x86, dmar: move page fault handling code to dmar.c
[deliverable/linux.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <asm/cacheflush.h>
40 #include <asm/iommu.h>
41 #include "pci.h"
42
43 #define ROOT_SIZE VTD_PAGE_SIZE
44 #define CONTEXT_SIZE VTD_PAGE_SIZE
45
46 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
47 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
48
49 #define IOAPIC_RANGE_START (0xfee00000)
50 #define IOAPIC_RANGE_END (0xfeefffff)
51 #define IOVA_START_ADDR (0x1000)
52
53 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
54
55 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
56
57 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
58 #define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
59 #define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
60
61 /* global iommu list, set NULL for ignored DMAR units */
62 static struct intel_iommu **g_iommus;
63
64 static int rwbf_quirk;
65
66 /*
67 * 0: Present
68 * 1-11: Reserved
69 * 12-63: Context Ptr (12 - (haw-1))
70 * 64-127: Reserved
71 */
72 struct root_entry {
73 u64 val;
74 u64 rsvd1;
75 };
76 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
77 static inline bool root_present(struct root_entry *root)
78 {
79 return (root->val & 1);
80 }
81 static inline void set_root_present(struct root_entry *root)
82 {
83 root->val |= 1;
84 }
85 static inline void set_root_value(struct root_entry *root, unsigned long value)
86 {
87 root->val |= value & VTD_PAGE_MASK;
88 }
89
90 static inline struct context_entry *
91 get_context_addr_from_root(struct root_entry *root)
92 {
93 return (struct context_entry *)
94 (root_present(root)?phys_to_virt(
95 root->val & VTD_PAGE_MASK) :
96 NULL);
97 }
98
99 /*
100 * low 64 bits:
101 * 0: present
102 * 1: fault processing disable
103 * 2-3: translation type
104 * 12-63: address space root
105 * high 64 bits:
106 * 0-2: address width
107 * 3-6: aval
108 * 8-23: domain id
109 */
110 struct context_entry {
111 u64 lo;
112 u64 hi;
113 };
114
115 static inline bool context_present(struct context_entry *context)
116 {
117 return (context->lo & 1);
118 }
119 static inline void context_set_present(struct context_entry *context)
120 {
121 context->lo |= 1;
122 }
123
124 static inline void context_set_fault_enable(struct context_entry *context)
125 {
126 context->lo &= (((u64)-1) << 2) | 1;
127 }
128
129 #define CONTEXT_TT_MULTI_LEVEL 0
130
131 static inline void context_set_translation_type(struct context_entry *context,
132 unsigned long value)
133 {
134 context->lo &= (((u64)-1) << 4) | 3;
135 context->lo |= (value & 3) << 2;
136 }
137
138 static inline void context_set_address_root(struct context_entry *context,
139 unsigned long value)
140 {
141 context->lo |= value & VTD_PAGE_MASK;
142 }
143
144 static inline void context_set_address_width(struct context_entry *context,
145 unsigned long value)
146 {
147 context->hi |= value & 7;
148 }
149
150 static inline void context_set_domain_id(struct context_entry *context,
151 unsigned long value)
152 {
153 context->hi |= (value & ((1 << 16) - 1)) << 8;
154 }
155
156 static inline void context_clear_entry(struct context_entry *context)
157 {
158 context->lo = 0;
159 context->hi = 0;
160 }
161
162 /*
163 * 0: readable
164 * 1: writable
165 * 2-6: reserved
166 * 7: super page
167 * 8-11: available
168 * 12-63: Host physcial address
169 */
170 struct dma_pte {
171 u64 val;
172 };
173
174 static inline void dma_clear_pte(struct dma_pte *pte)
175 {
176 pte->val = 0;
177 }
178
179 static inline void dma_set_pte_readable(struct dma_pte *pte)
180 {
181 pte->val |= DMA_PTE_READ;
182 }
183
184 static inline void dma_set_pte_writable(struct dma_pte *pte)
185 {
186 pte->val |= DMA_PTE_WRITE;
187 }
188
189 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
190 {
191 pte->val = (pte->val & ~3) | (prot & 3);
192 }
193
194 static inline u64 dma_pte_addr(struct dma_pte *pte)
195 {
196 return (pte->val & VTD_PAGE_MASK);
197 }
198
199 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
200 {
201 pte->val |= (addr & VTD_PAGE_MASK);
202 }
203
204 static inline bool dma_pte_present(struct dma_pte *pte)
205 {
206 return (pte->val & 3) != 0;
207 }
208
209 /* devices under the same p2p bridge are owned in one domain */
210 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
211
212 /* domain represents a virtual machine, more than one devices
213 * across iommus may be owned in one domain, e.g. kvm guest.
214 */
215 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
216
217 struct dmar_domain {
218 int id; /* domain id */
219 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
220
221 struct list_head devices; /* all devices' list */
222 struct iova_domain iovad; /* iova's that belong to this domain */
223
224 struct dma_pte *pgd; /* virtual address */
225 spinlock_t mapping_lock; /* page table lock */
226 int gaw; /* max guest address width */
227
228 /* adjusted guest address width, 0 is level 2 30-bit */
229 int agaw;
230
231 int flags; /* flags to find out type of domain */
232
233 int iommu_coherency;/* indicate coherency of iommu access */
234 int iommu_count; /* reference count of iommu */
235 spinlock_t iommu_lock; /* protect iommu set in domain */
236 u64 max_addr; /* maximum mapped address */
237 };
238
239 /* PCI domain-device relationship */
240 struct device_domain_info {
241 struct list_head link; /* link to domain siblings */
242 struct list_head global; /* link to global list */
243 u8 bus; /* PCI bus numer */
244 u8 devfn; /* PCI devfn number */
245 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
246 struct dmar_domain *domain; /* pointer to domain */
247 };
248
249 static void flush_unmaps_timeout(unsigned long data);
250
251 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
252
253 #define HIGH_WATER_MARK 250
254 struct deferred_flush_tables {
255 int next;
256 struct iova *iova[HIGH_WATER_MARK];
257 struct dmar_domain *domain[HIGH_WATER_MARK];
258 };
259
260 static struct deferred_flush_tables *deferred_flush;
261
262 /* bitmap for indexing intel_iommus */
263 static int g_num_of_iommus;
264
265 static DEFINE_SPINLOCK(async_umap_flush_lock);
266 static LIST_HEAD(unmaps_to_do);
267
268 static int timer_on;
269 static long list_size;
270
271 static void domain_remove_dev_info(struct dmar_domain *domain);
272
273 #ifdef CONFIG_DMAR_DEFAULT_ON
274 int dmar_disabled = 0;
275 #else
276 int dmar_disabled = 1;
277 #endif /*CONFIG_DMAR_DEFAULT_ON*/
278
279 static int __initdata dmar_map_gfx = 1;
280 static int dmar_forcedac;
281 static int intel_iommu_strict;
282
283 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
284 static DEFINE_SPINLOCK(device_domain_lock);
285 static LIST_HEAD(device_domain_list);
286
287 static struct iommu_ops intel_iommu_ops;
288
289 static int __init intel_iommu_setup(char *str)
290 {
291 if (!str)
292 return -EINVAL;
293 while (*str) {
294 if (!strncmp(str, "on", 2)) {
295 dmar_disabled = 0;
296 printk(KERN_INFO "Intel-IOMMU: enabled\n");
297 } else if (!strncmp(str, "off", 3)) {
298 dmar_disabled = 1;
299 printk(KERN_INFO "Intel-IOMMU: disabled\n");
300 } else if (!strncmp(str, "igfx_off", 8)) {
301 dmar_map_gfx = 0;
302 printk(KERN_INFO
303 "Intel-IOMMU: disable GFX device mapping\n");
304 } else if (!strncmp(str, "forcedac", 8)) {
305 printk(KERN_INFO
306 "Intel-IOMMU: Forcing DAC for PCI devices\n");
307 dmar_forcedac = 1;
308 } else if (!strncmp(str, "strict", 6)) {
309 printk(KERN_INFO
310 "Intel-IOMMU: disable batched IOTLB flush\n");
311 intel_iommu_strict = 1;
312 }
313
314 str += strcspn(str, ",");
315 while (*str == ',')
316 str++;
317 }
318 return 0;
319 }
320 __setup("intel_iommu=", intel_iommu_setup);
321
322 static struct kmem_cache *iommu_domain_cache;
323 static struct kmem_cache *iommu_devinfo_cache;
324 static struct kmem_cache *iommu_iova_cache;
325
326 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
327 {
328 unsigned int flags;
329 void *vaddr;
330
331 /* trying to avoid low memory issues */
332 flags = current->flags & PF_MEMALLOC;
333 current->flags |= PF_MEMALLOC;
334 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
335 current->flags &= (~PF_MEMALLOC | flags);
336 return vaddr;
337 }
338
339
340 static inline void *alloc_pgtable_page(void)
341 {
342 unsigned int flags;
343 void *vaddr;
344
345 /* trying to avoid low memory issues */
346 flags = current->flags & PF_MEMALLOC;
347 current->flags |= PF_MEMALLOC;
348 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
349 current->flags &= (~PF_MEMALLOC | flags);
350 return vaddr;
351 }
352
353 static inline void free_pgtable_page(void *vaddr)
354 {
355 free_page((unsigned long)vaddr);
356 }
357
358 static inline void *alloc_domain_mem(void)
359 {
360 return iommu_kmem_cache_alloc(iommu_domain_cache);
361 }
362
363 static void free_domain_mem(void *vaddr)
364 {
365 kmem_cache_free(iommu_domain_cache, vaddr);
366 }
367
368 static inline void * alloc_devinfo_mem(void)
369 {
370 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
371 }
372
373 static inline void free_devinfo_mem(void *vaddr)
374 {
375 kmem_cache_free(iommu_devinfo_cache, vaddr);
376 }
377
378 struct iova *alloc_iova_mem(void)
379 {
380 return iommu_kmem_cache_alloc(iommu_iova_cache);
381 }
382
383 void free_iova_mem(struct iova *iova)
384 {
385 kmem_cache_free(iommu_iova_cache, iova);
386 }
387
388
389 static inline int width_to_agaw(int width);
390
391 /* calculate agaw for each iommu.
392 * "SAGAW" may be different across iommus, use a default agaw, and
393 * get a supported less agaw for iommus that don't support the default agaw.
394 */
395 int iommu_calculate_agaw(struct intel_iommu *iommu)
396 {
397 unsigned long sagaw;
398 int agaw = -1;
399
400 sagaw = cap_sagaw(iommu->cap);
401 for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
402 agaw >= 0; agaw--) {
403 if (test_bit(agaw, &sagaw))
404 break;
405 }
406
407 return agaw;
408 }
409
410 /* in native case, each domain is related to only one iommu */
411 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
412 {
413 int iommu_id;
414
415 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
416
417 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
418 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
419 return NULL;
420
421 return g_iommus[iommu_id];
422 }
423
424 /* "Coherency" capability may be different across iommus */
425 static void domain_update_iommu_coherency(struct dmar_domain *domain)
426 {
427 int i;
428
429 domain->iommu_coherency = 1;
430
431 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
432 for (; i < g_num_of_iommus; ) {
433 if (!ecap_coherent(g_iommus[i]->ecap)) {
434 domain->iommu_coherency = 0;
435 break;
436 }
437 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
438 }
439 }
440
441 static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
442 {
443 struct dmar_drhd_unit *drhd = NULL;
444 int i;
445
446 for_each_drhd_unit(drhd) {
447 if (drhd->ignored)
448 continue;
449
450 for (i = 0; i < drhd->devices_cnt; i++)
451 if (drhd->devices[i] &&
452 drhd->devices[i]->bus->number == bus &&
453 drhd->devices[i]->devfn == devfn)
454 return drhd->iommu;
455
456 if (drhd->include_all)
457 return drhd->iommu;
458 }
459
460 return NULL;
461 }
462
463 static void domain_flush_cache(struct dmar_domain *domain,
464 void *addr, int size)
465 {
466 if (!domain->iommu_coherency)
467 clflush_cache_range(addr, size);
468 }
469
470 /* Gets context entry for a given bus and devfn */
471 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
472 u8 bus, u8 devfn)
473 {
474 struct root_entry *root;
475 struct context_entry *context;
476 unsigned long phy_addr;
477 unsigned long flags;
478
479 spin_lock_irqsave(&iommu->lock, flags);
480 root = &iommu->root_entry[bus];
481 context = get_context_addr_from_root(root);
482 if (!context) {
483 context = (struct context_entry *)alloc_pgtable_page();
484 if (!context) {
485 spin_unlock_irqrestore(&iommu->lock, flags);
486 return NULL;
487 }
488 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
489 phy_addr = virt_to_phys((void *)context);
490 set_root_value(root, phy_addr);
491 set_root_present(root);
492 __iommu_flush_cache(iommu, root, sizeof(*root));
493 }
494 spin_unlock_irqrestore(&iommu->lock, flags);
495 return &context[devfn];
496 }
497
498 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
499 {
500 struct root_entry *root;
501 struct context_entry *context;
502 int ret;
503 unsigned long flags;
504
505 spin_lock_irqsave(&iommu->lock, flags);
506 root = &iommu->root_entry[bus];
507 context = get_context_addr_from_root(root);
508 if (!context) {
509 ret = 0;
510 goto out;
511 }
512 ret = context_present(&context[devfn]);
513 out:
514 spin_unlock_irqrestore(&iommu->lock, flags);
515 return ret;
516 }
517
518 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
519 {
520 struct root_entry *root;
521 struct context_entry *context;
522 unsigned long flags;
523
524 spin_lock_irqsave(&iommu->lock, flags);
525 root = &iommu->root_entry[bus];
526 context = get_context_addr_from_root(root);
527 if (context) {
528 context_clear_entry(&context[devfn]);
529 __iommu_flush_cache(iommu, &context[devfn], \
530 sizeof(*context));
531 }
532 spin_unlock_irqrestore(&iommu->lock, flags);
533 }
534
535 static void free_context_table(struct intel_iommu *iommu)
536 {
537 struct root_entry *root;
538 int i;
539 unsigned long flags;
540 struct context_entry *context;
541
542 spin_lock_irqsave(&iommu->lock, flags);
543 if (!iommu->root_entry) {
544 goto out;
545 }
546 for (i = 0; i < ROOT_ENTRY_NR; i++) {
547 root = &iommu->root_entry[i];
548 context = get_context_addr_from_root(root);
549 if (context)
550 free_pgtable_page(context);
551 }
552 free_pgtable_page(iommu->root_entry);
553 iommu->root_entry = NULL;
554 out:
555 spin_unlock_irqrestore(&iommu->lock, flags);
556 }
557
558 /* page table handling */
559 #define LEVEL_STRIDE (9)
560 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
561
562 static inline int agaw_to_level(int agaw)
563 {
564 return agaw + 2;
565 }
566
567 static inline int agaw_to_width(int agaw)
568 {
569 return 30 + agaw * LEVEL_STRIDE;
570
571 }
572
573 static inline int width_to_agaw(int width)
574 {
575 return (width - 30) / LEVEL_STRIDE;
576 }
577
578 static inline unsigned int level_to_offset_bits(int level)
579 {
580 return (12 + (level - 1) * LEVEL_STRIDE);
581 }
582
583 static inline int address_level_offset(u64 addr, int level)
584 {
585 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
586 }
587
588 static inline u64 level_mask(int level)
589 {
590 return ((u64)-1 << level_to_offset_bits(level));
591 }
592
593 static inline u64 level_size(int level)
594 {
595 return ((u64)1 << level_to_offset_bits(level));
596 }
597
598 static inline u64 align_to_level(u64 addr, int level)
599 {
600 return ((addr + level_size(level) - 1) & level_mask(level));
601 }
602
603 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
604 {
605 int addr_width = agaw_to_width(domain->agaw);
606 struct dma_pte *parent, *pte = NULL;
607 int level = agaw_to_level(domain->agaw);
608 int offset;
609 unsigned long flags;
610
611 BUG_ON(!domain->pgd);
612
613 addr &= (((u64)1) << addr_width) - 1;
614 parent = domain->pgd;
615
616 spin_lock_irqsave(&domain->mapping_lock, flags);
617 while (level > 0) {
618 void *tmp_page;
619
620 offset = address_level_offset(addr, level);
621 pte = &parent[offset];
622 if (level == 1)
623 break;
624
625 if (!dma_pte_present(pte)) {
626 tmp_page = alloc_pgtable_page();
627
628 if (!tmp_page) {
629 spin_unlock_irqrestore(&domain->mapping_lock,
630 flags);
631 return NULL;
632 }
633 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
634 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
635 /*
636 * high level table always sets r/w, last level page
637 * table control read/write
638 */
639 dma_set_pte_readable(pte);
640 dma_set_pte_writable(pte);
641 domain_flush_cache(domain, pte, sizeof(*pte));
642 }
643 parent = phys_to_virt(dma_pte_addr(pte));
644 level--;
645 }
646
647 spin_unlock_irqrestore(&domain->mapping_lock, flags);
648 return pte;
649 }
650
651 /* return address's pte at specific level */
652 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
653 int level)
654 {
655 struct dma_pte *parent, *pte = NULL;
656 int total = agaw_to_level(domain->agaw);
657 int offset;
658
659 parent = domain->pgd;
660 while (level <= total) {
661 offset = address_level_offset(addr, total);
662 pte = &parent[offset];
663 if (level == total)
664 return pte;
665
666 if (!dma_pte_present(pte))
667 break;
668 parent = phys_to_virt(dma_pte_addr(pte));
669 total--;
670 }
671 return NULL;
672 }
673
674 /* clear one page's page table */
675 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
676 {
677 struct dma_pte *pte = NULL;
678
679 /* get last level pte */
680 pte = dma_addr_level_pte(domain, addr, 1);
681
682 if (pte) {
683 dma_clear_pte(pte);
684 domain_flush_cache(domain, pte, sizeof(*pte));
685 }
686 }
687
688 /* clear last level pte, a tlb flush should be followed */
689 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
690 {
691 int addr_width = agaw_to_width(domain->agaw);
692
693 start &= (((u64)1) << addr_width) - 1;
694 end &= (((u64)1) << addr_width) - 1;
695 /* in case it's partial page */
696 start = PAGE_ALIGN(start);
697 end &= PAGE_MASK;
698
699 /* we don't need lock here, nobody else touches the iova range */
700 while (start < end) {
701 dma_pte_clear_one(domain, start);
702 start += VTD_PAGE_SIZE;
703 }
704 }
705
706 /* free page table pages. last level pte should already be cleared */
707 static void dma_pte_free_pagetable(struct dmar_domain *domain,
708 u64 start, u64 end)
709 {
710 int addr_width = agaw_to_width(domain->agaw);
711 struct dma_pte *pte;
712 int total = agaw_to_level(domain->agaw);
713 int level;
714 u64 tmp;
715
716 start &= (((u64)1) << addr_width) - 1;
717 end &= (((u64)1) << addr_width) - 1;
718
719 /* we don't need lock here, nobody else touches the iova range */
720 level = 2;
721 while (level <= total) {
722 tmp = align_to_level(start, level);
723 if (tmp >= end || (tmp + level_size(level) > end))
724 return;
725
726 while (tmp < end) {
727 pte = dma_addr_level_pte(domain, tmp, level);
728 if (pte) {
729 free_pgtable_page(
730 phys_to_virt(dma_pte_addr(pte)));
731 dma_clear_pte(pte);
732 domain_flush_cache(domain, pte, sizeof(*pte));
733 }
734 tmp += level_size(level);
735 }
736 level++;
737 }
738 /* free pgd */
739 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
740 free_pgtable_page(domain->pgd);
741 domain->pgd = NULL;
742 }
743 }
744
745 /* iommu handling */
746 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
747 {
748 struct root_entry *root;
749 unsigned long flags;
750
751 root = (struct root_entry *)alloc_pgtable_page();
752 if (!root)
753 return -ENOMEM;
754
755 __iommu_flush_cache(iommu, root, ROOT_SIZE);
756
757 spin_lock_irqsave(&iommu->lock, flags);
758 iommu->root_entry = root;
759 spin_unlock_irqrestore(&iommu->lock, flags);
760
761 return 0;
762 }
763
764 static void iommu_set_root_entry(struct intel_iommu *iommu)
765 {
766 void *addr;
767 u32 cmd, sts;
768 unsigned long flag;
769
770 addr = iommu->root_entry;
771
772 spin_lock_irqsave(&iommu->register_lock, flag);
773 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
774
775 cmd = iommu->gcmd | DMA_GCMD_SRTP;
776 writel(cmd, iommu->reg + DMAR_GCMD_REG);
777
778 /* Make sure hardware complete it */
779 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
780 readl, (sts & DMA_GSTS_RTPS), sts);
781
782 spin_unlock_irqrestore(&iommu->register_lock, flag);
783 }
784
785 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
786 {
787 u32 val;
788 unsigned long flag;
789
790 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
791 return;
792 val = iommu->gcmd | DMA_GCMD_WBF;
793
794 spin_lock_irqsave(&iommu->register_lock, flag);
795 writel(val, iommu->reg + DMAR_GCMD_REG);
796
797 /* Make sure hardware complete it */
798 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
799 readl, (!(val & DMA_GSTS_WBFS)), val);
800
801 spin_unlock_irqrestore(&iommu->register_lock, flag);
802 }
803
804 /* return value determine if we need a write buffer flush */
805 static int __iommu_flush_context(struct intel_iommu *iommu,
806 u16 did, u16 source_id, u8 function_mask, u64 type,
807 int non_present_entry_flush)
808 {
809 u64 val = 0;
810 unsigned long flag;
811
812 /*
813 * In the non-present entry flush case, if hardware doesn't cache
814 * non-present entry we do nothing and if hardware cache non-present
815 * entry, we flush entries of domain 0 (the domain id is used to cache
816 * any non-present entries)
817 */
818 if (non_present_entry_flush) {
819 if (!cap_caching_mode(iommu->cap))
820 return 1;
821 else
822 did = 0;
823 }
824
825 switch (type) {
826 case DMA_CCMD_GLOBAL_INVL:
827 val = DMA_CCMD_GLOBAL_INVL;
828 break;
829 case DMA_CCMD_DOMAIN_INVL:
830 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
831 break;
832 case DMA_CCMD_DEVICE_INVL:
833 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
834 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
835 break;
836 default:
837 BUG();
838 }
839 val |= DMA_CCMD_ICC;
840
841 spin_lock_irqsave(&iommu->register_lock, flag);
842 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
843
844 /* Make sure hardware complete it */
845 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
846 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
847
848 spin_unlock_irqrestore(&iommu->register_lock, flag);
849
850 /* flush context entry will implicitly flush write buffer */
851 return 0;
852 }
853
854 /* return value determine if we need a write buffer flush */
855 static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
856 u64 addr, unsigned int size_order, u64 type,
857 int non_present_entry_flush)
858 {
859 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
860 u64 val = 0, val_iva = 0;
861 unsigned long flag;
862
863 /*
864 * In the non-present entry flush case, if hardware doesn't cache
865 * non-present entry we do nothing and if hardware cache non-present
866 * entry, we flush entries of domain 0 (the domain id is used to cache
867 * any non-present entries)
868 */
869 if (non_present_entry_flush) {
870 if (!cap_caching_mode(iommu->cap))
871 return 1;
872 else
873 did = 0;
874 }
875
876 switch (type) {
877 case DMA_TLB_GLOBAL_FLUSH:
878 /* global flush doesn't need set IVA_REG */
879 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
880 break;
881 case DMA_TLB_DSI_FLUSH:
882 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
883 break;
884 case DMA_TLB_PSI_FLUSH:
885 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
886 /* Note: always flush non-leaf currently */
887 val_iva = size_order | addr;
888 break;
889 default:
890 BUG();
891 }
892 /* Note: set drain read/write */
893 #if 0
894 /*
895 * This is probably to be super secure.. Looks like we can
896 * ignore it without any impact.
897 */
898 if (cap_read_drain(iommu->cap))
899 val |= DMA_TLB_READ_DRAIN;
900 #endif
901 if (cap_write_drain(iommu->cap))
902 val |= DMA_TLB_WRITE_DRAIN;
903
904 spin_lock_irqsave(&iommu->register_lock, flag);
905 /* Note: Only uses first TLB reg currently */
906 if (val_iva)
907 dmar_writeq(iommu->reg + tlb_offset, val_iva);
908 dmar_writeq(iommu->reg + tlb_offset + 8, val);
909
910 /* Make sure hardware complete it */
911 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
912 dmar_readq, (!(val & DMA_TLB_IVT)), val);
913
914 spin_unlock_irqrestore(&iommu->register_lock, flag);
915
916 /* check IOTLB invalidation granularity */
917 if (DMA_TLB_IAIG(val) == 0)
918 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
919 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
920 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
921 (unsigned long long)DMA_TLB_IIRG(type),
922 (unsigned long long)DMA_TLB_IAIG(val));
923 /* flush iotlb entry will implicitly flush write buffer */
924 return 0;
925 }
926
927 static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
928 u64 addr, unsigned int pages, int non_present_entry_flush)
929 {
930 unsigned int mask;
931
932 BUG_ON(addr & (~VTD_PAGE_MASK));
933 BUG_ON(pages == 0);
934
935 /* Fallback to domain selective flush if no PSI support */
936 if (!cap_pgsel_inv(iommu->cap))
937 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
938 DMA_TLB_DSI_FLUSH,
939 non_present_entry_flush);
940
941 /*
942 * PSI requires page size to be 2 ^ x, and the base address is naturally
943 * aligned to the size
944 */
945 mask = ilog2(__roundup_pow_of_two(pages));
946 /* Fallback to domain selective flush if size is too big */
947 if (mask > cap_max_amask_val(iommu->cap))
948 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
949 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
950
951 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
952 DMA_TLB_PSI_FLUSH,
953 non_present_entry_flush);
954 }
955
956 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
957 {
958 u32 pmen;
959 unsigned long flags;
960
961 spin_lock_irqsave(&iommu->register_lock, flags);
962 pmen = readl(iommu->reg + DMAR_PMEN_REG);
963 pmen &= ~DMA_PMEN_EPM;
964 writel(pmen, iommu->reg + DMAR_PMEN_REG);
965
966 /* wait for the protected region status bit to clear */
967 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
968 readl, !(pmen & DMA_PMEN_PRS), pmen);
969
970 spin_unlock_irqrestore(&iommu->register_lock, flags);
971 }
972
973 static int iommu_enable_translation(struct intel_iommu *iommu)
974 {
975 u32 sts;
976 unsigned long flags;
977
978 spin_lock_irqsave(&iommu->register_lock, flags);
979 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
980
981 /* Make sure hardware complete it */
982 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
983 readl, (sts & DMA_GSTS_TES), sts);
984
985 iommu->gcmd |= DMA_GCMD_TE;
986 spin_unlock_irqrestore(&iommu->register_lock, flags);
987 return 0;
988 }
989
990 static int iommu_disable_translation(struct intel_iommu *iommu)
991 {
992 u32 sts;
993 unsigned long flag;
994
995 spin_lock_irqsave(&iommu->register_lock, flag);
996 iommu->gcmd &= ~DMA_GCMD_TE;
997 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
998
999 /* Make sure hardware complete it */
1000 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1001 readl, (!(sts & DMA_GSTS_TES)), sts);
1002
1003 spin_unlock_irqrestore(&iommu->register_lock, flag);
1004 return 0;
1005 }
1006
1007
1008 static int iommu_init_domains(struct intel_iommu *iommu)
1009 {
1010 unsigned long ndomains;
1011 unsigned long nlongs;
1012
1013 ndomains = cap_ndoms(iommu->cap);
1014 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1015 nlongs = BITS_TO_LONGS(ndomains);
1016
1017 /* TBD: there might be 64K domains,
1018 * consider other allocation for future chip
1019 */
1020 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1021 if (!iommu->domain_ids) {
1022 printk(KERN_ERR "Allocating domain id array failed\n");
1023 return -ENOMEM;
1024 }
1025 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1026 GFP_KERNEL);
1027 if (!iommu->domains) {
1028 printk(KERN_ERR "Allocating domain array failed\n");
1029 kfree(iommu->domain_ids);
1030 return -ENOMEM;
1031 }
1032
1033 spin_lock_init(&iommu->lock);
1034
1035 /*
1036 * if Caching mode is set, then invalid translations are tagged
1037 * with domainid 0. Hence we need to pre-allocate it.
1038 */
1039 if (cap_caching_mode(iommu->cap))
1040 set_bit(0, iommu->domain_ids);
1041 return 0;
1042 }
1043
1044
1045 static void domain_exit(struct dmar_domain *domain);
1046 static void vm_domain_exit(struct dmar_domain *domain);
1047
1048 void free_dmar_iommu(struct intel_iommu *iommu)
1049 {
1050 struct dmar_domain *domain;
1051 int i;
1052 unsigned long flags;
1053
1054 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1055 for (; i < cap_ndoms(iommu->cap); ) {
1056 domain = iommu->domains[i];
1057 clear_bit(i, iommu->domain_ids);
1058
1059 spin_lock_irqsave(&domain->iommu_lock, flags);
1060 if (--domain->iommu_count == 0) {
1061 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1062 vm_domain_exit(domain);
1063 else
1064 domain_exit(domain);
1065 }
1066 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1067
1068 i = find_next_bit(iommu->domain_ids,
1069 cap_ndoms(iommu->cap), i+1);
1070 }
1071
1072 if (iommu->gcmd & DMA_GCMD_TE)
1073 iommu_disable_translation(iommu);
1074
1075 if (iommu->irq) {
1076 set_irq_data(iommu->irq, NULL);
1077 /* This will mask the irq */
1078 free_irq(iommu->irq, iommu);
1079 destroy_irq(iommu->irq);
1080 }
1081
1082 kfree(iommu->domains);
1083 kfree(iommu->domain_ids);
1084
1085 g_iommus[iommu->seq_id] = NULL;
1086
1087 /* if all iommus are freed, free g_iommus */
1088 for (i = 0; i < g_num_of_iommus; i++) {
1089 if (g_iommus[i])
1090 break;
1091 }
1092
1093 if (i == g_num_of_iommus)
1094 kfree(g_iommus);
1095
1096 /* free context mapping */
1097 free_context_table(iommu);
1098 }
1099
1100 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1101 {
1102 unsigned long num;
1103 unsigned long ndomains;
1104 struct dmar_domain *domain;
1105 unsigned long flags;
1106
1107 domain = alloc_domain_mem();
1108 if (!domain)
1109 return NULL;
1110
1111 ndomains = cap_ndoms(iommu->cap);
1112
1113 spin_lock_irqsave(&iommu->lock, flags);
1114 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1115 if (num >= ndomains) {
1116 spin_unlock_irqrestore(&iommu->lock, flags);
1117 free_domain_mem(domain);
1118 printk(KERN_ERR "IOMMU: no free domain ids\n");
1119 return NULL;
1120 }
1121
1122 set_bit(num, iommu->domain_ids);
1123 domain->id = num;
1124 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1125 set_bit(iommu->seq_id, &domain->iommu_bmp);
1126 domain->flags = 0;
1127 iommu->domains[num] = domain;
1128 spin_unlock_irqrestore(&iommu->lock, flags);
1129
1130 return domain;
1131 }
1132
1133 static void iommu_free_domain(struct dmar_domain *domain)
1134 {
1135 unsigned long flags;
1136 struct intel_iommu *iommu;
1137
1138 iommu = domain_get_iommu(domain);
1139
1140 spin_lock_irqsave(&iommu->lock, flags);
1141 clear_bit(domain->id, iommu->domain_ids);
1142 spin_unlock_irqrestore(&iommu->lock, flags);
1143 }
1144
1145 static struct iova_domain reserved_iova_list;
1146 static struct lock_class_key reserved_alloc_key;
1147 static struct lock_class_key reserved_rbtree_key;
1148
1149 static void dmar_init_reserved_ranges(void)
1150 {
1151 struct pci_dev *pdev = NULL;
1152 struct iova *iova;
1153 int i;
1154 u64 addr, size;
1155
1156 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1157
1158 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1159 &reserved_alloc_key);
1160 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1161 &reserved_rbtree_key);
1162
1163 /* IOAPIC ranges shouldn't be accessed by DMA */
1164 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1165 IOVA_PFN(IOAPIC_RANGE_END));
1166 if (!iova)
1167 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1168
1169 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1170 for_each_pci_dev(pdev) {
1171 struct resource *r;
1172
1173 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1174 r = &pdev->resource[i];
1175 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1176 continue;
1177 addr = r->start;
1178 addr &= PAGE_MASK;
1179 size = r->end - addr;
1180 size = PAGE_ALIGN(size);
1181 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1182 IOVA_PFN(size + addr) - 1);
1183 if (!iova)
1184 printk(KERN_ERR "Reserve iova failed\n");
1185 }
1186 }
1187
1188 }
1189
1190 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1191 {
1192 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1193 }
1194
1195 static inline int guestwidth_to_adjustwidth(int gaw)
1196 {
1197 int agaw;
1198 int r = (gaw - 12) % 9;
1199
1200 if (r == 0)
1201 agaw = gaw;
1202 else
1203 agaw = gaw + 9 - r;
1204 if (agaw > 64)
1205 agaw = 64;
1206 return agaw;
1207 }
1208
1209 static int domain_init(struct dmar_domain *domain, int guest_width)
1210 {
1211 struct intel_iommu *iommu;
1212 int adjust_width, agaw;
1213 unsigned long sagaw;
1214
1215 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1216 spin_lock_init(&domain->mapping_lock);
1217 spin_lock_init(&domain->iommu_lock);
1218
1219 domain_reserve_special_ranges(domain);
1220
1221 /* calculate AGAW */
1222 iommu = domain_get_iommu(domain);
1223 if (guest_width > cap_mgaw(iommu->cap))
1224 guest_width = cap_mgaw(iommu->cap);
1225 domain->gaw = guest_width;
1226 adjust_width = guestwidth_to_adjustwidth(guest_width);
1227 agaw = width_to_agaw(adjust_width);
1228 sagaw = cap_sagaw(iommu->cap);
1229 if (!test_bit(agaw, &sagaw)) {
1230 /* hardware doesn't support it, choose a bigger one */
1231 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1232 agaw = find_next_bit(&sagaw, 5, agaw);
1233 if (agaw >= 5)
1234 return -ENODEV;
1235 }
1236 domain->agaw = agaw;
1237 INIT_LIST_HEAD(&domain->devices);
1238
1239 if (ecap_coherent(iommu->ecap))
1240 domain->iommu_coherency = 1;
1241 else
1242 domain->iommu_coherency = 0;
1243
1244 domain->iommu_count = 1;
1245
1246 /* always allocate the top pgd */
1247 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1248 if (!domain->pgd)
1249 return -ENOMEM;
1250 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1251 return 0;
1252 }
1253
1254 static void domain_exit(struct dmar_domain *domain)
1255 {
1256 u64 end;
1257
1258 /* Domain 0 is reserved, so dont process it */
1259 if (!domain)
1260 return;
1261
1262 domain_remove_dev_info(domain);
1263 /* destroy iovas */
1264 put_iova_domain(&domain->iovad);
1265 end = DOMAIN_MAX_ADDR(domain->gaw);
1266 end = end & (~PAGE_MASK);
1267
1268 /* clear ptes */
1269 dma_pte_clear_range(domain, 0, end);
1270
1271 /* free page tables */
1272 dma_pte_free_pagetable(domain, 0, end);
1273
1274 iommu_free_domain(domain);
1275 free_domain_mem(domain);
1276 }
1277
1278 static int domain_context_mapping_one(struct dmar_domain *domain,
1279 u8 bus, u8 devfn)
1280 {
1281 struct context_entry *context;
1282 unsigned long flags;
1283 struct intel_iommu *iommu;
1284 struct dma_pte *pgd;
1285 unsigned long num;
1286 unsigned long ndomains;
1287 int id;
1288 int agaw;
1289
1290 pr_debug("Set context mapping for %02x:%02x.%d\n",
1291 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1292 BUG_ON(!domain->pgd);
1293
1294 iommu = device_to_iommu(bus, devfn);
1295 if (!iommu)
1296 return -ENODEV;
1297
1298 context = device_to_context_entry(iommu, bus, devfn);
1299 if (!context)
1300 return -ENOMEM;
1301 spin_lock_irqsave(&iommu->lock, flags);
1302 if (context_present(context)) {
1303 spin_unlock_irqrestore(&iommu->lock, flags);
1304 return 0;
1305 }
1306
1307 id = domain->id;
1308 pgd = domain->pgd;
1309
1310 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1311 int found = 0;
1312
1313 /* find an available domain id for this device in iommu */
1314 ndomains = cap_ndoms(iommu->cap);
1315 num = find_first_bit(iommu->domain_ids, ndomains);
1316 for (; num < ndomains; ) {
1317 if (iommu->domains[num] == domain) {
1318 id = num;
1319 found = 1;
1320 break;
1321 }
1322 num = find_next_bit(iommu->domain_ids,
1323 cap_ndoms(iommu->cap), num+1);
1324 }
1325
1326 if (found == 0) {
1327 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1328 if (num >= ndomains) {
1329 spin_unlock_irqrestore(&iommu->lock, flags);
1330 printk(KERN_ERR "IOMMU: no free domain ids\n");
1331 return -EFAULT;
1332 }
1333
1334 set_bit(num, iommu->domain_ids);
1335 iommu->domains[num] = domain;
1336 id = num;
1337 }
1338
1339 /* Skip top levels of page tables for
1340 * iommu which has less agaw than default.
1341 */
1342 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1343 pgd = phys_to_virt(dma_pte_addr(pgd));
1344 if (!dma_pte_present(pgd)) {
1345 spin_unlock_irqrestore(&iommu->lock, flags);
1346 return -ENOMEM;
1347 }
1348 }
1349 }
1350
1351 context_set_domain_id(context, id);
1352 context_set_address_width(context, iommu->agaw);
1353 context_set_address_root(context, virt_to_phys(pgd));
1354 context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1355 context_set_fault_enable(context);
1356 context_set_present(context);
1357 domain_flush_cache(domain, context, sizeof(*context));
1358
1359 /* it's a non-present to present mapping */
1360 if (iommu->flush.flush_context(iommu, domain->id,
1361 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1362 DMA_CCMD_DEVICE_INVL, 1))
1363 iommu_flush_write_buffer(iommu);
1364 else
1365 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1366
1367 spin_unlock_irqrestore(&iommu->lock, flags);
1368
1369 spin_lock_irqsave(&domain->iommu_lock, flags);
1370 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1371 domain->iommu_count++;
1372 domain_update_iommu_coherency(domain);
1373 }
1374 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1375 return 0;
1376 }
1377
1378 static int
1379 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1380 {
1381 int ret;
1382 struct pci_dev *tmp, *parent;
1383
1384 ret = domain_context_mapping_one(domain, pdev->bus->number,
1385 pdev->devfn);
1386 if (ret)
1387 return ret;
1388
1389 /* dependent device mapping */
1390 tmp = pci_find_upstream_pcie_bridge(pdev);
1391 if (!tmp)
1392 return 0;
1393 /* Secondary interface's bus number and devfn 0 */
1394 parent = pdev->bus->self;
1395 while (parent != tmp) {
1396 ret = domain_context_mapping_one(domain, parent->bus->number,
1397 parent->devfn);
1398 if (ret)
1399 return ret;
1400 parent = parent->bus->self;
1401 }
1402 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1403 return domain_context_mapping_one(domain,
1404 tmp->subordinate->number, 0);
1405 else /* this is a legacy PCI bridge */
1406 return domain_context_mapping_one(domain,
1407 tmp->bus->number, tmp->devfn);
1408 }
1409
1410 static int domain_context_mapped(struct pci_dev *pdev)
1411 {
1412 int ret;
1413 struct pci_dev *tmp, *parent;
1414 struct intel_iommu *iommu;
1415
1416 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1417 if (!iommu)
1418 return -ENODEV;
1419
1420 ret = device_context_mapped(iommu,
1421 pdev->bus->number, pdev->devfn);
1422 if (!ret)
1423 return ret;
1424 /* dependent device mapping */
1425 tmp = pci_find_upstream_pcie_bridge(pdev);
1426 if (!tmp)
1427 return ret;
1428 /* Secondary interface's bus number and devfn 0 */
1429 parent = pdev->bus->self;
1430 while (parent != tmp) {
1431 ret = device_context_mapped(iommu, parent->bus->number,
1432 parent->devfn);
1433 if (!ret)
1434 return ret;
1435 parent = parent->bus->self;
1436 }
1437 if (tmp->is_pcie)
1438 return device_context_mapped(iommu,
1439 tmp->subordinate->number, 0);
1440 else
1441 return device_context_mapped(iommu,
1442 tmp->bus->number, tmp->devfn);
1443 }
1444
1445 static int
1446 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1447 u64 hpa, size_t size, int prot)
1448 {
1449 u64 start_pfn, end_pfn;
1450 struct dma_pte *pte;
1451 int index;
1452 int addr_width = agaw_to_width(domain->agaw);
1453
1454 hpa &= (((u64)1) << addr_width) - 1;
1455
1456 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1457 return -EINVAL;
1458 iova &= PAGE_MASK;
1459 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1460 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1461 index = 0;
1462 while (start_pfn < end_pfn) {
1463 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1464 if (!pte)
1465 return -ENOMEM;
1466 /* We don't need lock here, nobody else
1467 * touches the iova range
1468 */
1469 BUG_ON(dma_pte_addr(pte));
1470 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1471 dma_set_pte_prot(pte, prot);
1472 domain_flush_cache(domain, pte, sizeof(*pte));
1473 start_pfn++;
1474 index++;
1475 }
1476 return 0;
1477 }
1478
1479 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1480 {
1481 if (!iommu)
1482 return;
1483
1484 clear_context_table(iommu, bus, devfn);
1485 iommu->flush.flush_context(iommu, 0, 0, 0,
1486 DMA_CCMD_GLOBAL_INVL, 0);
1487 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1488 DMA_TLB_GLOBAL_FLUSH, 0);
1489 }
1490
1491 static void domain_remove_dev_info(struct dmar_domain *domain)
1492 {
1493 struct device_domain_info *info;
1494 unsigned long flags;
1495 struct intel_iommu *iommu;
1496
1497 spin_lock_irqsave(&device_domain_lock, flags);
1498 while (!list_empty(&domain->devices)) {
1499 info = list_entry(domain->devices.next,
1500 struct device_domain_info, link);
1501 list_del(&info->link);
1502 list_del(&info->global);
1503 if (info->dev)
1504 info->dev->dev.archdata.iommu = NULL;
1505 spin_unlock_irqrestore(&device_domain_lock, flags);
1506
1507 iommu = device_to_iommu(info->bus, info->devfn);
1508 iommu_detach_dev(iommu, info->bus, info->devfn);
1509 free_devinfo_mem(info);
1510
1511 spin_lock_irqsave(&device_domain_lock, flags);
1512 }
1513 spin_unlock_irqrestore(&device_domain_lock, flags);
1514 }
1515
1516 /*
1517 * find_domain
1518 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1519 */
1520 static struct dmar_domain *
1521 find_domain(struct pci_dev *pdev)
1522 {
1523 struct device_domain_info *info;
1524
1525 /* No lock here, assumes no domain exit in normal case */
1526 info = pdev->dev.archdata.iommu;
1527 if (info)
1528 return info->domain;
1529 return NULL;
1530 }
1531
1532 /* domain is initialized */
1533 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1534 {
1535 struct dmar_domain *domain, *found = NULL;
1536 struct intel_iommu *iommu;
1537 struct dmar_drhd_unit *drhd;
1538 struct device_domain_info *info, *tmp;
1539 struct pci_dev *dev_tmp;
1540 unsigned long flags;
1541 int bus = 0, devfn = 0;
1542
1543 domain = find_domain(pdev);
1544 if (domain)
1545 return domain;
1546
1547 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1548 if (dev_tmp) {
1549 if (dev_tmp->is_pcie) {
1550 bus = dev_tmp->subordinate->number;
1551 devfn = 0;
1552 } else {
1553 bus = dev_tmp->bus->number;
1554 devfn = dev_tmp->devfn;
1555 }
1556 spin_lock_irqsave(&device_domain_lock, flags);
1557 list_for_each_entry(info, &device_domain_list, global) {
1558 if (info->bus == bus && info->devfn == devfn) {
1559 found = info->domain;
1560 break;
1561 }
1562 }
1563 spin_unlock_irqrestore(&device_domain_lock, flags);
1564 /* pcie-pci bridge already has a domain, uses it */
1565 if (found) {
1566 domain = found;
1567 goto found_domain;
1568 }
1569 }
1570
1571 /* Allocate new domain for the device */
1572 drhd = dmar_find_matched_drhd_unit(pdev);
1573 if (!drhd) {
1574 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1575 pci_name(pdev));
1576 return NULL;
1577 }
1578 iommu = drhd->iommu;
1579
1580 domain = iommu_alloc_domain(iommu);
1581 if (!domain)
1582 goto error;
1583
1584 if (domain_init(domain, gaw)) {
1585 domain_exit(domain);
1586 goto error;
1587 }
1588
1589 /* register pcie-to-pci device */
1590 if (dev_tmp) {
1591 info = alloc_devinfo_mem();
1592 if (!info) {
1593 domain_exit(domain);
1594 goto error;
1595 }
1596 info->bus = bus;
1597 info->devfn = devfn;
1598 info->dev = NULL;
1599 info->domain = domain;
1600 /* This domain is shared by devices under p2p bridge */
1601 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1602
1603 /* pcie-to-pci bridge already has a domain, uses it */
1604 found = NULL;
1605 spin_lock_irqsave(&device_domain_lock, flags);
1606 list_for_each_entry(tmp, &device_domain_list, global) {
1607 if (tmp->bus == bus && tmp->devfn == devfn) {
1608 found = tmp->domain;
1609 break;
1610 }
1611 }
1612 if (found) {
1613 free_devinfo_mem(info);
1614 domain_exit(domain);
1615 domain = found;
1616 } else {
1617 list_add(&info->link, &domain->devices);
1618 list_add(&info->global, &device_domain_list);
1619 }
1620 spin_unlock_irqrestore(&device_domain_lock, flags);
1621 }
1622
1623 found_domain:
1624 info = alloc_devinfo_mem();
1625 if (!info)
1626 goto error;
1627 info->bus = pdev->bus->number;
1628 info->devfn = pdev->devfn;
1629 info->dev = pdev;
1630 info->domain = domain;
1631 spin_lock_irqsave(&device_domain_lock, flags);
1632 /* somebody is fast */
1633 found = find_domain(pdev);
1634 if (found != NULL) {
1635 spin_unlock_irqrestore(&device_domain_lock, flags);
1636 if (found != domain) {
1637 domain_exit(domain);
1638 domain = found;
1639 }
1640 free_devinfo_mem(info);
1641 return domain;
1642 }
1643 list_add(&info->link, &domain->devices);
1644 list_add(&info->global, &device_domain_list);
1645 pdev->dev.archdata.iommu = info;
1646 spin_unlock_irqrestore(&device_domain_lock, flags);
1647 return domain;
1648 error:
1649 /* recheck it here, maybe others set it */
1650 return find_domain(pdev);
1651 }
1652
1653 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1654 unsigned long long start,
1655 unsigned long long end)
1656 {
1657 struct dmar_domain *domain;
1658 unsigned long size;
1659 unsigned long long base;
1660 int ret;
1661
1662 printk(KERN_INFO
1663 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1664 pci_name(pdev), start, end);
1665 /* page table init */
1666 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1667 if (!domain)
1668 return -ENOMEM;
1669
1670 /* The address might not be aligned */
1671 base = start & PAGE_MASK;
1672 size = end - base;
1673 size = PAGE_ALIGN(size);
1674 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1675 IOVA_PFN(base + size) - 1)) {
1676 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1677 ret = -ENOMEM;
1678 goto error;
1679 }
1680
1681 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1682 size, base, pci_name(pdev));
1683 /*
1684 * RMRR range might have overlap with physical memory range,
1685 * clear it first
1686 */
1687 dma_pte_clear_range(domain, base, base + size);
1688
1689 ret = domain_page_mapping(domain, base, base, size,
1690 DMA_PTE_READ|DMA_PTE_WRITE);
1691 if (ret)
1692 goto error;
1693
1694 /* context entry init */
1695 ret = domain_context_mapping(domain, pdev);
1696 if (!ret)
1697 return 0;
1698 error:
1699 domain_exit(domain);
1700 return ret;
1701
1702 }
1703
1704 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1705 struct pci_dev *pdev)
1706 {
1707 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1708 return 0;
1709 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1710 rmrr->end_address + 1);
1711 }
1712
1713 #ifdef CONFIG_DMAR_GFX_WA
1714 struct iommu_prepare_data {
1715 struct pci_dev *pdev;
1716 int ret;
1717 };
1718
1719 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1720 unsigned long end_pfn, void *datax)
1721 {
1722 struct iommu_prepare_data *data;
1723
1724 data = (struct iommu_prepare_data *)datax;
1725
1726 data->ret = iommu_prepare_identity_map(data->pdev,
1727 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1728 return data->ret;
1729
1730 }
1731
1732 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1733 {
1734 int nid;
1735 struct iommu_prepare_data data;
1736
1737 data.pdev = pdev;
1738 data.ret = 0;
1739
1740 for_each_online_node(nid) {
1741 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1742 if (data.ret)
1743 return data.ret;
1744 }
1745 return data.ret;
1746 }
1747
1748 static void __init iommu_prepare_gfx_mapping(void)
1749 {
1750 struct pci_dev *pdev = NULL;
1751 int ret;
1752
1753 for_each_pci_dev(pdev) {
1754 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1755 !IS_GFX_DEVICE(pdev))
1756 continue;
1757 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1758 pci_name(pdev));
1759 ret = iommu_prepare_with_active_regions(pdev);
1760 if (ret)
1761 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1762 }
1763 }
1764 #else /* !CONFIG_DMAR_GFX_WA */
1765 static inline void iommu_prepare_gfx_mapping(void)
1766 {
1767 return;
1768 }
1769 #endif
1770
1771 #ifdef CONFIG_DMAR_FLOPPY_WA
1772 static inline void iommu_prepare_isa(void)
1773 {
1774 struct pci_dev *pdev;
1775 int ret;
1776
1777 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1778 if (!pdev)
1779 return;
1780
1781 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1782 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1783
1784 if (ret)
1785 printk("IOMMU: Failed to create 0-64M identity map, "
1786 "floppy might not work\n");
1787
1788 }
1789 #else
1790 static inline void iommu_prepare_isa(void)
1791 {
1792 return;
1793 }
1794 #endif /* !CONFIG_DMAR_FLPY_WA */
1795
1796 static int __init init_dmars(void)
1797 {
1798 struct dmar_drhd_unit *drhd;
1799 struct dmar_rmrr_unit *rmrr;
1800 struct pci_dev *pdev;
1801 struct intel_iommu *iommu;
1802 int i, ret, unit = 0;
1803
1804 /*
1805 * for each drhd
1806 * allocate root
1807 * initialize and program root entry to not present
1808 * endfor
1809 */
1810 for_each_drhd_unit(drhd) {
1811 g_num_of_iommus++;
1812 /*
1813 * lock not needed as this is only incremented in the single
1814 * threaded kernel __init code path all other access are read
1815 * only
1816 */
1817 }
1818
1819 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1820 GFP_KERNEL);
1821 if (!g_iommus) {
1822 printk(KERN_ERR "Allocating global iommu array failed\n");
1823 ret = -ENOMEM;
1824 goto error;
1825 }
1826
1827 deferred_flush = kzalloc(g_num_of_iommus *
1828 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1829 if (!deferred_flush) {
1830 kfree(g_iommus);
1831 ret = -ENOMEM;
1832 goto error;
1833 }
1834
1835 for_each_drhd_unit(drhd) {
1836 if (drhd->ignored)
1837 continue;
1838
1839 iommu = drhd->iommu;
1840 g_iommus[iommu->seq_id] = iommu;
1841
1842 ret = iommu_init_domains(iommu);
1843 if (ret)
1844 goto error;
1845
1846 /*
1847 * TBD:
1848 * we could share the same root & context tables
1849 * amoung all IOMMU's. Need to Split it later.
1850 */
1851 ret = iommu_alloc_root_entry(iommu);
1852 if (ret) {
1853 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1854 goto error;
1855 }
1856 }
1857
1858 for_each_drhd_unit(drhd) {
1859 if (drhd->ignored)
1860 continue;
1861
1862 iommu = drhd->iommu;
1863 if (dmar_enable_qi(iommu)) {
1864 /*
1865 * Queued Invalidate not enabled, use Register Based
1866 * Invalidate
1867 */
1868 iommu->flush.flush_context = __iommu_flush_context;
1869 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1870 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1871 "invalidation\n",
1872 (unsigned long long)drhd->reg_base_addr);
1873 } else {
1874 iommu->flush.flush_context = qi_flush_context;
1875 iommu->flush.flush_iotlb = qi_flush_iotlb;
1876 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1877 "invalidation\n",
1878 (unsigned long long)drhd->reg_base_addr);
1879 }
1880 }
1881
1882 /*
1883 * For each rmrr
1884 * for each dev attached to rmrr
1885 * do
1886 * locate drhd for dev, alloc domain for dev
1887 * allocate free domain
1888 * allocate page table entries for rmrr
1889 * if context not allocated for bus
1890 * allocate and init context
1891 * set present in root table for this bus
1892 * init context with domain, translation etc
1893 * endfor
1894 * endfor
1895 */
1896 for_each_rmrr_units(rmrr) {
1897 for (i = 0; i < rmrr->devices_cnt; i++) {
1898 pdev = rmrr->devices[i];
1899 /* some BIOS lists non-exist devices in DMAR table */
1900 if (!pdev)
1901 continue;
1902 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1903 if (ret)
1904 printk(KERN_ERR
1905 "IOMMU: mapping reserved region failed\n");
1906 }
1907 }
1908
1909 iommu_prepare_gfx_mapping();
1910
1911 iommu_prepare_isa();
1912
1913 /*
1914 * for each drhd
1915 * enable fault log
1916 * global invalidate context cache
1917 * global invalidate iotlb
1918 * enable translation
1919 */
1920 for_each_drhd_unit(drhd) {
1921 if (drhd->ignored)
1922 continue;
1923 iommu = drhd->iommu;
1924 sprintf (iommu->name, "dmar%d", unit++);
1925
1926 iommu_flush_write_buffer(iommu);
1927
1928 ret = dmar_set_interrupt(iommu);
1929 if (ret)
1930 goto error;
1931
1932 iommu_set_root_entry(iommu);
1933
1934 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
1935 0);
1936 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
1937 0);
1938 iommu_disable_protect_mem_regions(iommu);
1939
1940 ret = iommu_enable_translation(iommu);
1941 if (ret)
1942 goto error;
1943 }
1944
1945 return 0;
1946 error:
1947 for_each_drhd_unit(drhd) {
1948 if (drhd->ignored)
1949 continue;
1950 iommu = drhd->iommu;
1951 free_iommu(iommu);
1952 }
1953 kfree(g_iommus);
1954 return ret;
1955 }
1956
1957 static inline u64 aligned_size(u64 host_addr, size_t size)
1958 {
1959 u64 addr;
1960 addr = (host_addr & (~PAGE_MASK)) + size;
1961 return PAGE_ALIGN(addr);
1962 }
1963
1964 struct iova *
1965 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
1966 {
1967 struct iova *piova;
1968
1969 /* Make sure it's in range */
1970 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
1971 if (!size || (IOVA_START_ADDR + size > end))
1972 return NULL;
1973
1974 piova = alloc_iova(&domain->iovad,
1975 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
1976 return piova;
1977 }
1978
1979 static struct iova *
1980 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
1981 size_t size, u64 dma_mask)
1982 {
1983 struct pci_dev *pdev = to_pci_dev(dev);
1984 struct iova *iova = NULL;
1985
1986 if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
1987 iova = iommu_alloc_iova(domain, size, dma_mask);
1988 else {
1989 /*
1990 * First try to allocate an io virtual address in
1991 * DMA_32BIT_MASK and if that fails then try allocating
1992 * from higher range
1993 */
1994 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
1995 if (!iova)
1996 iova = iommu_alloc_iova(domain, size, dma_mask);
1997 }
1998
1999 if (!iova) {
2000 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2001 return NULL;
2002 }
2003
2004 return iova;
2005 }
2006
2007 static struct dmar_domain *
2008 get_valid_domain_for_dev(struct pci_dev *pdev)
2009 {
2010 struct dmar_domain *domain;
2011 int ret;
2012
2013 domain = get_domain_for_dev(pdev,
2014 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2015 if (!domain) {
2016 printk(KERN_ERR
2017 "Allocating domain for %s failed", pci_name(pdev));
2018 return NULL;
2019 }
2020
2021 /* make sure context mapping is ok */
2022 if (unlikely(!domain_context_mapped(pdev))) {
2023 ret = domain_context_mapping(domain, pdev);
2024 if (ret) {
2025 printk(KERN_ERR
2026 "Domain context map for %s failed",
2027 pci_name(pdev));
2028 return NULL;
2029 }
2030 }
2031
2032 return domain;
2033 }
2034
2035 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2036 size_t size, int dir, u64 dma_mask)
2037 {
2038 struct pci_dev *pdev = to_pci_dev(hwdev);
2039 struct dmar_domain *domain;
2040 phys_addr_t start_paddr;
2041 struct iova *iova;
2042 int prot = 0;
2043 int ret;
2044 struct intel_iommu *iommu;
2045
2046 BUG_ON(dir == DMA_NONE);
2047 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2048 return paddr;
2049
2050 domain = get_valid_domain_for_dev(pdev);
2051 if (!domain)
2052 return 0;
2053
2054 iommu = domain_get_iommu(domain);
2055 size = aligned_size((u64)paddr, size);
2056
2057 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2058 if (!iova)
2059 goto error;
2060
2061 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2062
2063 /*
2064 * Check if DMAR supports zero-length reads on write only
2065 * mappings..
2066 */
2067 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2068 !cap_zlr(iommu->cap))
2069 prot |= DMA_PTE_READ;
2070 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2071 prot |= DMA_PTE_WRITE;
2072 /*
2073 * paddr - (paddr + size) might be partial page, we should map the whole
2074 * page. Note: if two part of one page are separately mapped, we
2075 * might have two guest_addr mapping to the same host paddr, but this
2076 * is not a big problem
2077 */
2078 ret = domain_page_mapping(domain, start_paddr,
2079 ((u64)paddr) & PAGE_MASK, size, prot);
2080 if (ret)
2081 goto error;
2082
2083 /* it's a non-present to present mapping */
2084 ret = iommu_flush_iotlb_psi(iommu, domain->id,
2085 start_paddr, size >> VTD_PAGE_SHIFT, 1);
2086 if (ret)
2087 iommu_flush_write_buffer(iommu);
2088
2089 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2090
2091 error:
2092 if (iova)
2093 __free_iova(&domain->iovad, iova);
2094 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
2095 pci_name(pdev), size, (unsigned long long)paddr, dir);
2096 return 0;
2097 }
2098
2099 dma_addr_t intel_map_single(struct device *hwdev, phys_addr_t paddr,
2100 size_t size, int dir)
2101 {
2102 return __intel_map_single(hwdev, paddr, size, dir,
2103 to_pci_dev(hwdev)->dma_mask);
2104 }
2105
2106 static void flush_unmaps(void)
2107 {
2108 int i, j;
2109
2110 timer_on = 0;
2111
2112 /* just flush them all */
2113 for (i = 0; i < g_num_of_iommus; i++) {
2114 struct intel_iommu *iommu = g_iommus[i];
2115 if (!iommu)
2116 continue;
2117
2118 if (deferred_flush[i].next) {
2119 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2120 DMA_TLB_GLOBAL_FLUSH, 0);
2121 for (j = 0; j < deferred_flush[i].next; j++) {
2122 __free_iova(&deferred_flush[i].domain[j]->iovad,
2123 deferred_flush[i].iova[j]);
2124 }
2125 deferred_flush[i].next = 0;
2126 }
2127 }
2128
2129 list_size = 0;
2130 }
2131
2132 static void flush_unmaps_timeout(unsigned long data)
2133 {
2134 unsigned long flags;
2135
2136 spin_lock_irqsave(&async_umap_flush_lock, flags);
2137 flush_unmaps();
2138 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2139 }
2140
2141 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2142 {
2143 unsigned long flags;
2144 int next, iommu_id;
2145 struct intel_iommu *iommu;
2146
2147 spin_lock_irqsave(&async_umap_flush_lock, flags);
2148 if (list_size == HIGH_WATER_MARK)
2149 flush_unmaps();
2150
2151 iommu = domain_get_iommu(dom);
2152 iommu_id = iommu->seq_id;
2153
2154 next = deferred_flush[iommu_id].next;
2155 deferred_flush[iommu_id].domain[next] = dom;
2156 deferred_flush[iommu_id].iova[next] = iova;
2157 deferred_flush[iommu_id].next++;
2158
2159 if (!timer_on) {
2160 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2161 timer_on = 1;
2162 }
2163 list_size++;
2164 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2165 }
2166
2167 void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2168 int dir)
2169 {
2170 struct pci_dev *pdev = to_pci_dev(dev);
2171 struct dmar_domain *domain;
2172 unsigned long start_addr;
2173 struct iova *iova;
2174 struct intel_iommu *iommu;
2175
2176 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2177 return;
2178 domain = find_domain(pdev);
2179 BUG_ON(!domain);
2180
2181 iommu = domain_get_iommu(domain);
2182
2183 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2184 if (!iova)
2185 return;
2186
2187 start_addr = iova->pfn_lo << PAGE_SHIFT;
2188 size = aligned_size((u64)dev_addr, size);
2189
2190 pr_debug("Device %s unmapping: %lx@%llx\n",
2191 pci_name(pdev), size, (unsigned long long)start_addr);
2192
2193 /* clear the whole page */
2194 dma_pte_clear_range(domain, start_addr, start_addr + size);
2195 /* free page tables */
2196 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2197 if (intel_iommu_strict) {
2198 if (iommu_flush_iotlb_psi(iommu,
2199 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2200 iommu_flush_write_buffer(iommu);
2201 /* free iova */
2202 __free_iova(&domain->iovad, iova);
2203 } else {
2204 add_unmap(domain, iova);
2205 /*
2206 * queue up the release of the unmap to save the 1/6th of the
2207 * cpu used up by the iotlb flush operation...
2208 */
2209 }
2210 }
2211
2212 void *intel_alloc_coherent(struct device *hwdev, size_t size,
2213 dma_addr_t *dma_handle, gfp_t flags)
2214 {
2215 void *vaddr;
2216 int order;
2217
2218 size = PAGE_ALIGN(size);
2219 order = get_order(size);
2220 flags &= ~(GFP_DMA | GFP_DMA32);
2221
2222 vaddr = (void *)__get_free_pages(flags, order);
2223 if (!vaddr)
2224 return NULL;
2225 memset(vaddr, 0, size);
2226
2227 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2228 DMA_BIDIRECTIONAL,
2229 hwdev->coherent_dma_mask);
2230 if (*dma_handle)
2231 return vaddr;
2232 free_pages((unsigned long)vaddr, order);
2233 return NULL;
2234 }
2235
2236 void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2237 dma_addr_t dma_handle)
2238 {
2239 int order;
2240
2241 size = PAGE_ALIGN(size);
2242 order = get_order(size);
2243
2244 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2245 free_pages((unsigned long)vaddr, order);
2246 }
2247
2248 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
2249
2250 void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2251 int nelems, int dir)
2252 {
2253 int i;
2254 struct pci_dev *pdev = to_pci_dev(hwdev);
2255 struct dmar_domain *domain;
2256 unsigned long start_addr;
2257 struct iova *iova;
2258 size_t size = 0;
2259 void *addr;
2260 struct scatterlist *sg;
2261 struct intel_iommu *iommu;
2262
2263 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2264 return;
2265
2266 domain = find_domain(pdev);
2267 BUG_ON(!domain);
2268
2269 iommu = domain_get_iommu(domain);
2270
2271 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2272 if (!iova)
2273 return;
2274 for_each_sg(sglist, sg, nelems, i) {
2275 addr = SG_ENT_VIRT_ADDRESS(sg);
2276 size += aligned_size((u64)addr, sg->length);
2277 }
2278
2279 start_addr = iova->pfn_lo << PAGE_SHIFT;
2280
2281 /* clear the whole page */
2282 dma_pte_clear_range(domain, start_addr, start_addr + size);
2283 /* free page tables */
2284 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2285
2286 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2287 size >> VTD_PAGE_SHIFT, 0))
2288 iommu_flush_write_buffer(iommu);
2289
2290 /* free iova */
2291 __free_iova(&domain->iovad, iova);
2292 }
2293
2294 static int intel_nontranslate_map_sg(struct device *hddev,
2295 struct scatterlist *sglist, int nelems, int dir)
2296 {
2297 int i;
2298 struct scatterlist *sg;
2299
2300 for_each_sg(sglist, sg, nelems, i) {
2301 BUG_ON(!sg_page(sg));
2302 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2303 sg->dma_length = sg->length;
2304 }
2305 return nelems;
2306 }
2307
2308 int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2309 int dir)
2310 {
2311 void *addr;
2312 int i;
2313 struct pci_dev *pdev = to_pci_dev(hwdev);
2314 struct dmar_domain *domain;
2315 size_t size = 0;
2316 int prot = 0;
2317 size_t offset = 0;
2318 struct iova *iova = NULL;
2319 int ret;
2320 struct scatterlist *sg;
2321 unsigned long start_addr;
2322 struct intel_iommu *iommu;
2323
2324 BUG_ON(dir == DMA_NONE);
2325 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2326 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2327
2328 domain = get_valid_domain_for_dev(pdev);
2329 if (!domain)
2330 return 0;
2331
2332 iommu = domain_get_iommu(domain);
2333
2334 for_each_sg(sglist, sg, nelems, i) {
2335 addr = SG_ENT_VIRT_ADDRESS(sg);
2336 addr = (void *)virt_to_phys(addr);
2337 size += aligned_size((u64)addr, sg->length);
2338 }
2339
2340 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2341 if (!iova) {
2342 sglist->dma_length = 0;
2343 return 0;
2344 }
2345
2346 /*
2347 * Check if DMAR supports zero-length reads on write only
2348 * mappings..
2349 */
2350 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2351 !cap_zlr(iommu->cap))
2352 prot |= DMA_PTE_READ;
2353 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2354 prot |= DMA_PTE_WRITE;
2355
2356 start_addr = iova->pfn_lo << PAGE_SHIFT;
2357 offset = 0;
2358 for_each_sg(sglist, sg, nelems, i) {
2359 addr = SG_ENT_VIRT_ADDRESS(sg);
2360 addr = (void *)virt_to_phys(addr);
2361 size = aligned_size((u64)addr, sg->length);
2362 ret = domain_page_mapping(domain, start_addr + offset,
2363 ((u64)addr) & PAGE_MASK,
2364 size, prot);
2365 if (ret) {
2366 /* clear the page */
2367 dma_pte_clear_range(domain, start_addr,
2368 start_addr + offset);
2369 /* free page tables */
2370 dma_pte_free_pagetable(domain, start_addr,
2371 start_addr + offset);
2372 /* free iova */
2373 __free_iova(&domain->iovad, iova);
2374 return 0;
2375 }
2376 sg->dma_address = start_addr + offset +
2377 ((u64)addr & (~PAGE_MASK));
2378 sg->dma_length = sg->length;
2379 offset += size;
2380 }
2381
2382 /* it's a non-present to present mapping */
2383 if (iommu_flush_iotlb_psi(iommu, domain->id,
2384 start_addr, offset >> VTD_PAGE_SHIFT, 1))
2385 iommu_flush_write_buffer(iommu);
2386 return nelems;
2387 }
2388
2389 static struct dma_mapping_ops intel_dma_ops = {
2390 .alloc_coherent = intel_alloc_coherent,
2391 .free_coherent = intel_free_coherent,
2392 .map_single = intel_map_single,
2393 .unmap_single = intel_unmap_single,
2394 .map_sg = intel_map_sg,
2395 .unmap_sg = intel_unmap_sg,
2396 };
2397
2398 static inline int iommu_domain_cache_init(void)
2399 {
2400 int ret = 0;
2401
2402 iommu_domain_cache = kmem_cache_create("iommu_domain",
2403 sizeof(struct dmar_domain),
2404 0,
2405 SLAB_HWCACHE_ALIGN,
2406
2407 NULL);
2408 if (!iommu_domain_cache) {
2409 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2410 ret = -ENOMEM;
2411 }
2412
2413 return ret;
2414 }
2415
2416 static inline int iommu_devinfo_cache_init(void)
2417 {
2418 int ret = 0;
2419
2420 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2421 sizeof(struct device_domain_info),
2422 0,
2423 SLAB_HWCACHE_ALIGN,
2424 NULL);
2425 if (!iommu_devinfo_cache) {
2426 printk(KERN_ERR "Couldn't create devinfo cache\n");
2427 ret = -ENOMEM;
2428 }
2429
2430 return ret;
2431 }
2432
2433 static inline int iommu_iova_cache_init(void)
2434 {
2435 int ret = 0;
2436
2437 iommu_iova_cache = kmem_cache_create("iommu_iova",
2438 sizeof(struct iova),
2439 0,
2440 SLAB_HWCACHE_ALIGN,
2441 NULL);
2442 if (!iommu_iova_cache) {
2443 printk(KERN_ERR "Couldn't create iova cache\n");
2444 ret = -ENOMEM;
2445 }
2446
2447 return ret;
2448 }
2449
2450 static int __init iommu_init_mempool(void)
2451 {
2452 int ret;
2453 ret = iommu_iova_cache_init();
2454 if (ret)
2455 return ret;
2456
2457 ret = iommu_domain_cache_init();
2458 if (ret)
2459 goto domain_error;
2460
2461 ret = iommu_devinfo_cache_init();
2462 if (!ret)
2463 return ret;
2464
2465 kmem_cache_destroy(iommu_domain_cache);
2466 domain_error:
2467 kmem_cache_destroy(iommu_iova_cache);
2468
2469 return -ENOMEM;
2470 }
2471
2472 static void __init iommu_exit_mempool(void)
2473 {
2474 kmem_cache_destroy(iommu_devinfo_cache);
2475 kmem_cache_destroy(iommu_domain_cache);
2476 kmem_cache_destroy(iommu_iova_cache);
2477
2478 }
2479
2480 static void __init init_no_remapping_devices(void)
2481 {
2482 struct dmar_drhd_unit *drhd;
2483
2484 for_each_drhd_unit(drhd) {
2485 if (!drhd->include_all) {
2486 int i;
2487 for (i = 0; i < drhd->devices_cnt; i++)
2488 if (drhd->devices[i] != NULL)
2489 break;
2490 /* ignore DMAR unit if no pci devices exist */
2491 if (i == drhd->devices_cnt)
2492 drhd->ignored = 1;
2493 }
2494 }
2495
2496 if (dmar_map_gfx)
2497 return;
2498
2499 for_each_drhd_unit(drhd) {
2500 int i;
2501 if (drhd->ignored || drhd->include_all)
2502 continue;
2503
2504 for (i = 0; i < drhd->devices_cnt; i++)
2505 if (drhd->devices[i] &&
2506 !IS_GFX_DEVICE(drhd->devices[i]))
2507 break;
2508
2509 if (i < drhd->devices_cnt)
2510 continue;
2511
2512 /* bypass IOMMU if it is just for gfx devices */
2513 drhd->ignored = 1;
2514 for (i = 0; i < drhd->devices_cnt; i++) {
2515 if (!drhd->devices[i])
2516 continue;
2517 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2518 }
2519 }
2520 }
2521
2522 int __init intel_iommu_init(void)
2523 {
2524 int ret = 0;
2525
2526 if (dmar_table_init())
2527 return -ENODEV;
2528
2529 if (dmar_dev_scope_init())
2530 return -ENODEV;
2531
2532 /*
2533 * Check the need for DMA-remapping initialization now.
2534 * Above initialization will also be used by Interrupt-remapping.
2535 */
2536 if (no_iommu || swiotlb || dmar_disabled)
2537 return -ENODEV;
2538
2539 iommu_init_mempool();
2540 dmar_init_reserved_ranges();
2541
2542 init_no_remapping_devices();
2543
2544 ret = init_dmars();
2545 if (ret) {
2546 printk(KERN_ERR "IOMMU: dmar init failed\n");
2547 put_iova_domain(&reserved_iova_list);
2548 iommu_exit_mempool();
2549 return ret;
2550 }
2551 printk(KERN_INFO
2552 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2553
2554 init_timer(&unmap_timer);
2555 force_iommu = 1;
2556 dma_ops = &intel_dma_ops;
2557
2558 register_iommu(&intel_iommu_ops);
2559
2560 return 0;
2561 }
2562
2563 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2564 struct pci_dev *pdev)
2565 {
2566 struct device_domain_info *info;
2567 unsigned long flags;
2568
2569 info = alloc_devinfo_mem();
2570 if (!info)
2571 return -ENOMEM;
2572
2573 info->bus = pdev->bus->number;
2574 info->devfn = pdev->devfn;
2575 info->dev = pdev;
2576 info->domain = domain;
2577
2578 spin_lock_irqsave(&device_domain_lock, flags);
2579 list_add(&info->link, &domain->devices);
2580 list_add(&info->global, &device_domain_list);
2581 pdev->dev.archdata.iommu = info;
2582 spin_unlock_irqrestore(&device_domain_lock, flags);
2583
2584 return 0;
2585 }
2586
2587 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2588 struct pci_dev *pdev)
2589 {
2590 struct device_domain_info *info;
2591 struct intel_iommu *iommu;
2592 unsigned long flags;
2593 int found = 0;
2594 struct list_head *entry, *tmp;
2595
2596 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2597 if (!iommu)
2598 return;
2599
2600 spin_lock_irqsave(&device_domain_lock, flags);
2601 list_for_each_safe(entry, tmp, &domain->devices) {
2602 info = list_entry(entry, struct device_domain_info, link);
2603 if (info->bus == pdev->bus->number &&
2604 info->devfn == pdev->devfn) {
2605 list_del(&info->link);
2606 list_del(&info->global);
2607 if (info->dev)
2608 info->dev->dev.archdata.iommu = NULL;
2609 spin_unlock_irqrestore(&device_domain_lock, flags);
2610
2611 iommu_detach_dev(iommu, info->bus, info->devfn);
2612 free_devinfo_mem(info);
2613
2614 spin_lock_irqsave(&device_domain_lock, flags);
2615
2616 if (found)
2617 break;
2618 else
2619 continue;
2620 }
2621
2622 /* if there is no other devices under the same iommu
2623 * owned by this domain, clear this iommu in iommu_bmp
2624 * update iommu count and coherency
2625 */
2626 if (device_to_iommu(info->bus, info->devfn) == iommu)
2627 found = 1;
2628 }
2629
2630 if (found == 0) {
2631 unsigned long tmp_flags;
2632 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2633 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2634 domain->iommu_count--;
2635 domain_update_iommu_coherency(domain);
2636 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2637 }
2638
2639 spin_unlock_irqrestore(&device_domain_lock, flags);
2640 }
2641
2642 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2643 {
2644 struct device_domain_info *info;
2645 struct intel_iommu *iommu;
2646 unsigned long flags1, flags2;
2647
2648 spin_lock_irqsave(&device_domain_lock, flags1);
2649 while (!list_empty(&domain->devices)) {
2650 info = list_entry(domain->devices.next,
2651 struct device_domain_info, link);
2652 list_del(&info->link);
2653 list_del(&info->global);
2654 if (info->dev)
2655 info->dev->dev.archdata.iommu = NULL;
2656
2657 spin_unlock_irqrestore(&device_domain_lock, flags1);
2658
2659 iommu = device_to_iommu(info->bus, info->devfn);
2660 iommu_detach_dev(iommu, info->bus, info->devfn);
2661
2662 /* clear this iommu in iommu_bmp, update iommu count
2663 * and coherency
2664 */
2665 spin_lock_irqsave(&domain->iommu_lock, flags2);
2666 if (test_and_clear_bit(iommu->seq_id,
2667 &domain->iommu_bmp)) {
2668 domain->iommu_count--;
2669 domain_update_iommu_coherency(domain);
2670 }
2671 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2672
2673 free_devinfo_mem(info);
2674 spin_lock_irqsave(&device_domain_lock, flags1);
2675 }
2676 spin_unlock_irqrestore(&device_domain_lock, flags1);
2677 }
2678
2679 /* domain id for virtual machine, it won't be set in context */
2680 static unsigned long vm_domid;
2681
2682 static int vm_domain_min_agaw(struct dmar_domain *domain)
2683 {
2684 int i;
2685 int min_agaw = domain->agaw;
2686
2687 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2688 for (; i < g_num_of_iommus; ) {
2689 if (min_agaw > g_iommus[i]->agaw)
2690 min_agaw = g_iommus[i]->agaw;
2691
2692 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2693 }
2694
2695 return min_agaw;
2696 }
2697
2698 static struct dmar_domain *iommu_alloc_vm_domain(void)
2699 {
2700 struct dmar_domain *domain;
2701
2702 domain = alloc_domain_mem();
2703 if (!domain)
2704 return NULL;
2705
2706 domain->id = vm_domid++;
2707 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2708 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2709
2710 return domain;
2711 }
2712
2713 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2714 {
2715 int adjust_width;
2716
2717 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2718 spin_lock_init(&domain->mapping_lock);
2719 spin_lock_init(&domain->iommu_lock);
2720
2721 domain_reserve_special_ranges(domain);
2722
2723 /* calculate AGAW */
2724 domain->gaw = guest_width;
2725 adjust_width = guestwidth_to_adjustwidth(guest_width);
2726 domain->agaw = width_to_agaw(adjust_width);
2727
2728 INIT_LIST_HEAD(&domain->devices);
2729
2730 domain->iommu_count = 0;
2731 domain->iommu_coherency = 0;
2732 domain->max_addr = 0;
2733
2734 /* always allocate the top pgd */
2735 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
2736 if (!domain->pgd)
2737 return -ENOMEM;
2738 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
2739 return 0;
2740 }
2741
2742 static void iommu_free_vm_domain(struct dmar_domain *domain)
2743 {
2744 unsigned long flags;
2745 struct dmar_drhd_unit *drhd;
2746 struct intel_iommu *iommu;
2747 unsigned long i;
2748 unsigned long ndomains;
2749
2750 for_each_drhd_unit(drhd) {
2751 if (drhd->ignored)
2752 continue;
2753 iommu = drhd->iommu;
2754
2755 ndomains = cap_ndoms(iommu->cap);
2756 i = find_first_bit(iommu->domain_ids, ndomains);
2757 for (; i < ndomains; ) {
2758 if (iommu->domains[i] == domain) {
2759 spin_lock_irqsave(&iommu->lock, flags);
2760 clear_bit(i, iommu->domain_ids);
2761 iommu->domains[i] = NULL;
2762 spin_unlock_irqrestore(&iommu->lock, flags);
2763 break;
2764 }
2765 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
2766 }
2767 }
2768 }
2769
2770 static void vm_domain_exit(struct dmar_domain *domain)
2771 {
2772 u64 end;
2773
2774 /* Domain 0 is reserved, so dont process it */
2775 if (!domain)
2776 return;
2777
2778 vm_domain_remove_all_dev_info(domain);
2779 /* destroy iovas */
2780 put_iova_domain(&domain->iovad);
2781 end = DOMAIN_MAX_ADDR(domain->gaw);
2782 end = end & (~VTD_PAGE_MASK);
2783
2784 /* clear ptes */
2785 dma_pte_clear_range(domain, 0, end);
2786
2787 /* free page tables */
2788 dma_pte_free_pagetable(domain, 0, end);
2789
2790 iommu_free_vm_domain(domain);
2791 free_domain_mem(domain);
2792 }
2793
2794 static int intel_iommu_domain_init(struct iommu_domain *domain)
2795 {
2796 struct dmar_domain *dmar_domain;
2797
2798 dmar_domain = iommu_alloc_vm_domain();
2799 if (!dmar_domain) {
2800 printk(KERN_ERR
2801 "intel_iommu_domain_init: dmar_domain == NULL\n");
2802 return -ENOMEM;
2803 }
2804 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2805 printk(KERN_ERR
2806 "intel_iommu_domain_init() failed\n");
2807 vm_domain_exit(dmar_domain);
2808 return -ENOMEM;
2809 }
2810 domain->priv = dmar_domain;
2811
2812 return 0;
2813 }
2814
2815 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
2816 {
2817 struct dmar_domain *dmar_domain = domain->priv;
2818
2819 domain->priv = NULL;
2820 vm_domain_exit(dmar_domain);
2821 }
2822
2823 static int intel_iommu_attach_device(struct iommu_domain *domain,
2824 struct device *dev)
2825 {
2826 struct dmar_domain *dmar_domain = domain->priv;
2827 struct pci_dev *pdev = to_pci_dev(dev);
2828 struct intel_iommu *iommu;
2829 int addr_width;
2830 u64 end;
2831 int ret;
2832
2833 /* normally pdev is not mapped */
2834 if (unlikely(domain_context_mapped(pdev))) {
2835 struct dmar_domain *old_domain;
2836
2837 old_domain = find_domain(pdev);
2838 if (old_domain) {
2839 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
2840 vm_domain_remove_one_dev_info(old_domain, pdev);
2841 else
2842 domain_remove_dev_info(old_domain);
2843 }
2844 }
2845
2846 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2847 if (!iommu)
2848 return -ENODEV;
2849
2850 /* check if this iommu agaw is sufficient for max mapped address */
2851 addr_width = agaw_to_width(iommu->agaw);
2852 end = DOMAIN_MAX_ADDR(addr_width);
2853 end = end & VTD_PAGE_MASK;
2854 if (end < dmar_domain->max_addr) {
2855 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2856 "sufficient for the mapped address (%llx)\n",
2857 __func__, iommu->agaw, dmar_domain->max_addr);
2858 return -EFAULT;
2859 }
2860
2861 ret = domain_context_mapping(dmar_domain, pdev);
2862 if (ret)
2863 return ret;
2864
2865 ret = vm_domain_add_dev_info(dmar_domain, pdev);
2866 return ret;
2867 }
2868
2869 static void intel_iommu_detach_device(struct iommu_domain *domain,
2870 struct device *dev)
2871 {
2872 struct dmar_domain *dmar_domain = domain->priv;
2873 struct pci_dev *pdev = to_pci_dev(dev);
2874
2875 vm_domain_remove_one_dev_info(dmar_domain, pdev);
2876 }
2877
2878 static int intel_iommu_map_range(struct iommu_domain *domain,
2879 unsigned long iova, phys_addr_t hpa,
2880 size_t size, int iommu_prot)
2881 {
2882 struct dmar_domain *dmar_domain = domain->priv;
2883 u64 max_addr;
2884 int addr_width;
2885 int prot = 0;
2886 int ret;
2887
2888 if (iommu_prot & IOMMU_READ)
2889 prot |= DMA_PTE_READ;
2890 if (iommu_prot & IOMMU_WRITE)
2891 prot |= DMA_PTE_WRITE;
2892
2893 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
2894 if (dmar_domain->max_addr < max_addr) {
2895 int min_agaw;
2896 u64 end;
2897
2898 /* check if minimum agaw is sufficient for mapped address */
2899 min_agaw = vm_domain_min_agaw(dmar_domain);
2900 addr_width = agaw_to_width(min_agaw);
2901 end = DOMAIN_MAX_ADDR(addr_width);
2902 end = end & VTD_PAGE_MASK;
2903 if (end < max_addr) {
2904 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2905 "sufficient for the mapped address (%llx)\n",
2906 __func__, min_agaw, max_addr);
2907 return -EFAULT;
2908 }
2909 dmar_domain->max_addr = max_addr;
2910 }
2911
2912 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
2913 return ret;
2914 }
2915
2916 static void intel_iommu_unmap_range(struct iommu_domain *domain,
2917 unsigned long iova, size_t size)
2918 {
2919 struct dmar_domain *dmar_domain = domain->priv;
2920 dma_addr_t base;
2921
2922 /* The address might not be aligned */
2923 base = iova & VTD_PAGE_MASK;
2924 size = VTD_PAGE_ALIGN(size);
2925 dma_pte_clear_range(dmar_domain, base, base + size);
2926
2927 if (dmar_domain->max_addr == base + size)
2928 dmar_domain->max_addr = base;
2929 }
2930
2931 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
2932 unsigned long iova)
2933 {
2934 struct dmar_domain *dmar_domain = domain->priv;
2935 struct dma_pte *pte;
2936 u64 phys = 0;
2937
2938 pte = addr_to_dma_pte(dmar_domain, iova);
2939 if (pte)
2940 phys = dma_pte_addr(pte);
2941
2942 return phys;
2943 }
2944
2945 static struct iommu_ops intel_iommu_ops = {
2946 .domain_init = intel_iommu_domain_init,
2947 .domain_destroy = intel_iommu_domain_destroy,
2948 .attach_dev = intel_iommu_attach_device,
2949 .detach_dev = intel_iommu_detach_device,
2950 .map = intel_iommu_map_range,
2951 .unmap = intel_iommu_unmap_range,
2952 .iova_to_phys = intel_iommu_iova_to_phys,
2953 };
2954
2955 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
2956 {
2957 /*
2958 * Mobile 4 Series Chipset neglects to set RWBF capability,
2959 * but needs it:
2960 */
2961 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
2962 rwbf_quirk = 1;
2963 }
2964
2965 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
This page took 0.112108 seconds and 5 git commands to generate.