x86, pat: Sanity check remap_pfn_range for RAM region
[deliverable/linux.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include <linux/kthread.h>
41 #include "cpqphp.h"
42
43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
44 u8 behind_bridge, struct resource_lists *resources);
45 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
46 u8 behind_bridge, struct resource_lists *resources);
47 static void interrupt_event_handler(struct controller *ctrl);
48
49
50 static struct task_struct *cpqhp_event_thread;
51 static unsigned long pushbutton_pending; /* = 0 */
52
53 /* delay is in jiffies to wait for */
54 static void long_delay(int delay)
55 {
56 /*
57 * XXX(hch): if someone is bored please convert all callers
58 * to call msleep_interruptible directly. They really want
59 * to specify timeouts in natural units and spend a lot of
60 * effort converting them to jiffies..
61 */
62 msleep_interruptible(jiffies_to_msecs(delay));
63 }
64
65
66 /* FIXME: The following line needs to be somewhere else... */
67 #define WRONG_BUS_FREQUENCY 0x07
68 static u8 handle_switch_change(u8 change, struct controller * ctrl)
69 {
70 int hp_slot;
71 u8 rc = 0;
72 u16 temp_word;
73 struct pci_func *func;
74 struct event_info *taskInfo;
75
76 if (!change)
77 return 0;
78
79 /* Switch Change */
80 dbg("cpqsbd: Switch interrupt received.\n");
81
82 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
83 if (change & (0x1L << hp_slot)) {
84 /*
85 * this one changed.
86 */
87 func = cpqhp_slot_find(ctrl->bus,
88 (hp_slot + ctrl->slot_device_offset), 0);
89
90 /* this is the structure that tells the worker thread
91 * what to do
92 */
93 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
94 ctrl->next_event = (ctrl->next_event + 1) % 10;
95 taskInfo->hp_slot = hp_slot;
96
97 rc++;
98
99 temp_word = ctrl->ctrl_int_comp >> 16;
100 func->presence_save = (temp_word >> hp_slot) & 0x01;
101 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
102
103 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
104 /*
105 * Switch opened
106 */
107
108 func->switch_save = 0;
109
110 taskInfo->event_type = INT_SWITCH_OPEN;
111 } else {
112 /*
113 * Switch closed
114 */
115
116 func->switch_save = 0x10;
117
118 taskInfo->event_type = INT_SWITCH_CLOSE;
119 }
120 }
121 }
122
123 return rc;
124 }
125
126 /**
127 * cpqhp_find_slot - find the struct slot of given device
128 * @ctrl: scan lots of this controller
129 * @device: the device id to find
130 */
131 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
132 {
133 struct slot *slot = ctrl->slot;
134
135 while (slot && (slot->device != device))
136 slot = slot->next;
137
138 return slot;
139 }
140
141
142 static u8 handle_presence_change(u16 change, struct controller * ctrl)
143 {
144 int hp_slot;
145 u8 rc = 0;
146 u8 temp_byte;
147 u16 temp_word;
148 struct pci_func *func;
149 struct event_info *taskInfo;
150 struct slot *p_slot;
151
152 if (!change)
153 return 0;
154
155 /*
156 * Presence Change
157 */
158 dbg("cpqsbd: Presence/Notify input change.\n");
159 dbg(" Changed bits are 0x%4.4x\n", change );
160
161 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
162 if (change & (0x0101 << hp_slot)) {
163 /*
164 * this one changed.
165 */
166 func = cpqhp_slot_find(ctrl->bus,
167 (hp_slot + ctrl->slot_device_offset), 0);
168
169 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
170 ctrl->next_event = (ctrl->next_event + 1) % 10;
171 taskInfo->hp_slot = hp_slot;
172
173 rc++;
174
175 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
176 if (!p_slot)
177 return 0;
178
179 /* If the switch closed, must be a button
180 * If not in button mode, nevermind
181 */
182 if (func->switch_save && (ctrl->push_button == 1)) {
183 temp_word = ctrl->ctrl_int_comp >> 16;
184 temp_byte = (temp_word >> hp_slot) & 0x01;
185 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
186
187 if (temp_byte != func->presence_save) {
188 /*
189 * button Pressed (doesn't do anything)
190 */
191 dbg("hp_slot %d button pressed\n", hp_slot);
192 taskInfo->event_type = INT_BUTTON_PRESS;
193 } else {
194 /*
195 * button Released - TAKE ACTION!!!!
196 */
197 dbg("hp_slot %d button released\n", hp_slot);
198 taskInfo->event_type = INT_BUTTON_RELEASE;
199
200 /* Cancel if we are still blinking */
201 if ((p_slot->state == BLINKINGON_STATE)
202 || (p_slot->state == BLINKINGOFF_STATE)) {
203 taskInfo->event_type = INT_BUTTON_CANCEL;
204 dbg("hp_slot %d button cancel\n", hp_slot);
205 } else if ((p_slot->state == POWERON_STATE)
206 || (p_slot->state == POWEROFF_STATE)) {
207 /* info(msg_button_ignore, p_slot->number); */
208 taskInfo->event_type = INT_BUTTON_IGNORE;
209 dbg("hp_slot %d button ignore\n", hp_slot);
210 }
211 }
212 } else {
213 /* Switch is open, assume a presence change
214 * Save the presence state
215 */
216 temp_word = ctrl->ctrl_int_comp >> 16;
217 func->presence_save = (temp_word >> hp_slot) & 0x01;
218 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
219
220 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
221 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
222 /* Present */
223 taskInfo->event_type = INT_PRESENCE_ON;
224 } else {
225 /* Not Present */
226 taskInfo->event_type = INT_PRESENCE_OFF;
227 }
228 }
229 }
230 }
231
232 return rc;
233 }
234
235
236 static u8 handle_power_fault(u8 change, struct controller * ctrl)
237 {
238 int hp_slot;
239 u8 rc = 0;
240 struct pci_func *func;
241 struct event_info *taskInfo;
242
243 if (!change)
244 return 0;
245
246 /*
247 * power fault
248 */
249
250 info("power fault interrupt\n");
251
252 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
253 if (change & (0x01 << hp_slot)) {
254 /*
255 * this one changed.
256 */
257 func = cpqhp_slot_find(ctrl->bus,
258 (hp_slot + ctrl->slot_device_offset), 0);
259
260 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
261 ctrl->next_event = (ctrl->next_event + 1) % 10;
262 taskInfo->hp_slot = hp_slot;
263
264 rc++;
265
266 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
267 /*
268 * power fault Cleared
269 */
270 func->status = 0x00;
271
272 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
273 } else {
274 /*
275 * power fault
276 */
277 taskInfo->event_type = INT_POWER_FAULT;
278
279 if (ctrl->rev < 4) {
280 amber_LED_on (ctrl, hp_slot);
281 green_LED_off (ctrl, hp_slot);
282 set_SOGO (ctrl);
283
284 /* this is a fatal condition, we want
285 * to crash the machine to protect from
286 * data corruption. simulated_NMI
287 * shouldn't ever return */
288 /* FIXME
289 simulated_NMI(hp_slot, ctrl); */
290
291 /* The following code causes a software
292 * crash just in case simulated_NMI did
293 * return */
294 /*FIXME
295 panic(msg_power_fault); */
296 } else {
297 /* set power fault status for this board */
298 func->status = 0xFF;
299 info("power fault bit %x set\n", hp_slot);
300 }
301 }
302 }
303 }
304
305 return rc;
306 }
307
308
309 /**
310 * sort_by_size - sort nodes on the list by their length, smallest first.
311 * @head: list to sort
312 */
313 static int sort_by_size(struct pci_resource **head)
314 {
315 struct pci_resource *current_res;
316 struct pci_resource *next_res;
317 int out_of_order = 1;
318
319 if (!(*head))
320 return 1;
321
322 if (!((*head)->next))
323 return 0;
324
325 while (out_of_order) {
326 out_of_order = 0;
327
328 /* Special case for swapping list head */
329 if (((*head)->next) &&
330 ((*head)->length > (*head)->next->length)) {
331 out_of_order++;
332 current_res = *head;
333 *head = (*head)->next;
334 current_res->next = (*head)->next;
335 (*head)->next = current_res;
336 }
337
338 current_res = *head;
339
340 while (current_res->next && current_res->next->next) {
341 if (current_res->next->length > current_res->next->next->length) {
342 out_of_order++;
343 next_res = current_res->next;
344 current_res->next = current_res->next->next;
345 current_res = current_res->next;
346 next_res->next = current_res->next;
347 current_res->next = next_res;
348 } else
349 current_res = current_res->next;
350 }
351 } /* End of out_of_order loop */
352
353 return 0;
354 }
355
356
357 /**
358 * sort_by_max_size - sort nodes on the list by their length, largest first.
359 * @head: list to sort
360 */
361 static int sort_by_max_size(struct pci_resource **head)
362 {
363 struct pci_resource *current_res;
364 struct pci_resource *next_res;
365 int out_of_order = 1;
366
367 if (!(*head))
368 return 1;
369
370 if (!((*head)->next))
371 return 0;
372
373 while (out_of_order) {
374 out_of_order = 0;
375
376 /* Special case for swapping list head */
377 if (((*head)->next) &&
378 ((*head)->length < (*head)->next->length)) {
379 out_of_order++;
380 current_res = *head;
381 *head = (*head)->next;
382 current_res->next = (*head)->next;
383 (*head)->next = current_res;
384 }
385
386 current_res = *head;
387
388 while (current_res->next && current_res->next->next) {
389 if (current_res->next->length < current_res->next->next->length) {
390 out_of_order++;
391 next_res = current_res->next;
392 current_res->next = current_res->next->next;
393 current_res = current_res->next;
394 next_res->next = current_res->next;
395 current_res->next = next_res;
396 } else
397 current_res = current_res->next;
398 }
399 } /* End of out_of_order loop */
400
401 return 0;
402 }
403
404
405 /**
406 * do_pre_bridge_resource_split - find node of resources that are unused
407 * @head: new list head
408 * @orig_head: original list head
409 * @alignment: max node size (?)
410 */
411 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
412 struct pci_resource **orig_head, u32 alignment)
413 {
414 struct pci_resource *prevnode = NULL;
415 struct pci_resource *node;
416 struct pci_resource *split_node;
417 u32 rc;
418 u32 temp_dword;
419 dbg("do_pre_bridge_resource_split\n");
420
421 if (!(*head) || !(*orig_head))
422 return NULL;
423
424 rc = cpqhp_resource_sort_and_combine(head);
425
426 if (rc)
427 return NULL;
428
429 if ((*head)->base != (*orig_head)->base)
430 return NULL;
431
432 if ((*head)->length == (*orig_head)->length)
433 return NULL;
434
435
436 /* If we got here, there the bridge requires some of the resource, but
437 * we may be able to split some off of the front
438 */
439
440 node = *head;
441
442 if (node->length & (alignment -1)) {
443 /* this one isn't an aligned length, so we'll make a new entry
444 * and split it up.
445 */
446 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
447
448 if (!split_node)
449 return NULL;
450
451 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
452
453 split_node->base = node->base;
454 split_node->length = temp_dword;
455
456 node->length -= temp_dword;
457 node->base += split_node->length;
458
459 /* Put it in the list */
460 *head = split_node;
461 split_node->next = node;
462 }
463
464 if (node->length < alignment)
465 return NULL;
466
467 /* Now unlink it */
468 if (*head == node) {
469 *head = node->next;
470 } else {
471 prevnode = *head;
472 while (prevnode->next != node)
473 prevnode = prevnode->next;
474
475 prevnode->next = node->next;
476 }
477 node->next = NULL;
478
479 return node;
480 }
481
482
483 /**
484 * do_bridge_resource_split - find one node of resources that aren't in use
485 * @head: list head
486 * @alignment: max node size (?)
487 */
488 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
489 {
490 struct pci_resource *prevnode = NULL;
491 struct pci_resource *node;
492 u32 rc;
493 u32 temp_dword;
494
495 rc = cpqhp_resource_sort_and_combine(head);
496
497 if (rc)
498 return NULL;
499
500 node = *head;
501
502 while (node->next) {
503 prevnode = node;
504 node = node->next;
505 kfree(prevnode);
506 }
507
508 if (node->length < alignment)
509 goto error;
510
511 if (node->base & (alignment - 1)) {
512 /* Short circuit if adjusted size is too small */
513 temp_dword = (node->base | (alignment-1)) + 1;
514 if ((node->length - (temp_dword - node->base)) < alignment)
515 goto error;
516
517 node->length -= (temp_dword - node->base);
518 node->base = temp_dword;
519 }
520
521 if (node->length & (alignment - 1))
522 /* There's stuff in use after this node */
523 goto error;
524
525 return node;
526 error:
527 kfree(node);
528 return NULL;
529 }
530
531
532 /**
533 * get_io_resource - find first node of given size not in ISA aliasing window.
534 * @head: list to search
535 * @size: size of node to find, must be a power of two.
536 *
537 * Description: This function sorts the resource list by size and then returns
538 * returns the first node of "size" length that is not in the ISA aliasing
539 * window. If it finds a node larger than "size" it will split it up.
540 */
541 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
542 {
543 struct pci_resource *prevnode;
544 struct pci_resource *node;
545 struct pci_resource *split_node;
546 u32 temp_dword;
547
548 if (!(*head))
549 return NULL;
550
551 if (cpqhp_resource_sort_and_combine(head))
552 return NULL;
553
554 if (sort_by_size(head))
555 return NULL;
556
557 for (node = *head; node; node = node->next) {
558 if (node->length < size)
559 continue;
560
561 if (node->base & (size - 1)) {
562 /* this one isn't base aligned properly
563 * so we'll make a new entry and split it up
564 */
565 temp_dword = (node->base | (size-1)) + 1;
566
567 /* Short circuit if adjusted size is too small */
568 if ((node->length - (temp_dword - node->base)) < size)
569 continue;
570
571 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
572
573 if (!split_node)
574 return NULL;
575
576 split_node->base = node->base;
577 split_node->length = temp_dword - node->base;
578 node->base = temp_dword;
579 node->length -= split_node->length;
580
581 /* Put it in the list */
582 split_node->next = node->next;
583 node->next = split_node;
584 } /* End of non-aligned base */
585
586 /* Don't need to check if too small since we already did */
587 if (node->length > size) {
588 /* this one is longer than we need
589 * so we'll make a new entry and split it up
590 */
591 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
592
593 if (!split_node)
594 return NULL;
595
596 split_node->base = node->base + size;
597 split_node->length = node->length - size;
598 node->length = size;
599
600 /* Put it in the list */
601 split_node->next = node->next;
602 node->next = split_node;
603 } /* End of too big on top end */
604
605 /* For IO make sure it's not in the ISA aliasing space */
606 if (node->base & 0x300L)
607 continue;
608
609 /* If we got here, then it is the right size
610 * Now take it out of the list and break
611 */
612 if (*head == node) {
613 *head = node->next;
614 } else {
615 prevnode = *head;
616 while (prevnode->next != node)
617 prevnode = prevnode->next;
618
619 prevnode->next = node->next;
620 }
621 node->next = NULL;
622 break;
623 }
624
625 return node;
626 }
627
628
629 /**
630 * get_max_resource - get largest node which has at least the given size.
631 * @head: the list to search the node in
632 * @size: the minimum size of the node to find
633 *
634 * Description: Gets the largest node that is at least "size" big from the
635 * list pointed to by head. It aligns the node on top and bottom
636 * to "size" alignment before returning it.
637 */
638 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
639 {
640 struct pci_resource *max;
641 struct pci_resource *temp;
642 struct pci_resource *split_node;
643 u32 temp_dword;
644
645 if (cpqhp_resource_sort_and_combine(head))
646 return NULL;
647
648 if (sort_by_max_size(head))
649 return NULL;
650
651 for (max = *head; max; max = max->next) {
652 /* If not big enough we could probably just bail,
653 * instead we'll continue to the next.
654 */
655 if (max->length < size)
656 continue;
657
658 if (max->base & (size - 1)) {
659 /* this one isn't base aligned properly
660 * so we'll make a new entry and split it up
661 */
662 temp_dword = (max->base | (size-1)) + 1;
663
664 /* Short circuit if adjusted size is too small */
665 if ((max->length - (temp_dword - max->base)) < size)
666 continue;
667
668 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
669
670 if (!split_node)
671 return NULL;
672
673 split_node->base = max->base;
674 split_node->length = temp_dword - max->base;
675 max->base = temp_dword;
676 max->length -= split_node->length;
677
678 split_node->next = max->next;
679 max->next = split_node;
680 }
681
682 if ((max->base + max->length) & (size - 1)) {
683 /* this one isn't end aligned properly at the top
684 * so we'll make a new entry and split it up
685 */
686 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
687
688 if (!split_node)
689 return NULL;
690 temp_dword = ((max->base + max->length) & ~(size - 1));
691 split_node->base = temp_dword;
692 split_node->length = max->length + max->base
693 - split_node->base;
694 max->length -= split_node->length;
695
696 split_node->next = max->next;
697 max->next = split_node;
698 }
699
700 /* Make sure it didn't shrink too much when we aligned it */
701 if (max->length < size)
702 continue;
703
704 /* Now take it out of the list */
705 temp = *head;
706 if (temp == max) {
707 *head = max->next;
708 } else {
709 while (temp && temp->next != max) {
710 temp = temp->next;
711 }
712
713 temp->next = max->next;
714 }
715
716 max->next = NULL;
717 break;
718 }
719
720 return max;
721 }
722
723
724 /**
725 * get_resource - find resource of given size and split up larger ones.
726 * @head: the list to search for resources
727 * @size: the size limit to use
728 *
729 * Description: This function sorts the resource list by size and then
730 * returns the first node of "size" length. If it finds a node
731 * larger than "size" it will split it up.
732 *
733 * size must be a power of two.
734 */
735 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
736 {
737 struct pci_resource *prevnode;
738 struct pci_resource *node;
739 struct pci_resource *split_node;
740 u32 temp_dword;
741
742 if (cpqhp_resource_sort_and_combine(head))
743 return NULL;
744
745 if (sort_by_size(head))
746 return NULL;
747
748 for (node = *head; node; node = node->next) {
749 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
750 __func__, size, node, node->base, node->length);
751 if (node->length < size)
752 continue;
753
754 if (node->base & (size - 1)) {
755 dbg("%s: not aligned\n", __func__);
756 /* this one isn't base aligned properly
757 * so we'll make a new entry and split it up
758 */
759 temp_dword = (node->base | (size-1)) + 1;
760
761 /* Short circuit if adjusted size is too small */
762 if ((node->length - (temp_dword - node->base)) < size)
763 continue;
764
765 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
766
767 if (!split_node)
768 return NULL;
769
770 split_node->base = node->base;
771 split_node->length = temp_dword - node->base;
772 node->base = temp_dword;
773 node->length -= split_node->length;
774
775 split_node->next = node->next;
776 node->next = split_node;
777 } /* End of non-aligned base */
778
779 /* Don't need to check if too small since we already did */
780 if (node->length > size) {
781 dbg("%s: too big\n", __func__);
782 /* this one is longer than we need
783 * so we'll make a new entry and split it up
784 */
785 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
786
787 if (!split_node)
788 return NULL;
789
790 split_node->base = node->base + size;
791 split_node->length = node->length - size;
792 node->length = size;
793
794 /* Put it in the list */
795 split_node->next = node->next;
796 node->next = split_node;
797 } /* End of too big on top end */
798
799 dbg("%s: got one!!!\n", __func__);
800 /* If we got here, then it is the right size
801 * Now take it out of the list */
802 if (*head == node) {
803 *head = node->next;
804 } else {
805 prevnode = *head;
806 while (prevnode->next != node)
807 prevnode = prevnode->next;
808
809 prevnode->next = node->next;
810 }
811 node->next = NULL;
812 break;
813 }
814 return node;
815 }
816
817
818 /**
819 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
820 * @head: the list to sort and clean up
821 *
822 * Description: Sorts all of the nodes in the list in ascending order by
823 * their base addresses. Also does garbage collection by
824 * combining adjacent nodes.
825 *
826 * Returns %0 if success.
827 */
828 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
829 {
830 struct pci_resource *node1;
831 struct pci_resource *node2;
832 int out_of_order = 1;
833
834 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
835
836 if (!(*head))
837 return 1;
838
839 dbg("*head->next = %p\n",(*head)->next);
840
841 if (!(*head)->next)
842 return 0; /* only one item on the list, already sorted! */
843
844 dbg("*head->base = 0x%x\n",(*head)->base);
845 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
846 while (out_of_order) {
847 out_of_order = 0;
848
849 /* Special case for swapping list head */
850 if (((*head)->next) &&
851 ((*head)->base > (*head)->next->base)) {
852 node1 = *head;
853 (*head) = (*head)->next;
854 node1->next = (*head)->next;
855 (*head)->next = node1;
856 out_of_order++;
857 }
858
859 node1 = (*head);
860
861 while (node1->next && node1->next->next) {
862 if (node1->next->base > node1->next->next->base) {
863 out_of_order++;
864 node2 = node1->next;
865 node1->next = node1->next->next;
866 node1 = node1->next;
867 node2->next = node1->next;
868 node1->next = node2;
869 } else
870 node1 = node1->next;
871 }
872 } /* End of out_of_order loop */
873
874 node1 = *head;
875
876 while (node1 && node1->next) {
877 if ((node1->base + node1->length) == node1->next->base) {
878 /* Combine */
879 dbg("8..\n");
880 node1->length += node1->next->length;
881 node2 = node1->next;
882 node1->next = node1->next->next;
883 kfree(node2);
884 } else
885 node1 = node1->next;
886 }
887
888 return 0;
889 }
890
891
892 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
893 {
894 struct controller *ctrl = data;
895 u8 schedule_flag = 0;
896 u8 reset;
897 u16 misc;
898 u32 Diff;
899 u32 temp_dword;
900
901
902 misc = readw(ctrl->hpc_reg + MISC);
903 /*
904 * Check to see if it was our interrupt
905 */
906 if (!(misc & 0x000C)) {
907 return IRQ_NONE;
908 }
909
910 if (misc & 0x0004) {
911 /*
912 * Serial Output interrupt Pending
913 */
914
915 /* Clear the interrupt */
916 misc |= 0x0004;
917 writew(misc, ctrl->hpc_reg + MISC);
918
919 /* Read to clear posted writes */
920 misc = readw(ctrl->hpc_reg + MISC);
921
922 dbg ("%s - waking up\n", __func__);
923 wake_up_interruptible(&ctrl->queue);
924 }
925
926 if (misc & 0x0008) {
927 /* General-interrupt-input interrupt Pending */
928 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
929
930 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
931
932 /* Clear the interrupt */
933 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
934
935 /* Read it back to clear any posted writes */
936 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
937
938 if (!Diff)
939 /* Clear all interrupts */
940 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
941
942 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
943 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
944 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
945 }
946
947 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
948 if (reset & 0x40) {
949 /* Bus reset has completed */
950 reset &= 0xCF;
951 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
952 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
953 wake_up_interruptible(&ctrl->queue);
954 }
955
956 if (schedule_flag) {
957 wake_up_process(cpqhp_event_thread);
958 dbg("Waking even thread");
959 }
960 return IRQ_HANDLED;
961 }
962
963
964 /**
965 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
966 * @busnumber: bus where new node is to be located
967 *
968 * Returns pointer to the new node or %NULL if unsuccessful.
969 */
970 struct pci_func *cpqhp_slot_create(u8 busnumber)
971 {
972 struct pci_func *new_slot;
973 struct pci_func *next;
974
975 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
976 if (new_slot == NULL)
977 return new_slot;
978
979 new_slot->next = NULL;
980 new_slot->configured = 1;
981
982 if (cpqhp_slot_list[busnumber] == NULL) {
983 cpqhp_slot_list[busnumber] = new_slot;
984 } else {
985 next = cpqhp_slot_list[busnumber];
986 while (next->next != NULL)
987 next = next->next;
988 next->next = new_slot;
989 }
990 return new_slot;
991 }
992
993
994 /**
995 * slot_remove - Removes a node from the linked list of slots.
996 * @old_slot: slot to remove
997 *
998 * Returns %0 if successful, !0 otherwise.
999 */
1000 static int slot_remove(struct pci_func * old_slot)
1001 {
1002 struct pci_func *next;
1003
1004 if (old_slot == NULL)
1005 return 1;
1006
1007 next = cpqhp_slot_list[old_slot->bus];
1008 if (next == NULL)
1009 return 1;
1010
1011 if (next == old_slot) {
1012 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1013 cpqhp_destroy_board_resources(old_slot);
1014 kfree(old_slot);
1015 return 0;
1016 }
1017
1018 while ((next->next != old_slot) && (next->next != NULL))
1019 next = next->next;
1020
1021 if (next->next == old_slot) {
1022 next->next = old_slot->next;
1023 cpqhp_destroy_board_resources(old_slot);
1024 kfree(old_slot);
1025 return 0;
1026 } else
1027 return 2;
1028 }
1029
1030
1031 /**
1032 * bridge_slot_remove - Removes a node from the linked list of slots.
1033 * @bridge: bridge to remove
1034 *
1035 * Returns %0 if successful, !0 otherwise.
1036 */
1037 static int bridge_slot_remove(struct pci_func *bridge)
1038 {
1039 u8 subordinateBus, secondaryBus;
1040 u8 tempBus;
1041 struct pci_func *next;
1042
1043 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1044 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1045
1046 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1047 next = cpqhp_slot_list[tempBus];
1048
1049 while (!slot_remove(next))
1050 next = cpqhp_slot_list[tempBus];
1051 }
1052
1053 next = cpqhp_slot_list[bridge->bus];
1054
1055 if (next == NULL)
1056 return 1;
1057
1058 if (next == bridge) {
1059 cpqhp_slot_list[bridge->bus] = bridge->next;
1060 goto out;
1061 }
1062
1063 while ((next->next != bridge) && (next->next != NULL))
1064 next = next->next;
1065
1066 if (next->next != bridge)
1067 return 2;
1068 next->next = bridge->next;
1069 out:
1070 kfree(bridge);
1071 return 0;
1072 }
1073
1074
1075 /**
1076 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1077 * @bus: bus to find
1078 * @device: device to find
1079 * @index: is %0 for first function found, %1 for the second...
1080 *
1081 * Returns pointer to the node if successful, %NULL otherwise.
1082 */
1083 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1084 {
1085 int found = -1;
1086 struct pci_func *func;
1087
1088 func = cpqhp_slot_list[bus];
1089
1090 if ((func == NULL) || ((func->device == device) && (index == 0)))
1091 return func;
1092
1093 if (func->device == device)
1094 found++;
1095
1096 while (func->next != NULL) {
1097 func = func->next;
1098
1099 if (func->device == device)
1100 found++;
1101
1102 if (found == index)
1103 return func;
1104 }
1105
1106 return NULL;
1107 }
1108
1109
1110 /* DJZ: I don't think is_bridge will work as is.
1111 * FIXME */
1112 static int is_bridge(struct pci_func * func)
1113 {
1114 /* Check the header type */
1115 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1116 return 1;
1117 else
1118 return 0;
1119 }
1120
1121
1122 /**
1123 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1124 * @ctrl: controller to change frequency/mode for.
1125 * @adapter_speed: the speed of the adapter we want to match.
1126 * @hp_slot: the slot number where the adapter is installed.
1127 *
1128 * Returns %0 if we successfully change frequency and/or mode to match the
1129 * adapter speed.
1130 */
1131 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1132 {
1133 struct slot *slot;
1134 u8 reg;
1135 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136 u16 reg16;
1137 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138
1139 if (ctrl->speed == adapter_speed)
1140 return 0;
1141
1142 /* We don't allow freq/mode changes if we find another adapter running
1143 * in another slot on this controller
1144 */
1145 for(slot = ctrl->slot; slot; slot = slot->next) {
1146 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147 continue;
1148 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149 continue;
1150 if (slot->hotplug_slot->info->adapter_status == 0)
1151 continue;
1152 /* If another adapter is running on the same segment but at a
1153 * lower speed/mode, we allow the new adapter to function at
1154 * this rate if supported
1155 */
1156 if (ctrl->speed < adapter_speed)
1157 return 0;
1158
1159 return 1;
1160 }
1161
1162 /* If the controller doesn't support freq/mode changes and the
1163 * controller is running at a higher mode, we bail
1164 */
1165 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166 return 1;
1167
1168 /* But we allow the adapter to run at a lower rate if possible */
1169 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170 return 0;
1171
1172 /* We try to set the max speed supported by both the adapter and
1173 * controller
1174 */
1175 if (ctrl->speed_capability < adapter_speed) {
1176 if (ctrl->speed == ctrl->speed_capability)
1177 return 0;
1178 adapter_speed = ctrl->speed_capability;
1179 }
1180
1181 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183
1184 set_SOGO(ctrl);
1185 wait_for_ctrl_irq(ctrl);
1186
1187 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188 reg = 0xF5;
1189 else
1190 reg = 0xF4;
1191 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192
1193 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194 reg16 &= ~0x000F;
1195 switch(adapter_speed) {
1196 case(PCI_SPEED_133MHz_PCIX):
1197 reg = 0x75;
1198 reg16 |= 0xB;
1199 break;
1200 case(PCI_SPEED_100MHz_PCIX):
1201 reg = 0x74;
1202 reg16 |= 0xA;
1203 break;
1204 case(PCI_SPEED_66MHz_PCIX):
1205 reg = 0x73;
1206 reg16 |= 0x9;
1207 break;
1208 case(PCI_SPEED_66MHz):
1209 reg = 0x73;
1210 reg16 |= 0x1;
1211 break;
1212 default: /* 33MHz PCI 2.2 */
1213 reg = 0x71;
1214 break;
1215
1216 }
1217 reg16 |= 0xB << 12;
1218 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219
1220 mdelay(5);
1221
1222 /* Reenable interrupts */
1223 writel(0, ctrl->hpc_reg + INT_MASK);
1224
1225 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226
1227 /* Restart state machine */
1228 reg = ~0xF;
1229 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1230 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231
1232 /* Only if mode change...*/
1233 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1235 set_SOGO(ctrl);
1236
1237 wait_for_ctrl_irq(ctrl);
1238 mdelay(1100);
1239
1240 /* Restore LED/Slot state */
1241 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243
1244 set_SOGO(ctrl);
1245 wait_for_ctrl_irq(ctrl);
1246
1247 ctrl->speed = adapter_speed;
1248 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249
1250 info("Successfully changed frequency/mode for adapter in slot %d\n",
1251 slot->number);
1252 return 0;
1253 }
1254
1255 /* the following routines constitute the bulk of the
1256 * hotplug controller logic
1257 */
1258
1259
1260 /**
1261 * board_replaced - Called after a board has been replaced in the system.
1262 * @func: PCI device/function information
1263 * @ctrl: hotplug controller
1264 *
1265 * This is only used if we don't have resources for hot add.
1266 * Turns power on for the board.
1267 * Checks to see if board is the same.
1268 * If board is same, reconfigures it.
1269 * If board isn't same, turns it back off.
1270 */
1271 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272 {
1273 u8 hp_slot;
1274 u8 temp_byte;
1275 u8 adapter_speed;
1276 u32 rc = 0;
1277
1278 hp_slot = func->device - ctrl->slot_device_offset;
1279
1280 /*
1281 * The switch is open.
1282 */
1283 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1284 rc = INTERLOCK_OPEN;
1285 /*
1286 * The board is already on
1287 */
1288 else if (is_slot_enabled (ctrl, hp_slot))
1289 rc = CARD_FUNCTIONING;
1290 else {
1291 mutex_lock(&ctrl->crit_sect);
1292
1293 /* turn on board without attaching to the bus */
1294 enable_slot_power (ctrl, hp_slot);
1295
1296 set_SOGO(ctrl);
1297
1298 /* Wait for SOBS to be unset */
1299 wait_for_ctrl_irq (ctrl);
1300
1301 /* Change bits in slot power register to force another shift out
1302 * NOTE: this is to work around the timer bug */
1303 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1304 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1305 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1306
1307 set_SOGO(ctrl);
1308
1309 /* Wait for SOBS to be unset */
1310 wait_for_ctrl_irq (ctrl);
1311
1312 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1313 if (ctrl->speed != adapter_speed)
1314 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1315 rc = WRONG_BUS_FREQUENCY;
1316
1317 /* turn off board without attaching to the bus */
1318 disable_slot_power (ctrl, hp_slot);
1319
1320 set_SOGO(ctrl);
1321
1322 /* Wait for SOBS to be unset */
1323 wait_for_ctrl_irq (ctrl);
1324
1325 mutex_unlock(&ctrl->crit_sect);
1326
1327 if (rc)
1328 return rc;
1329
1330 mutex_lock(&ctrl->crit_sect);
1331
1332 slot_enable (ctrl, hp_slot);
1333 green_LED_blink (ctrl, hp_slot);
1334
1335 amber_LED_off (ctrl, hp_slot);
1336
1337 set_SOGO(ctrl);
1338
1339 /* Wait for SOBS to be unset */
1340 wait_for_ctrl_irq (ctrl);
1341
1342 mutex_unlock(&ctrl->crit_sect);
1343
1344 /* Wait for ~1 second because of hot plug spec */
1345 long_delay(1*HZ);
1346
1347 /* Check for a power fault */
1348 if (func->status == 0xFF) {
1349 /* power fault occurred, but it was benign */
1350 rc = POWER_FAILURE;
1351 func->status = 0;
1352 } else
1353 rc = cpqhp_valid_replace(ctrl, func);
1354
1355 if (!rc) {
1356 /* It must be the same board */
1357
1358 rc = cpqhp_configure_board(ctrl, func);
1359
1360 /* If configuration fails, turn it off
1361 * Get slot won't work for devices behind
1362 * bridges, but in this case it will always be
1363 * called for the "base" bus/dev/func of an
1364 * adapter.
1365 */
1366
1367 mutex_lock(&ctrl->crit_sect);
1368
1369 amber_LED_on (ctrl, hp_slot);
1370 green_LED_off (ctrl, hp_slot);
1371 slot_disable (ctrl, hp_slot);
1372
1373 set_SOGO(ctrl);
1374
1375 /* Wait for SOBS to be unset */
1376 wait_for_ctrl_irq (ctrl);
1377
1378 mutex_unlock(&ctrl->crit_sect);
1379
1380 if (rc)
1381 return rc;
1382 else
1383 return 1;
1384
1385 } else {
1386 /* Something is wrong
1387
1388 * Get slot won't work for devices behind bridges, but
1389 * in this case it will always be called for the "base"
1390 * bus/dev/func of an adapter.
1391 */
1392
1393 mutex_lock(&ctrl->crit_sect);
1394
1395 amber_LED_on (ctrl, hp_slot);
1396 green_LED_off (ctrl, hp_slot);
1397 slot_disable (ctrl, hp_slot);
1398
1399 set_SOGO(ctrl);
1400
1401 /* Wait for SOBS to be unset */
1402 wait_for_ctrl_irq (ctrl);
1403
1404 mutex_unlock(&ctrl->crit_sect);
1405 }
1406
1407 }
1408 return rc;
1409
1410 }
1411
1412
1413 /**
1414 * board_added - Called after a board has been added to the system.
1415 * @func: PCI device/function info
1416 * @ctrl: hotplug controller
1417 *
1418 * Turns power on for the board.
1419 * Configures board.
1420 */
1421 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1422 {
1423 u8 hp_slot;
1424 u8 temp_byte;
1425 u8 adapter_speed;
1426 int index;
1427 u32 temp_register = 0xFFFFFFFF;
1428 u32 rc = 0;
1429 struct pci_func *new_slot = NULL;
1430 struct slot *p_slot;
1431 struct resource_lists res_lists;
1432
1433 hp_slot = func->device - ctrl->slot_device_offset;
1434 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1435 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1436
1437 mutex_lock(&ctrl->crit_sect);
1438
1439 /* turn on board without attaching to the bus */
1440 enable_slot_power(ctrl, hp_slot);
1441
1442 set_SOGO(ctrl);
1443
1444 /* Wait for SOBS to be unset */
1445 wait_for_ctrl_irq (ctrl);
1446
1447 /* Change bits in slot power register to force another shift out
1448 * NOTE: this is to work around the timer bug
1449 */
1450 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1451 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1452 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1453
1454 set_SOGO(ctrl);
1455
1456 /* Wait for SOBS to be unset */
1457 wait_for_ctrl_irq (ctrl);
1458
1459 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1460 if (ctrl->speed != adapter_speed)
1461 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1462 rc = WRONG_BUS_FREQUENCY;
1463
1464 /* turn off board without attaching to the bus */
1465 disable_slot_power (ctrl, hp_slot);
1466
1467 set_SOGO(ctrl);
1468
1469 /* Wait for SOBS to be unset */
1470 wait_for_ctrl_irq(ctrl);
1471
1472 mutex_unlock(&ctrl->crit_sect);
1473
1474 if (rc)
1475 return rc;
1476
1477 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1478
1479 /* turn on board and blink green LED */
1480
1481 dbg("%s: before down\n", __func__);
1482 mutex_lock(&ctrl->crit_sect);
1483 dbg("%s: after down\n", __func__);
1484
1485 dbg("%s: before slot_enable\n", __func__);
1486 slot_enable (ctrl, hp_slot);
1487
1488 dbg("%s: before green_LED_blink\n", __func__);
1489 green_LED_blink (ctrl, hp_slot);
1490
1491 dbg("%s: before amber_LED_blink\n", __func__);
1492 amber_LED_off (ctrl, hp_slot);
1493
1494 dbg("%s: before set_SOGO\n", __func__);
1495 set_SOGO(ctrl);
1496
1497 /* Wait for SOBS to be unset */
1498 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1499 wait_for_ctrl_irq (ctrl);
1500 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1501
1502 dbg("%s: before up\n", __func__);
1503 mutex_unlock(&ctrl->crit_sect);
1504 dbg("%s: after up\n", __func__);
1505
1506 /* Wait for ~1 second because of hot plug spec */
1507 dbg("%s: before long_delay\n", __func__);
1508 long_delay(1*HZ);
1509 dbg("%s: after long_delay\n", __func__);
1510
1511 dbg("%s: func status = %x\n", __func__, func->status);
1512 /* Check for a power fault */
1513 if (func->status == 0xFF) {
1514 /* power fault occurred, but it was benign */
1515 temp_register = 0xFFFFFFFF;
1516 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1517 rc = POWER_FAILURE;
1518 func->status = 0;
1519 } else {
1520 /* Get vendor/device ID u32 */
1521 ctrl->pci_bus->number = func->bus;
1522 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1523 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1524 dbg("%s: temp_register is %x\n", __func__, temp_register);
1525
1526 if (rc != 0) {
1527 /* Something's wrong here */
1528 temp_register = 0xFFFFFFFF;
1529 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1530 }
1531 /* Preset return code. It will be changed later if things go okay. */
1532 rc = NO_ADAPTER_PRESENT;
1533 }
1534
1535 /* All F's is an empty slot or an invalid board */
1536 if (temp_register != 0xFFFFFFFF) {
1537 res_lists.io_head = ctrl->io_head;
1538 res_lists.mem_head = ctrl->mem_head;
1539 res_lists.p_mem_head = ctrl->p_mem_head;
1540 res_lists.bus_head = ctrl->bus_head;
1541 res_lists.irqs = NULL;
1542
1543 rc = configure_new_device(ctrl, func, 0, &res_lists);
1544
1545 dbg("%s: back from configure_new_device\n", __func__);
1546 ctrl->io_head = res_lists.io_head;
1547 ctrl->mem_head = res_lists.mem_head;
1548 ctrl->p_mem_head = res_lists.p_mem_head;
1549 ctrl->bus_head = res_lists.bus_head;
1550
1551 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1552 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1553 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1554 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1555
1556 if (rc) {
1557 mutex_lock(&ctrl->crit_sect);
1558
1559 amber_LED_on (ctrl, hp_slot);
1560 green_LED_off (ctrl, hp_slot);
1561 slot_disable (ctrl, hp_slot);
1562
1563 set_SOGO(ctrl);
1564
1565 /* Wait for SOBS to be unset */
1566 wait_for_ctrl_irq (ctrl);
1567
1568 mutex_unlock(&ctrl->crit_sect);
1569 return rc;
1570 } else {
1571 cpqhp_save_slot_config(ctrl, func);
1572 }
1573
1574
1575 func->status = 0;
1576 func->switch_save = 0x10;
1577 func->is_a_board = 0x01;
1578
1579 /* next, we will instantiate the linux pci_dev structures (with
1580 * appropriate driver notification, if already present) */
1581 dbg("%s: configure linux pci_dev structure\n", __func__);
1582 index = 0;
1583 do {
1584 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1585 if (new_slot && !new_slot->pci_dev)
1586 cpqhp_configure_device(ctrl, new_slot);
1587 } while (new_slot);
1588
1589 mutex_lock(&ctrl->crit_sect);
1590
1591 green_LED_on (ctrl, hp_slot);
1592
1593 set_SOGO(ctrl);
1594
1595 /* Wait for SOBS to be unset */
1596 wait_for_ctrl_irq (ctrl);
1597
1598 mutex_unlock(&ctrl->crit_sect);
1599 } else {
1600 mutex_lock(&ctrl->crit_sect);
1601
1602 amber_LED_on (ctrl, hp_slot);
1603 green_LED_off (ctrl, hp_slot);
1604 slot_disable (ctrl, hp_slot);
1605
1606 set_SOGO(ctrl);
1607
1608 /* Wait for SOBS to be unset */
1609 wait_for_ctrl_irq (ctrl);
1610
1611 mutex_unlock(&ctrl->crit_sect);
1612
1613 return rc;
1614 }
1615 return 0;
1616 }
1617
1618
1619 /**
1620 * remove_board - Turns off slot and LEDs
1621 * @func: PCI device/function info
1622 * @replace_flag: whether replacing or adding a new device
1623 * @ctrl: target controller
1624 */
1625 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1626 {
1627 int index;
1628 u8 skip = 0;
1629 u8 device;
1630 u8 hp_slot;
1631 u8 temp_byte;
1632 u32 rc;
1633 struct resource_lists res_lists;
1634 struct pci_func *temp_func;
1635
1636 if (cpqhp_unconfigure_device(func))
1637 return 1;
1638
1639 device = func->device;
1640
1641 hp_slot = func->device - ctrl->slot_device_offset;
1642 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1643
1644 /* When we get here, it is safe to change base address registers.
1645 * We will attempt to save the base address register lengths */
1646 if (replace_flag || !ctrl->add_support)
1647 rc = cpqhp_save_base_addr_length(ctrl, func);
1648 else if (!func->bus_head && !func->mem_head &&
1649 !func->p_mem_head && !func->io_head) {
1650 /* Here we check to see if we've saved any of the board's
1651 * resources already. If so, we'll skip the attempt to
1652 * determine what's being used. */
1653 index = 0;
1654 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1655 while (temp_func) {
1656 if (temp_func->bus_head || temp_func->mem_head
1657 || temp_func->p_mem_head || temp_func->io_head) {
1658 skip = 1;
1659 break;
1660 }
1661 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1662 }
1663
1664 if (!skip)
1665 rc = cpqhp_save_used_resources(ctrl, func);
1666 }
1667 /* Change status to shutdown */
1668 if (func->is_a_board)
1669 func->status = 0x01;
1670 func->configured = 0;
1671
1672 mutex_lock(&ctrl->crit_sect);
1673
1674 green_LED_off (ctrl, hp_slot);
1675 slot_disable (ctrl, hp_slot);
1676
1677 set_SOGO(ctrl);
1678
1679 /* turn off SERR for slot */
1680 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1681 temp_byte &= ~(0x01 << hp_slot);
1682 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1683
1684 /* Wait for SOBS to be unset */
1685 wait_for_ctrl_irq (ctrl);
1686
1687 mutex_unlock(&ctrl->crit_sect);
1688
1689 if (!replace_flag && ctrl->add_support) {
1690 while (func) {
1691 res_lists.io_head = ctrl->io_head;
1692 res_lists.mem_head = ctrl->mem_head;
1693 res_lists.p_mem_head = ctrl->p_mem_head;
1694 res_lists.bus_head = ctrl->bus_head;
1695
1696 cpqhp_return_board_resources(func, &res_lists);
1697
1698 ctrl->io_head = res_lists.io_head;
1699 ctrl->mem_head = res_lists.mem_head;
1700 ctrl->p_mem_head = res_lists.p_mem_head;
1701 ctrl->bus_head = res_lists.bus_head;
1702
1703 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1704 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1705 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1706 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1707
1708 if (is_bridge(func)) {
1709 bridge_slot_remove(func);
1710 } else
1711 slot_remove(func);
1712
1713 func = cpqhp_slot_find(ctrl->bus, device, 0);
1714 }
1715
1716 /* Setup slot structure with entry for empty slot */
1717 func = cpqhp_slot_create(ctrl->bus);
1718
1719 if (func == NULL)
1720 return 1;
1721
1722 func->bus = ctrl->bus;
1723 func->device = device;
1724 func->function = 0;
1725 func->configured = 0;
1726 func->switch_save = 0x10;
1727 func->is_a_board = 0;
1728 func->p_task_event = NULL;
1729 }
1730
1731 return 0;
1732 }
1733
1734 static void pushbutton_helper_thread(unsigned long data)
1735 {
1736 pushbutton_pending = data;
1737 wake_up_process(cpqhp_event_thread);
1738 }
1739
1740
1741 /* this is the main worker thread */
1742 static int event_thread(void* data)
1743 {
1744 struct controller *ctrl;
1745
1746 while (1) {
1747 dbg("!!!!event_thread sleeping\n");
1748 set_current_state(TASK_INTERRUPTIBLE);
1749 schedule();
1750
1751 if (kthread_should_stop())
1752 break;
1753 /* Do stuff here */
1754 if (pushbutton_pending)
1755 cpqhp_pushbutton_thread(pushbutton_pending);
1756 else
1757 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1758 interrupt_event_handler(ctrl);
1759 }
1760 dbg("event_thread signals exit\n");
1761 return 0;
1762 }
1763
1764 int cpqhp_event_start_thread(void)
1765 {
1766 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1767 if (IS_ERR(cpqhp_event_thread)) {
1768 err ("Can't start up our event thread\n");
1769 return PTR_ERR(cpqhp_event_thread);
1770 }
1771
1772 return 0;
1773 }
1774
1775
1776 void cpqhp_event_stop_thread(void)
1777 {
1778 kthread_stop(cpqhp_event_thread);
1779 }
1780
1781
1782 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1783 {
1784 struct hotplug_slot_info *info;
1785 int result;
1786
1787 info = kmalloc(sizeof(*info), GFP_KERNEL);
1788 if (!info)
1789 return -ENOMEM;
1790
1791 info->power_status = get_slot_enabled(ctrl, slot);
1792 info->attention_status = cpq_get_attention_status(ctrl, slot);
1793 info->latch_status = cpq_get_latch_status(ctrl, slot);
1794 info->adapter_status = get_presence_status(ctrl, slot);
1795 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1796 kfree (info);
1797 return result;
1798 }
1799
1800 static void interrupt_event_handler(struct controller *ctrl)
1801 {
1802 int loop = 0;
1803 int change = 1;
1804 struct pci_func *func;
1805 u8 hp_slot;
1806 struct slot *p_slot;
1807
1808 while (change) {
1809 change = 0;
1810
1811 for (loop = 0; loop < 10; loop++) {
1812 /* dbg("loop %d\n", loop); */
1813 if (ctrl->event_queue[loop].event_type != 0) {
1814 hp_slot = ctrl->event_queue[loop].hp_slot;
1815
1816 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1817 if (!func)
1818 return;
1819
1820 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1821 if (!p_slot)
1822 return;
1823
1824 dbg("hp_slot %d, func %p, p_slot %p\n",
1825 hp_slot, func, p_slot);
1826
1827 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1828 dbg("button pressed\n");
1829 } else if (ctrl->event_queue[loop].event_type ==
1830 INT_BUTTON_CANCEL) {
1831 dbg("button cancel\n");
1832 del_timer(&p_slot->task_event);
1833
1834 mutex_lock(&ctrl->crit_sect);
1835
1836 if (p_slot->state == BLINKINGOFF_STATE) {
1837 /* slot is on */
1838 dbg("turn on green LED\n");
1839 green_LED_on (ctrl, hp_slot);
1840 } else if (p_slot->state == BLINKINGON_STATE) {
1841 /* slot is off */
1842 dbg("turn off green LED\n");
1843 green_LED_off (ctrl, hp_slot);
1844 }
1845
1846 info(msg_button_cancel, p_slot->number);
1847
1848 p_slot->state = STATIC_STATE;
1849
1850 amber_LED_off (ctrl, hp_slot);
1851
1852 set_SOGO(ctrl);
1853
1854 /* Wait for SOBS to be unset */
1855 wait_for_ctrl_irq (ctrl);
1856
1857 mutex_unlock(&ctrl->crit_sect);
1858 }
1859 /*** button Released (No action on press...) */
1860 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1861 dbg("button release\n");
1862
1863 if (is_slot_enabled (ctrl, hp_slot)) {
1864 dbg("slot is on\n");
1865 p_slot->state = BLINKINGOFF_STATE;
1866 info(msg_button_off, p_slot->number);
1867 } else {
1868 dbg("slot is off\n");
1869 p_slot->state = BLINKINGON_STATE;
1870 info(msg_button_on, p_slot->number);
1871 }
1872 mutex_lock(&ctrl->crit_sect);
1873
1874 dbg("blink green LED and turn off amber\n");
1875
1876 amber_LED_off (ctrl, hp_slot);
1877 green_LED_blink (ctrl, hp_slot);
1878
1879 set_SOGO(ctrl);
1880
1881 /* Wait for SOBS to be unset */
1882 wait_for_ctrl_irq (ctrl);
1883
1884 mutex_unlock(&ctrl->crit_sect);
1885 init_timer(&p_slot->task_event);
1886 p_slot->hp_slot = hp_slot;
1887 p_slot->ctrl = ctrl;
1888 /* p_slot->physical_slot = physical_slot; */
1889 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1890 p_slot->task_event.function = pushbutton_helper_thread;
1891 p_slot->task_event.data = (u32) p_slot;
1892
1893 dbg("add_timer p_slot = %p\n", p_slot);
1894 add_timer(&p_slot->task_event);
1895 }
1896 /***********POWER FAULT */
1897 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1898 dbg("power fault\n");
1899 } else {
1900 /* refresh notification */
1901 if (p_slot)
1902 update_slot_info(ctrl, p_slot);
1903 }
1904
1905 ctrl->event_queue[loop].event_type = 0;
1906
1907 change = 1;
1908 }
1909 } /* End of FOR loop */
1910 }
1911
1912 return;
1913 }
1914
1915
1916 /**
1917 * cpqhp_pushbutton_thread - handle pushbutton events
1918 * @slot: target slot (struct)
1919 *
1920 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921 * Handles all pending events and exits.
1922 */
1923 void cpqhp_pushbutton_thread(unsigned long slot)
1924 {
1925 u8 hp_slot;
1926 u8 device;
1927 struct pci_func *func;
1928 struct slot *p_slot = (struct slot *) slot;
1929 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1930
1931 pushbutton_pending = 0;
1932 hp_slot = p_slot->hp_slot;
1933
1934 device = p_slot->device;
1935
1936 if (is_slot_enabled(ctrl, hp_slot)) {
1937 p_slot->state = POWEROFF_STATE;
1938 /* power Down board */
1939 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1940 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1941 if (!func) {
1942 dbg("Error! func NULL in %s\n", __func__);
1943 return ;
1944 }
1945
1946 if (cpqhp_process_SS(ctrl, func) != 0) {
1947 amber_LED_on(ctrl, hp_slot);
1948 green_LED_on(ctrl, hp_slot);
1949
1950 set_SOGO(ctrl);
1951
1952 /* Wait for SOBS to be unset */
1953 wait_for_ctrl_irq(ctrl);
1954 }
1955
1956 p_slot->state = STATIC_STATE;
1957 } else {
1958 p_slot->state = POWERON_STATE;
1959 /* slot is off */
1960
1961 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1962 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1963 if (!func) {
1964 dbg("Error! func NULL in %s\n", __func__);
1965 return ;
1966 }
1967
1968 if (ctrl != NULL) {
1969 if (cpqhp_process_SI(ctrl, func) != 0) {
1970 amber_LED_on(ctrl, hp_slot);
1971 green_LED_off(ctrl, hp_slot);
1972
1973 set_SOGO(ctrl);
1974
1975 /* Wait for SOBS to be unset */
1976 wait_for_ctrl_irq (ctrl);
1977 }
1978 }
1979
1980 p_slot->state = STATIC_STATE;
1981 }
1982
1983 return;
1984 }
1985
1986
1987 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1988 {
1989 u8 device, hp_slot;
1990 u16 temp_word;
1991 u32 tempdword;
1992 int rc;
1993 struct slot* p_slot;
1994 int physical_slot = 0;
1995
1996 tempdword = 0;
1997
1998 device = func->device;
1999 hp_slot = device - ctrl->slot_device_offset;
2000 p_slot = cpqhp_find_slot(ctrl, device);
2001 if (p_slot)
2002 physical_slot = p_slot->number;
2003
2004 /* Check to see if the interlock is closed */
2005 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2006
2007 if (tempdword & (0x01 << hp_slot)) {
2008 return 1;
2009 }
2010
2011 if (func->is_a_board) {
2012 rc = board_replaced(func, ctrl);
2013 } else {
2014 /* add board */
2015 slot_remove(func);
2016
2017 func = cpqhp_slot_create(ctrl->bus);
2018 if (func == NULL)
2019 return 1;
2020
2021 func->bus = ctrl->bus;
2022 func->device = device;
2023 func->function = 0;
2024 func->configured = 0;
2025 func->is_a_board = 1;
2026
2027 /* We have to save the presence info for these slots */
2028 temp_word = ctrl->ctrl_int_comp >> 16;
2029 func->presence_save = (temp_word >> hp_slot) & 0x01;
2030 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2031
2032 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2033 func->switch_save = 0;
2034 } else {
2035 func->switch_save = 0x10;
2036 }
2037
2038 rc = board_added(func, ctrl);
2039 if (rc) {
2040 if (is_bridge(func)) {
2041 bridge_slot_remove(func);
2042 } else
2043 slot_remove(func);
2044
2045 /* Setup slot structure with entry for empty slot */
2046 func = cpqhp_slot_create(ctrl->bus);
2047
2048 if (func == NULL)
2049 return 1;
2050
2051 func->bus = ctrl->bus;
2052 func->device = device;
2053 func->function = 0;
2054 func->configured = 0;
2055 func->is_a_board = 0;
2056
2057 /* We have to save the presence info for these slots */
2058 temp_word = ctrl->ctrl_int_comp >> 16;
2059 func->presence_save = (temp_word >> hp_slot) & 0x01;
2060 func->presence_save |=
2061 (temp_word >> (hp_slot + 7)) & 0x02;
2062
2063 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2064 func->switch_save = 0;
2065 } else {
2066 func->switch_save = 0x10;
2067 }
2068 }
2069 }
2070
2071 if (rc) {
2072 dbg("%s: rc = %d\n", __func__, rc);
2073 }
2074
2075 if (p_slot)
2076 update_slot_info(ctrl, p_slot);
2077
2078 return rc;
2079 }
2080
2081
2082 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2083 {
2084 u8 device, class_code, header_type, BCR;
2085 u8 index = 0;
2086 u8 replace_flag;
2087 u32 rc = 0;
2088 unsigned int devfn;
2089 struct slot* p_slot;
2090 struct pci_bus *pci_bus = ctrl->pci_bus;
2091 int physical_slot=0;
2092
2093 device = func->device;
2094 func = cpqhp_slot_find(ctrl->bus, device, index++);
2095 p_slot = cpqhp_find_slot(ctrl, device);
2096 if (p_slot) {
2097 physical_slot = p_slot->number;
2098 }
2099
2100 /* Make sure there are no video controllers here */
2101 while (func && !rc) {
2102 pci_bus->number = func->bus;
2103 devfn = PCI_DEVFN(func->device, func->function);
2104
2105 /* Check the Class Code */
2106 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2107 if (rc)
2108 return rc;
2109
2110 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2111 /* Display/Video adapter (not supported) */
2112 rc = REMOVE_NOT_SUPPORTED;
2113 } else {
2114 /* See if it's a bridge */
2115 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2116 if (rc)
2117 return rc;
2118
2119 /* If it's a bridge, check the VGA Enable bit */
2120 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2121 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2122 if (rc)
2123 return rc;
2124
2125 /* If the VGA Enable bit is set, remove isn't
2126 * supported */
2127 if (BCR & PCI_BRIDGE_CTL_VGA)
2128 rc = REMOVE_NOT_SUPPORTED;
2129 }
2130 }
2131
2132 func = cpqhp_slot_find(ctrl->bus, device, index++);
2133 }
2134
2135 func = cpqhp_slot_find(ctrl->bus, device, 0);
2136 if ((func != NULL) && !rc) {
2137 /* FIXME: Replace flag should be passed into process_SS */
2138 replace_flag = !(ctrl->add_support);
2139 rc = remove_board(func, replace_flag, ctrl);
2140 } else if (!rc) {
2141 rc = 1;
2142 }
2143
2144 if (p_slot)
2145 update_slot_info(ctrl, p_slot);
2146
2147 return rc;
2148 }
2149
2150 /**
2151 * switch_leds - switch the leds, go from one site to the other.
2152 * @ctrl: controller to use
2153 * @num_of_slots: number of slots to use
2154 * @work_LED: LED control value
2155 * @direction: 1 to start from the left side, 0 to start right.
2156 */
2157 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2158 u32 *work_LED, const int direction)
2159 {
2160 int loop;
2161
2162 for (loop = 0; loop < num_of_slots; loop++) {
2163 if (direction)
2164 *work_LED = *work_LED >> 1;
2165 else
2166 *work_LED = *work_LED << 1;
2167 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2168
2169 set_SOGO(ctrl);
2170
2171 /* Wait for SOGO interrupt */
2172 wait_for_ctrl_irq(ctrl);
2173
2174 /* Get ready for next iteration */
2175 long_delay((2*HZ)/10);
2176 }
2177 }
2178
2179 /**
2180 * cpqhp_hardware_test - runs hardware tests
2181 * @ctrl: target controller
2182 * @test_num: the number written to the "test" file in sysfs.
2183 *
2184 * For hot plug ctrl folks to play with.
2185 */
2186 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2187 {
2188 u32 save_LED;
2189 u32 work_LED;
2190 int loop;
2191 int num_of_slots;
2192
2193 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2194
2195 switch (test_num) {
2196 case 1:
2197 /* Do stuff here! */
2198
2199 /* Do that funky LED thing */
2200 /* so we can restore them later */
2201 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2202 work_LED = 0x01010101;
2203 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2204 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2205 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2206 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2207
2208 work_LED = 0x01010000;
2209 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2210 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2211 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2212 work_LED = 0x00000101;
2213 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2214 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2215 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2216
2217 work_LED = 0x01010000;
2218 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2219 for (loop = 0; loop < num_of_slots; loop++) {
2220 set_SOGO(ctrl);
2221
2222 /* Wait for SOGO interrupt */
2223 wait_for_ctrl_irq (ctrl);
2224
2225 /* Get ready for next iteration */
2226 long_delay((3*HZ)/10);
2227 work_LED = work_LED >> 16;
2228 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2229
2230 set_SOGO(ctrl);
2231
2232 /* Wait for SOGO interrupt */
2233 wait_for_ctrl_irq (ctrl);
2234
2235 /* Get ready for next iteration */
2236 long_delay((3*HZ)/10);
2237 work_LED = work_LED << 16;
2238 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2239 work_LED = work_LED << 1;
2240 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241 }
2242
2243 /* put it back the way it was */
2244 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2245
2246 set_SOGO(ctrl);
2247
2248 /* Wait for SOBS to be unset */
2249 wait_for_ctrl_irq (ctrl);
2250 break;
2251 case 2:
2252 /* Do other stuff here! */
2253 break;
2254 case 3:
2255 /* and more... */
2256 break;
2257 }
2258 return 0;
2259 }
2260
2261
2262 /**
2263 * configure_new_device - Configures the PCI header information of one board.
2264 * @ctrl: pointer to controller structure
2265 * @func: pointer to function structure
2266 * @behind_bridge: 1 if this is a recursive call, 0 if not
2267 * @resources: pointer to set of resource lists
2268 *
2269 * Returns 0 if success.
2270 */
2271 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2272 u8 behind_bridge, struct resource_lists * resources)
2273 {
2274 u8 temp_byte, function, max_functions, stop_it;
2275 int rc;
2276 u32 ID;
2277 struct pci_func *new_slot;
2278 int index;
2279
2280 new_slot = func;
2281
2282 dbg("%s\n", __func__);
2283 /* Check for Multi-function device */
2284 ctrl->pci_bus->number = func->bus;
2285 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2286 if (rc) {
2287 dbg("%s: rc = %d\n", __func__, rc);
2288 return rc;
2289 }
2290
2291 if (temp_byte & 0x80) /* Multi-function device */
2292 max_functions = 8;
2293 else
2294 max_functions = 1;
2295
2296 function = 0;
2297
2298 do {
2299 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2300
2301 if (rc) {
2302 dbg("configure_new_function failed %d\n",rc);
2303 index = 0;
2304
2305 while (new_slot) {
2306 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2307
2308 if (new_slot)
2309 cpqhp_return_board_resources(new_slot, resources);
2310 }
2311
2312 return rc;
2313 }
2314
2315 function++;
2316
2317 stop_it = 0;
2318
2319 /* The following loop skips to the next present function
2320 * and creates a board structure */
2321
2322 while ((function < max_functions) && (!stop_it)) {
2323 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2324
2325 if (ID == 0xFFFFFFFF) {
2326 function++;
2327 } else {
2328 /* Setup slot structure. */
2329 new_slot = cpqhp_slot_create(func->bus);
2330
2331 if (new_slot == NULL)
2332 return 1;
2333
2334 new_slot->bus = func->bus;
2335 new_slot->device = func->device;
2336 new_slot->function = function;
2337 new_slot->is_a_board = 1;
2338 new_slot->status = 0;
2339
2340 stop_it++;
2341 }
2342 }
2343
2344 } while (function < max_functions);
2345 dbg("returning from configure_new_device\n");
2346
2347 return 0;
2348 }
2349
2350
2351 /*
2352 * Configuration logic that involves the hotplug data structures and
2353 * their bookkeeping
2354 */
2355
2356
2357 /**
2358 * configure_new_function - Configures the PCI header information of one device
2359 * @ctrl: pointer to controller structure
2360 * @func: pointer to function structure
2361 * @behind_bridge: 1 if this is a recursive call, 0 if not
2362 * @resources: pointer to set of resource lists
2363 *
2364 * Calls itself recursively for bridged devices.
2365 * Returns 0 if success.
2366 */
2367 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2368 u8 behind_bridge,
2369 struct resource_lists *resources)
2370 {
2371 int cloop;
2372 u8 IRQ = 0;
2373 u8 temp_byte;
2374 u8 device;
2375 u8 class_code;
2376 u16 command;
2377 u16 temp_word;
2378 u32 temp_dword;
2379 u32 rc;
2380 u32 temp_register;
2381 u32 base;
2382 u32 ID;
2383 unsigned int devfn;
2384 struct pci_resource *mem_node;
2385 struct pci_resource *p_mem_node;
2386 struct pci_resource *io_node;
2387 struct pci_resource *bus_node;
2388 struct pci_resource *hold_mem_node;
2389 struct pci_resource *hold_p_mem_node;
2390 struct pci_resource *hold_IO_node;
2391 struct pci_resource *hold_bus_node;
2392 struct irq_mapping irqs;
2393 struct pci_func *new_slot;
2394 struct pci_bus *pci_bus;
2395 struct resource_lists temp_resources;
2396
2397 pci_bus = ctrl->pci_bus;
2398 pci_bus->number = func->bus;
2399 devfn = PCI_DEVFN(func->device, func->function);
2400
2401 /* Check for Bridge */
2402 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2403 if (rc)
2404 return rc;
2405
2406 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2407 /* set Primary bus */
2408 dbg("set Primary bus = %d\n", func->bus);
2409 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2410 if (rc)
2411 return rc;
2412
2413 /* find range of busses to use */
2414 dbg("find ranges of buses to use\n");
2415 bus_node = get_max_resource(&(resources->bus_head), 1);
2416
2417 /* If we don't have any busses to allocate, we can't continue */
2418 if (!bus_node)
2419 return -ENOMEM;
2420
2421 /* set Secondary bus */
2422 temp_byte = bus_node->base;
2423 dbg("set Secondary bus = %d\n", bus_node->base);
2424 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2425 if (rc)
2426 return rc;
2427
2428 /* set subordinate bus */
2429 temp_byte = bus_node->base + bus_node->length - 1;
2430 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2431 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2432 if (rc)
2433 return rc;
2434
2435 /* set subordinate Latency Timer and base Latency Timer */
2436 temp_byte = 0x40;
2437 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2438 if (rc)
2439 return rc;
2440 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2441 if (rc)
2442 return rc;
2443
2444 /* set Cache Line size */
2445 temp_byte = 0x08;
2446 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2447 if (rc)
2448 return rc;
2449
2450 /* Setup the IO, memory, and prefetchable windows */
2451 io_node = get_max_resource(&(resources->io_head), 0x1000);
2452 if (!io_node)
2453 return -ENOMEM;
2454 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2455 if (!mem_node)
2456 return -ENOMEM;
2457 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2458 if (!p_mem_node)
2459 return -ENOMEM;
2460 dbg("Setup the IO, memory, and prefetchable windows\n");
2461 dbg("io_node\n");
2462 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2463 io_node->length, io_node->next);
2464 dbg("mem_node\n");
2465 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2466 mem_node->length, mem_node->next);
2467 dbg("p_mem_node\n");
2468 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2469 p_mem_node->length, p_mem_node->next);
2470
2471 /* set up the IRQ info */
2472 if (!resources->irqs) {
2473 irqs.barber_pole = 0;
2474 irqs.interrupt[0] = 0;
2475 irqs.interrupt[1] = 0;
2476 irqs.interrupt[2] = 0;
2477 irqs.interrupt[3] = 0;
2478 irqs.valid_INT = 0;
2479 } else {
2480 irqs.barber_pole = resources->irqs->barber_pole;
2481 irqs.interrupt[0] = resources->irqs->interrupt[0];
2482 irqs.interrupt[1] = resources->irqs->interrupt[1];
2483 irqs.interrupt[2] = resources->irqs->interrupt[2];
2484 irqs.interrupt[3] = resources->irqs->interrupt[3];
2485 irqs.valid_INT = resources->irqs->valid_INT;
2486 }
2487
2488 /* set up resource lists that are now aligned on top and bottom
2489 * for anything behind the bridge. */
2490 temp_resources.bus_head = bus_node;
2491 temp_resources.io_head = io_node;
2492 temp_resources.mem_head = mem_node;
2493 temp_resources.p_mem_head = p_mem_node;
2494 temp_resources.irqs = &irqs;
2495
2496 /* Make copies of the nodes we are going to pass down so that
2497 * if there is a problem,we can just use these to free resources
2498 */
2499 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2500 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2501 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2502 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2503
2504 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2505 kfree(hold_bus_node);
2506 kfree(hold_IO_node);
2507 kfree(hold_mem_node);
2508 kfree(hold_p_mem_node);
2509
2510 return 1;
2511 }
2512
2513 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2514
2515 bus_node->base += 1;
2516 bus_node->length -= 1;
2517 bus_node->next = NULL;
2518
2519 /* If we have IO resources copy them and fill in the bridge's
2520 * IO range registers */
2521 if (io_node) {
2522 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2523 io_node->next = NULL;
2524
2525 /* set IO base and Limit registers */
2526 temp_byte = io_node->base >> 8;
2527 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2528
2529 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2530 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2531 } else {
2532 kfree(hold_IO_node);
2533 hold_IO_node = NULL;
2534 }
2535
2536 /* If we have memory resources copy them and fill in the
2537 * bridge's memory range registers. Otherwise, fill in the
2538 * range registers with values that disable them. */
2539 if (mem_node) {
2540 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2541 mem_node->next = NULL;
2542
2543 /* set Mem base and Limit registers */
2544 temp_word = mem_node->base >> 16;
2545 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2546
2547 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2548 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2549 } else {
2550 temp_word = 0xFFFF;
2551 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2552
2553 temp_word = 0x0000;
2554 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2555
2556 kfree(hold_mem_node);
2557 hold_mem_node = NULL;
2558 }
2559
2560 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2561 p_mem_node->next = NULL;
2562
2563 /* set Pre Mem base and Limit registers */
2564 temp_word = p_mem_node->base >> 16;
2565 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2566
2567 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2568 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2569
2570 /* Adjust this to compensate for extra adjustment in first loop
2571 */
2572 irqs.barber_pole--;
2573
2574 rc = 0;
2575
2576 /* Here we actually find the devices and configure them */
2577 for (device = 0; (device <= 0x1F) && !rc; device++) {
2578 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2579
2580 ID = 0xFFFFFFFF;
2581 pci_bus->number = hold_bus_node->base;
2582 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2583 pci_bus->number = func->bus;
2584
2585 if (ID != 0xFFFFFFFF) { /* device present */
2586 /* Setup slot structure. */
2587 new_slot = cpqhp_slot_create(hold_bus_node->base);
2588
2589 if (new_slot == NULL) {
2590 rc = -ENOMEM;
2591 continue;
2592 }
2593
2594 new_slot->bus = hold_bus_node->base;
2595 new_slot->device = device;
2596 new_slot->function = 0;
2597 new_slot->is_a_board = 1;
2598 new_slot->status = 0;
2599
2600 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2601 dbg("configure_new_device rc=0x%x\n",rc);
2602 } /* End of IF (device in slot?) */
2603 } /* End of FOR loop */
2604
2605 if (rc)
2606 goto free_and_out;
2607 /* save the interrupt routing information */
2608 if (resources->irqs) {
2609 resources->irqs->interrupt[0] = irqs.interrupt[0];
2610 resources->irqs->interrupt[1] = irqs.interrupt[1];
2611 resources->irqs->interrupt[2] = irqs.interrupt[2];
2612 resources->irqs->interrupt[3] = irqs.interrupt[3];
2613 resources->irqs->valid_INT = irqs.valid_INT;
2614 } else if (!behind_bridge) {
2615 /* We need to hook up the interrupts here */
2616 for (cloop = 0; cloop < 4; cloop++) {
2617 if (irqs.valid_INT & (0x01 << cloop)) {
2618 rc = cpqhp_set_irq(func->bus, func->device,
2619 cloop + 1, irqs.interrupt[cloop]);
2620 if (rc)
2621 goto free_and_out;
2622 }
2623 } /* end of for loop */
2624 }
2625 /* Return unused bus resources
2626 * First use the temporary node to store information for
2627 * the board */
2628 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2629 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2630
2631 hold_bus_node->next = func->bus_head;
2632 func->bus_head = hold_bus_node;
2633
2634 temp_byte = temp_resources.bus_head->base - 1;
2635
2636 /* set subordinate bus */
2637 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2638
2639 if (temp_resources.bus_head->length == 0) {
2640 kfree(temp_resources.bus_head);
2641 temp_resources.bus_head = NULL;
2642 } else {
2643 return_resource(&(resources->bus_head), temp_resources.bus_head);
2644 }
2645 }
2646
2647 /* If we have IO space available and there is some left,
2648 * return the unused portion */
2649 if (hold_IO_node && temp_resources.io_head) {
2650 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2651 &hold_IO_node, 0x1000);
2652
2653 /* Check if we were able to split something off */
2654 if (io_node) {
2655 hold_IO_node->base = io_node->base + io_node->length;
2656
2657 temp_byte = (hold_IO_node->base) >> 8;
2658 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2659
2660 return_resource(&(resources->io_head), io_node);
2661 }
2662
2663 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2664
2665 /* Check if we were able to split something off */
2666 if (io_node) {
2667 /* First use the temporary node to store
2668 * information for the board */
2669 hold_IO_node->length = io_node->base - hold_IO_node->base;
2670
2671 /* If we used any, add it to the board's list */
2672 if (hold_IO_node->length) {
2673 hold_IO_node->next = func->io_head;
2674 func->io_head = hold_IO_node;
2675
2676 temp_byte = (io_node->base - 1) >> 8;
2677 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2678
2679 return_resource(&(resources->io_head), io_node);
2680 } else {
2681 /* it doesn't need any IO */
2682 temp_word = 0x0000;
2683 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2684
2685 return_resource(&(resources->io_head), io_node);
2686 kfree(hold_IO_node);
2687 }
2688 } else {
2689 /* it used most of the range */
2690 hold_IO_node->next = func->io_head;
2691 func->io_head = hold_IO_node;
2692 }
2693 } else if (hold_IO_node) {
2694 /* it used the whole range */
2695 hold_IO_node->next = func->io_head;
2696 func->io_head = hold_IO_node;
2697 }
2698 /* If we have memory space available and there is some left,
2699 * return the unused portion */
2700 if (hold_mem_node && temp_resources.mem_head) {
2701 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2702 &hold_mem_node, 0x100000);
2703
2704 /* Check if we were able to split something off */
2705 if (mem_node) {
2706 hold_mem_node->base = mem_node->base + mem_node->length;
2707
2708 temp_word = (hold_mem_node->base) >> 16;
2709 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2710
2711 return_resource(&(resources->mem_head), mem_node);
2712 }
2713
2714 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2715
2716 /* Check if we were able to split something off */
2717 if (mem_node) {
2718 /* First use the temporary node to store
2719 * information for the board */
2720 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2721
2722 if (hold_mem_node->length) {
2723 hold_mem_node->next = func->mem_head;
2724 func->mem_head = hold_mem_node;
2725
2726 /* configure end address */
2727 temp_word = (mem_node->base - 1) >> 16;
2728 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2729
2730 /* Return unused resources to the pool */
2731 return_resource(&(resources->mem_head), mem_node);
2732 } else {
2733 /* it doesn't need any Mem */
2734 temp_word = 0x0000;
2735 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2736
2737 return_resource(&(resources->mem_head), mem_node);
2738 kfree(hold_mem_node);
2739 }
2740 } else {
2741 /* it used most of the range */
2742 hold_mem_node->next = func->mem_head;
2743 func->mem_head = hold_mem_node;
2744 }
2745 } else if (hold_mem_node) {
2746 /* it used the whole range */
2747 hold_mem_node->next = func->mem_head;
2748 func->mem_head = hold_mem_node;
2749 }
2750 /* If we have prefetchable memory space available and there
2751 * is some left at the end, return the unused portion */
2752 if (hold_p_mem_node && temp_resources.p_mem_head) {
2753 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2754 &hold_p_mem_node, 0x100000);
2755
2756 /* Check if we were able to split something off */
2757 if (p_mem_node) {
2758 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2759
2760 temp_word = (hold_p_mem_node->base) >> 16;
2761 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2762
2763 return_resource(&(resources->p_mem_head), p_mem_node);
2764 }
2765
2766 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2767
2768 /* Check if we were able to split something off */
2769 if (p_mem_node) {
2770 /* First use the temporary node to store
2771 * information for the board */
2772 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2773
2774 /* If we used any, add it to the board's list */
2775 if (hold_p_mem_node->length) {
2776 hold_p_mem_node->next = func->p_mem_head;
2777 func->p_mem_head = hold_p_mem_node;
2778
2779 temp_word = (p_mem_node->base - 1) >> 16;
2780 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2781
2782 return_resource(&(resources->p_mem_head), p_mem_node);
2783 } else {
2784 /* it doesn't need any PMem */
2785 temp_word = 0x0000;
2786 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2787
2788 return_resource(&(resources->p_mem_head), p_mem_node);
2789 kfree(hold_p_mem_node);
2790 }
2791 } else {
2792 /* it used the most of the range */
2793 hold_p_mem_node->next = func->p_mem_head;
2794 func->p_mem_head = hold_p_mem_node;
2795 }
2796 } else if (hold_p_mem_node) {
2797 /* it used the whole range */
2798 hold_p_mem_node->next = func->p_mem_head;
2799 func->p_mem_head = hold_p_mem_node;
2800 }
2801 /* We should be configuring an IRQ and the bridge's base address
2802 * registers if it needs them. Although we have never seen such
2803 * a device */
2804
2805 /* enable card */
2806 command = 0x0157; /* = PCI_COMMAND_IO |
2807 * PCI_COMMAND_MEMORY |
2808 * PCI_COMMAND_MASTER |
2809 * PCI_COMMAND_INVALIDATE |
2810 * PCI_COMMAND_PARITY |
2811 * PCI_COMMAND_SERR */
2812 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2813
2814 /* set Bridge Control Register */
2815 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2816 * PCI_BRIDGE_CTL_SERR |
2817 * PCI_BRIDGE_CTL_NO_ISA */
2818 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2819 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2820 /* Standard device */
2821 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2822
2823 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2824 /* Display (video) adapter (not supported) */
2825 return DEVICE_TYPE_NOT_SUPPORTED;
2826 }
2827 /* Figure out IO and memory needs */
2828 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2829 temp_register = 0xFFFFFFFF;
2830
2831 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2832 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2833
2834 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2835 dbg("CND: base = 0x%x\n", temp_register);
2836
2837 if (temp_register) { /* If this register is implemented */
2838 if ((temp_register & 0x03L) == 0x01) {
2839 /* Map IO */
2840
2841 /* set base = amount of IO space */
2842 base = temp_register & 0xFFFFFFFC;
2843 base = ~base + 1;
2844
2845 dbg("CND: length = 0x%x\n", base);
2846 io_node = get_io_resource(&(resources->io_head), base);
2847 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2848 io_node->base, io_node->length, io_node->next);
2849 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2850
2851 /* allocate the resource to the board */
2852 if (io_node) {
2853 base = io_node->base;
2854
2855 io_node->next = func->io_head;
2856 func->io_head = io_node;
2857 } else
2858 return -ENOMEM;
2859 } else if ((temp_register & 0x0BL) == 0x08) {
2860 /* Map prefetchable memory */
2861 base = temp_register & 0xFFFFFFF0;
2862 base = ~base + 1;
2863
2864 dbg("CND: length = 0x%x\n", base);
2865 p_mem_node = get_resource(&(resources->p_mem_head), base);
2866
2867 /* allocate the resource to the board */
2868 if (p_mem_node) {
2869 base = p_mem_node->base;
2870
2871 p_mem_node->next = func->p_mem_head;
2872 func->p_mem_head = p_mem_node;
2873 } else
2874 return -ENOMEM;
2875 } else if ((temp_register & 0x0BL) == 0x00) {
2876 /* Map memory */
2877 base = temp_register & 0xFFFFFFF0;
2878 base = ~base + 1;
2879
2880 dbg("CND: length = 0x%x\n", base);
2881 mem_node = get_resource(&(resources->mem_head), base);
2882
2883 /* allocate the resource to the board */
2884 if (mem_node) {
2885 base = mem_node->base;
2886
2887 mem_node->next = func->mem_head;
2888 func->mem_head = mem_node;
2889 } else
2890 return -ENOMEM;
2891 } else if ((temp_register & 0x0BL) == 0x04) {
2892 /* Map memory */
2893 base = temp_register & 0xFFFFFFF0;
2894 base = ~base + 1;
2895
2896 dbg("CND: length = 0x%x\n", base);
2897 mem_node = get_resource(&(resources->mem_head), base);
2898
2899 /* allocate the resource to the board */
2900 if (mem_node) {
2901 base = mem_node->base;
2902
2903 mem_node->next = func->mem_head;
2904 func->mem_head = mem_node;
2905 } else
2906 return -ENOMEM;
2907 } else if ((temp_register & 0x0BL) == 0x06) {
2908 /* Those bits are reserved, we can't handle this */
2909 return 1;
2910 } else {
2911 /* Requesting space below 1M */
2912 return NOT_ENOUGH_RESOURCES;
2913 }
2914
2915 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2916
2917 /* Check for 64-bit base */
2918 if ((temp_register & 0x07L) == 0x04) {
2919 cloop += 4;
2920
2921 /* Upper 32 bits of address always zero
2922 * on today's systems */
2923 /* FIXME this is probably not true on
2924 * Alpha and ia64??? */
2925 base = 0;
2926 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2927 }
2928 }
2929 } /* End of base register loop */
2930 if (cpqhp_legacy_mode) {
2931 /* Figure out which interrupt pin this function uses */
2932 rc = pci_bus_read_config_byte (pci_bus, devfn,
2933 PCI_INTERRUPT_PIN, &temp_byte);
2934
2935 /* If this function needs an interrupt and we are behind
2936 * a bridge and the pin is tied to something that's
2937 * alread mapped, set this one the same */
2938 if (temp_byte && resources->irqs &&
2939 (resources->irqs->valid_INT &
2940 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2941 /* We have to share with something already set up */
2942 IRQ = resources->irqs->interrupt[(temp_byte +
2943 resources->irqs->barber_pole - 1) & 0x03];
2944 } else {
2945 /* Program IRQ based on card type */
2946 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2947
2948 if (class_code == PCI_BASE_CLASS_STORAGE)
2949 IRQ = cpqhp_disk_irq;
2950 else
2951 IRQ = cpqhp_nic_irq;
2952 }
2953
2954 /* IRQ Line */
2955 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2956 }
2957
2958 if (!behind_bridge) {
2959 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2960 if (rc)
2961 return 1;
2962 } else {
2963 /* TBD - this code may also belong in the other clause
2964 * of this If statement */
2965 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2966 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2967 }
2968
2969 /* Latency Timer */
2970 temp_byte = 0x40;
2971 rc = pci_bus_write_config_byte(pci_bus, devfn,
2972 PCI_LATENCY_TIMER, temp_byte);
2973
2974 /* Cache Line size */
2975 temp_byte = 0x08;
2976 rc = pci_bus_write_config_byte(pci_bus, devfn,
2977 PCI_CACHE_LINE_SIZE, temp_byte);
2978
2979 /* disable ROM base Address */
2980 temp_dword = 0x00L;
2981 rc = pci_bus_write_config_word(pci_bus, devfn,
2982 PCI_ROM_ADDRESS, temp_dword);
2983
2984 /* enable card */
2985 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2986 * PCI_COMMAND_MEMORY |
2987 * PCI_COMMAND_MASTER |
2988 * PCI_COMMAND_INVALIDATE |
2989 * PCI_COMMAND_PARITY |
2990 * PCI_COMMAND_SERR */
2991 rc = pci_bus_write_config_word (pci_bus, devfn,
2992 PCI_COMMAND, temp_word);
2993 } else { /* End of Not-A-Bridge else */
2994 /* It's some strange type of PCI adapter (Cardbus?) */
2995 return DEVICE_TYPE_NOT_SUPPORTED;
2996 }
2997
2998 func->configured = 1;
2999
3000 return 0;
3001 free_and_out:
3002 cpqhp_destroy_resource_list (&temp_resources);
3003
3004 return_resource(&(resources-> bus_head), hold_bus_node);
3005 return_resource(&(resources-> io_head), hold_IO_node);
3006 return_resource(&(resources-> mem_head), hold_mem_node);
3007 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3008 return rc;
3009 }
This page took 0.094893 seconds and 5 git commands to generate.