0xa4
106 #define AFI_MSI_EN_VEC7 0xa8
107
108 #define AFI_CONFIGURATION 0xac
109 #define AFI_CONFIGURATION_EN_FPCI (1 << 0)
110
111 #define AFI_FPCI_ERROR_MASKS 0xb0
112
113 #define AFI_INTR_MASK 0xb4
114 #define AFI_INTR_MASK_INT_MASK (1 << 0)
115 #define AFI_INTR_MASK_MSI_MASK (1 << 8)
116
117 #define AFI_INTR_CODE 0xb8
118 #define AFI_INTR_CODE_MASK 0xf
119 #define AFI_INTR_INI_SLAVE_ERROR 1
120 #define AFI_INTR_INI_DECODE_ERROR 2
121 #define AFI_INTR_TARGET_ABORT 3
122 #define AFI_INTR_MASTER_ABORT 4
123 #define AFI_INTR_INVALID_WRITE 5
124 #define AFI_INTR_LEGACY 6
125 #define AFI_INTR_FPCI_DECODE_ERROR 7
126 #define AFI_INTR_AXI_DECODE_ERROR 8
127 #define AFI_INTR_FPCI_TIMEOUT 9
128 #define AFI_INTR_PE_PRSNT_SENSE 10
129 #define AFI_INTR_PE_CLKREQ_SENSE 11
130 #define AFI_INTR_CLKCLAMP_SENSE 12
131 #define AFI_INTR_RDY4PD_SENSE 13
132 #define AFI_INTR_P2P_ERROR 14
133
134 #define AFI_INTR_SIGNATURE 0xbc
135 #define AFI_UPPER_FPCI_ADDRESS 0xc0
136 #define AFI_SM_INTR_ENABLE 0xc4
137 #define AFI_SM_INTR_INTA_ASSERT (1 << 0)
138 #define AFI_SM_INTR_INTB_ASSERT (1 << 1)
139 #define AFI_SM_INTR_INTC_ASSERT (1 << 2)
140 #define AFI_SM_INTR_INTD_ASSERT (1 << 3)
141 #define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
142 #define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
143 #define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
144 #define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
145
146 #define AFI_AFI_INTR_ENABLE 0xc8
147 #define AFI_INTR_EN_INI_SLVERR (1 << 0)
148 #define AFI_INTR_EN_INI_DECERR (1 << 1)
149 #define AFI_INTR_EN_TGT_SLVERR (1 << 2)
150 #define AFI_INTR_EN_TGT_DECERR (1 << 3)
151 #define AFI_INTR_EN_TGT_WRERR (1 << 4)
152 #define AFI_INTR_EN_DFPCI_DECERR (1 << 5)
153 #define AFI_INTR_EN_AXI_DECERR (1 << 6)
154 #define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7)
155 #define AFI_INTR_EN_PRSNT_SENSE (1 << 8)
156
157 #define AFI_PCIE_CONFIG 0x0f8
158 #define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
159 #define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe
160 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
161 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20)
162 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20)
163 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1 (0x0 << 20)
164 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20)
165 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20)
166 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1 (0x1 << 20)
167 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20)
168
169 #define AFI_FUSE 0x104
170 #define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
171
172 #define AFI_PEX0_CTRL 0x110
173 #define AFI_PEX1_CTRL 0x118
174 #define AFI_PEX2_CTRL 0x128
175 #define AFI_PEX_CTRL_RST (1 << 0)
176 #define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
177 #define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
178 #define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4)
179
180 #define AFI_PLLE_CONTROL 0x160
181 #define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
182 #define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
183
184 #define AFI_PEXBIAS_CTRL_0 0x168
185
186 #define RP_VEND_XP 0x00000F00
187 #define RP_VEND_XP_DL_UP (1 << 30)
188
189 #define RP_PRIV_MISC 0x00000FE0
190 #define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0)
191 #define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0)
192
193 #define RP_LINK_CONTROL_STATUS 0x00000090
194 #define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
195 #define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
196
197 #define PADS_CTL_SEL 0x0000009C
198
199 #define PADS_CTL 0x000000A0
200 #define PADS_CTL_IDDQ_1L (1 << 0)
201 #define PADS_CTL_TX_DATA_EN_1L (1 << 6)
202 #define PADS_CTL_RX_DATA_EN_1L (1 << 10)
203
204 #define PADS_PLL_CTL_TEGRA20 0x000000B8
205 #define PADS_PLL_CTL_TEGRA30 0x000000B4
206 #define PADS_PLL_CTL_RST_B4SM (1 << 1)
207 #define PADS_PLL_CTL_LOCKDET (1 << 8)
208 #define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16)
209 #define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16)
210 #define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16)
211 #define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16)
212 #define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20)
213 #define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20)
214 #define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20)
215 #define PADS_PLL_CTL_TXCLKREF_BUF_EN (1 << 22)
216
217 #define PADS_REFCLK_CFG0 0x000000C8
218 #define PADS_REFCLK_CFG1 0x000000CC
219 #define PADS_REFCLK_BIAS 0x000000D0
220
221 /*
222 * Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit
223 * entries, one entry per PCIe port. These field definitions and desired
224 * values aren't in the TRM, but do come from NVIDIA.
225 */
226 #define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */
227 #define PADS_REFCLK_CFG_E_TERM_SHIFT 7
228 #define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */
229 #define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */
230
231 /* Default value provided by HW engineering is 0xfa5c */
232 #define PADS_REFCLK_CFG_VALUE \
233 ( \
234 (0x17 << PADS_REFCLK_CFG_TERM_SHIFT) | \
235 (0 << PADS_REFCLK_CFG_E_TERM_SHIFT) | \
236 (0xa << PADS_REFCLK_CFG_PREDI_SHIFT) | \
237 (0xf << PADS_REFCLK_CFG_DRVI_SHIFT) \
238 )
239
240 struct tegra_msi {
241 struct msi_controller chip;
242 DECLARE_BITMAP(used, INT_PCI_MSI_NR);
243 struct irq_domain *domain;
244 unsigned long pages;
245 struct mutex lock;
246 int irq;
247 };
248
249 /* used to differentiate between Tegra SoC generations */
250 struct tegra_pcie_soc_data {
251 unsigned int num_ports;
252 unsigned int msi_base_shift;
253 u32 pads_pll_ctl;
254 u32 tx_ref_sel;
255 bool has_pex_clkreq_en;
256 bool has_pex_bias_ctrl;
257 bool has_intr_prsnt_sense;
258 bool has_cml_clk;
259 bool has_gen2;
260 };
261
262 static inline struct tegra_msi *to_tegra_msi(struct msi_controller *chip)
263 {
264 return container_of(chip, struct tegra_msi, chip);
265 }
266
267 struct tegra_pcie {
268 struct device *dev;
269
270 void __iomem *pads;
271 void __iomem *afi;
272 int irq;
273
274 struct list_head buses;
275 struct resource *cs;
276
277 struct resource all;
278 struct resource io;
279 struct resource pio;
280 struct resource mem;
281 struct resource prefetch;
282 struct resource busn;
283
284 struct clk *pex_clk;
285 struct clk *afi_clk;
286 struct clk *pll_e;
287 struct clk *cml_clk;
288
289 struct reset_control *pex_rst;
290 struct reset_control *afi_rst;
291 struct reset_control *pcie_xrst;
292
293 struct phy *phy;
294
295 struct tegra_msi msi;
296
297 struct list_head ports;
298 unsigned int num_ports;
299 u32 xbar_config;
300
301 struct regulator_bulk_data *supplies;
302 unsigned int num_supplies;
303
304 const struct tegra_pcie_soc_data *soc_data;
305 struct dentry *debugfs;
306 };
307
308 struct tegra_pcie_port {
309 struct tegra_pcie *pcie;
310 struct list_head list;
311 struct resource regs;
312 void __iomem *base;
313 unsigned int index;
314 unsigned int lanes;
315 };
316
317 struct tegra_pcie_bus {
318 struct vm_struct *area;
319 struct list_head list;
320 unsigned int nr;
321 };
322
323 static inline struct tegra_pcie *sys_to_pcie(struct pci_sys_data *sys)
324 {
325 return sys->private_data;
326 }
327
328 static inline void afi_writel(struct tegra_pcie *pcie, u32 value,
329 unsigned long offset)
330 {
331 writel(value, pcie->afi + offset);
332 }
333
334 static inline u32 afi_readl(struct tegra_pcie *pcie, unsigned long offset)
335 {
336 return readl(pcie->afi + offset);
337 }
338
339 static inline void pads_writel(struct tegra_pcie *pcie, u32 value,
340 unsigned long offset)
341 {
342 writel(value, pcie->pads + offset);
343 }
344
345 static inline u32 pads_readl(struct tegra_pcie *pcie, unsigned long offset)
346 {
347 return readl(pcie->pads + offset);
348 }
349
350 /*
351 * The configuration space mapping on Tegra is somewhat similar to the ECAM
352 * defined by PCIe. However it deviates a bit in how the 4 bits for extended
353 * register accesses are mapped:
354 *
355 * [27:24] extended register number
356 * [23:16] bus number
357 * [15:11] device number
358 * [10: 8] function number
359 * [ 7: 0] register number
360 *
361 * Mapping the whole extended configuration space would require 256 MiB of
362 * virtual address space, only a small part of which will actually be used.
363 * To work around this, a 1 MiB of virtual addresses are allocated per bus
364 * when the bus is first accessed. When the physical range is mapped, the
365 * the bus number bits are hidden so that the extended register number bits
366 * appear as bits [19:16]. Therefore the virtual mapping looks like this:
367 *
368 * [19:16] extended register number
369 * [15:11] device number
370 * [10: 8] function number
371 * [ 7: 0] register number
372 *
373 * This is achieved by stitching together 16 chunks of 64 KiB of physical
374 * address space via the MMU.
375 */
376 static unsigned long tegra_pcie_conf_offset(unsigned int devfn, int where)
377 {
378 return ((where & 0xf00) << 8) | (PCI_SLOT(devfn) << 11) |
379 (PCI_FUNC(devfn) << 8) | (where & 0xfc);
380 }
381
382 static struct tegra_pcie_bus *tegra_pcie_bus_alloc(struct tegra_pcie *pcie,
383 unsigned int busnr)
384 {
385 pgprot_t prot = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
386 L_PTE_XN | L_PTE_MT_DEV_SHARED | L_PTE_SHARED);
387 phys_addr_t cs = pcie->cs->start;
388 struct tegra_pcie_bus *bus;
389 unsigned int i;
390 int err;
391
392 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
393 if (!bus)
394 return ERR_PTR(-ENOMEM);
395
396 INIT_LIST_HEAD(&bus->list);
397 bus->nr = busnr;
398
399 /* allocate 1 MiB of virtual addresses */
400 bus->area = get_vm_area(SZ_1M, VM_IOREMAP);
401 if (!bus->area) {
402 err = -ENOMEM;
403 goto free;
404 }
405
406 /* map each of the 16 chunks of 64 KiB each */
407 for (i = 0; i < 16; i++) {
408 unsigned long virt = (unsigned long)bus->area->addr +
409 i * SZ_64K;
410 phys_addr_t phys = cs + i * SZ_16M + busnr * SZ_64K;
411
412 err = ioremap_page_range(virt, virt + SZ_64K, phys, prot);
413 if (err < 0) {
414 dev_err(pcie->dev, "ioremap_page_range() failed: %d\n",
415 err);
416 goto unmap;
417 }
418 }
419
420 return bus;
421
422 unmap:
423 vunmap(bus->area->addr);
424 free:
425 kfree(bus);
426 return ERR_PTR(err);
427 }
428
429 /*
430 * Look up a virtual address mapping for the specified bus number. If no such
431 * mapping exists, try to create one.
432 */
433 static void __iomem *tegra_pcie_bus_map(struct tegra_pcie *pcie,
434 unsigned int busnr)
435 {
436 struct tegra_pcie_bus *bus;
437
438 list_for_each_entry(bus, &pcie->buses, list)
439 if (bus->nr == busnr)
440 return (void __iomem *)bus->area->addr;
441
442 bus = tegra_pcie_bus_alloc(pcie, busnr);
443 if (IS_ERR(bus))
444 return NULL;
445
446 list_add_tail(&bus->list, &pcie->buses);
447
448 return (void __iomem *)bus->area->addr;
449 }
450
451 static void __iomem *tegra_pcie_conf_address(struct pci_bus *bus,
452 unsigned int devfn,
453 int where)
454 {
455 struct tegra_pcie *pcie = sys_to_pcie(bus->sysdata);
456 void __iomem *addr = NULL;
457
458 if (bus->number == 0) {
459 unsigned int slot = PCI_SLOT(devfn);
460 struct tegra_pcie_port *port;
461
462 list_for_each_entry(port, &pcie->ports, list) {
463 if (port->index + 1 == slot) {
464 addr = port->base + (where & ~3);
465 break;
466 }
467 }
468 } else {
469 addr = tegra_pcie_bus_map(pcie, bus->number);
470 if (!addr) {
471 dev_err(pcie->dev,
472 "failed to map cfg. space for bus %u\n",
473 bus->number);
474 return NULL;
475 }
476
477 addr += tegra_pcie_conf_offset(devfn, where);
478 }
479
480 return addr;
481 }
482
483 static struct pci_ops tegra_pcie_ops = {
484 .map_bus = tegra_pcie_conf_address,
485 .read = pci_generic_config_read32,
486 .write = pci_generic_config_write32,
487 };
488
489 static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port)
490 {
491 unsigned long ret = 0;
492
493 switch (port->index) {
494 case 0:
495 ret = AFI_PEX0_CTRL;
496 break;
497
498 case 1:
499 ret = AFI_PEX1_CTRL;
500 break;
501
502 case 2:
503 ret = AFI_PEX2_CTRL;
504 break;
505 }
506
507 return ret;
508 }
509
510 static void tegra_pcie_port_reset(struct tegra_pcie_port *port)
511 {
512 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
513 unsigned long value;
514
515 /* pulse reset signal */
516 value = afi_readl(port->pcie, ctrl);
517 value &= ~AFI_PEX_CTRL_RST;
518 afi_writel(port->pcie, value, ctrl);
519
520 usleep_range(1000, 2000);
521
522 value = afi_readl(port->pcie, ctrl);
523 value |= AFI_PEX_CTRL_RST;
524 afi_writel(port->pcie, value, ctrl);
525 }
526
527 static void tegra_pcie_port_enable(struct tegra_pcie_port *port)
528 {
529 const struct tegra_pcie_soc_data *soc = port->pcie->soc_data;
530 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
531 unsigned long value;
532
533 /* enable reference clock */
534 value = afi_readl(port->pcie, ctrl);
535 value |= AFI_PEX_CTRL_REFCLK_EN;
536
537 if (soc->has_pex_clkreq_en)
538 value |= AFI_PEX_CTRL_CLKREQ_EN;
539
540 value |= AFI_PEX_CTRL_OVERRIDE_EN;
541
542 afi_writel(port->pcie, value, ctrl);
543
544 tegra_pcie_port_reset(port);
545 }
546
547 static void tegra_pcie_port_disable(struct tegra_pcie_port *port)
548 {
549 const struct tegra_pcie_soc_data *soc = port->pcie->soc_data;
550 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
551 unsigned long value;
552
553 /* assert port reset */
554 value = afi_readl(port->pcie, ctrl);
555 value &= ~AFI_PEX_CTRL_RST;
556 afi_writel(port->pcie, value, ctrl);
557
558 /* disable reference clock */
559 value = afi_readl(port->pcie, ctrl);
560
561 if (soc->has_pex_clkreq_en)
562 value &= ~AFI_PEX_CTRL_CLKREQ_EN;
563
564 value &= ~AFI_PEX_CTRL_REFCLK_EN;
565 afi_writel(port->pcie, value, ctrl);
566 }
567
568 static void tegra_pcie_port_free(struct tegra_pcie_port *port)
569 {
570 struct tegra_pcie *pcie = port->pcie;
571
572 devm_iounmap(pcie->dev, port->base);
573 devm_release_mem_region(pcie->dev, port->regs.start,
574 resource_size(&port->regs));
575 list_del(&port->list);
576 devm_kfree(pcie->dev, port);
577 }
578
579 /* Tegra PCIE root complex wrongly reports device class */
580 static void tegra_pcie_fixup_class(struct pci_dev *dev)
581 {
582 dev->class = PCI_CLASS_BRIDGE_PCI << 8;
583 }
584 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class);
585 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class);
586 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_fixup_class);
587 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_fixup_class);
588
589 /* Tegra PCIE requires relaxed ordering */
590 static void tegra_pcie_relax_enable(struct pci_dev *dev)
591 {
592 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
593 }
594 DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_relax_enable);
595
596 static int tegra_pcie_setup(int nr, struct pci_sys_data *sys)
597 {
598 struct tegra_pcie *pcie = sys_to_pcie(sys);
599 int err;
600
601 err = devm_request_resource(pcie->dev, &pcie->all, &pcie->mem);
602 if (err < 0)
603 return err;
604
605 err = devm_request_resource(pcie->dev, &pcie->all, &pcie->prefetch);
606 if (err)
607 return err;
608
609 pci_add_resource_offset(&sys->resources, &pcie->mem, sys->mem_offset);
610 pci_add_resource_offset(&sys->resources, &pcie->prefetch,
611 sys->mem_offset);
612 pci_add_resource(&sys->resources, &pcie->busn);
613
614 pci_ioremap_io(pcie->pio.start, pcie->io.start);
615
616 return 1;
617 }
618
619 static int tegra_pcie_map_irq(const struct pci_dev *pdev, u8 slot, u8 pin)
620 {
621 struct tegra_pcie *pcie = sys_to_pcie(pdev->bus->sysdata);
622 int irq;
623
624 tegra_cpuidle_pcie_irqs_in_use();
625
626 irq = of_irq_parse_and_map_pci(pdev, slot, pin);
627 if (!irq)
628 irq = pcie->irq;
629
630 return irq;
631 }
632
633 static irqreturn_t tegra_pcie_isr(int irq, void *arg)
634 {
635 const char *err_msg[] = {
636 "Unknown",
637 "AXI slave error",
638 "AXI decode error",
639 "Target abort",
640 "Master abort",
641 "Invalid write",
642 "Legacy interrupt",
643 "Response decoding error",
644 "AXI response decoding error",
645 "Transaction timeout",
646 "Slot present pin change",
647 "Slot clock request change",
648 "TMS clock ramp change",
649 "TMS ready for power down",
650 "Peer2Peer error",
651 };
652 struct tegra_pcie *pcie = arg;
653 u32 code, signature;
654
655 code = afi_readl(pcie, AFI_INTR_CODE) & AFI_INTR_CODE_MASK;
656 signature = afi_readl(pcie, AFI_INTR_SIGNATURE);
657 afi_writel(pcie, 0, AFI_INTR_CODE);
658
659 if (code == AFI_INTR_LEGACY)
660 return IRQ_NONE;
661
662 if (code >= ARRAY_SIZE(err_msg))
663 code = 0;
664
665 /*
666 * do not pollute kernel log with master abort reports since they
667 * happen a lot during enumeration
668 */
669 if (code == AFI_INTR_MASTER_ABORT)
670 dev_dbg(pcie->dev, "%s, signature: %08x\n", err_msg[code],
671 signature);
672 else
673 dev_err(pcie->dev, "%s, signature: %08x\n", err_msg[code],
674 signature);
675
676 if (code == AFI_INTR_TARGET_ABORT || code == AFI_INTR_MASTER_ABORT ||
677 code == AFI_INTR_FPCI_DECODE_ERROR) {
678 u32 fpci = afi_readl(pcie, AFI_UPPER_FPCI_ADDRESS) & 0xff;
679 u64 address = (u64)fpci << 32 | (signature & 0xfffffffc);
680
681 if (code == AFI_INTR_MASTER_ABORT)
682 dev_dbg(pcie->dev, " FPCI address: %10llx\n", address);
683 else
684 dev_err(pcie->dev, " FPCI address: %10llx\n", address);
685 }
686
687 return IRQ_HANDLED;
688 }
689
690 /*
691 * FPCI map is as follows:
692 * - 0xfdfc000000: I/O space
693 * - 0xfdfe000000: type 0 configuration space
694 * - 0xfdff000000: type 1 configuration space
695 * - 0xfe00000000: type 0 extended configuration space
696 * - 0xfe10000000: type 1 extended configuration space
697 */
698 static void tegra_pcie_setup_translations(struct tegra_pcie *pcie)
699 {
700 u32 fpci_bar, size, axi_address;
701
702 /* Bar 0: type 1 extended configuration space */
703 fpci_bar = 0xfe100000;
704 size = resource_size(pcie->cs);
705 axi_address = pcie->cs->start;
706 afi_writel(pcie, axi_address, AFI_AXI_BAR0_START);
707 afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ);
708 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR0);
709
710 /* Bar 1: downstream IO bar */
711 fpci_bar = 0xfdfc0000;
712 size = resource_size(&pcie->io);
713 axi_address = pcie->io.start;
714 afi_writel(pcie, axi_address, AFI_AXI_BAR1_START);
715 afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ);
716 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR1);
717
718 /* Bar 2: prefetchable memory BAR */
719 fpci_bar = (((pcie->prefetch.start >> 12) & 0x0fffffff) << 4) | 0x1;
720 size = resource_size(&pcie->prefetch);
721 axi_address = pcie->prefetch.start;
722 afi_writel(pcie, axi_address, AFI_AXI_BAR2_START);
723 afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ);
724 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR2);
725
726 /* Bar 3: non prefetchable memory BAR */
727 fpci_bar = (((pcie->mem.start >> 12) & 0x0fffffff) << 4) | 0x1;
728 size = resource_size(&pcie->mem);
729 axi_address = pcie->mem.start;
730 afi_writel(pcie, axi_address, AFI_AXI_BAR3_START);
731 afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ);
732 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR3);
733
734 /* NULL out the remaining BARs as they are not used */
735 afi_writel(pcie, 0, AFI_AXI_BAR4_START);
736 afi_writel(pcie, 0, AFI_AXI_BAR4_SZ);
737 afi_writel(pcie, 0, AFI_FPCI_BAR4);
738
739 afi_writel(pcie, 0, AFI_AXI_BAR5_START);
740 afi_writel(pcie, 0, AFI_AXI_BAR5_SZ);
741 afi_writel(pcie, 0, AFI_FPCI_BAR5);
742
743 /* map all upstream transactions as uncached */
744 afi_writel(pcie, PHYS_OFFSET, AFI_CACHE_BAR0_ST);
745 afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ);
746 afi_writel(pcie, 0, AFI_CACHE_BAR1_ST);
747 afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ);
748
749 /* MSI translations are setup only when needed */
750 afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST);
751 afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
752 afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST);
753 afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
754 }
755
756 static int tegra_pcie_pll_wait(struct tegra_pcie *pcie, unsigned long timeout)
757 {
758 const struct tegra_pcie_soc_data *soc = pcie->soc_data;
759 u32 value;
760
761 timeout = jiffies + msecs_to_jiffies(timeout);
762
763 while (time_before(jiffies, timeout)) {
764 value = pads_readl(pcie, soc->pads_pll_ctl);
765 if (value & PADS_PLL_CTL_LOCKDET)
766 return 0;
767 }
768
769 return -ETIMEDOUT;
770 }
771
772 static int tegra_pcie_phy_enable(struct tegra_pcie *pcie)
773 {
774 const struct tegra_pcie_soc_data *soc = pcie->soc_data;
775 u32 value;
776 int err;
777
778 /* initialize internal PHY, enable up to 16 PCIE lanes */
779 pads_writel(pcie, 0x0, PADS_CTL_SEL);
780
781 /* override IDDQ to 1 on all 4 lanes */
782 value = pads_readl(pcie, PADS_CTL);
783 value |= PADS_CTL_IDDQ_1L;
784 pads_writel(pcie, value, PADS_CTL);
785
786 /*
787 * Set up PHY PLL inputs select PLLE output as refclock,
788 * set TX ref sel to div10 (not div5).
789 */
790 value = pads_readl(pcie, soc->pads_pll_ctl);
791 value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
792 value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel;
793 pads_writel(pcie, value, soc->pads_pll_ctl);
794
795 /* reset PLL */
796 value = pads_readl(pcie, soc->pads_pll_ctl);
797 value &= ~PADS_PLL_CTL_RST_B4SM;
798 pads_writel(pcie, value, soc->pads_pll_ctl);
799
800 usleep_range(20, 100);
801
802 /* take PLL out of reset */
803 value = pads_readl(pcie, soc->pads_pll_ctl);
804 value |= PADS_PLL_CTL_RST_B4SM;
805 pads_writel(pcie, value, soc->pads_pll_ctl);
806
807 /* Configure the reference clock driver */
808 value = PADS_REFCLK_CFG_VALUE | (PADS_REFCLK_CFG_VALUE << 16);
809 pads_writel(pcie, value, PADS_REFCLK_CFG0);
810 if (soc->num_ports > 2)
811 pads_writel(pcie, PADS_REFCLK_CFG_VALUE, PADS_REFCLK_CFG1);
812
813 /* wait for the PLL to lock */
814 err = tegra_pcie_pll_wait(pcie, 500);
815 if (err < 0) {
816 dev_err(pcie->dev, "PLL failed to lock: %d\n", err);
817 return err;
818 }
819
820 /* turn off IDDQ override */
821 value = pads_readl(pcie, PADS_CTL);
822 value &= ~PADS_CTL_IDDQ_1L;
823 pads_writel(pcie, value, PADS_CTL);
824
825 /* enable TX/RX data */
826 value = pads_readl(pcie, PADS_CTL);
827 value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L;
828 pads_writel(pcie, value, PADS_CTL);
829
830 return 0;
831 }
832
833 static int tegra_pcie_enable_controller(struct tegra_pcie *pcie)
834 {
835 const struct tegra_pcie_soc_data *soc = pcie->soc_data;
836 struct tegra_pcie_port *port;
837 unsigned long value;
838 int err;
839
840 /* enable PLL power down */
841 if (pcie->phy) {
842 value = afi_readl(pcie, AFI_PLLE_CONTROL);
843 value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
844 value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
845 afi_writel(pcie, value, AFI_PLLE_CONTROL);
846 }
847
848 /* power down PCIe slot clock bias pad */
849 if (soc->has_pex_bias_ctrl)
850 afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0);
851
852 /* configure mode and disable all ports */
853 value = afi_readl(pcie, AFI_PCIE_CONFIG);
854 value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
855 value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar_config;
856
857 list_for_each_entry(port, &pcie->ports, list)
858 value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
859
860 afi_writel(pcie, value, AFI_PCIE_CONFIG);
861
862 if (soc->has_gen2) {
863 value = afi_readl(pcie, AFI_FUSE);
864 value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
865 afi_writel(pcie, value, AFI_FUSE);
866 } else {
867 value = afi_readl(pcie, AFI_FUSE);
868 value |= AFI_FUSE_PCIE_T0_GEN2_DIS;
869 afi_writel(pcie, value, AFI_FUSE);
870 }
871
872 if (!pcie->phy)
873 err = tegra_pcie_phy_enable(pcie);
874 else
875 err = phy_power_on(pcie->phy);
876
877 if (err < 0) {
878 dev_err(pcie->dev, "failed to power on PHY: %d\n", err);
879 return err;
880 }
881
882 /* take the PCIe interface module out of reset */
883 reset_control_deassert(pcie->pcie_xrst);
884
885 /* finally enable PCIe */
886 value = afi_readl(pcie, AFI_CONFIGURATION);
887 value |= AFI_CONFIGURATION_EN_FPCI;
888 afi_writel(pcie, value, AFI_CONFIGURATION);
889
890 value = AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR |
891 AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR |
892 AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR;
893
894 if (soc->has_intr_prsnt_sense)
895 value |= AFI_INTR_EN_PRSNT_SENSE;
896
897 afi_writel(pcie, value, AFI_AFI_INTR_ENABLE);
898 afi_writel(pcie, 0xffffffff, AFI_SM_INTR_ENABLE);
899
900 /* don't enable MSI for now, only when needed */
901 afi_writel(pcie, AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK);
902
903 /* disable all exceptions */
904 afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS);
905
906 return 0;
907 }
908
909 static void tegra_pcie_power_off(struct tegra_pcie *pcie)
910 {
911 int err;
912
913 /* TODO: disable and unprepare clocks? */
914
915 err = phy_power_off(pcie->phy);
916 if (err < 0)
917 dev_warn(pcie->dev, "failed to power off PHY: %d\n", err);
918
919 reset_control_assert(pcie->pcie_xrst);
920 reset_control_assert(pcie->afi_rst);
921 reset_control_assert(pcie->pex_rst);
922
923 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
924
925 err = regulator_bulk_disable(pcie->num_supplies, pcie->supplies);
926 if (err < 0)
927 dev_warn(pcie->dev, "failed to disable regulators: %d\n", err);
928 }
929
930 static int tegra_pcie_power_on(struct tegra_pcie *pcie)
931 {
932 const struct tegra_pcie_soc_data *soc = pcie->soc_data;
933 int err;
934
935 reset_control_assert(pcie->pcie_xrst);
936 reset_control_assert(pcie->afi_rst);
937 reset_control_assert(pcie->pex_rst);
938
939 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
940
941 /* enable regulators */
942 err = regulator_bulk_enable(pcie->num_supplies, pcie->supplies);
943 if (err < 0)
944 dev_err(pcie->dev, "failed to enable regulators: %d\n", err);
945
946 err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE,
947 pcie->pex_clk,
948 pcie->pex_rst);
949 if (err) {
950 dev_err(pcie->dev, "powerup sequence failed: %d\n", err);
951 return err;
952 }
953
954 reset_control_deassert(pcie->afi_rst);
955
956 err = clk_prepare_enable(pcie->afi_clk);
957 if (err < 0) {
958 dev_err(pcie->dev, "failed to enable AFI clock: %d\n", err);
959 return err;
960 }
961
962 if (soc->has_cml_clk) {
963 err = clk_prepare_enable(pcie->cml_clk);
964 if (err < 0) {
965 dev_err(pcie->dev, "failed to enable CML clock: %d\n",
966 err);
967 return err;
968 }
969 }
970
971 err = clk_prepare_enable(pcie->pll_e);
972 if (err < 0) {
973 dev_err(pcie->dev, "failed to enable PLLE clock: %d\n", err);
974 return err;
975 }
976
977 return 0;
978 }
979
980 static int tegra_pcie_clocks_get(struct tegra_pcie *pcie)
981 {
982 const struct tegra_pcie_soc_data *soc = pcie->soc_data;
983
984 pcie->pex_clk = devm_clk_get(pcie->dev, "pex");
985 if (IS_ERR(pcie->pex_clk))
986 return PTR_ERR(pcie->pex_clk);
987
988 pcie->afi_clk = devm_clk_get(pcie->dev, "afi");
989 if (IS_ERR(pcie->afi_clk))
990 return PTR_ERR(pcie->afi_clk);
991
992 pcie->pll_e = devm_clk_get(pcie->dev, "pll_e");
993 if (IS_ERR(pcie->pll_e))
994 return PTR_ERR(pcie->pll_e);
995
996 if (soc->has_cml_clk) {
997 pcie->cml_clk = devm_clk_get(pcie->dev, "cml");
998 if (IS_ERR(pcie->cml_clk))
999 return PTR_ERR(pcie->cml_clk);
1000 }
1001
1002 return 0;
1003 }
1004
1005 static int tegra_pcie_resets_get(struct tegra_pcie *pcie)
1006 {
1007 pcie->pex_rst = devm_reset_control_get(pcie->dev, "pex");
1008 if (IS_ERR(pcie->pex_rst))
1009 return PTR_ERR(pcie->pex_rst);
1010
1011 pcie->afi_rst = devm_reset_control_get(pcie->dev, "afi");
1012 if (IS_ERR(pcie->afi_rst))
1013 return PTR_ERR(pcie->afi_rst);
1014
1015 pcie->pcie_xrst = devm_reset_control_get(pcie->dev, "pcie_x");
1016 if (IS_ERR(pcie->pcie_xrst))
1017 return PTR_ERR(pcie->pcie_xrst);
1018
1019 return 0;
1020 }
1021
1022 static int tegra_pcie_get_resources(struct tegra_pcie *pcie)
1023 {
1024 struct platform_device *pdev = to_platform_device(pcie->dev);
1025 struct resource *pads, *afi, *res;
1026 int err;
1027
1028 err = tegra_pcie_clocks_get(pcie);
1029 if (err) {
1030 dev_err(&pdev->dev, "failed to get clocks: %d\n", err);
1031 return err;
1032 }
1033
1034 err = tegra_pcie_resets_get(pcie);
1035 if (err) {
1036 dev_err(&pdev->dev, "failed to get resets: %d\n", err);
1037 return err;
1038 }
1039
1040 pcie->phy = devm_phy_optional_get(pcie->dev, "pcie");
1041 if (IS_ERR(pcie->phy)) {
1042 err = PTR_ERR(pcie->phy);
1043 dev_err(&pdev->dev, "failed to get PHY: %d\n", err);
1044 return err;
1045 }
1046
1047 err = phy_init(pcie->phy);
1048 if (err < 0) {
1049 dev_err(&pdev->dev, "failed to initialize PHY: %d\n", err);
1050 return err;
1051 }
1052
1053 err = tegra_pcie_power_on(pcie);
1054 if (err) {
1055 dev_err(&pdev->dev, "failed to power up: %d\n", err);
1056 return err;
1057 }
1058
1059 pads = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pads");
1060 pcie->pads = devm_ioremap_resource(&pdev->dev, pads);
1061 if (IS_ERR(pcie->pads)) {
1062 err = PTR_ERR(pcie->pads);
1063 goto poweroff;
1064 }
1065
1066 afi = platform_get_resource_byname(pdev, IORESOURCE_MEM, "afi");
1067 pcie->afi = devm_ioremap_resource(&pdev->dev, afi);
1068 if (IS_ERR(pcie->afi)) {
1069 err = PTR_ERR(pcie->afi);
1070 goto poweroff;
1071 }
1072
1073 /* request configuration space, but remap later, on demand */
1074 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs");
1075 if (!res) {
1076 err = -EADDRNOTAVAIL;
1077 goto poweroff;
1078 }
1079
1080 pcie->cs = devm_request_mem_region(pcie->dev, res->start,
1081 resource_size(res), res->name);
1082 if (!pcie->cs) {
1083 err = -EADDRNOTAVAIL;
1084 goto poweroff;
1085 }
1086
1087 /* request interrupt */
1088 err = platform_get_irq_byname(pdev, "intr");
1089 if (err < 0) {
1090 dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
1091 goto poweroff;
1092 }
1093
1094 pcie->irq = err;
1095
1096 err = request_irq(pcie->irq, tegra_pcie_isr, IRQF_SHARED, "PCIE", pcie);
1097 if (err) {
1098 dev_err(&pdev->dev, "failed to register IRQ: %d\n", err);
1099 goto poweroff;
1100 }
1101
1102 return 0;
1103
1104 poweroff:
1105 tegra_pcie_power_off(pcie);
1106 return err;
1107 }
1108
1109 static int tegra_pcie_put_resources(struct tegra_pcie *pcie)
1110 {
1111 int err;
1112
1113 if (pcie->irq > 0)
1114 free_irq(pcie->irq, pcie);
1115
1116 tegra_pcie_power_off(pcie);
1117
1118 err = phy_exit(pcie->phy);
1119 if (err < 0)
1120 dev_err(pcie->dev, "failed to teardown PHY: %d\n", err);
1121
1122 return 0;
1123 }
1124
1125 static int tegra_msi_alloc(struct tegra_msi *chip)
1126 {
1127 int msi;
1128
1129 mutex_lock(&chip->lock);
1130
1131 msi = find_first_zero_bit(chip->used, INT_PCI_MSI_NR);
1132 if (msi < INT_PCI_MSI_NR)
1133 set_bit(msi, chip->used);
1134 else
1135 msi = -ENOSPC;
1136
1137 mutex_unlock(&chip->lock);
1138
1139 return msi;
1140 }
1141
1142 static void tegra_msi_free(struct tegra_msi *chip, unsigned long irq)
1143 {
1144 struct device *dev = chip->chip.dev;
1145
1146 mutex_lock(&chip->lock);
1147
1148 if (!test_bit(irq, chip->used))
1149 dev_err(dev, "trying to free unused MSI#%lu\n", irq);
1150 else
1151 clear_bit(irq, chip->used);
1152
1153 mutex_unlock(&chip->lock);
1154 }
1155
1156 static irqreturn_t tegra_pcie_msi_irq(int irq, void *data)
1157 {
1158 struct tegra_pcie *pcie = data;
1159 struct tegra_msi *msi = &pcie->msi;
1160 unsigned int i, processed = 0;
1161
1162 for (i = 0; i < 8; i++) {
1163 unsigned long reg = afi_readl(pcie, AFI_MSI_VEC0 + i * 4);
1164
1165 while (reg) {
1166 unsigned int offset = find_first_bit(&reg, 32);
1167 unsigned int index = i * 32 + offset;
1168 unsigned int irq;
1169
1170 /* clear the interrupt */
1171 afi_writel(pcie, 1 << offset, AFI_MSI_VEC0 + i * 4);
1172
1173 irq = irq_find_mapping(msi->domain, index);
1174 if (irq) {
1175 if (test_bit(index, msi->used))
1176 generic_handle_irq(irq);
1177 else
1178 dev_info(pcie->dev, "unhandled MSI\n");
1179 } else {
1180 /*
1181 * that's weird who triggered this?
1182 * just clear it
1183 */
1184 dev_info(pcie->dev, "unexpected MSI\n");
1185 }
1186
1187 /* see if there's any more pending in this vector */
1188 reg = afi_readl(pcie, AFI_MSI_VEC0 + i * 4);
1189
1190 processed++;
1191 }
1192 }
1193
1194 return processed > 0 ? IRQ_HANDLED : IRQ_NONE;
1195 }
1196
1197 static int tegra_msi_setup_irq(struct msi_controller *chip,
1198 struct pci_dev *pdev, struct msi_desc *desc)
1199 {
1200 struct tegra_msi *msi = to_tegra_msi(chip);
1201 struct msi_msg msg;
1202 unsigned int irq;
1203 int hwirq;
1204
1205 hwirq = tegra_msi_alloc(msi);
1206 if (hwirq < 0)
1207 return hwirq;
1208
1209 irq = irq_create_mapping(msi->domain, hwirq);
1210 if (!irq) {
1211 tegra_msi_free(msi, hwirq);
1212 return -EINVAL;
1213 }
1214
1215 irq_set_msi_desc(irq, desc);
1216
1217 msg.address_lo = virt_to_phys((void *)msi->pages);
1218 /* 32 bit address only */
1219 msg.address_hi = 0;
1220 msg.data = hwirq;
1221
1222 pci_write_msi_msg(irq, &msg);
1223
1224 return 0;
1225 }
1226
1227 static void tegra_msi_teardown_irq(struct msi_controller *chip,
1228 unsigned int irq)
1229 {
1230 struct tegra_msi *msi = to_tegra_msi(chip);
1231 struct irq_data *d = irq_get_irq_data(irq);
1232 irq_hw_number_t hwirq = irqd_to_hwirq(d);
1233
1234 irq_dispose_mapping(irq);
1235 tegra_msi_free(msi, hwirq);
1236 }
1237
1238 static struct irq_chip tegra_msi_irq_chip = {
1239 .name = "Tegra PCIe MSI",
1240 .irq_enable = pci_msi_unmask_irq,
1241 .irq_disable = pci_msi_mask_irq,
1242 .irq_mask = pci_msi_mask_irq,
1243 .irq_unmask = pci_msi_unmask_irq,
1244 };
1245
1246 static int tegra_msi_map(struct irq_domain *domain, unsigned int irq,
1247 irq_hw_number_t hwirq)
1248 {
1249 irq_set_chip_and_handler(irq, &tegra_msi_irq_chip, handle_simple_irq);
1250 irq_set_chip_data(irq, domain->host_data);
1251
1252 tegra_cpuidle_pcie_irqs_in_use();
1253
1254 return 0;
1255 }
1256
1257 static const struct irq_domain_ops msi_domain_ops = {
1258 .map = tegra_msi_map,
1259 };
1260
1261 static int tegra_pcie_enable_msi(struct tegra_pcie *pcie)
1262 {
1263 struct platform_device *pdev = to_platform_device(pcie->dev);
1264 const struct tegra_pcie_soc_data *soc = pcie->soc_data;
1265 struct tegra_msi *msi = &pcie->msi;
1266 unsigned long base;
1267 int err;
1268 u32 reg;
1269
1270 mutex_init(&msi->lock);
1271
1272 msi->chip.dev = pcie->dev;
1273 msi->chip.setup_irq = tegra_msi_setup_irq;
1274 msi->chip.teardown_irq = tegra_msi_teardown_irq;
1275
1276 msi->domain = irq_domain_add_linear(pcie->dev->of_node, INT_PCI_MSI_NR,
1277 &msi_domain_ops, &msi->chip);
1278 if (!msi->domain) {
1279 dev_err(&pdev->dev, "failed to create IRQ domain\n");
1280 return -ENOMEM;
1281 }
1282
1283 err = platform_get_irq_byname(pdev, "msi");
1284 if (err < 0) {
1285 dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
1286 goto err;
1287 }
1288
1289 msi->irq = err;
1290
1291 err = request_irq(msi->irq, tegra_pcie_msi_irq, 0,
1292 tegra_msi_irq_chip.name, pcie);
1293 if (err < 0) {
1294 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
1295 goto err;
1296 }
1297
1298 /* setup AFI/FPCI range */
1299 msi->pages = __get_free_pages(GFP_KERNEL, 0);
1300 base = virt_to_phys((void *)msi->pages);
1301
1302 afi_writel(pcie, base >> soc->msi_base_shift, AFI_MSI_FPCI_BAR_ST);
1303 afi_writel(pcie, base, AFI_MSI_AXI_BAR_ST);
1304 /* this register is in 4K increments */
1305 afi_writel(pcie, 1, AFI_MSI_BAR_SZ);
1306
1307 /* enable all MSI vectors */
1308 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC0);
1309 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC1);
1310 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC2);
1311 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC3);
1312 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC4);
1313 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC5);
1314 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC6);
1315 afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC7);
1316
1317 /* and unmask the MSI interrupt */
1318 reg = afi_readl(pcie, AFI_INTR_MASK);
1319 reg |= AFI_INTR_MASK_MSI_MASK;
1320 afi_writel(pcie, reg, AFI_INTR_MASK);
1321
1322 return 0;
1323
1324 err:
1325 irq_domain_remove(msi->domain);
1326 return err;
1327 }
1328
1329 static int tegra_pcie_disable_msi(struct tegra_pcie *pcie)
1330 {
1331 struct tegra_msi *msi = &pcie->msi;
1332 unsigned int i, irq;
1333 u32 value;
1334
1335 /* mask the MSI interrupt */
1336 value = afi_readl(pcie, AFI_INTR_MASK);
1337 value &= ~AFI_INTR_MASK_MSI_MASK;
1338 afi_writel(pcie, value, AFI_INTR_MASK);
1339
1340 /* disable all MSI vectors */
1341 afi_writel(pcie, 0, AFI_MSI_EN_VEC0);
1342 afi_writel(pcie, 0, AFI_MSI_EN_VEC1);
1343 afi_writel(pcie, 0, AFI_MSI_EN_VEC2);
1344 afi_writel(pcie, 0, AFI_MSI_EN_VEC3);
1345 afi_writel(pcie, 0, AFI_MSI_EN_VEC4);
1346 afi_writel(pcie, 0, AFI_MSI_EN_VEC5);
1347 afi_writel(pcie, 0, AFI_MSI_EN_VEC6);
1348 afi_writel(pcie, 0, AFI_MSI_EN_VEC7);
1349
1350 free_pages(msi->pages, 0);
1351
1352 if (msi->irq > 0)
1353 free_irq(msi->irq, pcie);
1354
1355 for (i = 0; i < INT_PCI_MSI_NR; i++) {
1356 irq = irq_find_mapping(msi->domain, i);
1357 if (irq > 0)
1358 irq_dispose_mapping(irq);
1359 }
1360
1361 irq_domain_remove(msi->domain);
1362
1363 return 0;
1364 }
1365
1366 static int tegra_pcie_get_xbar_config(struct tegra_pcie *pcie, u32 lanes,
1367 u32 *xbar)
1368 {
1369 struct device_node *np = pcie->dev->of_node;
1370
1371 if (of_device_is_compatible(np, "nvidia,tegra124-pcie")) {
1372 switch (lanes) {
1373 case 0x0000104:
1374 dev_info(pcie->dev, "4x1, 1x1 configuration\n");
1375 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1;
1376 return 0;
1377
1378 case 0x0000102:
1379 dev_info(pcie->dev, "2x1, 1x1 configuration\n");
1380 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1;
1381 return 0;
1382 }
1383 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) {
1384 switch (lanes) {
1385 case 0x00000204:
1386 dev_info(pcie->dev, "4x1, 2x1 configuration\n");
1387 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420;
1388 return 0;
1389
1390 case 0x00020202:
1391 dev_info(pcie->dev, "2x3 configuration\n");
1392 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222;
1393 return 0;
1394
1395 case 0x00010104:
1396 dev_info(pcie->dev, "4x1, 1x2 configuration\n");
1397 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411;
1398 return 0;
1399 }
1400 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) {
1401 switch (lanes) {
1402 case 0x00000004:
1403 dev_info(pcie->dev, "single-mode configuration\n");
1404 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE;
1405 return 0;
1406
1407 case 0x00000202:
1408 dev_info(pcie->dev, "dual-mode configuration\n");
1409 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
1410 return 0;
1411 }
1412 }
1413
1414 return -EINVAL;
1415 }
1416
1417 /*
1418 * Check whether a given set of supplies is available in a device tree node.
1419 * This is used to check whether the new or the legacy device tree bindings
1420 * should be used.
1421 */
1422 static bool of_regulator_bulk_available(struct device_node *np,
1423 struct regulator_bulk_data *supplies,
1424 unsigned int num_supplies)
1425 {
1426 char property[32];
1427 unsigned int i;
1428
1429 for (i = 0; i < num_supplies; i++) {
1430 snprintf(property, 32, "%s-supply", supplies[i].supply);
1431
1432 if (of_find_property(np, property, NULL) == NULL)
1433 return false;
1434 }
1435
1436 return true;
1437 }
1438
1439 /*
1440 * Old versions of the device tree binding for this device used a set of power
1441 * supplies that didn't match the hardware inputs. This happened to work for a
1442 * number of cases but is not future proof. However to preserve backwards-
1443 * compatibility with old device trees, this function will try to use the old
1444 * set of supplies.
1445 */
1446 static int tegra_pcie_get_legacy_regulators(struct tegra_pcie *pcie)
1447 {
1448 struct device_node *np = pcie->dev->of_node;
1449
1450 if (of_device_is_compatible(np, "nvidia,tegra30-pcie"))
1451 pcie->num_supplies = 3;
1452 else if (of_device_is_compatible(np, "nvidia,tegra20-pcie"))
1453 pcie->num_supplies = 2;
1454
1455 if (pcie->num_supplies == 0) {
1456 dev_err(pcie->dev, "device %s not supported in legacy mode\n",
1457 np->full_name);
1458 return -ENODEV;
1459 }
1460
1461 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
1462 sizeof(*pcie->supplies),
1463 GFP_KERNEL);
1464 if (!pcie->supplies)
1465 return -ENOMEM;
1466
1467 pcie->supplies[0].supply = "pex-clk";
1468 pcie->supplies[1].supply = "vdd";
1469
1470 if (pcie->num_supplies > 2)
1471 pcie->supplies[2].supply = "avdd";
1472
1473 return devm_regulator_bulk_get(pcie->dev, pcie->num_supplies,
1474 pcie->supplies);
1475 }
1476
1477 /*
1478 * Obtains the list of regulators required for a particular generation of the
1479 * IP block.
1480 *
1481 * This would've been nice to do simply by providing static tables for use
1482 * with the regulator_bulk_*() API, but unfortunately Tegra30 is a bit quirky
1483 * in that it has two pairs or AVDD_PEX and VDD_PEX supplies (PEXA and PEXB)
1484 * and either seems to be optional depending on which ports are being used.
1485 */
1486 static int tegra_pcie_get_regulators(struct tegra_pcie *pcie, u32 lane_mask)
1487 {
1488 struct device_node *np = pcie->dev->of_node;
1489 unsigned int i = 0;
1490
1491 if (of_device_is_compatible(np, "nvidia,tegra124-pcie")) {
1492 pcie->num_supplies = 7;
1493
1494 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
1495 sizeof(*pcie->supplies),
1496 GFP_KERNEL);
1497 if (!pcie->supplies)
1498 return -ENOMEM;
1499
1500 pcie->supplies[i++].supply = "avddio-pex";
1501 pcie->supplies[i++].supply = "dvddio-pex";
1502 pcie->supplies[i++].supply = "avdd-pex-pll";
1503 pcie->supplies[i++].supply = "hvdd-pex";
1504 pcie->supplies[i++].supply = "hvdd-pex-pll-e";
1505 pcie->supplies[i++].supply = "vddio-pex-ctl";
1506 pcie->supplies[i++].supply = "avdd-pll-erefe";
1507 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) {
1508 bool need_pexa = false, need_pexb = false;
1509
1510 /* VDD_PEXA and AVDD_PEXA supply lanes 0 to 3 */
1511 if (lane_mask & 0x0f)
1512 need_pexa = true;
1513
1514 /* VDD_PEXB and AVDD_PEXB supply lanes 4 to 5 */
1515 if (lane_mask & 0x30)
1516 need_pexb = true;
1517
1518 pcie->num_supplies = 4 + (need_pexa ? 2 : 0) +
1519 (need_pexb ? 2 : 0);
1520
1521 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
1522 sizeof(*pcie->supplies),
1523 GFP_KERNEL);
1524 if (!pcie->supplies)
1525 return -ENOMEM;
1526
1527 pcie->supplies[i++].supply = "avdd-pex-pll";
1528 pcie->supplies[i++].supply = "hvdd-pex";
1529 pcie->supplies[i++].supply = "vddio-pex-ctl";
1530 pcie->supplies[i++].supply = "avdd-plle";
1531
1532 if (need_pexa) {
1533 pcie->supplies[i++].supply = "avdd-pexa";
1534 pcie->supplies[i++].supply = "vdd-pexa";
1535 }
1536
1537 if (need_pexb) {
1538 pcie->supplies[i++].supply = "avdd-pexb";
1539 pcie->supplies[i++].supply = "vdd-pexb";
1540 }
1541 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) {
1542 pcie->num_supplies = 5;
1543
1544 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
1545 sizeof(*pcie->supplies),
1546 GFP_KERNEL);
1547 if (!pcie->supplies)
1548 return -ENOMEM;
1549
1550 pcie->supplies[0].supply = "avdd-pex";
1551 pcie->supplies[1].supply = "vdd-pex";
1552 pcie->supplies[2].supply = "avdd-pex-pll";
1553 pcie->supplies[3].supply = "avdd-plle";
1554 pcie->supplies[4].supply = "vddio-pex-clk";
1555 }
1556
1557 if (of_regulator_bulk_available(pcie->dev->of_node, pcie->supplies,
1558 pcie->num_supplies))
1559 return devm_regulator_bulk_get(pcie->dev, pcie->num_supplies,
1560 pcie->supplies);
1561
1562 /*
1563 * If not all regulators are available for this new scheme, assume
1564 * that the device tree complies with an older version of the device
1565 * tree binding.
1566 */
1567 dev_info(pcie->dev, "using legacy DT binding for power supplies\n");
1568
1569 devm_kfree(pcie->dev, pcie->supplies);
1570 pcie->num_supplies = 0;
1571
1572 return tegra_pcie_get_legacy_regulators(pcie);
1573 }
1574
1575 static int tegra_pcie_parse_dt(struct tegra_pcie *pcie)
1576 {
1577 const struct tegra_pcie_soc_data *soc = pcie->soc_data;
1578 struct device_node *np = pcie->dev->of_node, *port;
1579 struct of_pci_range_parser parser;
1580 struct of_pci_range range;
1581 u32 lanes = 0, mask = 0;
1582 unsigned int lane = 0;
1583 struct resource res;
1584 int err;
1585
1586 memset(&pcie->all, 0, sizeof(pcie->all));
1587 pcie->all.flags = IORESOURCE_MEM;
1588 pcie->all.name = np->full_name;
1589 pcie->all.start = ~0;
1590 pcie->all.end = 0;
1591
1592 if (of_pci_range_parser_init(&parser, np)) {
1593 dev_err(pcie->dev, "missing \"ranges\" property\n");
1594 return -EINVAL;
1595 }
1596
1597 for_each_of_pci_range(&parser, &range) {
1598 err = of_pci_range_to_resource(&range, np, &res);
1599 if (err < 0)
1600 return err;
1601
1602 switch (res.flags & IORESOURCE_TYPE_BITS) {
1603 case IORESOURCE_IO:
1604 memcpy(&pcie->pio, &res, sizeof(res));
1605 pcie->pio.name = np->full_name;
1606
1607 /*
1608 * The Tegra PCIe host bridge uses this to program the
1609 * mapping of the I/O space to the physical address,
1610 * so we override the .start and .end fields here that
1611 * of_pci_range_to_resource() converted to I/O space.
1612 * We also set the IORESOURCE_MEM type to clarify that
1613 * the resource is in the physical memory space.
1614 */
1615 pcie->io.start = range.cpu_addr;
1616 pcie->io.end = range.cpu_addr + range.size - 1;
1617 pcie->io.flags = IORESOURCE_MEM;
1618 pcie->io.name = "I/O";
1619
1620 memcpy(&res, &pcie->io, sizeof(res));
1621 break;
1622
1623 case IORESOURCE_MEM:
1624 if (res.flags & IORESOURCE_PREFETCH) {
1625 memcpy(&pcie->prefetch, &res, sizeof(res));
1626 pcie->prefetch.name = "prefetchable";
1627 } else {
1628 memcpy(&pcie->mem, &res, sizeof(res));
1629 pcie->mem.name = "non-prefetchable";
1630 }
1631 break;
1632 }
1633
1634 if (res.start <= pcie->all.start)
1635 pcie->all.start = res.start;
1636
1637 if (res.end >= pcie->all.end)
1638 pcie->all.end = res.end;
1639 }
1640
1641 err = devm_request_resource(pcie->dev, &iomem_resource, &pcie->all);
1642 if (err < 0)
1643 return err;
1644
1645 err = of_pci_parse_bus_range(np, &pcie->busn);
1646 if (err < 0) {
1647 dev_err(pcie->dev, "failed to parse ranges property: %d\n",
1648 err);
1649 pcie->busn.name = np->name;
1650 pcie->busn.start = 0;
1651 pcie->busn.end = 0xff;
1652 pcie->busn.flags = IORESOURCE_BUS;
1653 }
1654
1655 /* parse root ports */
1656 for_each_child_of_node(np, port) {
1657 struct tegra_pcie_port *rp;
1658 unsigned int index;
1659 u32 value;
1660
1661 err = of_pci_get_devfn(port);
1662 if (err < 0) {
1663 dev_err(pcie->dev, "failed to parse address: %d\n",
1664 err);
1665 return err;
1666 }
1667
1668 index = PCI_SLOT(err);
1669
1670 if (index < 1 || index > soc->num_ports) {
1671 dev_err(pcie->dev, "invalid port number: %d\n", index);
1672 return -EINVAL;
1673 }
1674
1675 index--;
1676
1677 err = of_property_read_u32(port, "nvidia,num-lanes", &value);
1678 if (err < 0) {
1679 dev_err(pcie->dev, "failed to parse # of lanes: %d\n",
1680 err);
1681 return err;
1682 }
1683
1684 if (value > 16) {
1685 dev_err(pcie->dev, "invalid # of lanes: %u\n", value);
1686 return -EINVAL;
1687 }
1688
1689 lanes |= value << (index << 3);
1690
1691 if (!of_device_is_available(port)) {
1692 lane += value;
1693 continue;
1694 }
1695
1696 mask |= ((1 << value) - 1) << lane;
1697 lane += value;
1698
1699 rp = devm_kzalloc(pcie->dev, sizeof(*rp), GFP_KERNEL);
1700 if (!rp)
1701 return -ENOMEM;
1702
1703 err = of_address_to_resource(port, 0, &rp->regs);
1704 if (err < 0) {
1705 dev_err(pcie->dev, "failed to parse address: %d\n",
1706 err);
1707 return err;
1708 }
1709
1710 INIT_LIST_HEAD(&rp->list);
1711 rp->index = index;
1712 rp->lanes = value;
1713 rp->pcie = pcie;
1714
1715 rp->base = devm_ioremap_resource(pcie->dev, &rp->regs);
1716 if (IS_ERR(rp->base))
1717 return PTR_ERR(rp->base);
1718
1719 list_add_tail(&rp->list, &pcie->ports);
1720 }
1721
1722 err = tegra_pcie_get_xbar_config(pcie, lanes, &pcie->xbar_config);
1723 if (err < 0) {
1724 dev_err(pcie->dev, "invalid lane configuration\n");
1725 return err;
1726 }
1727
1728 err = tegra_pcie_get_regulators(pcie, mask);
1729 if (err < 0)
1730 return err;
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * FIXME: If there are no PCIe cards attached, then calling this function
1737 * can result in the increase of the bootup time as there are big timeout
1738 * loops.
1739 */
1740 #define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */
1741 static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port)
1742 {
1743 unsigned int retries = 3;
1744 unsigned long value;
1745
1746 /* override presence detection */
1747 value = readl(port->base + RP_PRIV_MISC);
1748 value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
1749 value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
1750 writel(value, port->base + RP_PRIV_MISC);
1751
1752 do {
1753 unsigned int timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
1754
1755 do {
1756 value = readl(port->base + RP_VEND_XP);
1757
1758 if (value & RP_VEND_XP_DL_UP)
1759 break;
1760
1761 usleep_range(1000, 2000);
1762 } while (--timeout);
1763
1764 if (!timeout) {
1765 dev_err(port->pcie->dev, "link %u down, retrying\n",
1766 port->index);
1767 goto retry;
1768 }
1769
1770 timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
1771
1772 do {
1773 value = readl(port->base + RP_LINK_CONTROL_STATUS);
1774
1775 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
1776 return true;
1777
1778 usleep_range(1000, 2000);
1779 } while (--timeout);
1780
1781 retry:
1782 tegra_pcie_port_reset(port);
1783 } while (--retries);
1784
1785 return false;
1786 }
1787
1788 static int tegra_pcie_enable(struct tegra_pcie *pcie)
1789 {
1790 struct tegra_pcie_port *port, *tmp;
1791 struct hw_pci hw;
1792
1793 list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
1794 dev_info(pcie->dev, "probing port %u, using %u lanes\n",
1795 port->index, port->lanes);
1796
1797 tegra_pcie_port_enable(port);
1798
1799 if (tegra_pcie_port_check_link(port))
1800 continue;
1801
1802 dev_info(pcie->dev, "link %u down, ignoring\n", port->index);
1803
1804 tegra_pcie_port_disable(port);
1805 tegra_pcie_port_free(port);
1806 }
1807
1808 memset(&hw, 0, sizeof(hw));
1809
1810 #ifdef CONFIG_PCI_MSI
1811 hw.msi_ctrl = &pcie->msi.chip;
1812 #endif
1813
1814 hw.nr_controllers = 1;
1815 hw.private_data = (void **)&pcie;
1816 hw.setup = tegra_pcie_setup;
1817 hw.map_irq = tegra_pcie_map_irq;
1818 hw.ops = &tegra_pcie_ops;
1819
1820 pci_common_init_dev(pcie->dev, &hw);
1821
1822 return 0;
1823 }
1824
1825 static const struct tegra_pcie_soc_data tegra20_pcie_data = {
1826 .num_ports = 2,
1827 .msi_base_shift = 0,
1828 .pads_pll_ctl = PADS_PLL_CTL_TEGRA20,
1829 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10,
1830 .has_pex_clkreq_en = false,
1831 .has_pex_bias_ctrl = false,
1832 .has_intr_prsnt_sense = false,
1833 .has_cml_clk = false,
1834 .has_gen2 = false,
1835 };
1836
1837 static const struct tegra_pcie_soc_data tegra30_pcie_data = {
1838 .num_ports = 3,
1839 .msi_base_shift = 8,
1840 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
1841 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
1842 .has_pex_clkreq_en = true,
1843 .has_pex_bias_ctrl = true,
1844 .has_intr_prsnt_sense = true,
1845 .has_cml_clk = true,
1846 .has_gen2 = false,
1847 };
1848
1849 static const struct tegra_pcie_soc_data tegra124_pcie_data = {
1850 .num_ports = 2,
1851 .msi_base_shift = 8,
1852 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
1853 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
1854 .has_pex_clkreq_en = true,
1855 .has_pex_bias_ctrl = true,
1856 .has_intr_prsnt_sense = true,
1857 .has_cml_clk = true,
1858 .has_gen2 = true,
1859 };
1860
1861 static const struct of_device_id tegra_pcie_of_match[] = {
1862 { .compatible = "nvidia,tegra124-pcie", .data = &tegra124_pcie_data },
1863 { .compatible = "nvidia,tegra30-pcie", .data = &tegra30_pcie_data },
1864 { .compatible = "nvidia,tegra20-pcie", .data = &tegra20_pcie_data },
1865 { },
1866 };
1867 MODULE_DEVICE_TABLE(of, tegra_pcie_of_match);
1868
1869 static void *tegra_pcie_ports_seq_start(struct seq_file *s, loff_t *pos)
1870 {
1871 struct tegra_pcie *pcie = s->private;
1872
1873 if (list_empty(&pcie->ports))
1874 return NULL;
1875
1876 seq_printf(s, "Index Status\n");
1877
1878 return seq_list_start(&pcie->ports, *pos);
1879 }
1880
1881 static void *tegra_pcie_ports_seq_next(struct seq_file *s, void *v, loff_t *pos)
1882 {
1883 struct tegra_pcie *pcie = s->private;
1884
1885 return seq_list_next(v, &pcie->ports, pos);
1886 }
1887
1888 static void tegra_pcie_ports_seq_stop(struct seq_file *s, void *v)
1889 {
1890 }
1891
1892 static int tegra_pcie_ports_seq_show(struct seq_file *s, void *v)
1893 {
1894 bool up = false, active = false;
1895 struct tegra_pcie_port *port;
1896 unsigned int value;
1897
1898 port = list_entry(v, struct tegra_pcie_port, list);
1899
1900 value = readl(port->base + RP_VEND_XP);
1901
1902 if (value & RP_VEND_XP_DL_UP)
1903 up = true;
1904
1905 value = readl(port->base + RP_LINK_CONTROL_STATUS);
1906
1907 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
1908 active = true;
1909
1910 seq_printf(s, "%2u ", port->index);
1911
1912 if (up)
1913 seq_printf(s, "up");
1914
1915 if (active) {
1916 if (up)
1917 seq_printf(s, ", ");
1918
1919 seq_printf(s, "active");
1920 }
1921
1922 seq_printf(s, "\n");
1923 return 0;
1924 }
1925
1926 static const struct seq_operations tegra_pcie_ports_seq_ops = {
1927 .start = tegra_pcie_ports_seq_start,
1928 .next = tegra_pcie_ports_seq_next,
1929 .stop = tegra_pcie_ports_seq_stop,
1930 .show = tegra_pcie_ports_seq_show,
1931 };
1932
1933 static int tegra_pcie_ports_open(struct inode *inode, struct file *file)
1934 {
1935 struct tegra_pcie *pcie = inode->i_private;
1936 struct seq_file *s;
1937 int err;
1938
1939 err = seq_open(file, &tegra_pcie_ports_seq_ops);
1940 if (err)
1941 return err;
1942
1943 s = file->private_data;
1944 s->private = pcie;
1945
1946 return 0;
1947 }
1948
1949 static const struct file_operations tegra_pcie_ports_ops = {
1950 .owner = THIS_MODULE,
1951 .open = tegra_pcie_ports_open,
1952 .read = seq_read,
1953 .llseek = seq_lseek,
1954 .release = seq_release,
1955 };
1956
1957 static int tegra_pcie_debugfs_init(struct tegra_pcie *pcie)
1958 {
1959 struct dentry *file;
1960
1961 pcie->debugfs = debugfs_create_dir("pcie", NULL);
1962 if (!pcie->debugfs)
1963 return -ENOMEM;
1964
1965 file = debugfs_create_file("ports", S_IFREG | S_IRUGO, pcie->debugfs,
1966 pcie, &tegra_pcie_ports_ops);
1967 if (!file)
1968 goto remove;
1969
1970 return 0;
1971
1972 remove:
1973 debugfs_remove_recursive(pcie->debugfs);
1974 pcie->debugfs = NULL;
1975 return -ENOMEM;
1976 }
1977
1978 static int tegra_pcie_probe(struct platform_device *pdev)
1979 {
1980 const struct of_device_id *match;
1981 struct tegra_pcie *pcie;
1982 int err;
1983
1984 match = of_match_device(tegra_pcie_of_match, &pdev->dev);
1985 if (!match)
1986 return -ENODEV;
1987
1988 pcie = devm_kzalloc(&pdev->dev, sizeof(*pcie), GFP_KERNEL);
1989 if (!pcie)
1990 return -ENOMEM;
1991
1992 INIT_LIST_HEAD(&pcie->buses);
1993 INIT_LIST_HEAD(&pcie->ports);
1994 pcie->soc_data = match->data;
1995 pcie->dev = &pdev->dev;
1996
1997 err = tegra_pcie_parse_dt(pcie);
1998 if (err < 0)
1999 return err;
2000
2001 pcibios_min_mem = 0;
2002
2003 err = tegra_pcie_get_resources(pcie);
2004 if (err < 0) {
2005 dev_err(&pdev->dev, "failed to request resources: %d\n", err);
2006 return err;
2007 }
2008
2009 err = tegra_pcie_enable_controller(pcie);
2010 if (err)
2011 goto put_resources;
2012
2013 /* setup the AFI address translations */
2014 tegra_pcie_setup_translations(pcie);
2015
2016 if (IS_ENABLED(CONFIG_PCI_MSI)) {
2017 err = tegra_pcie_enable_msi(pcie);
2018 if (err < 0) {
2019 dev_err(&pdev->dev,
2020 "failed to enable MSI support: %d\n",
2021 err);
2022 goto put_resources;
2023 }
2024 }
2025
2026 err = tegra_pcie_enable(pcie);
2027 if (err < 0) {
2028 dev_err(&pdev->dev, "failed to enable PCIe ports: %d\n", err);
2029 goto disable_msi;
2030 }
2031
2032 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
2033 err = tegra_pcie_debugfs_init(pcie);
2034 if (err < 0)
2035 dev_err(&pdev->dev, "failed to setup debugfs: %d\n",
2036 err);
2037 }
2038
2039 platform_set_drvdata(pdev, pcie);
2040 return 0;
2041
2042 disable_msi:
2043 if (IS_ENABLED(CONFIG_PCI_MSI))
2044 tegra_pcie_disable_msi(pcie);
2045 put_resources:
2046 tegra_pcie_put_resources(pcie);
2047 return err;
2048 }
2049
2050 static struct platform_driver tegra_pcie_driver = {
2051 .driver = {
2052 .name = "tegra-pcie",
2053 .of_match_table = tegra_pcie_of_match,
2054 .suppress_bind_attrs = true,
2055 },
2056 .probe = tegra_pcie_probe,
2057 };
2058 module_platform_driver(tegra_pcie_driver);
2059
2060 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
2061 MODULE_DESCRIPTION("NVIDIA Tegra PCIe driver");
2062 MODULE_LICENSE("GPL v2");
This page took 0.142108 seconds and 5 git commands to generate.