[IA64] update sn2_defconfig
[deliverable/linux.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include "cpqphp.h"
41
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
47
48 static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
50 static int event_finished;
51 static unsigned long pushbutton_pending; /* = 0 */
52
53 /* things needed for the long_delay function */
54 static struct semaphore delay_sem;
55 static wait_queue_head_t delay_wait;
56
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay)
59 {
60 DECLARE_WAITQUEUE(wait, current);
61
62 /* only allow 1 customer into the delay queue at once
63 * yes this makes some people wait even longer, but who really cares?
64 * this is for _huge_ delays to make the hardware happy as the
65 * signals bounce around
66 */
67 down (&delay_sem);
68
69 init_waitqueue_head(&delay_wait);
70
71 add_wait_queue(&delay_wait, &wait);
72 msleep_interruptible(jiffies_to_msecs(delay));
73 remove_wait_queue(&delay_wait, &wait);
74
75 up(&delay_sem);
76 }
77
78
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8 handle_switch_change(u8 change, struct controller * ctrl)
82 {
83 int hp_slot;
84 u8 rc = 0;
85 u16 temp_word;
86 struct pci_func *func;
87 struct event_info *taskInfo;
88
89 if (!change)
90 return 0;
91
92 /* Switch Change */
93 dbg("cpqsbd: Switch interrupt received.\n");
94
95 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
96 if (change & (0x1L << hp_slot)) {
97 /**********************************
98 * this one changed.
99 **********************************/
100 func = cpqhp_slot_find(ctrl->bus,
101 (hp_slot + ctrl->slot_device_offset), 0);
102
103 /* this is the structure that tells the worker thread
104 *what to do */
105 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
106 ctrl->next_event = (ctrl->next_event + 1) % 10;
107 taskInfo->hp_slot = hp_slot;
108
109 rc++;
110
111 temp_word = ctrl->ctrl_int_comp >> 16;
112 func->presence_save = (temp_word >> hp_slot) & 0x01;
113 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
114
115 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
116 /**********************************
117 * Switch opened
118 **********************************/
119
120 func->switch_save = 0;
121
122 taskInfo->event_type = INT_SWITCH_OPEN;
123 } else {
124 /**********************************
125 * Switch closed
126 **********************************/
127
128 func->switch_save = 0x10;
129
130 taskInfo->event_type = INT_SWITCH_CLOSE;
131 }
132 }
133 }
134
135 return rc;
136 }
137
138 /**
139 * cpqhp_find_slot: find the struct slot of given device
140 * @ctrl: scan lots of this controller
141 * @device: the device id to find
142 */
143 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
144 {
145 struct slot *slot = ctrl->slot;
146
147 while (slot && (slot->device != device)) {
148 slot = slot->next;
149 }
150
151 return slot;
152 }
153
154
155 static u8 handle_presence_change(u16 change, struct controller * ctrl)
156 {
157 int hp_slot;
158 u8 rc = 0;
159 u8 temp_byte;
160 u16 temp_word;
161 struct pci_func *func;
162 struct event_info *taskInfo;
163 struct slot *p_slot;
164
165 if (!change)
166 return 0;
167
168 /**********************************
169 * Presence Change
170 **********************************/
171 dbg("cpqsbd: Presence/Notify input change.\n");
172 dbg(" Changed bits are 0x%4.4x\n", change );
173
174 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
175 if (change & (0x0101 << hp_slot)) {
176 /**********************************
177 * this one changed.
178 **********************************/
179 func = cpqhp_slot_find(ctrl->bus,
180 (hp_slot + ctrl->slot_device_offset), 0);
181
182 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
183 ctrl->next_event = (ctrl->next_event + 1) % 10;
184 taskInfo->hp_slot = hp_slot;
185
186 rc++;
187
188 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
189 if (!p_slot)
190 return 0;
191
192 /* If the switch closed, must be a button
193 * If not in button mode, nevermind */
194 if (func->switch_save && (ctrl->push_button == 1)) {
195 temp_word = ctrl->ctrl_int_comp >> 16;
196 temp_byte = (temp_word >> hp_slot) & 0x01;
197 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
198
199 if (temp_byte != func->presence_save) {
200 /**************************************
201 * button Pressed (doesn't do anything)
202 **************************************/
203 dbg("hp_slot %d button pressed\n", hp_slot);
204 taskInfo->event_type = INT_BUTTON_PRESS;
205 } else {
206 /**********************************
207 * button Released - TAKE ACTION!!!!
208 **********************************/
209 dbg("hp_slot %d button released\n", hp_slot);
210 taskInfo->event_type = INT_BUTTON_RELEASE;
211
212 /* Cancel if we are still blinking */
213 if ((p_slot->state == BLINKINGON_STATE)
214 || (p_slot->state == BLINKINGOFF_STATE)) {
215 taskInfo->event_type = INT_BUTTON_CANCEL;
216 dbg("hp_slot %d button cancel\n", hp_slot);
217 } else if ((p_slot->state == POWERON_STATE)
218 || (p_slot->state == POWEROFF_STATE)) {
219 /* info(msg_button_ignore, p_slot->number); */
220 taskInfo->event_type = INT_BUTTON_IGNORE;
221 dbg("hp_slot %d button ignore\n", hp_slot);
222 }
223 }
224 } else {
225 /* Switch is open, assume a presence change
226 * Save the presence state */
227 temp_word = ctrl->ctrl_int_comp >> 16;
228 func->presence_save = (temp_word >> hp_slot) & 0x01;
229 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
230
231 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
232 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
233 /* Present */
234 taskInfo->event_type = INT_PRESENCE_ON;
235 } else {
236 /* Not Present */
237 taskInfo->event_type = INT_PRESENCE_OFF;
238 }
239 }
240 }
241 }
242
243 return rc;
244 }
245
246
247 static u8 handle_power_fault(u8 change, struct controller * ctrl)
248 {
249 int hp_slot;
250 u8 rc = 0;
251 struct pci_func *func;
252 struct event_info *taskInfo;
253
254 if (!change)
255 return 0;
256
257 /**********************************
258 * power fault
259 **********************************/
260
261 info("power fault interrupt\n");
262
263 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
264 if (change & (0x01 << hp_slot)) {
265 /**********************************
266 * this one changed.
267 **********************************/
268 func = cpqhp_slot_find(ctrl->bus,
269 (hp_slot + ctrl->slot_device_offset), 0);
270
271 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
272 ctrl->next_event = (ctrl->next_event + 1) % 10;
273 taskInfo->hp_slot = hp_slot;
274
275 rc++;
276
277 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
278 /**********************************
279 * power fault Cleared
280 **********************************/
281 func->status = 0x00;
282
283 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
284 } else {
285 /**********************************
286 * power fault
287 **********************************/
288 taskInfo->event_type = INT_POWER_FAULT;
289
290 if (ctrl->rev < 4) {
291 amber_LED_on (ctrl, hp_slot);
292 green_LED_off (ctrl, hp_slot);
293 set_SOGO (ctrl);
294
295 /* this is a fatal condition, we want
296 * to crash the machine to protect from
297 * data corruption. simulated_NMI
298 * shouldn't ever return */
299 /* FIXME
300 simulated_NMI(hp_slot, ctrl); */
301
302 /* The following code causes a software
303 * crash just in case simulated_NMI did
304 * return */
305 /*FIXME
306 panic(msg_power_fault); */
307 } else {
308 /* set power fault status for this board */
309 func->status = 0xFF;
310 info("power fault bit %x set\n", hp_slot);
311 }
312 }
313 }
314 }
315
316 return rc;
317 }
318
319
320 /**
321 * sort_by_size: sort nodes on the list by their length, smallest first.
322 * @head: list to sort
323 *
324 */
325 static int sort_by_size(struct pci_resource **head)
326 {
327 struct pci_resource *current_res;
328 struct pci_resource *next_res;
329 int out_of_order = 1;
330
331 if (!(*head))
332 return 1;
333
334 if (!((*head)->next))
335 return 0;
336
337 while (out_of_order) {
338 out_of_order = 0;
339
340 /* Special case for swapping list head */
341 if (((*head)->next) &&
342 ((*head)->length > (*head)->next->length)) {
343 out_of_order++;
344 current_res = *head;
345 *head = (*head)->next;
346 current_res->next = (*head)->next;
347 (*head)->next = current_res;
348 }
349
350 current_res = *head;
351
352 while (current_res->next && current_res->next->next) {
353 if (current_res->next->length > current_res->next->next->length) {
354 out_of_order++;
355 next_res = current_res->next;
356 current_res->next = current_res->next->next;
357 current_res = current_res->next;
358 next_res->next = current_res->next;
359 current_res->next = next_res;
360 } else
361 current_res = current_res->next;
362 }
363 } /* End of out_of_order loop */
364
365 return 0;
366 }
367
368
369 /**
370 * sort_by_max_size: sort nodes on the list by their length, largest first.
371 * @head: list to sort
372 *
373 */
374 static int sort_by_max_size(struct pci_resource **head)
375 {
376 struct pci_resource *current_res;
377 struct pci_resource *next_res;
378 int out_of_order = 1;
379
380 if (!(*head))
381 return 1;
382
383 if (!((*head)->next))
384 return 0;
385
386 while (out_of_order) {
387 out_of_order = 0;
388
389 /* Special case for swapping list head */
390 if (((*head)->next) &&
391 ((*head)->length < (*head)->next->length)) {
392 out_of_order++;
393 current_res = *head;
394 *head = (*head)->next;
395 current_res->next = (*head)->next;
396 (*head)->next = current_res;
397 }
398
399 current_res = *head;
400
401 while (current_res->next && current_res->next->next) {
402 if (current_res->next->length < current_res->next->next->length) {
403 out_of_order++;
404 next_res = current_res->next;
405 current_res->next = current_res->next->next;
406 current_res = current_res->next;
407 next_res->next = current_res->next;
408 current_res->next = next_res;
409 } else
410 current_res = current_res->next;
411 }
412 } /* End of out_of_order loop */
413
414 return 0;
415 }
416
417
418 /**
419 * do_pre_bridge_resource_split: find node of resources that are unused
420 *
421 */
422 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
423 struct pci_resource **orig_head, u32 alignment)
424 {
425 struct pci_resource *prevnode = NULL;
426 struct pci_resource *node;
427 struct pci_resource *split_node;
428 u32 rc;
429 u32 temp_dword;
430 dbg("do_pre_bridge_resource_split\n");
431
432 if (!(*head) || !(*orig_head))
433 return NULL;
434
435 rc = cpqhp_resource_sort_and_combine(head);
436
437 if (rc)
438 return NULL;
439
440 if ((*head)->base != (*orig_head)->base)
441 return NULL;
442
443 if ((*head)->length == (*orig_head)->length)
444 return NULL;
445
446
447 /* If we got here, there the bridge requires some of the resource, but
448 * we may be able to split some off of the front */
449
450 node = *head;
451
452 if (node->length & (alignment -1)) {
453 /* this one isn't an aligned length, so we'll make a new entry
454 * and split it up. */
455 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
456
457 if (!split_node)
458 return NULL;
459
460 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
461
462 split_node->base = node->base;
463 split_node->length = temp_dword;
464
465 node->length -= temp_dword;
466 node->base += split_node->length;
467
468 /* Put it in the list */
469 *head = split_node;
470 split_node->next = node;
471 }
472
473 if (node->length < alignment)
474 return NULL;
475
476 /* Now unlink it */
477 if (*head == node) {
478 *head = node->next;
479 } else {
480 prevnode = *head;
481 while (prevnode->next != node)
482 prevnode = prevnode->next;
483
484 prevnode->next = node->next;
485 }
486 node->next = NULL;
487
488 return node;
489 }
490
491
492 /**
493 * do_bridge_resource_split: find one node of resources that aren't in use
494 *
495 */
496 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
497 {
498 struct pci_resource *prevnode = NULL;
499 struct pci_resource *node;
500 u32 rc;
501 u32 temp_dword;
502
503 rc = cpqhp_resource_sort_and_combine(head);
504
505 if (rc)
506 return NULL;
507
508 node = *head;
509
510 while (node->next) {
511 prevnode = node;
512 node = node->next;
513 kfree(prevnode);
514 }
515
516 if (node->length < alignment)
517 goto error;
518
519 if (node->base & (alignment - 1)) {
520 /* Short circuit if adjusted size is too small */
521 temp_dword = (node->base | (alignment-1)) + 1;
522 if ((node->length - (temp_dword - node->base)) < alignment)
523 goto error;
524
525 node->length -= (temp_dword - node->base);
526 node->base = temp_dword;
527 }
528
529 if (node->length & (alignment - 1))
530 /* There's stuff in use after this node */
531 goto error;
532
533 return node;
534 error:
535 kfree(node);
536 return NULL;
537 }
538
539
540 /**
541 * get_io_resource: find first node of given size not in ISA aliasing window.
542 * @head: list to search
543 * @size: size of node to find, must be a power of two.
544 *
545 * Description: this function sorts the resource list by size and then returns
546 * returns the first node of "size" length that is not in the ISA aliasing
547 * window. If it finds a node larger than "size" it will split it up.
548 *
549 */
550 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
551 {
552 struct pci_resource *prevnode;
553 struct pci_resource *node;
554 struct pci_resource *split_node;
555 u32 temp_dword;
556
557 if (!(*head))
558 return NULL;
559
560 if ( cpqhp_resource_sort_and_combine(head) )
561 return NULL;
562
563 if ( sort_by_size(head) )
564 return NULL;
565
566 for (node = *head; node; node = node->next) {
567 if (node->length < size)
568 continue;
569
570 if (node->base & (size - 1)) {
571 /* this one isn't base aligned properly
572 * so we'll make a new entry and split it up */
573 temp_dword = (node->base | (size-1)) + 1;
574
575 /* Short circuit if adjusted size is too small */
576 if ((node->length - (temp_dword - node->base)) < size)
577 continue;
578
579 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
580
581 if (!split_node)
582 return NULL;
583
584 split_node->base = node->base;
585 split_node->length = temp_dword - node->base;
586 node->base = temp_dword;
587 node->length -= split_node->length;
588
589 /* Put it in the list */
590 split_node->next = node->next;
591 node->next = split_node;
592 } /* End of non-aligned base */
593
594 /* Don't need to check if too small since we already did */
595 if (node->length > size) {
596 /* this one is longer than we need
597 * so we'll make a new entry and split it up */
598 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
599
600 if (!split_node)
601 return NULL;
602
603 split_node->base = node->base + size;
604 split_node->length = node->length - size;
605 node->length = size;
606
607 /* Put it in the list */
608 split_node->next = node->next;
609 node->next = split_node;
610 } /* End of too big on top end */
611
612 /* For IO make sure it's not in the ISA aliasing space */
613 if (node->base & 0x300L)
614 continue;
615
616 /* If we got here, then it is the right size
617 * Now take it out of the list and break */
618 if (*head == node) {
619 *head = node->next;
620 } else {
621 prevnode = *head;
622 while (prevnode->next != node)
623 prevnode = prevnode->next;
624
625 prevnode->next = node->next;
626 }
627 node->next = NULL;
628 break;
629 }
630
631 return node;
632 }
633
634
635 /**
636 * get_max_resource: get largest node which has at least the given size.
637 * @head: the list to search the node in
638 * @size: the minimum size of the node to find
639 *
640 * Description: Gets the largest node that is at least "size" big from the
641 * list pointed to by head. It aligns the node on top and bottom
642 * to "size" alignment before returning it.
643 */
644 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
645 {
646 struct pci_resource *max;
647 struct pci_resource *temp;
648 struct pci_resource *split_node;
649 u32 temp_dword;
650
651 if (cpqhp_resource_sort_and_combine(head))
652 return NULL;
653
654 if (sort_by_max_size(head))
655 return NULL;
656
657 for (max = *head; max; max = max->next) {
658 /* If not big enough we could probably just bail,
659 * instead we'll continue to the next. */
660 if (max->length < size)
661 continue;
662
663 if (max->base & (size - 1)) {
664 /* this one isn't base aligned properly
665 * so we'll make a new entry and split it up */
666 temp_dword = (max->base | (size-1)) + 1;
667
668 /* Short circuit if adjusted size is too small */
669 if ((max->length - (temp_dword - max->base)) < size)
670 continue;
671
672 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
673
674 if (!split_node)
675 return NULL;
676
677 split_node->base = max->base;
678 split_node->length = temp_dword - max->base;
679 max->base = temp_dword;
680 max->length -= split_node->length;
681
682 split_node->next = max->next;
683 max->next = split_node;
684 }
685
686 if ((max->base + max->length) & (size - 1)) {
687 /* this one isn't end aligned properly at the top
688 * so we'll make a new entry and split it up */
689 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
690
691 if (!split_node)
692 return NULL;
693 temp_dword = ((max->base + max->length) & ~(size - 1));
694 split_node->base = temp_dword;
695 split_node->length = max->length + max->base
696 - split_node->base;
697 max->length -= split_node->length;
698
699 split_node->next = max->next;
700 max->next = split_node;
701 }
702
703 /* Make sure it didn't shrink too much when we aligned it */
704 if (max->length < size)
705 continue;
706
707 /* Now take it out of the list */
708 temp = *head;
709 if (temp == max) {
710 *head = max->next;
711 } else {
712 while (temp && temp->next != max) {
713 temp = temp->next;
714 }
715
716 temp->next = max->next;
717 }
718
719 max->next = NULL;
720 break;
721 }
722
723 return max;
724 }
725
726
727 /**
728 * get_resource: find resource of given size and split up larger ones.
729 * @head: the list to search for resources
730 * @size: the size limit to use
731 *
732 * Description: This function sorts the resource list by size and then
733 * returns the first node of "size" length. If it finds a node
734 * larger than "size" it will split it up.
735 *
736 * size must be a power of two.
737 */
738 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
739 {
740 struct pci_resource *prevnode;
741 struct pci_resource *node;
742 struct pci_resource *split_node;
743 u32 temp_dword;
744
745 if (cpqhp_resource_sort_and_combine(head))
746 return NULL;
747
748 if (sort_by_size(head))
749 return NULL;
750
751 for (node = *head; node; node = node->next) {
752 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 __FUNCTION__, size, node, node->base, node->length);
754 if (node->length < size)
755 continue;
756
757 if (node->base & (size - 1)) {
758 dbg("%s: not aligned\n", __FUNCTION__);
759 /* this one isn't base aligned properly
760 * so we'll make a new entry and split it up */
761 temp_dword = (node->base | (size-1)) + 1;
762
763 /* Short circuit if adjusted size is too small */
764 if ((node->length - (temp_dword - node->base)) < size)
765 continue;
766
767 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
768
769 if (!split_node)
770 return NULL;
771
772 split_node->base = node->base;
773 split_node->length = temp_dword - node->base;
774 node->base = temp_dword;
775 node->length -= split_node->length;
776
777 split_node->next = node->next;
778 node->next = split_node;
779 } /* End of non-aligned base */
780
781 /* Don't need to check if too small since we already did */
782 if (node->length > size) {
783 dbg("%s: too big\n", __FUNCTION__);
784 /* this one is longer than we need
785 * so we'll make a new entry and split it up */
786 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
787
788 if (!split_node)
789 return NULL;
790
791 split_node->base = node->base + size;
792 split_node->length = node->length - size;
793 node->length = size;
794
795 /* Put it in the list */
796 split_node->next = node->next;
797 node->next = split_node;
798 } /* End of too big on top end */
799
800 dbg("%s: got one!!!\n", __FUNCTION__);
801 /* If we got here, then it is the right size
802 * Now take it out of the list */
803 if (*head == node) {
804 *head = node->next;
805 } else {
806 prevnode = *head;
807 while (prevnode->next != node)
808 prevnode = prevnode->next;
809
810 prevnode->next = node->next;
811 }
812 node->next = NULL;
813 break;
814 }
815 return node;
816 }
817
818
819 /**
820 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821 * @head: the list to sort and clean up
822 *
823 * Description: Sorts all of the nodes in the list in ascending order by
824 * their base addresses. Also does garbage collection by
825 * combining adjacent nodes.
826 *
827 * returns 0 if success
828 */
829 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
830 {
831 struct pci_resource *node1;
832 struct pci_resource *node2;
833 int out_of_order = 1;
834
835 dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
836
837 if (!(*head))
838 return 1;
839
840 dbg("*head->next = %p\n",(*head)->next);
841
842 if (!(*head)->next)
843 return 0; /* only one item on the list, already sorted! */
844
845 dbg("*head->base = 0x%x\n",(*head)->base);
846 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847 while (out_of_order) {
848 out_of_order = 0;
849
850 /* Special case for swapping list head */
851 if (((*head)->next) &&
852 ((*head)->base > (*head)->next->base)) {
853 node1 = *head;
854 (*head) = (*head)->next;
855 node1->next = (*head)->next;
856 (*head)->next = node1;
857 out_of_order++;
858 }
859
860 node1 = (*head);
861
862 while (node1->next && node1->next->next) {
863 if (node1->next->base > node1->next->next->base) {
864 out_of_order++;
865 node2 = node1->next;
866 node1->next = node1->next->next;
867 node1 = node1->next;
868 node2->next = node1->next;
869 node1->next = node2;
870 } else
871 node1 = node1->next;
872 }
873 } /* End of out_of_order loop */
874
875 node1 = *head;
876
877 while (node1 && node1->next) {
878 if ((node1->base + node1->length) == node1->next->base) {
879 /* Combine */
880 dbg("8..\n");
881 node1->length += node1->next->length;
882 node2 = node1->next;
883 node1->next = node1->next->next;
884 kfree(node2);
885 } else
886 node1 = node1->next;
887 }
888
889 return 0;
890 }
891
892
893 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
894 {
895 struct controller *ctrl = data;
896 u8 schedule_flag = 0;
897 u8 reset;
898 u16 misc;
899 u32 Diff;
900 u32 temp_dword;
901
902
903 misc = readw(ctrl->hpc_reg + MISC);
904 /***************************************
905 * Check to see if it was our interrupt
906 ***************************************/
907 if (!(misc & 0x000C)) {
908 return IRQ_NONE;
909 }
910
911 if (misc & 0x0004) {
912 /**********************************
913 * Serial Output interrupt Pending
914 **********************************/
915
916 /* Clear the interrupt */
917 misc |= 0x0004;
918 writew(misc, ctrl->hpc_reg + MISC);
919
920 /* Read to clear posted writes */
921 misc = readw(ctrl->hpc_reg + MISC);
922
923 dbg ("%s - waking up\n", __FUNCTION__);
924 wake_up_interruptible(&ctrl->queue);
925 }
926
927 if (misc & 0x0008) {
928 /* General-interrupt-input interrupt Pending */
929 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
930
931 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
932
933 /* Clear the interrupt */
934 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
935
936 /* Read it back to clear any posted writes */
937 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
938
939 if (!Diff)
940 /* Clear all interrupts */
941 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
942
943 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
946 }
947
948 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949 if (reset & 0x40) {
950 /* Bus reset has completed */
951 reset &= 0xCF;
952 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954 wake_up_interruptible(&ctrl->queue);
955 }
956
957 if (schedule_flag) {
958 up(&event_semaphore);
959 dbg("Signal event_semaphore\n");
960 }
961 return IRQ_HANDLED;
962 }
963
964
965 /**
966 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967 * @busnumber - bus where new node is to be located
968 *
969 * Returns pointer to the new node or NULL if unsuccessful
970 */
971 struct pci_func *cpqhp_slot_create(u8 busnumber)
972 {
973 struct pci_func *new_slot;
974 struct pci_func *next;
975
976 new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
977
978 if (new_slot == NULL) {
979 /* I'm not dead yet!
980 * You will be. */
981 return new_slot;
982 }
983
984 memset(new_slot, 0, sizeof(struct pci_func));
985
986 new_slot->next = NULL;
987 new_slot->configured = 1;
988
989 if (cpqhp_slot_list[busnumber] == NULL) {
990 cpqhp_slot_list[busnumber] = new_slot;
991 } else {
992 next = cpqhp_slot_list[busnumber];
993 while (next->next != NULL)
994 next = next->next;
995 next->next = new_slot;
996 }
997 return new_slot;
998 }
999
1000
1001 /**
1002 * slot_remove - Removes a node from the linked list of slots.
1003 * @old_slot: slot to remove
1004 *
1005 * Returns 0 if successful, !0 otherwise.
1006 */
1007 static int slot_remove(struct pci_func * old_slot)
1008 {
1009 struct pci_func *next;
1010
1011 if (old_slot == NULL)
1012 return 1;
1013
1014 next = cpqhp_slot_list[old_slot->bus];
1015
1016 if (next == NULL) {
1017 return 1;
1018 }
1019
1020 if (next == old_slot) {
1021 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1022 cpqhp_destroy_board_resources(old_slot);
1023 kfree(old_slot);
1024 return 0;
1025 }
1026
1027 while ((next->next != old_slot) && (next->next != NULL)) {
1028 next = next->next;
1029 }
1030
1031 if (next->next == old_slot) {
1032 next->next = old_slot->next;
1033 cpqhp_destroy_board_resources(old_slot);
1034 kfree(old_slot);
1035 return 0;
1036 } else
1037 return 2;
1038 }
1039
1040
1041 /**
1042 * bridge_slot_remove - Removes a node from the linked list of slots.
1043 * @bridge: bridge to remove
1044 *
1045 * Returns 0 if successful, !0 otherwise.
1046 */
1047 static int bridge_slot_remove(struct pci_func *bridge)
1048 {
1049 u8 subordinateBus, secondaryBus;
1050 u8 tempBus;
1051 struct pci_func *next;
1052
1053 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1054 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1055
1056 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1057 next = cpqhp_slot_list[tempBus];
1058
1059 while (!slot_remove(next)) {
1060 next = cpqhp_slot_list[tempBus];
1061 }
1062 }
1063
1064 next = cpqhp_slot_list[bridge->bus];
1065
1066 if (next == NULL)
1067 return 1;
1068
1069 if (next == bridge) {
1070 cpqhp_slot_list[bridge->bus] = bridge->next;
1071 goto out;
1072 }
1073
1074 while ((next->next != bridge) && (next->next != NULL))
1075 next = next->next;
1076
1077 if (next->next != bridge)
1078 return 2;
1079 next->next = bridge->next;
1080 out:
1081 kfree(bridge);
1082 return 0;
1083 }
1084
1085
1086 /**
1087 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1088 * @bus: bus to find
1089 * @device: device to find
1090 * @index: is 0 for first function found, 1 for the second...
1091 *
1092 * Returns pointer to the node if successful, %NULL otherwise.
1093 */
1094 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1095 {
1096 int found = -1;
1097 struct pci_func *func;
1098
1099 func = cpqhp_slot_list[bus];
1100
1101 if ((func == NULL) || ((func->device == device) && (index == 0)))
1102 return func;
1103
1104 if (func->device == device)
1105 found++;
1106
1107 while (func->next != NULL) {
1108 func = func->next;
1109
1110 if (func->device == device)
1111 found++;
1112
1113 if (found == index)
1114 return func;
1115 }
1116
1117 return NULL;
1118 }
1119
1120
1121 /* DJZ: I don't think is_bridge will work as is.
1122 * FIXME */
1123 static int is_bridge(struct pci_func * func)
1124 {
1125 /* Check the header type */
1126 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1127 return 1;
1128 else
1129 return 0;
1130 }
1131
1132
1133 /**
1134 * set_controller_speed - set the frequency and/or mode of a specific
1135 * controller segment.
1136 *
1137 * @ctrl: controller to change frequency/mode for.
1138 * @adapter_speed: the speed of the adapter we want to match.
1139 * @hp_slot: the slot number where the adapter is installed.
1140 *
1141 * Returns 0 if we successfully change frequency and/or mode to match the
1142 * adapter speed.
1143 *
1144 */
1145 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1146 {
1147 struct slot *slot;
1148 u8 reg;
1149 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1150 u16 reg16;
1151 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1152
1153 if (ctrl->speed == adapter_speed)
1154 return 0;
1155
1156 /* We don't allow freq/mode changes if we find another adapter running
1157 * in another slot on this controller */
1158 for(slot = ctrl->slot; slot; slot = slot->next) {
1159 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1160 continue;
1161 if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1162 continue;
1163 if (slot->hotplug_slot->info->adapter_status == 0)
1164 continue;
1165 /* If another adapter is running on the same segment but at a
1166 * lower speed/mode, we allow the new adapter to function at
1167 * this rate if supported */
1168 if (ctrl->speed < adapter_speed)
1169 return 0;
1170
1171 return 1;
1172 }
1173
1174 /* If the controller doesn't support freq/mode changes and the
1175 * controller is running at a higher mode, we bail */
1176 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1177 return 1;
1178
1179 /* But we allow the adapter to run at a lower rate if possible */
1180 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1181 return 0;
1182
1183 /* We try to set the max speed supported by both the adapter and
1184 * controller */
1185 if (ctrl->speed_capability < adapter_speed) {
1186 if (ctrl->speed == ctrl->speed_capability)
1187 return 0;
1188 adapter_speed = ctrl->speed_capability;
1189 }
1190
1191 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1192 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1193
1194 set_SOGO(ctrl);
1195 wait_for_ctrl_irq(ctrl);
1196
1197 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1198 reg = 0xF5;
1199 else
1200 reg = 0xF4;
1201 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1202
1203 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1204 reg16 &= ~0x000F;
1205 switch(adapter_speed) {
1206 case(PCI_SPEED_133MHz_PCIX):
1207 reg = 0x75;
1208 reg16 |= 0xB;
1209 break;
1210 case(PCI_SPEED_100MHz_PCIX):
1211 reg = 0x74;
1212 reg16 |= 0xA;
1213 break;
1214 case(PCI_SPEED_66MHz_PCIX):
1215 reg = 0x73;
1216 reg16 |= 0x9;
1217 break;
1218 case(PCI_SPEED_66MHz):
1219 reg = 0x73;
1220 reg16 |= 0x1;
1221 break;
1222 default: /* 33MHz PCI 2.2 */
1223 reg = 0x71;
1224 break;
1225
1226 }
1227 reg16 |= 0xB << 12;
1228 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1229
1230 mdelay(5);
1231
1232 /* Reenable interrupts */
1233 writel(0, ctrl->hpc_reg + INT_MASK);
1234
1235 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1236
1237 /* Restart state machine */
1238 reg = ~0xF;
1239 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1240 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1241
1242 /* Only if mode change...*/
1243 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1244 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1245 set_SOGO(ctrl);
1246
1247 wait_for_ctrl_irq(ctrl);
1248 mdelay(1100);
1249
1250 /* Restore LED/Slot state */
1251 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1252 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1253
1254 set_SOGO(ctrl);
1255 wait_for_ctrl_irq(ctrl);
1256
1257 ctrl->speed = adapter_speed;
1258 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1259
1260 info("Successfully changed frequency/mode for adapter in slot %d\n",
1261 slot->number);
1262 return 0;
1263 }
1264
1265 /* the following routines constitute the bulk of the
1266 hotplug controller logic
1267 */
1268
1269
1270 /**
1271 * board_replaced - Called after a board has been replaced in the system.
1272 *
1273 * This is only used if we don't have resources for hot add
1274 * Turns power on for the board
1275 * Checks to see if board is the same
1276 * If board is same, reconfigures it
1277 * If board isn't same, turns it back off.
1278 *
1279 */
1280 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1281 {
1282 u8 hp_slot;
1283 u8 temp_byte;
1284 u8 adapter_speed;
1285 u32 rc = 0;
1286
1287 hp_slot = func->device - ctrl->slot_device_offset;
1288
1289 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1290 /**********************************
1291 * The switch is open.
1292 **********************************/
1293 rc = INTERLOCK_OPEN;
1294 } else if (is_slot_enabled (ctrl, hp_slot)) {
1295 /**********************************
1296 * The board is already on
1297 **********************************/
1298 rc = CARD_FUNCTIONING;
1299 } else {
1300 mutex_lock(&ctrl->crit_sect);
1301
1302 /* turn on board without attaching to the bus */
1303 enable_slot_power (ctrl, hp_slot);
1304
1305 set_SOGO(ctrl);
1306
1307 /* Wait for SOBS to be unset */
1308 wait_for_ctrl_irq (ctrl);
1309
1310 /* Change bits in slot power register to force another shift out
1311 * NOTE: this is to work around the timer bug */
1312 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1313 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1314 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1315
1316 set_SOGO(ctrl);
1317
1318 /* Wait for SOBS to be unset */
1319 wait_for_ctrl_irq (ctrl);
1320
1321 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1322 if (ctrl->speed != adapter_speed)
1323 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1324 rc = WRONG_BUS_FREQUENCY;
1325
1326 /* turn off board without attaching to the bus */
1327 disable_slot_power (ctrl, hp_slot);
1328
1329 set_SOGO(ctrl);
1330
1331 /* Wait for SOBS to be unset */
1332 wait_for_ctrl_irq (ctrl);
1333
1334 mutex_unlock(&ctrl->crit_sect);
1335
1336 if (rc)
1337 return rc;
1338
1339 mutex_lock(&ctrl->crit_sect);
1340
1341 slot_enable (ctrl, hp_slot);
1342 green_LED_blink (ctrl, hp_slot);
1343
1344 amber_LED_off (ctrl, hp_slot);
1345
1346 set_SOGO(ctrl);
1347
1348 /* Wait for SOBS to be unset */
1349 wait_for_ctrl_irq (ctrl);
1350
1351 mutex_unlock(&ctrl->crit_sect);
1352
1353 /* Wait for ~1 second because of hot plug spec */
1354 long_delay(1*HZ);
1355
1356 /* Check for a power fault */
1357 if (func->status == 0xFF) {
1358 /* power fault occurred, but it was benign */
1359 rc = POWER_FAILURE;
1360 func->status = 0;
1361 } else
1362 rc = cpqhp_valid_replace(ctrl, func);
1363
1364 if (!rc) {
1365 /* It must be the same board */
1366
1367 rc = cpqhp_configure_board(ctrl, func);
1368
1369 /* If configuration fails, turn it off
1370 * Get slot won't work for devices behind
1371 * bridges, but in this case it will always be
1372 * called for the "base" bus/dev/func of an
1373 * adapter. */
1374
1375 mutex_lock(&ctrl->crit_sect);
1376
1377 amber_LED_on (ctrl, hp_slot);
1378 green_LED_off (ctrl, hp_slot);
1379 slot_disable (ctrl, hp_slot);
1380
1381 set_SOGO(ctrl);
1382
1383 /* Wait for SOBS to be unset */
1384 wait_for_ctrl_irq (ctrl);
1385
1386 mutex_unlock(&ctrl->crit_sect);
1387
1388 if (rc)
1389 return rc;
1390 else
1391 return 1;
1392
1393 } else {
1394 /* Something is wrong
1395
1396 * Get slot won't work for devices behind bridges, but
1397 * in this case it will always be called for the "base"
1398 * bus/dev/func of an adapter. */
1399
1400 mutex_lock(&ctrl->crit_sect);
1401
1402 amber_LED_on (ctrl, hp_slot);
1403 green_LED_off (ctrl, hp_slot);
1404 slot_disable (ctrl, hp_slot);
1405
1406 set_SOGO(ctrl);
1407
1408 /* Wait for SOBS to be unset */
1409 wait_for_ctrl_irq (ctrl);
1410
1411 mutex_unlock(&ctrl->crit_sect);
1412 }
1413
1414 }
1415 return rc;
1416
1417 }
1418
1419
1420 /**
1421 * board_added - Called after a board has been added to the system.
1422 *
1423 * Turns power on for the board
1424 * Configures board
1425 *
1426 */
1427 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1428 {
1429 u8 hp_slot;
1430 u8 temp_byte;
1431 u8 adapter_speed;
1432 int index;
1433 u32 temp_register = 0xFFFFFFFF;
1434 u32 rc = 0;
1435 struct pci_func *new_slot = NULL;
1436 struct slot *p_slot;
1437 struct resource_lists res_lists;
1438
1439 hp_slot = func->device - ctrl->slot_device_offset;
1440 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1441 __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1442
1443 mutex_lock(&ctrl->crit_sect);
1444
1445 /* turn on board without attaching to the bus */
1446 enable_slot_power(ctrl, hp_slot);
1447
1448 set_SOGO(ctrl);
1449
1450 /* Wait for SOBS to be unset */
1451 wait_for_ctrl_irq (ctrl);
1452
1453 /* Change bits in slot power register to force another shift out
1454 * NOTE: this is to work around the timer bug */
1455 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1456 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1457 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1458
1459 set_SOGO(ctrl);
1460
1461 /* Wait for SOBS to be unset */
1462 wait_for_ctrl_irq (ctrl);
1463
1464 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1465 if (ctrl->speed != adapter_speed)
1466 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1467 rc = WRONG_BUS_FREQUENCY;
1468
1469 /* turn off board without attaching to the bus */
1470 disable_slot_power (ctrl, hp_slot);
1471
1472 set_SOGO(ctrl);
1473
1474 /* Wait for SOBS to be unset */
1475 wait_for_ctrl_irq(ctrl);
1476
1477 mutex_unlock(&ctrl->crit_sect);
1478
1479 if (rc)
1480 return rc;
1481
1482 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1483
1484 /* turn on board and blink green LED */
1485
1486 dbg("%s: before down\n", __FUNCTION__);
1487 mutex_lock(&ctrl->crit_sect);
1488 dbg("%s: after down\n", __FUNCTION__);
1489
1490 dbg("%s: before slot_enable\n", __FUNCTION__);
1491 slot_enable (ctrl, hp_slot);
1492
1493 dbg("%s: before green_LED_blink\n", __FUNCTION__);
1494 green_LED_blink (ctrl, hp_slot);
1495
1496 dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1497 amber_LED_off (ctrl, hp_slot);
1498
1499 dbg("%s: before set_SOGO\n", __FUNCTION__);
1500 set_SOGO(ctrl);
1501
1502 /* Wait for SOBS to be unset */
1503 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1504 wait_for_ctrl_irq (ctrl);
1505 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1506
1507 dbg("%s: before up\n", __FUNCTION__);
1508 mutex_unlock(&ctrl->crit_sect);
1509 dbg("%s: after up\n", __FUNCTION__);
1510
1511 /* Wait for ~1 second because of hot plug spec */
1512 dbg("%s: before long_delay\n", __FUNCTION__);
1513 long_delay(1*HZ);
1514 dbg("%s: after long_delay\n", __FUNCTION__);
1515
1516 dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1517 /* Check for a power fault */
1518 if (func->status == 0xFF) {
1519 /* power fault occurred, but it was benign */
1520 temp_register = 0xFFFFFFFF;
1521 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1522 rc = POWER_FAILURE;
1523 func->status = 0;
1524 } else {
1525 /* Get vendor/device ID u32 */
1526 ctrl->pci_bus->number = func->bus;
1527 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1528 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1529 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1530
1531 if (rc != 0) {
1532 /* Something's wrong here */
1533 temp_register = 0xFFFFFFFF;
1534 dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1535 }
1536 /* Preset return code. It will be changed later if things go okay. */
1537 rc = NO_ADAPTER_PRESENT;
1538 }
1539
1540 /* All F's is an empty slot or an invalid board */
1541 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
1542 res_lists.io_head = ctrl->io_head;
1543 res_lists.mem_head = ctrl->mem_head;
1544 res_lists.p_mem_head = ctrl->p_mem_head;
1545 res_lists.bus_head = ctrl->bus_head;
1546 res_lists.irqs = NULL;
1547
1548 rc = configure_new_device(ctrl, func, 0, &res_lists);
1549
1550 dbg("%s: back from configure_new_device\n", __FUNCTION__);
1551 ctrl->io_head = res_lists.io_head;
1552 ctrl->mem_head = res_lists.mem_head;
1553 ctrl->p_mem_head = res_lists.p_mem_head;
1554 ctrl->bus_head = res_lists.bus_head;
1555
1556 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1557 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1558 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1559 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1560
1561 if (rc) {
1562 mutex_lock(&ctrl->crit_sect);
1563
1564 amber_LED_on (ctrl, hp_slot);
1565 green_LED_off (ctrl, hp_slot);
1566 slot_disable (ctrl, hp_slot);
1567
1568 set_SOGO(ctrl);
1569
1570 /* Wait for SOBS to be unset */
1571 wait_for_ctrl_irq (ctrl);
1572
1573 mutex_unlock(&ctrl->crit_sect);
1574 return rc;
1575 } else {
1576 cpqhp_save_slot_config(ctrl, func);
1577 }
1578
1579
1580 func->status = 0;
1581 func->switch_save = 0x10;
1582 func->is_a_board = 0x01;
1583
1584 /* next, we will instantiate the linux pci_dev structures (with
1585 * appropriate driver notification, if already present) */
1586 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1587 index = 0;
1588 do {
1589 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1590 if (new_slot && !new_slot->pci_dev) {
1591 cpqhp_configure_device(ctrl, new_slot);
1592 }
1593 } while (new_slot);
1594
1595 mutex_lock(&ctrl->crit_sect);
1596
1597 green_LED_on (ctrl, hp_slot);
1598
1599 set_SOGO(ctrl);
1600
1601 /* Wait for SOBS to be unset */
1602 wait_for_ctrl_irq (ctrl);
1603
1604 mutex_unlock(&ctrl->crit_sect);
1605 } else {
1606 mutex_lock(&ctrl->crit_sect);
1607
1608 amber_LED_on (ctrl, hp_slot);
1609 green_LED_off (ctrl, hp_slot);
1610 slot_disable (ctrl, hp_slot);
1611
1612 set_SOGO(ctrl);
1613
1614 /* Wait for SOBS to be unset */
1615 wait_for_ctrl_irq (ctrl);
1616
1617 mutex_unlock(&ctrl->crit_sect);
1618
1619 return rc;
1620 }
1621 return 0;
1622 }
1623
1624
1625 /**
1626 * remove_board - Turns off slot and LED's
1627 *
1628 */
1629 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1630 {
1631 int index;
1632 u8 skip = 0;
1633 u8 device;
1634 u8 hp_slot;
1635 u8 temp_byte;
1636 u32 rc;
1637 struct resource_lists res_lists;
1638 struct pci_func *temp_func;
1639
1640 if (cpqhp_unconfigure_device(func))
1641 return 1;
1642
1643 device = func->device;
1644
1645 hp_slot = func->device - ctrl->slot_device_offset;
1646 dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1647
1648 /* When we get here, it is safe to change base address registers.
1649 * We will attempt to save the base address register lengths */
1650 if (replace_flag || !ctrl->add_support)
1651 rc = cpqhp_save_base_addr_length(ctrl, func);
1652 else if (!func->bus_head && !func->mem_head &&
1653 !func->p_mem_head && !func->io_head) {
1654 /* Here we check to see if we've saved any of the board's
1655 * resources already. If so, we'll skip the attempt to
1656 * determine what's being used. */
1657 index = 0;
1658 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1659 while (temp_func) {
1660 if (temp_func->bus_head || temp_func->mem_head
1661 || temp_func->p_mem_head || temp_func->io_head) {
1662 skip = 1;
1663 break;
1664 }
1665 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1666 }
1667
1668 if (!skip)
1669 rc = cpqhp_save_used_resources(ctrl, func);
1670 }
1671 /* Change status to shutdown */
1672 if (func->is_a_board)
1673 func->status = 0x01;
1674 func->configured = 0;
1675
1676 mutex_lock(&ctrl->crit_sect);
1677
1678 green_LED_off (ctrl, hp_slot);
1679 slot_disable (ctrl, hp_slot);
1680
1681 set_SOGO(ctrl);
1682
1683 /* turn off SERR for slot */
1684 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1685 temp_byte &= ~(0x01 << hp_slot);
1686 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1687
1688 /* Wait for SOBS to be unset */
1689 wait_for_ctrl_irq (ctrl);
1690
1691 mutex_unlock(&ctrl->crit_sect);
1692
1693 if (!replace_flag && ctrl->add_support) {
1694 while (func) {
1695 res_lists.io_head = ctrl->io_head;
1696 res_lists.mem_head = ctrl->mem_head;
1697 res_lists.p_mem_head = ctrl->p_mem_head;
1698 res_lists.bus_head = ctrl->bus_head;
1699
1700 cpqhp_return_board_resources(func, &res_lists);
1701
1702 ctrl->io_head = res_lists.io_head;
1703 ctrl->mem_head = res_lists.mem_head;
1704 ctrl->p_mem_head = res_lists.p_mem_head;
1705 ctrl->bus_head = res_lists.bus_head;
1706
1707 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1708 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1709 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1710 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1711
1712 if (is_bridge(func)) {
1713 bridge_slot_remove(func);
1714 } else
1715 slot_remove(func);
1716
1717 func = cpqhp_slot_find(ctrl->bus, device, 0);
1718 }
1719
1720 /* Setup slot structure with entry for empty slot */
1721 func = cpqhp_slot_create(ctrl->bus);
1722
1723 if (func == NULL)
1724 return 1;
1725
1726 func->bus = ctrl->bus;
1727 func->device = device;
1728 func->function = 0;
1729 func->configured = 0;
1730 func->switch_save = 0x10;
1731 func->is_a_board = 0;
1732 func->p_task_event = NULL;
1733 }
1734
1735 return 0;
1736 }
1737
1738 static void pushbutton_helper_thread(unsigned long data)
1739 {
1740 pushbutton_pending = data;
1741 up(&event_semaphore);
1742 }
1743
1744
1745 /* this is the main worker thread */
1746 static int event_thread(void* data)
1747 {
1748 struct controller *ctrl;
1749
1750 daemonize("phpd_event");
1751
1752 while (1) {
1753 dbg("!!!!event_thread sleeping\n");
1754 down_interruptible (&event_semaphore);
1755 dbg("event_thread woken finished = %d\n", event_finished);
1756 if (event_finished) break;
1757 /* Do stuff here */
1758 if (pushbutton_pending)
1759 cpqhp_pushbutton_thread(pushbutton_pending);
1760 else
1761 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1762 interrupt_event_handler(ctrl);
1763 }
1764 dbg("event_thread signals exit\n");
1765 up(&event_exit);
1766 return 0;
1767 }
1768
1769
1770 int cpqhp_event_start_thread(void)
1771 {
1772 int pid;
1773
1774 /* initialize our semaphores */
1775 init_MUTEX(&delay_sem);
1776 init_MUTEX_LOCKED(&event_semaphore);
1777 init_MUTEX_LOCKED(&event_exit);
1778 event_finished=0;
1779
1780 pid = kernel_thread(event_thread, NULL, 0);
1781 if (pid < 0) {
1782 err ("Can't start up our event thread\n");
1783 return -1;
1784 }
1785 dbg("Our event thread pid = %d\n", pid);
1786 return 0;
1787 }
1788
1789
1790 void cpqhp_event_stop_thread(void)
1791 {
1792 event_finished = 1;
1793 dbg("event_thread finish command given\n");
1794 up(&event_semaphore);
1795 dbg("wait for event_thread to exit\n");
1796 down(&event_exit);
1797 }
1798
1799
1800 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1801 {
1802 struct hotplug_slot_info *info;
1803 int result;
1804
1805 info = kmalloc(sizeof(*info), GFP_KERNEL);
1806 if (!info)
1807 return -ENOMEM;
1808
1809 info->power_status = get_slot_enabled(ctrl, slot);
1810 info->attention_status = cpq_get_attention_status(ctrl, slot);
1811 info->latch_status = cpq_get_latch_status(ctrl, slot);
1812 info->adapter_status = get_presence_status(ctrl, slot);
1813 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1814 kfree (info);
1815 return result;
1816 }
1817
1818 static void interrupt_event_handler(struct controller *ctrl)
1819 {
1820 int loop = 0;
1821 int change = 1;
1822 struct pci_func *func;
1823 u8 hp_slot;
1824 struct slot *p_slot;
1825
1826 while (change) {
1827 change = 0;
1828
1829 for (loop = 0; loop < 10; loop++) {
1830 /* dbg("loop %d\n", loop); */
1831 if (ctrl->event_queue[loop].event_type != 0) {
1832 hp_slot = ctrl->event_queue[loop].hp_slot;
1833
1834 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1835 if (!func)
1836 return;
1837
1838 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1839 if (!p_slot)
1840 return;
1841
1842 dbg("hp_slot %d, func %p, p_slot %p\n",
1843 hp_slot, func, p_slot);
1844
1845 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1846 dbg("button pressed\n");
1847 } else if (ctrl->event_queue[loop].event_type ==
1848 INT_BUTTON_CANCEL) {
1849 dbg("button cancel\n");
1850 del_timer(&p_slot->task_event);
1851
1852 mutex_lock(&ctrl->crit_sect);
1853
1854 if (p_slot->state == BLINKINGOFF_STATE) {
1855 /* slot is on */
1856 dbg("turn on green LED\n");
1857 green_LED_on (ctrl, hp_slot);
1858 } else if (p_slot->state == BLINKINGON_STATE) {
1859 /* slot is off */
1860 dbg("turn off green LED\n");
1861 green_LED_off (ctrl, hp_slot);
1862 }
1863
1864 info(msg_button_cancel, p_slot->number);
1865
1866 p_slot->state = STATIC_STATE;
1867
1868 amber_LED_off (ctrl, hp_slot);
1869
1870 set_SOGO(ctrl);
1871
1872 /* Wait for SOBS to be unset */
1873 wait_for_ctrl_irq (ctrl);
1874
1875 mutex_unlock(&ctrl->crit_sect);
1876 }
1877 /*** button Released (No action on press...) */
1878 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1879 dbg("button release\n");
1880
1881 if (is_slot_enabled (ctrl, hp_slot)) {
1882 dbg("slot is on\n");
1883 p_slot->state = BLINKINGOFF_STATE;
1884 info(msg_button_off, p_slot->number);
1885 } else {
1886 dbg("slot is off\n");
1887 p_slot->state = BLINKINGON_STATE;
1888 info(msg_button_on, p_slot->number);
1889 }
1890 mutex_lock(&ctrl->crit_sect);
1891
1892 dbg("blink green LED and turn off amber\n");
1893
1894 amber_LED_off (ctrl, hp_slot);
1895 green_LED_blink (ctrl, hp_slot);
1896
1897 set_SOGO(ctrl);
1898
1899 /* Wait for SOBS to be unset */
1900 wait_for_ctrl_irq (ctrl);
1901
1902 mutex_unlock(&ctrl->crit_sect);
1903 init_timer(&p_slot->task_event);
1904 p_slot->hp_slot = hp_slot;
1905 p_slot->ctrl = ctrl;
1906 /* p_slot->physical_slot = physical_slot; */
1907 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1908 p_slot->task_event.function = pushbutton_helper_thread;
1909 p_slot->task_event.data = (u32) p_slot;
1910
1911 dbg("add_timer p_slot = %p\n", p_slot);
1912 add_timer(&p_slot->task_event);
1913 }
1914 /***********POWER FAULT */
1915 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1916 dbg("power fault\n");
1917 } else {
1918 /* refresh notification */
1919 if (p_slot)
1920 update_slot_info(ctrl, p_slot);
1921 }
1922
1923 ctrl->event_queue[loop].event_type = 0;
1924
1925 change = 1;
1926 }
1927 } /* End of FOR loop */
1928 }
1929
1930 return;
1931 }
1932
1933
1934 /**
1935 * cpqhp_pushbutton_thread
1936 *
1937 * Scheduled procedure to handle blocking stuff for the pushbuttons
1938 * Handles all pending events and exits.
1939 *
1940 */
1941 void cpqhp_pushbutton_thread(unsigned long slot)
1942 {
1943 u8 hp_slot;
1944 u8 device;
1945 struct pci_func *func;
1946 struct slot *p_slot = (struct slot *) slot;
1947 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1948
1949 pushbutton_pending = 0;
1950 hp_slot = p_slot->hp_slot;
1951
1952 device = p_slot->device;
1953
1954 if (is_slot_enabled(ctrl, hp_slot)) {
1955 p_slot->state = POWEROFF_STATE;
1956 /* power Down board */
1957 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1958 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1959 if (!func) {
1960 dbg("Error! func NULL in %s\n", __FUNCTION__);
1961 return ;
1962 }
1963
1964 if (func != NULL && ctrl != NULL) {
1965 if (cpqhp_process_SS(ctrl, func) != 0) {
1966 amber_LED_on (ctrl, hp_slot);
1967 green_LED_on (ctrl, hp_slot);
1968
1969 set_SOGO(ctrl);
1970
1971 /* Wait for SOBS to be unset */
1972 wait_for_ctrl_irq (ctrl);
1973 }
1974 }
1975
1976 p_slot->state = STATIC_STATE;
1977 } else {
1978 p_slot->state = POWERON_STATE;
1979 /* slot is off */
1980
1981 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1982 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1983 if (!func) {
1984 dbg("Error! func NULL in %s\n", __FUNCTION__);
1985 return ;
1986 }
1987
1988 if (func != NULL && ctrl != NULL) {
1989 if (cpqhp_process_SI(ctrl, func) != 0) {
1990 amber_LED_on(ctrl, hp_slot);
1991 green_LED_off(ctrl, hp_slot);
1992
1993 set_SOGO(ctrl);
1994
1995 /* Wait for SOBS to be unset */
1996 wait_for_ctrl_irq (ctrl);
1997 }
1998 }
1999
2000 p_slot->state = STATIC_STATE;
2001 }
2002
2003 return;
2004 }
2005
2006
2007 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2008 {
2009 u8 device, hp_slot;
2010 u16 temp_word;
2011 u32 tempdword;
2012 int rc;
2013 struct slot* p_slot;
2014 int physical_slot = 0;
2015
2016 tempdword = 0;
2017
2018 device = func->device;
2019 hp_slot = device - ctrl->slot_device_offset;
2020 p_slot = cpqhp_find_slot(ctrl, device);
2021 if (p_slot)
2022 physical_slot = p_slot->number;
2023
2024 /* Check to see if the interlock is closed */
2025 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2026
2027 if (tempdword & (0x01 << hp_slot)) {
2028 return 1;
2029 }
2030
2031 if (func->is_a_board) {
2032 rc = board_replaced(func, ctrl);
2033 } else {
2034 /* add board */
2035 slot_remove(func);
2036
2037 func = cpqhp_slot_create(ctrl->bus);
2038 if (func == NULL)
2039 return 1;
2040
2041 func->bus = ctrl->bus;
2042 func->device = device;
2043 func->function = 0;
2044 func->configured = 0;
2045 func->is_a_board = 1;
2046
2047 /* We have to save the presence info for these slots */
2048 temp_word = ctrl->ctrl_int_comp >> 16;
2049 func->presence_save = (temp_word >> hp_slot) & 0x01;
2050 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2051
2052 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2053 func->switch_save = 0;
2054 } else {
2055 func->switch_save = 0x10;
2056 }
2057
2058 rc = board_added(func, ctrl);
2059 if (rc) {
2060 if (is_bridge(func)) {
2061 bridge_slot_remove(func);
2062 } else
2063 slot_remove(func);
2064
2065 /* Setup slot structure with entry for empty slot */
2066 func = cpqhp_slot_create(ctrl->bus);
2067
2068 if (func == NULL)
2069 return 1;
2070
2071 func->bus = ctrl->bus;
2072 func->device = device;
2073 func->function = 0;
2074 func->configured = 0;
2075 func->is_a_board = 0;
2076
2077 /* We have to save the presence info for these slots */
2078 temp_word = ctrl->ctrl_int_comp >> 16;
2079 func->presence_save = (temp_word >> hp_slot) & 0x01;
2080 func->presence_save |=
2081 (temp_word >> (hp_slot + 7)) & 0x02;
2082
2083 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2084 func->switch_save = 0;
2085 } else {
2086 func->switch_save = 0x10;
2087 }
2088 }
2089 }
2090
2091 if (rc) {
2092 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2093 }
2094
2095 if (p_slot)
2096 update_slot_info(ctrl, p_slot);
2097
2098 return rc;
2099 }
2100
2101
2102 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2103 {
2104 u8 device, class_code, header_type, BCR;
2105 u8 index = 0;
2106 u8 replace_flag;
2107 u32 rc = 0;
2108 unsigned int devfn;
2109 struct slot* p_slot;
2110 struct pci_bus *pci_bus = ctrl->pci_bus;
2111 int physical_slot=0;
2112
2113 device = func->device;
2114 func = cpqhp_slot_find(ctrl->bus, device, index++);
2115 p_slot = cpqhp_find_slot(ctrl, device);
2116 if (p_slot) {
2117 physical_slot = p_slot->number;
2118 }
2119
2120 /* Make sure there are no video controllers here */
2121 while (func && !rc) {
2122 pci_bus->number = func->bus;
2123 devfn = PCI_DEVFN(func->device, func->function);
2124
2125 /* Check the Class Code */
2126 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2127 if (rc)
2128 return rc;
2129
2130 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2131 /* Display/Video adapter (not supported) */
2132 rc = REMOVE_NOT_SUPPORTED;
2133 } else {
2134 /* See if it's a bridge */
2135 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2136 if (rc)
2137 return rc;
2138
2139 /* If it's a bridge, check the VGA Enable bit */
2140 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2141 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2142 if (rc)
2143 return rc;
2144
2145 /* If the VGA Enable bit is set, remove isn't
2146 * supported */
2147 if (BCR & PCI_BRIDGE_CTL_VGA) {
2148 rc = REMOVE_NOT_SUPPORTED;
2149 }
2150 }
2151 }
2152
2153 func = cpqhp_slot_find(ctrl->bus, device, index++);
2154 }
2155
2156 func = cpqhp_slot_find(ctrl->bus, device, 0);
2157 if ((func != NULL) && !rc) {
2158 /* FIXME: Replace flag should be passed into process_SS */
2159 replace_flag = !(ctrl->add_support);
2160 rc = remove_board(func, replace_flag, ctrl);
2161 } else if (!rc) {
2162 rc = 1;
2163 }
2164
2165 if (p_slot)
2166 update_slot_info(ctrl, p_slot);
2167
2168 return rc;
2169 }
2170
2171 /**
2172 * switch_leds: switch the leds, go from one site to the other.
2173 * @ctrl: controller to use
2174 * @num_of_slots: number of slots to use
2175 * @direction: 1 to start from the left side, 0 to start right.
2176 */
2177 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2178 u32 *work_LED, const int direction)
2179 {
2180 int loop;
2181
2182 for (loop = 0; loop < num_of_slots; loop++) {
2183 if (direction)
2184 *work_LED = *work_LED >> 1;
2185 else
2186 *work_LED = *work_LED << 1;
2187 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2188
2189 set_SOGO(ctrl);
2190
2191 /* Wait for SOGO interrupt */
2192 wait_for_ctrl_irq(ctrl);
2193
2194 /* Get ready for next iteration */
2195 long_delay((2*HZ)/10);
2196 }
2197 }
2198
2199 /**
2200 * hardware_test - runs hardware tests
2201 *
2202 * For hot plug ctrl folks to play with.
2203 * test_num is the number written to the "test" file in sysfs
2204 *
2205 */
2206 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2207 {
2208 u32 save_LED;
2209 u32 work_LED;
2210 int loop;
2211 int num_of_slots;
2212
2213 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2214
2215 switch (test_num) {
2216 case 1:
2217 /* Do stuff here! */
2218
2219 /* Do that funky LED thing */
2220 /* so we can restore them later */
2221 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2222 work_LED = 0x01010101;
2223 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2224 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2225 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2226 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2227
2228 work_LED = 0x01010000;
2229 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2230 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2231 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2232 work_LED = 0x00000101;
2233 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2234 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2235 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2236
2237 work_LED = 0x01010000;
2238 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2239 for (loop = 0; loop < num_of_slots; loop++) {
2240 set_SOGO(ctrl);
2241
2242 /* Wait for SOGO interrupt */
2243 wait_for_ctrl_irq (ctrl);
2244
2245 /* Get ready for next iteration */
2246 long_delay((3*HZ)/10);
2247 work_LED = work_LED >> 16;
2248 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2249
2250 set_SOGO(ctrl);
2251
2252 /* Wait for SOGO interrupt */
2253 wait_for_ctrl_irq (ctrl);
2254
2255 /* Get ready for next iteration */
2256 long_delay((3*HZ)/10);
2257 work_LED = work_LED << 16;
2258 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2259 work_LED = work_LED << 1;
2260 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2261 }
2262
2263 /* put it back the way it was */
2264 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2265
2266 set_SOGO(ctrl);
2267
2268 /* Wait for SOBS to be unset */
2269 wait_for_ctrl_irq (ctrl);
2270 break;
2271 case 2:
2272 /* Do other stuff here! */
2273 break;
2274 case 3:
2275 /* and more... */
2276 break;
2277 }
2278 return 0;
2279 }
2280
2281
2282 /**
2283 * configure_new_device - Configures the PCI header information of one board.
2284 *
2285 * @ctrl: pointer to controller structure
2286 * @func: pointer to function structure
2287 * @behind_bridge: 1 if this is a recursive call, 0 if not
2288 * @resources: pointer to set of resource lists
2289 *
2290 * Returns 0 if success
2291 *
2292 */
2293 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2294 u8 behind_bridge, struct resource_lists * resources)
2295 {
2296 u8 temp_byte, function, max_functions, stop_it;
2297 int rc;
2298 u32 ID;
2299 struct pci_func *new_slot;
2300 int index;
2301
2302 new_slot = func;
2303
2304 dbg("%s\n", __FUNCTION__);
2305 /* Check for Multi-function device */
2306 ctrl->pci_bus->number = func->bus;
2307 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2308 if (rc) {
2309 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2310 return rc;
2311 }
2312
2313 if (temp_byte & 0x80) /* Multi-function device */
2314 max_functions = 8;
2315 else
2316 max_functions = 1;
2317
2318 function = 0;
2319
2320 do {
2321 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2322
2323 if (rc) {
2324 dbg("configure_new_function failed %d\n",rc);
2325 index = 0;
2326
2327 while (new_slot) {
2328 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2329
2330 if (new_slot)
2331 cpqhp_return_board_resources(new_slot, resources);
2332 }
2333
2334 return rc;
2335 }
2336
2337 function++;
2338
2339 stop_it = 0;
2340
2341 /* The following loop skips to the next present function
2342 * and creates a board structure */
2343
2344 while ((function < max_functions) && (!stop_it)) {
2345 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2346
2347 if (ID == 0xFFFFFFFF) { /* There's nothing there. */
2348 function++;
2349 } else { /* There's something there */
2350 /* Setup slot structure. */
2351 new_slot = cpqhp_slot_create(func->bus);
2352
2353 if (new_slot == NULL)
2354 return 1;
2355
2356 new_slot->bus = func->bus;
2357 new_slot->device = func->device;
2358 new_slot->function = function;
2359 new_slot->is_a_board = 1;
2360 new_slot->status = 0;
2361
2362 stop_it++;
2363 }
2364 }
2365
2366 } while (function < max_functions);
2367 dbg("returning from configure_new_device\n");
2368
2369 return 0;
2370 }
2371
2372
2373 /*
2374 Configuration logic that involves the hotplug data structures and
2375 their bookkeeping
2376 */
2377
2378
2379 /**
2380 * configure_new_function - Configures the PCI header information of one device
2381 *
2382 * @ctrl: pointer to controller structure
2383 * @func: pointer to function structure
2384 * @behind_bridge: 1 if this is a recursive call, 0 if not
2385 * @resources: pointer to set of resource lists
2386 *
2387 * Calls itself recursively for bridged devices.
2388 * Returns 0 if success
2389 *
2390 */
2391 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2392 u8 behind_bridge,
2393 struct resource_lists *resources)
2394 {
2395 int cloop;
2396 u8 IRQ = 0;
2397 u8 temp_byte;
2398 u8 device;
2399 u8 class_code;
2400 u16 command;
2401 u16 temp_word;
2402 u32 temp_dword;
2403 u32 rc;
2404 u32 temp_register;
2405 u32 base;
2406 u32 ID;
2407 unsigned int devfn;
2408 struct pci_resource *mem_node;
2409 struct pci_resource *p_mem_node;
2410 struct pci_resource *io_node;
2411 struct pci_resource *bus_node;
2412 struct pci_resource *hold_mem_node;
2413 struct pci_resource *hold_p_mem_node;
2414 struct pci_resource *hold_IO_node;
2415 struct pci_resource *hold_bus_node;
2416 struct irq_mapping irqs;
2417 struct pci_func *new_slot;
2418 struct pci_bus *pci_bus;
2419 struct resource_lists temp_resources;
2420
2421 pci_bus = ctrl->pci_bus;
2422 pci_bus->number = func->bus;
2423 devfn = PCI_DEVFN(func->device, func->function);
2424
2425 /* Check for Bridge */
2426 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2427 if (rc)
2428 return rc;
2429
2430 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2431 /* set Primary bus */
2432 dbg("set Primary bus = %d\n", func->bus);
2433 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2434 if (rc)
2435 return rc;
2436
2437 /* find range of busses to use */
2438 dbg("find ranges of buses to use\n");
2439 bus_node = get_max_resource(&(resources->bus_head), 1);
2440
2441 /* If we don't have any busses to allocate, we can't continue */
2442 if (!bus_node)
2443 return -ENOMEM;
2444
2445 /* set Secondary bus */
2446 temp_byte = bus_node->base;
2447 dbg("set Secondary bus = %d\n", bus_node->base);
2448 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2449 if (rc)
2450 return rc;
2451
2452 /* set subordinate bus */
2453 temp_byte = bus_node->base + bus_node->length - 1;
2454 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2455 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2456 if (rc)
2457 return rc;
2458
2459 /* set subordinate Latency Timer and base Latency Timer */
2460 temp_byte = 0x40;
2461 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2462 if (rc)
2463 return rc;
2464 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2465 if (rc)
2466 return rc;
2467
2468 /* set Cache Line size */
2469 temp_byte = 0x08;
2470 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2471 if (rc)
2472 return rc;
2473
2474 /* Setup the IO, memory, and prefetchable windows */
2475 io_node = get_max_resource(&(resources->io_head), 0x1000);
2476 if (!io_node)
2477 return -ENOMEM;
2478 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2479 if (!mem_node)
2480 return -ENOMEM;
2481 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2482 if (!p_mem_node)
2483 return -ENOMEM;
2484 dbg("Setup the IO, memory, and prefetchable windows\n");
2485 dbg("io_node\n");
2486 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2487 io_node->length, io_node->next);
2488 dbg("mem_node\n");
2489 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2490 mem_node->length, mem_node->next);
2491 dbg("p_mem_node\n");
2492 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2493 p_mem_node->length, p_mem_node->next);
2494
2495 /* set up the IRQ info */
2496 if (!resources->irqs) {
2497 irqs.barber_pole = 0;
2498 irqs.interrupt[0] = 0;
2499 irqs.interrupt[1] = 0;
2500 irqs.interrupt[2] = 0;
2501 irqs.interrupt[3] = 0;
2502 irqs.valid_INT = 0;
2503 } else {
2504 irqs.barber_pole = resources->irqs->barber_pole;
2505 irqs.interrupt[0] = resources->irqs->interrupt[0];
2506 irqs.interrupt[1] = resources->irqs->interrupt[1];
2507 irqs.interrupt[2] = resources->irqs->interrupt[2];
2508 irqs.interrupt[3] = resources->irqs->interrupt[3];
2509 irqs.valid_INT = resources->irqs->valid_INT;
2510 }
2511
2512 /* set up resource lists that are now aligned on top and bottom
2513 * for anything behind the bridge. */
2514 temp_resources.bus_head = bus_node;
2515 temp_resources.io_head = io_node;
2516 temp_resources.mem_head = mem_node;
2517 temp_resources.p_mem_head = p_mem_node;
2518 temp_resources.irqs = &irqs;
2519
2520 /* Make copies of the nodes we are going to pass down so that
2521 * if there is a problem,we can just use these to free resources */
2522 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2523 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2524 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2525 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2526
2527 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2528 kfree(hold_bus_node);
2529 kfree(hold_IO_node);
2530 kfree(hold_mem_node);
2531 kfree(hold_p_mem_node);
2532
2533 return 1;
2534 }
2535
2536 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2537
2538 bus_node->base += 1;
2539 bus_node->length -= 1;
2540 bus_node->next = NULL;
2541
2542 /* If we have IO resources copy them and fill in the bridge's
2543 * IO range registers */
2544 if (io_node) {
2545 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2546 io_node->next = NULL;
2547
2548 /* set IO base and Limit registers */
2549 temp_byte = io_node->base >> 8;
2550 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2551
2552 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2553 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2554 } else {
2555 kfree(hold_IO_node);
2556 hold_IO_node = NULL;
2557 }
2558
2559 /* If we have memory resources copy them and fill in the
2560 * bridge's memory range registers. Otherwise, fill in the
2561 * range registers with values that disable them. */
2562 if (mem_node) {
2563 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2564 mem_node->next = NULL;
2565
2566 /* set Mem base and Limit registers */
2567 temp_word = mem_node->base >> 16;
2568 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2569
2570 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2571 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2572 } else {
2573 temp_word = 0xFFFF;
2574 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2575
2576 temp_word = 0x0000;
2577 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2578
2579 kfree(hold_mem_node);
2580 hold_mem_node = NULL;
2581 }
2582
2583 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2584 p_mem_node->next = NULL;
2585
2586 /* set Pre Mem base and Limit registers */
2587 temp_word = p_mem_node->base >> 16;
2588 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2589
2590 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2591 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2592
2593 /* Adjust this to compensate for extra adjustment in first loop */
2594 irqs.barber_pole--;
2595
2596 rc = 0;
2597
2598 /* Here we actually find the devices and configure them */
2599 for (device = 0; (device <= 0x1F) && !rc; device++) {
2600 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2601
2602 ID = 0xFFFFFFFF;
2603 pci_bus->number = hold_bus_node->base;
2604 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2605 pci_bus->number = func->bus;
2606
2607 if (ID != 0xFFFFFFFF) { /* device present */
2608 /* Setup slot structure. */
2609 new_slot = cpqhp_slot_create(hold_bus_node->base);
2610
2611 if (new_slot == NULL) {
2612 rc = -ENOMEM;
2613 continue;
2614 }
2615
2616 new_slot->bus = hold_bus_node->base;
2617 new_slot->device = device;
2618 new_slot->function = 0;
2619 new_slot->is_a_board = 1;
2620 new_slot->status = 0;
2621
2622 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2623 dbg("configure_new_device rc=0x%x\n",rc);
2624 } /* End of IF (device in slot?) */
2625 } /* End of FOR loop */
2626
2627 if (rc)
2628 goto free_and_out;
2629 /* save the interrupt routing information */
2630 if (resources->irqs) {
2631 resources->irqs->interrupt[0] = irqs.interrupt[0];
2632 resources->irqs->interrupt[1] = irqs.interrupt[1];
2633 resources->irqs->interrupt[2] = irqs.interrupt[2];
2634 resources->irqs->interrupt[3] = irqs.interrupt[3];
2635 resources->irqs->valid_INT = irqs.valid_INT;
2636 } else if (!behind_bridge) {
2637 /* We need to hook up the interrupts here */
2638 for (cloop = 0; cloop < 4; cloop++) {
2639 if (irqs.valid_INT & (0x01 << cloop)) {
2640 rc = cpqhp_set_irq(func->bus, func->device,
2641 0x0A + cloop, irqs.interrupt[cloop]);
2642 if (rc)
2643 goto free_and_out;
2644 }
2645 } /* end of for loop */
2646 }
2647 /* Return unused bus resources
2648 * First use the temporary node to store information for
2649 * the board */
2650 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2651 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2652
2653 hold_bus_node->next = func->bus_head;
2654 func->bus_head = hold_bus_node;
2655
2656 temp_byte = temp_resources.bus_head->base - 1;
2657
2658 /* set subordinate bus */
2659 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2660
2661 if (temp_resources.bus_head->length == 0) {
2662 kfree(temp_resources.bus_head);
2663 temp_resources.bus_head = NULL;
2664 } else {
2665 return_resource(&(resources->bus_head), temp_resources.bus_head);
2666 }
2667 }
2668
2669 /* If we have IO space available and there is some left,
2670 * return the unused portion */
2671 if (hold_IO_node && temp_resources.io_head) {
2672 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2673 &hold_IO_node, 0x1000);
2674
2675 /* Check if we were able to split something off */
2676 if (io_node) {
2677 hold_IO_node->base = io_node->base + io_node->length;
2678
2679 temp_byte = (hold_IO_node->base) >> 8;
2680 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2681
2682 return_resource(&(resources->io_head), io_node);
2683 }
2684
2685 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2686
2687 /* Check if we were able to split something off */
2688 if (io_node) {
2689 /* First use the temporary node to store
2690 * information for the board */
2691 hold_IO_node->length = io_node->base - hold_IO_node->base;
2692
2693 /* If we used any, add it to the board's list */
2694 if (hold_IO_node->length) {
2695 hold_IO_node->next = func->io_head;
2696 func->io_head = hold_IO_node;
2697
2698 temp_byte = (io_node->base - 1) >> 8;
2699 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2700
2701 return_resource(&(resources->io_head), io_node);
2702 } else {
2703 /* it doesn't need any IO */
2704 temp_word = 0x0000;
2705 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2706
2707 return_resource(&(resources->io_head), io_node);
2708 kfree(hold_IO_node);
2709 }
2710 } else {
2711 /* it used most of the range */
2712 hold_IO_node->next = func->io_head;
2713 func->io_head = hold_IO_node;
2714 }
2715 } else if (hold_IO_node) {
2716 /* it used the whole range */
2717 hold_IO_node->next = func->io_head;
2718 func->io_head = hold_IO_node;
2719 }
2720 /* If we have memory space available and there is some left,
2721 * return the unused portion */
2722 if (hold_mem_node && temp_resources.mem_head) {
2723 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2724 &hold_mem_node, 0x100000);
2725
2726 /* Check if we were able to split something off */
2727 if (mem_node) {
2728 hold_mem_node->base = mem_node->base + mem_node->length;
2729
2730 temp_word = (hold_mem_node->base) >> 16;
2731 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2732
2733 return_resource(&(resources->mem_head), mem_node);
2734 }
2735
2736 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2737
2738 /* Check if we were able to split something off */
2739 if (mem_node) {
2740 /* First use the temporary node to store
2741 * information for the board */
2742 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2743
2744 if (hold_mem_node->length) {
2745 hold_mem_node->next = func->mem_head;
2746 func->mem_head = hold_mem_node;
2747
2748 /* configure end address */
2749 temp_word = (mem_node->base - 1) >> 16;
2750 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2751
2752 /* Return unused resources to the pool */
2753 return_resource(&(resources->mem_head), mem_node);
2754 } else {
2755 /* it doesn't need any Mem */
2756 temp_word = 0x0000;
2757 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2758
2759 return_resource(&(resources->mem_head), mem_node);
2760 kfree(hold_mem_node);
2761 }
2762 } else {
2763 /* it used most of the range */
2764 hold_mem_node->next = func->mem_head;
2765 func->mem_head = hold_mem_node;
2766 }
2767 } else if (hold_mem_node) {
2768 /* it used the whole range */
2769 hold_mem_node->next = func->mem_head;
2770 func->mem_head = hold_mem_node;
2771 }
2772 /* If we have prefetchable memory space available and there
2773 * is some left at the end, return the unused portion */
2774 if (hold_p_mem_node && temp_resources.p_mem_head) {
2775 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2776 &hold_p_mem_node, 0x100000);
2777
2778 /* Check if we were able to split something off */
2779 if (p_mem_node) {
2780 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2781
2782 temp_word = (hold_p_mem_node->base) >> 16;
2783 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2784
2785 return_resource(&(resources->p_mem_head), p_mem_node);
2786 }
2787
2788 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2789
2790 /* Check if we were able to split something off */
2791 if (p_mem_node) {
2792 /* First use the temporary node to store
2793 * information for the board */
2794 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2795
2796 /* If we used any, add it to the board's list */
2797 if (hold_p_mem_node->length) {
2798 hold_p_mem_node->next = func->p_mem_head;
2799 func->p_mem_head = hold_p_mem_node;
2800
2801 temp_word = (p_mem_node->base - 1) >> 16;
2802 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2803
2804 return_resource(&(resources->p_mem_head), p_mem_node);
2805 } else {
2806 /* it doesn't need any PMem */
2807 temp_word = 0x0000;
2808 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2809
2810 return_resource(&(resources->p_mem_head), p_mem_node);
2811 kfree(hold_p_mem_node);
2812 }
2813 } else {
2814 /* it used the most of the range */
2815 hold_p_mem_node->next = func->p_mem_head;
2816 func->p_mem_head = hold_p_mem_node;
2817 }
2818 } else if (hold_p_mem_node) {
2819 /* it used the whole range */
2820 hold_p_mem_node->next = func->p_mem_head;
2821 func->p_mem_head = hold_p_mem_node;
2822 }
2823 /* We should be configuring an IRQ and the bridge's base address
2824 * registers if it needs them. Although we have never seen such
2825 * a device */
2826
2827 /* enable card */
2828 command = 0x0157; /* = PCI_COMMAND_IO |
2829 * PCI_COMMAND_MEMORY |
2830 * PCI_COMMAND_MASTER |
2831 * PCI_COMMAND_INVALIDATE |
2832 * PCI_COMMAND_PARITY |
2833 * PCI_COMMAND_SERR */
2834 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2835
2836 /* set Bridge Control Register */
2837 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2838 * PCI_BRIDGE_CTL_SERR |
2839 * PCI_BRIDGE_CTL_NO_ISA */
2840 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2841 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2842 /* Standard device */
2843 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2844
2845 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2846 /* Display (video) adapter (not supported) */
2847 return DEVICE_TYPE_NOT_SUPPORTED;
2848 }
2849 /* Figure out IO and memory needs */
2850 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2851 temp_register = 0xFFFFFFFF;
2852
2853 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2854 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2855
2856 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2857 dbg("CND: base = 0x%x\n", temp_register);
2858
2859 if (temp_register) { /* If this register is implemented */
2860 if ((temp_register & 0x03L) == 0x01) {
2861 /* Map IO */
2862
2863 /* set base = amount of IO space */
2864 base = temp_register & 0xFFFFFFFC;
2865 base = ~base + 1;
2866
2867 dbg("CND: length = 0x%x\n", base);
2868 io_node = get_io_resource(&(resources->io_head), base);
2869 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2870 io_node->base, io_node->length, io_node->next);
2871 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2872
2873 /* allocate the resource to the board */
2874 if (io_node) {
2875 base = io_node->base;
2876
2877 io_node->next = func->io_head;
2878 func->io_head = io_node;
2879 } else
2880 return -ENOMEM;
2881 } else if ((temp_register & 0x0BL) == 0x08) {
2882 /* Map prefetchable memory */
2883 base = temp_register & 0xFFFFFFF0;
2884 base = ~base + 1;
2885
2886 dbg("CND: length = 0x%x\n", base);
2887 p_mem_node = get_resource(&(resources->p_mem_head), base);
2888
2889 /* allocate the resource to the board */
2890 if (p_mem_node) {
2891 base = p_mem_node->base;
2892
2893 p_mem_node->next = func->p_mem_head;
2894 func->p_mem_head = p_mem_node;
2895 } else
2896 return -ENOMEM;
2897 } else if ((temp_register & 0x0BL) == 0x00) {
2898 /* Map memory */
2899 base = temp_register & 0xFFFFFFF0;
2900 base = ~base + 1;
2901
2902 dbg("CND: length = 0x%x\n", base);
2903 mem_node = get_resource(&(resources->mem_head), base);
2904
2905 /* allocate the resource to the board */
2906 if (mem_node) {
2907 base = mem_node->base;
2908
2909 mem_node->next = func->mem_head;
2910 func->mem_head = mem_node;
2911 } else
2912 return -ENOMEM;
2913 } else if ((temp_register & 0x0BL) == 0x04) {
2914 /* Map memory */
2915 base = temp_register & 0xFFFFFFF0;
2916 base = ~base + 1;
2917
2918 dbg("CND: length = 0x%x\n", base);
2919 mem_node = get_resource(&(resources->mem_head), base);
2920
2921 /* allocate the resource to the board */
2922 if (mem_node) {
2923 base = mem_node->base;
2924
2925 mem_node->next = func->mem_head;
2926 func->mem_head = mem_node;
2927 } else
2928 return -ENOMEM;
2929 } else if ((temp_register & 0x0BL) == 0x06) {
2930 /* Those bits are reserved, we can't handle this */
2931 return 1;
2932 } else {
2933 /* Requesting space below 1M */
2934 return NOT_ENOUGH_RESOURCES;
2935 }
2936
2937 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2938
2939 /* Check for 64-bit base */
2940 if ((temp_register & 0x07L) == 0x04) {
2941 cloop += 4;
2942
2943 /* Upper 32 bits of address always zero
2944 * on today's systems */
2945 /* FIXME this is probably not true on
2946 * Alpha and ia64??? */
2947 base = 0;
2948 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2949 }
2950 }
2951 } /* End of base register loop */
2952 if (cpqhp_legacy_mode) {
2953 /* Figure out which interrupt pin this function uses */
2954 rc = pci_bus_read_config_byte (pci_bus, devfn,
2955 PCI_INTERRUPT_PIN, &temp_byte);
2956
2957 /* If this function needs an interrupt and we are behind
2958 * a bridge and the pin is tied to something that's
2959 * alread mapped, set this one the same */
2960 if (temp_byte && resources->irqs &&
2961 (resources->irqs->valid_INT &
2962 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2963 /* We have to share with something already set up */
2964 IRQ = resources->irqs->interrupt[(temp_byte +
2965 resources->irqs->barber_pole - 1) & 0x03];
2966 } else {
2967 /* Program IRQ based on card type */
2968 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2969
2970 if (class_code == PCI_BASE_CLASS_STORAGE) {
2971 IRQ = cpqhp_disk_irq;
2972 } else {
2973 IRQ = cpqhp_nic_irq;
2974 }
2975 }
2976
2977 /* IRQ Line */
2978 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2979 }
2980
2981 if (!behind_bridge) {
2982 rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2983 if (rc)
2984 return 1;
2985 } else {
2986 /* TBD - this code may also belong in the other clause
2987 * of this If statement */
2988 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2989 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2990 }
2991
2992 /* Latency Timer */
2993 temp_byte = 0x40;
2994 rc = pci_bus_write_config_byte(pci_bus, devfn,
2995 PCI_LATENCY_TIMER, temp_byte);
2996
2997 /* Cache Line size */
2998 temp_byte = 0x08;
2999 rc = pci_bus_write_config_byte(pci_bus, devfn,
3000 PCI_CACHE_LINE_SIZE, temp_byte);
3001
3002 /* disable ROM base Address */
3003 temp_dword = 0x00L;
3004 rc = pci_bus_write_config_word(pci_bus, devfn,
3005 PCI_ROM_ADDRESS, temp_dword);
3006
3007 /* enable card */
3008 temp_word = 0x0157; /* = PCI_COMMAND_IO |
3009 * PCI_COMMAND_MEMORY |
3010 * PCI_COMMAND_MASTER |
3011 * PCI_COMMAND_INVALIDATE |
3012 * PCI_COMMAND_PARITY |
3013 * PCI_COMMAND_SERR */
3014 rc = pci_bus_write_config_word (pci_bus, devfn,
3015 PCI_COMMAND, temp_word);
3016 } else { /* End of Not-A-Bridge else */
3017 /* It's some strange type of PCI adapter (Cardbus?) */
3018 return DEVICE_TYPE_NOT_SUPPORTED;
3019 }
3020
3021 func->configured = 1;
3022
3023 return 0;
3024 free_and_out:
3025 cpqhp_destroy_resource_list (&temp_resources);
3026
3027 return_resource(&(resources-> bus_head), hold_bus_node);
3028 return_resource(&(resources-> io_head), hold_IO_node);
3029 return_resource(&(resources-> mem_head), hold_mem_node);
3030 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3031 return rc;
3032 }
This page took 0.096897 seconds and 5 git commands to generate.