VT-d: support the device IOTLB
[deliverable/linux.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59
60 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
61 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
62 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
63
64 /* global iommu list, set NULL for ignored DMAR units */
65 static struct intel_iommu **g_iommus;
66
67 static int rwbf_quirk;
68
69 /*
70 * 0: Present
71 * 1-11: Reserved
72 * 12-63: Context Ptr (12 - (haw-1))
73 * 64-127: Reserved
74 */
75 struct root_entry {
76 u64 val;
77 u64 rsvd1;
78 };
79 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
80 static inline bool root_present(struct root_entry *root)
81 {
82 return (root->val & 1);
83 }
84 static inline void set_root_present(struct root_entry *root)
85 {
86 root->val |= 1;
87 }
88 static inline void set_root_value(struct root_entry *root, unsigned long value)
89 {
90 root->val |= value & VTD_PAGE_MASK;
91 }
92
93 static inline struct context_entry *
94 get_context_addr_from_root(struct root_entry *root)
95 {
96 return (struct context_entry *)
97 (root_present(root)?phys_to_virt(
98 root->val & VTD_PAGE_MASK) :
99 NULL);
100 }
101
102 /*
103 * low 64 bits:
104 * 0: present
105 * 1: fault processing disable
106 * 2-3: translation type
107 * 12-63: address space root
108 * high 64 bits:
109 * 0-2: address width
110 * 3-6: aval
111 * 8-23: domain id
112 */
113 struct context_entry {
114 u64 lo;
115 u64 hi;
116 };
117
118 static inline bool context_present(struct context_entry *context)
119 {
120 return (context->lo & 1);
121 }
122 static inline void context_set_present(struct context_entry *context)
123 {
124 context->lo |= 1;
125 }
126
127 static inline void context_set_fault_enable(struct context_entry *context)
128 {
129 context->lo &= (((u64)-1) << 2) | 1;
130 }
131
132 static inline void context_set_translation_type(struct context_entry *context,
133 unsigned long value)
134 {
135 context->lo &= (((u64)-1) << 4) | 3;
136 context->lo |= (value & 3) << 2;
137 }
138
139 static inline void context_set_address_root(struct context_entry *context,
140 unsigned long value)
141 {
142 context->lo |= value & VTD_PAGE_MASK;
143 }
144
145 static inline void context_set_address_width(struct context_entry *context,
146 unsigned long value)
147 {
148 context->hi |= value & 7;
149 }
150
151 static inline void context_set_domain_id(struct context_entry *context,
152 unsigned long value)
153 {
154 context->hi |= (value & ((1 << 16) - 1)) << 8;
155 }
156
157 static inline void context_clear_entry(struct context_entry *context)
158 {
159 context->lo = 0;
160 context->hi = 0;
161 }
162
163 /*
164 * 0: readable
165 * 1: writable
166 * 2-6: reserved
167 * 7: super page
168 * 8-10: available
169 * 11: snoop behavior
170 * 12-63: Host physcial address
171 */
172 struct dma_pte {
173 u64 val;
174 };
175
176 static inline void dma_clear_pte(struct dma_pte *pte)
177 {
178 pte->val = 0;
179 }
180
181 static inline void dma_set_pte_readable(struct dma_pte *pte)
182 {
183 pte->val |= DMA_PTE_READ;
184 }
185
186 static inline void dma_set_pte_writable(struct dma_pte *pte)
187 {
188 pte->val |= DMA_PTE_WRITE;
189 }
190
191 static inline void dma_set_pte_snp(struct dma_pte *pte)
192 {
193 pte->val |= DMA_PTE_SNP;
194 }
195
196 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
197 {
198 pte->val = (pte->val & ~3) | (prot & 3);
199 }
200
201 static inline u64 dma_pte_addr(struct dma_pte *pte)
202 {
203 return (pte->val & VTD_PAGE_MASK);
204 }
205
206 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
207 {
208 pte->val |= (addr & VTD_PAGE_MASK);
209 }
210
211 static inline bool dma_pte_present(struct dma_pte *pte)
212 {
213 return (pte->val & 3) != 0;
214 }
215
216 /* devices under the same p2p bridge are owned in one domain */
217 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
218
219 /* domain represents a virtual machine, more than one devices
220 * across iommus may be owned in one domain, e.g. kvm guest.
221 */
222 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
223
224 struct dmar_domain {
225 int id; /* domain id */
226 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
227
228 struct list_head devices; /* all devices' list */
229 struct iova_domain iovad; /* iova's that belong to this domain */
230
231 struct dma_pte *pgd; /* virtual address */
232 spinlock_t mapping_lock; /* page table lock */
233 int gaw; /* max guest address width */
234
235 /* adjusted guest address width, 0 is level 2 30-bit */
236 int agaw;
237
238 int flags; /* flags to find out type of domain */
239
240 int iommu_coherency;/* indicate coherency of iommu access */
241 int iommu_snooping; /* indicate snooping control feature*/
242 int iommu_count; /* reference count of iommu */
243 spinlock_t iommu_lock; /* protect iommu set in domain */
244 u64 max_addr; /* maximum mapped address */
245 };
246
247 /* PCI domain-device relationship */
248 struct device_domain_info {
249 struct list_head link; /* link to domain siblings */
250 struct list_head global; /* link to global list */
251 int segment; /* PCI domain */
252 u8 bus; /* PCI bus number */
253 u8 devfn; /* PCI devfn number */
254 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
255 struct intel_iommu *iommu; /* IOMMU used by this device */
256 struct dmar_domain *domain; /* pointer to domain */
257 };
258
259 static void flush_unmaps_timeout(unsigned long data);
260
261 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
262
263 #define HIGH_WATER_MARK 250
264 struct deferred_flush_tables {
265 int next;
266 struct iova *iova[HIGH_WATER_MARK];
267 struct dmar_domain *domain[HIGH_WATER_MARK];
268 };
269
270 static struct deferred_flush_tables *deferred_flush;
271
272 /* bitmap for indexing intel_iommus */
273 static int g_num_of_iommus;
274
275 static DEFINE_SPINLOCK(async_umap_flush_lock);
276 static LIST_HEAD(unmaps_to_do);
277
278 static int timer_on;
279 static long list_size;
280
281 static void domain_remove_dev_info(struct dmar_domain *domain);
282
283 #ifdef CONFIG_DMAR_DEFAULT_ON
284 int dmar_disabled = 0;
285 #else
286 int dmar_disabled = 1;
287 #endif /*CONFIG_DMAR_DEFAULT_ON*/
288
289 static int __initdata dmar_map_gfx = 1;
290 static int dmar_forcedac;
291 static int intel_iommu_strict;
292
293 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
294 static DEFINE_SPINLOCK(device_domain_lock);
295 static LIST_HEAD(device_domain_list);
296
297 static struct iommu_ops intel_iommu_ops;
298
299 static int __init intel_iommu_setup(char *str)
300 {
301 if (!str)
302 return -EINVAL;
303 while (*str) {
304 if (!strncmp(str, "on", 2)) {
305 dmar_disabled = 0;
306 printk(KERN_INFO "Intel-IOMMU: enabled\n");
307 } else if (!strncmp(str, "off", 3)) {
308 dmar_disabled = 1;
309 printk(KERN_INFO "Intel-IOMMU: disabled\n");
310 } else if (!strncmp(str, "igfx_off", 8)) {
311 dmar_map_gfx = 0;
312 printk(KERN_INFO
313 "Intel-IOMMU: disable GFX device mapping\n");
314 } else if (!strncmp(str, "forcedac", 8)) {
315 printk(KERN_INFO
316 "Intel-IOMMU: Forcing DAC for PCI devices\n");
317 dmar_forcedac = 1;
318 } else if (!strncmp(str, "strict", 6)) {
319 printk(KERN_INFO
320 "Intel-IOMMU: disable batched IOTLB flush\n");
321 intel_iommu_strict = 1;
322 }
323
324 str += strcspn(str, ",");
325 while (*str == ',')
326 str++;
327 }
328 return 0;
329 }
330 __setup("intel_iommu=", intel_iommu_setup);
331
332 static struct kmem_cache *iommu_domain_cache;
333 static struct kmem_cache *iommu_devinfo_cache;
334 static struct kmem_cache *iommu_iova_cache;
335
336 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
337 {
338 unsigned int flags;
339 void *vaddr;
340
341 /* trying to avoid low memory issues */
342 flags = current->flags & PF_MEMALLOC;
343 current->flags |= PF_MEMALLOC;
344 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
345 current->flags &= (~PF_MEMALLOC | flags);
346 return vaddr;
347 }
348
349
350 static inline void *alloc_pgtable_page(void)
351 {
352 unsigned int flags;
353 void *vaddr;
354
355 /* trying to avoid low memory issues */
356 flags = current->flags & PF_MEMALLOC;
357 current->flags |= PF_MEMALLOC;
358 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
359 current->flags &= (~PF_MEMALLOC | flags);
360 return vaddr;
361 }
362
363 static inline void free_pgtable_page(void *vaddr)
364 {
365 free_page((unsigned long)vaddr);
366 }
367
368 static inline void *alloc_domain_mem(void)
369 {
370 return iommu_kmem_cache_alloc(iommu_domain_cache);
371 }
372
373 static void free_domain_mem(void *vaddr)
374 {
375 kmem_cache_free(iommu_domain_cache, vaddr);
376 }
377
378 static inline void * alloc_devinfo_mem(void)
379 {
380 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
381 }
382
383 static inline void free_devinfo_mem(void *vaddr)
384 {
385 kmem_cache_free(iommu_devinfo_cache, vaddr);
386 }
387
388 struct iova *alloc_iova_mem(void)
389 {
390 return iommu_kmem_cache_alloc(iommu_iova_cache);
391 }
392
393 void free_iova_mem(struct iova *iova)
394 {
395 kmem_cache_free(iommu_iova_cache, iova);
396 }
397
398
399 static inline int width_to_agaw(int width);
400
401 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
402 {
403 unsigned long sagaw;
404 int agaw = -1;
405
406 sagaw = cap_sagaw(iommu->cap);
407 for (agaw = width_to_agaw(max_gaw);
408 agaw >= 0; agaw--) {
409 if (test_bit(agaw, &sagaw))
410 break;
411 }
412
413 return agaw;
414 }
415
416 /*
417 * Calculate max SAGAW for each iommu.
418 */
419 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
420 {
421 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
422 }
423
424 /*
425 * calculate agaw for each iommu.
426 * "SAGAW" may be different across iommus, use a default agaw, and
427 * get a supported less agaw for iommus that don't support the default agaw.
428 */
429 int iommu_calculate_agaw(struct intel_iommu *iommu)
430 {
431 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
432 }
433
434 /* in native case, each domain is related to only one iommu */
435 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
436 {
437 int iommu_id;
438
439 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
440
441 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
442 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
443 return NULL;
444
445 return g_iommus[iommu_id];
446 }
447
448 static void domain_update_iommu_coherency(struct dmar_domain *domain)
449 {
450 int i;
451
452 domain->iommu_coherency = 1;
453
454 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
455 for (; i < g_num_of_iommus; ) {
456 if (!ecap_coherent(g_iommus[i]->ecap)) {
457 domain->iommu_coherency = 0;
458 break;
459 }
460 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
461 }
462 }
463
464 static void domain_update_iommu_snooping(struct dmar_domain *domain)
465 {
466 int i;
467
468 domain->iommu_snooping = 1;
469
470 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
471 for (; i < g_num_of_iommus; ) {
472 if (!ecap_sc_support(g_iommus[i]->ecap)) {
473 domain->iommu_snooping = 0;
474 break;
475 }
476 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
477 }
478 }
479
480 /* Some capabilities may be different across iommus */
481 static void domain_update_iommu_cap(struct dmar_domain *domain)
482 {
483 domain_update_iommu_coherency(domain);
484 domain_update_iommu_snooping(domain);
485 }
486
487 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
488 {
489 struct dmar_drhd_unit *drhd = NULL;
490 int i;
491
492 for_each_drhd_unit(drhd) {
493 if (drhd->ignored)
494 continue;
495 if (segment != drhd->segment)
496 continue;
497
498 for (i = 0; i < drhd->devices_cnt; i++) {
499 if (drhd->devices[i] &&
500 drhd->devices[i]->bus->number == bus &&
501 drhd->devices[i]->devfn == devfn)
502 return drhd->iommu;
503 if (drhd->devices[i] &&
504 drhd->devices[i]->subordinate &&
505 drhd->devices[i]->subordinate->number <= bus &&
506 drhd->devices[i]->subordinate->subordinate >= bus)
507 return drhd->iommu;
508 }
509
510 if (drhd->include_all)
511 return drhd->iommu;
512 }
513
514 return NULL;
515 }
516
517 static void domain_flush_cache(struct dmar_domain *domain,
518 void *addr, int size)
519 {
520 if (!domain->iommu_coherency)
521 clflush_cache_range(addr, size);
522 }
523
524 /* Gets context entry for a given bus and devfn */
525 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
526 u8 bus, u8 devfn)
527 {
528 struct root_entry *root;
529 struct context_entry *context;
530 unsigned long phy_addr;
531 unsigned long flags;
532
533 spin_lock_irqsave(&iommu->lock, flags);
534 root = &iommu->root_entry[bus];
535 context = get_context_addr_from_root(root);
536 if (!context) {
537 context = (struct context_entry *)alloc_pgtable_page();
538 if (!context) {
539 spin_unlock_irqrestore(&iommu->lock, flags);
540 return NULL;
541 }
542 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
543 phy_addr = virt_to_phys((void *)context);
544 set_root_value(root, phy_addr);
545 set_root_present(root);
546 __iommu_flush_cache(iommu, root, sizeof(*root));
547 }
548 spin_unlock_irqrestore(&iommu->lock, flags);
549 return &context[devfn];
550 }
551
552 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
553 {
554 struct root_entry *root;
555 struct context_entry *context;
556 int ret;
557 unsigned long flags;
558
559 spin_lock_irqsave(&iommu->lock, flags);
560 root = &iommu->root_entry[bus];
561 context = get_context_addr_from_root(root);
562 if (!context) {
563 ret = 0;
564 goto out;
565 }
566 ret = context_present(&context[devfn]);
567 out:
568 spin_unlock_irqrestore(&iommu->lock, flags);
569 return ret;
570 }
571
572 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
573 {
574 struct root_entry *root;
575 struct context_entry *context;
576 unsigned long flags;
577
578 spin_lock_irqsave(&iommu->lock, flags);
579 root = &iommu->root_entry[bus];
580 context = get_context_addr_from_root(root);
581 if (context) {
582 context_clear_entry(&context[devfn]);
583 __iommu_flush_cache(iommu, &context[devfn], \
584 sizeof(*context));
585 }
586 spin_unlock_irqrestore(&iommu->lock, flags);
587 }
588
589 static void free_context_table(struct intel_iommu *iommu)
590 {
591 struct root_entry *root;
592 int i;
593 unsigned long flags;
594 struct context_entry *context;
595
596 spin_lock_irqsave(&iommu->lock, flags);
597 if (!iommu->root_entry) {
598 goto out;
599 }
600 for (i = 0; i < ROOT_ENTRY_NR; i++) {
601 root = &iommu->root_entry[i];
602 context = get_context_addr_from_root(root);
603 if (context)
604 free_pgtable_page(context);
605 }
606 free_pgtable_page(iommu->root_entry);
607 iommu->root_entry = NULL;
608 out:
609 spin_unlock_irqrestore(&iommu->lock, flags);
610 }
611
612 /* page table handling */
613 #define LEVEL_STRIDE (9)
614 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
615
616 static inline int agaw_to_level(int agaw)
617 {
618 return agaw + 2;
619 }
620
621 static inline int agaw_to_width(int agaw)
622 {
623 return 30 + agaw * LEVEL_STRIDE;
624
625 }
626
627 static inline int width_to_agaw(int width)
628 {
629 return (width - 30) / LEVEL_STRIDE;
630 }
631
632 static inline unsigned int level_to_offset_bits(int level)
633 {
634 return (12 + (level - 1) * LEVEL_STRIDE);
635 }
636
637 static inline int address_level_offset(u64 addr, int level)
638 {
639 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
640 }
641
642 static inline u64 level_mask(int level)
643 {
644 return ((u64)-1 << level_to_offset_bits(level));
645 }
646
647 static inline u64 level_size(int level)
648 {
649 return ((u64)1 << level_to_offset_bits(level));
650 }
651
652 static inline u64 align_to_level(u64 addr, int level)
653 {
654 return ((addr + level_size(level) - 1) & level_mask(level));
655 }
656
657 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
658 {
659 int addr_width = agaw_to_width(domain->agaw);
660 struct dma_pte *parent, *pte = NULL;
661 int level = agaw_to_level(domain->agaw);
662 int offset;
663 unsigned long flags;
664
665 BUG_ON(!domain->pgd);
666
667 addr &= (((u64)1) << addr_width) - 1;
668 parent = domain->pgd;
669
670 spin_lock_irqsave(&domain->mapping_lock, flags);
671 while (level > 0) {
672 void *tmp_page;
673
674 offset = address_level_offset(addr, level);
675 pte = &parent[offset];
676 if (level == 1)
677 break;
678
679 if (!dma_pte_present(pte)) {
680 tmp_page = alloc_pgtable_page();
681
682 if (!tmp_page) {
683 spin_unlock_irqrestore(&domain->mapping_lock,
684 flags);
685 return NULL;
686 }
687 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
688 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
689 /*
690 * high level table always sets r/w, last level page
691 * table control read/write
692 */
693 dma_set_pte_readable(pte);
694 dma_set_pte_writable(pte);
695 domain_flush_cache(domain, pte, sizeof(*pte));
696 }
697 parent = phys_to_virt(dma_pte_addr(pte));
698 level--;
699 }
700
701 spin_unlock_irqrestore(&domain->mapping_lock, flags);
702 return pte;
703 }
704
705 /* return address's pte at specific level */
706 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
707 int level)
708 {
709 struct dma_pte *parent, *pte = NULL;
710 int total = agaw_to_level(domain->agaw);
711 int offset;
712
713 parent = domain->pgd;
714 while (level <= total) {
715 offset = address_level_offset(addr, total);
716 pte = &parent[offset];
717 if (level == total)
718 return pte;
719
720 if (!dma_pte_present(pte))
721 break;
722 parent = phys_to_virt(dma_pte_addr(pte));
723 total--;
724 }
725 return NULL;
726 }
727
728 /* clear one page's page table */
729 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
730 {
731 struct dma_pte *pte = NULL;
732
733 /* get last level pte */
734 pte = dma_addr_level_pte(domain, addr, 1);
735
736 if (pte) {
737 dma_clear_pte(pte);
738 domain_flush_cache(domain, pte, sizeof(*pte));
739 }
740 }
741
742 /* clear last level pte, a tlb flush should be followed */
743 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
744 {
745 int addr_width = agaw_to_width(domain->agaw);
746 int npages;
747
748 start &= (((u64)1) << addr_width) - 1;
749 end &= (((u64)1) << addr_width) - 1;
750 /* in case it's partial page */
751 start &= PAGE_MASK;
752 end = PAGE_ALIGN(end);
753 npages = (end - start) / VTD_PAGE_SIZE;
754
755 /* we don't need lock here, nobody else touches the iova range */
756 while (npages--) {
757 dma_pte_clear_one(domain, start);
758 start += VTD_PAGE_SIZE;
759 }
760 }
761
762 /* free page table pages. last level pte should already be cleared */
763 static void dma_pte_free_pagetable(struct dmar_domain *domain,
764 u64 start, u64 end)
765 {
766 int addr_width = agaw_to_width(domain->agaw);
767 struct dma_pte *pte;
768 int total = agaw_to_level(domain->agaw);
769 int level;
770 u64 tmp;
771
772 start &= (((u64)1) << addr_width) - 1;
773 end &= (((u64)1) << addr_width) - 1;
774
775 /* we don't need lock here, nobody else touches the iova range */
776 level = 2;
777 while (level <= total) {
778 tmp = align_to_level(start, level);
779 if (tmp >= end || (tmp + level_size(level) > end))
780 return;
781
782 while (tmp < end) {
783 pte = dma_addr_level_pte(domain, tmp, level);
784 if (pte) {
785 free_pgtable_page(
786 phys_to_virt(dma_pte_addr(pte)));
787 dma_clear_pte(pte);
788 domain_flush_cache(domain, pte, sizeof(*pte));
789 }
790 tmp += level_size(level);
791 }
792 level++;
793 }
794 /* free pgd */
795 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
796 free_pgtable_page(domain->pgd);
797 domain->pgd = NULL;
798 }
799 }
800
801 /* iommu handling */
802 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
803 {
804 struct root_entry *root;
805 unsigned long flags;
806
807 root = (struct root_entry *)alloc_pgtable_page();
808 if (!root)
809 return -ENOMEM;
810
811 __iommu_flush_cache(iommu, root, ROOT_SIZE);
812
813 spin_lock_irqsave(&iommu->lock, flags);
814 iommu->root_entry = root;
815 spin_unlock_irqrestore(&iommu->lock, flags);
816
817 return 0;
818 }
819
820 static void iommu_set_root_entry(struct intel_iommu *iommu)
821 {
822 void *addr;
823 u32 sts;
824 unsigned long flag;
825
826 addr = iommu->root_entry;
827
828 spin_lock_irqsave(&iommu->register_lock, flag);
829 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
830
831 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
832
833 /* Make sure hardware complete it */
834 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
835 readl, (sts & DMA_GSTS_RTPS), sts);
836
837 spin_unlock_irqrestore(&iommu->register_lock, flag);
838 }
839
840 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
841 {
842 u32 val;
843 unsigned long flag;
844
845 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
846 return;
847
848 spin_lock_irqsave(&iommu->register_lock, flag);
849 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
850
851 /* Make sure hardware complete it */
852 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
853 readl, (!(val & DMA_GSTS_WBFS)), val);
854
855 spin_unlock_irqrestore(&iommu->register_lock, flag);
856 }
857
858 /* return value determine if we need a write buffer flush */
859 static void __iommu_flush_context(struct intel_iommu *iommu,
860 u16 did, u16 source_id, u8 function_mask,
861 u64 type)
862 {
863 u64 val = 0;
864 unsigned long flag;
865
866 switch (type) {
867 case DMA_CCMD_GLOBAL_INVL:
868 val = DMA_CCMD_GLOBAL_INVL;
869 break;
870 case DMA_CCMD_DOMAIN_INVL:
871 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
872 break;
873 case DMA_CCMD_DEVICE_INVL:
874 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
875 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
876 break;
877 default:
878 BUG();
879 }
880 val |= DMA_CCMD_ICC;
881
882 spin_lock_irqsave(&iommu->register_lock, flag);
883 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
884
885 /* Make sure hardware complete it */
886 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
887 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
888
889 spin_unlock_irqrestore(&iommu->register_lock, flag);
890 }
891
892 /* return value determine if we need a write buffer flush */
893 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
894 u64 addr, unsigned int size_order, u64 type)
895 {
896 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
897 u64 val = 0, val_iva = 0;
898 unsigned long flag;
899
900 switch (type) {
901 case DMA_TLB_GLOBAL_FLUSH:
902 /* global flush doesn't need set IVA_REG */
903 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
904 break;
905 case DMA_TLB_DSI_FLUSH:
906 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
907 break;
908 case DMA_TLB_PSI_FLUSH:
909 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
910 /* Note: always flush non-leaf currently */
911 val_iva = size_order | addr;
912 break;
913 default:
914 BUG();
915 }
916 /* Note: set drain read/write */
917 #if 0
918 /*
919 * This is probably to be super secure.. Looks like we can
920 * ignore it without any impact.
921 */
922 if (cap_read_drain(iommu->cap))
923 val |= DMA_TLB_READ_DRAIN;
924 #endif
925 if (cap_write_drain(iommu->cap))
926 val |= DMA_TLB_WRITE_DRAIN;
927
928 spin_lock_irqsave(&iommu->register_lock, flag);
929 /* Note: Only uses first TLB reg currently */
930 if (val_iva)
931 dmar_writeq(iommu->reg + tlb_offset, val_iva);
932 dmar_writeq(iommu->reg + tlb_offset + 8, val);
933
934 /* Make sure hardware complete it */
935 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
936 dmar_readq, (!(val & DMA_TLB_IVT)), val);
937
938 spin_unlock_irqrestore(&iommu->register_lock, flag);
939
940 /* check IOTLB invalidation granularity */
941 if (DMA_TLB_IAIG(val) == 0)
942 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
943 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
944 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
945 (unsigned long long)DMA_TLB_IIRG(type),
946 (unsigned long long)DMA_TLB_IAIG(val));
947 }
948
949 static struct device_domain_info *iommu_support_dev_iotlb(
950 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
951 {
952 int found = 0;
953 unsigned long flags;
954 struct device_domain_info *info;
955 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
956
957 if (!ecap_dev_iotlb_support(iommu->ecap))
958 return NULL;
959
960 if (!iommu->qi)
961 return NULL;
962
963 spin_lock_irqsave(&device_domain_lock, flags);
964 list_for_each_entry(info, &domain->devices, link)
965 if (info->bus == bus && info->devfn == devfn) {
966 found = 1;
967 break;
968 }
969 spin_unlock_irqrestore(&device_domain_lock, flags);
970
971 if (!found || !info->dev)
972 return NULL;
973
974 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
975 return NULL;
976
977 if (!dmar_find_matched_atsr_unit(info->dev))
978 return NULL;
979
980 info->iommu = iommu;
981
982 return info;
983 }
984
985 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
986 {
987 if (!info)
988 return;
989
990 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
991 }
992
993 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
994 {
995 if (!info->dev || !pci_ats_enabled(info->dev))
996 return;
997
998 pci_disable_ats(info->dev);
999 }
1000
1001 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1002 u64 addr, unsigned mask)
1003 {
1004 u16 sid, qdep;
1005 unsigned long flags;
1006 struct device_domain_info *info;
1007
1008 spin_lock_irqsave(&device_domain_lock, flags);
1009 list_for_each_entry(info, &domain->devices, link) {
1010 if (!info->dev || !pci_ats_enabled(info->dev))
1011 continue;
1012
1013 sid = info->bus << 8 | info->devfn;
1014 qdep = pci_ats_queue_depth(info->dev);
1015 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1016 }
1017 spin_unlock_irqrestore(&device_domain_lock, flags);
1018 }
1019
1020 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1021 u64 addr, unsigned int pages)
1022 {
1023 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1024
1025 BUG_ON(addr & (~VTD_PAGE_MASK));
1026 BUG_ON(pages == 0);
1027
1028 /*
1029 * Fallback to domain selective flush if no PSI support or the size is
1030 * too big.
1031 * PSI requires page size to be 2 ^ x, and the base address is naturally
1032 * aligned to the size
1033 */
1034 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1035 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1036 DMA_TLB_DSI_FLUSH);
1037 else
1038 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1039 DMA_TLB_PSI_FLUSH);
1040 if (did)
1041 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1042 }
1043
1044 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1045 {
1046 u32 pmen;
1047 unsigned long flags;
1048
1049 spin_lock_irqsave(&iommu->register_lock, flags);
1050 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1051 pmen &= ~DMA_PMEN_EPM;
1052 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1053
1054 /* wait for the protected region status bit to clear */
1055 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1056 readl, !(pmen & DMA_PMEN_PRS), pmen);
1057
1058 spin_unlock_irqrestore(&iommu->register_lock, flags);
1059 }
1060
1061 static int iommu_enable_translation(struct intel_iommu *iommu)
1062 {
1063 u32 sts;
1064 unsigned long flags;
1065
1066 spin_lock_irqsave(&iommu->register_lock, flags);
1067 iommu->gcmd |= DMA_GCMD_TE;
1068 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1069
1070 /* Make sure hardware complete it */
1071 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1072 readl, (sts & DMA_GSTS_TES), sts);
1073
1074 spin_unlock_irqrestore(&iommu->register_lock, flags);
1075 return 0;
1076 }
1077
1078 static int iommu_disable_translation(struct intel_iommu *iommu)
1079 {
1080 u32 sts;
1081 unsigned long flag;
1082
1083 spin_lock_irqsave(&iommu->register_lock, flag);
1084 iommu->gcmd &= ~DMA_GCMD_TE;
1085 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1086
1087 /* Make sure hardware complete it */
1088 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1089 readl, (!(sts & DMA_GSTS_TES)), sts);
1090
1091 spin_unlock_irqrestore(&iommu->register_lock, flag);
1092 return 0;
1093 }
1094
1095
1096 static int iommu_init_domains(struct intel_iommu *iommu)
1097 {
1098 unsigned long ndomains;
1099 unsigned long nlongs;
1100
1101 ndomains = cap_ndoms(iommu->cap);
1102 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1103 nlongs = BITS_TO_LONGS(ndomains);
1104
1105 /* TBD: there might be 64K domains,
1106 * consider other allocation for future chip
1107 */
1108 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1109 if (!iommu->domain_ids) {
1110 printk(KERN_ERR "Allocating domain id array failed\n");
1111 return -ENOMEM;
1112 }
1113 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1114 GFP_KERNEL);
1115 if (!iommu->domains) {
1116 printk(KERN_ERR "Allocating domain array failed\n");
1117 kfree(iommu->domain_ids);
1118 return -ENOMEM;
1119 }
1120
1121 spin_lock_init(&iommu->lock);
1122
1123 /*
1124 * if Caching mode is set, then invalid translations are tagged
1125 * with domainid 0. Hence we need to pre-allocate it.
1126 */
1127 if (cap_caching_mode(iommu->cap))
1128 set_bit(0, iommu->domain_ids);
1129 return 0;
1130 }
1131
1132
1133 static void domain_exit(struct dmar_domain *domain);
1134 static void vm_domain_exit(struct dmar_domain *domain);
1135
1136 void free_dmar_iommu(struct intel_iommu *iommu)
1137 {
1138 struct dmar_domain *domain;
1139 int i;
1140 unsigned long flags;
1141
1142 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1143 for (; i < cap_ndoms(iommu->cap); ) {
1144 domain = iommu->domains[i];
1145 clear_bit(i, iommu->domain_ids);
1146
1147 spin_lock_irqsave(&domain->iommu_lock, flags);
1148 if (--domain->iommu_count == 0) {
1149 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1150 vm_domain_exit(domain);
1151 else
1152 domain_exit(domain);
1153 }
1154 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1155
1156 i = find_next_bit(iommu->domain_ids,
1157 cap_ndoms(iommu->cap), i+1);
1158 }
1159
1160 if (iommu->gcmd & DMA_GCMD_TE)
1161 iommu_disable_translation(iommu);
1162
1163 if (iommu->irq) {
1164 set_irq_data(iommu->irq, NULL);
1165 /* This will mask the irq */
1166 free_irq(iommu->irq, iommu);
1167 destroy_irq(iommu->irq);
1168 }
1169
1170 kfree(iommu->domains);
1171 kfree(iommu->domain_ids);
1172
1173 g_iommus[iommu->seq_id] = NULL;
1174
1175 /* if all iommus are freed, free g_iommus */
1176 for (i = 0; i < g_num_of_iommus; i++) {
1177 if (g_iommus[i])
1178 break;
1179 }
1180
1181 if (i == g_num_of_iommus)
1182 kfree(g_iommus);
1183
1184 /* free context mapping */
1185 free_context_table(iommu);
1186 }
1187
1188 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1189 {
1190 unsigned long num;
1191 unsigned long ndomains;
1192 struct dmar_domain *domain;
1193 unsigned long flags;
1194
1195 domain = alloc_domain_mem();
1196 if (!domain)
1197 return NULL;
1198
1199 ndomains = cap_ndoms(iommu->cap);
1200
1201 spin_lock_irqsave(&iommu->lock, flags);
1202 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1203 if (num >= ndomains) {
1204 spin_unlock_irqrestore(&iommu->lock, flags);
1205 free_domain_mem(domain);
1206 printk(KERN_ERR "IOMMU: no free domain ids\n");
1207 return NULL;
1208 }
1209
1210 set_bit(num, iommu->domain_ids);
1211 domain->id = num;
1212 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1213 set_bit(iommu->seq_id, &domain->iommu_bmp);
1214 domain->flags = 0;
1215 iommu->domains[num] = domain;
1216 spin_unlock_irqrestore(&iommu->lock, flags);
1217
1218 return domain;
1219 }
1220
1221 static void iommu_free_domain(struct dmar_domain *domain)
1222 {
1223 unsigned long flags;
1224 struct intel_iommu *iommu;
1225
1226 iommu = domain_get_iommu(domain);
1227
1228 spin_lock_irqsave(&iommu->lock, flags);
1229 clear_bit(domain->id, iommu->domain_ids);
1230 spin_unlock_irqrestore(&iommu->lock, flags);
1231 }
1232
1233 static struct iova_domain reserved_iova_list;
1234 static struct lock_class_key reserved_alloc_key;
1235 static struct lock_class_key reserved_rbtree_key;
1236
1237 static void dmar_init_reserved_ranges(void)
1238 {
1239 struct pci_dev *pdev = NULL;
1240 struct iova *iova;
1241 int i;
1242 u64 addr, size;
1243
1244 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1245
1246 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1247 &reserved_alloc_key);
1248 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1249 &reserved_rbtree_key);
1250
1251 /* IOAPIC ranges shouldn't be accessed by DMA */
1252 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1253 IOVA_PFN(IOAPIC_RANGE_END));
1254 if (!iova)
1255 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1256
1257 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1258 for_each_pci_dev(pdev) {
1259 struct resource *r;
1260
1261 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1262 r = &pdev->resource[i];
1263 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1264 continue;
1265 addr = r->start;
1266 addr &= PAGE_MASK;
1267 size = r->end - addr;
1268 size = PAGE_ALIGN(size);
1269 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1270 IOVA_PFN(size + addr) - 1);
1271 if (!iova)
1272 printk(KERN_ERR "Reserve iova failed\n");
1273 }
1274 }
1275
1276 }
1277
1278 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1279 {
1280 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1281 }
1282
1283 static inline int guestwidth_to_adjustwidth(int gaw)
1284 {
1285 int agaw;
1286 int r = (gaw - 12) % 9;
1287
1288 if (r == 0)
1289 agaw = gaw;
1290 else
1291 agaw = gaw + 9 - r;
1292 if (agaw > 64)
1293 agaw = 64;
1294 return agaw;
1295 }
1296
1297 static int domain_init(struct dmar_domain *domain, int guest_width)
1298 {
1299 struct intel_iommu *iommu;
1300 int adjust_width, agaw;
1301 unsigned long sagaw;
1302
1303 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1304 spin_lock_init(&domain->mapping_lock);
1305 spin_lock_init(&domain->iommu_lock);
1306
1307 domain_reserve_special_ranges(domain);
1308
1309 /* calculate AGAW */
1310 iommu = domain_get_iommu(domain);
1311 if (guest_width > cap_mgaw(iommu->cap))
1312 guest_width = cap_mgaw(iommu->cap);
1313 domain->gaw = guest_width;
1314 adjust_width = guestwidth_to_adjustwidth(guest_width);
1315 agaw = width_to_agaw(adjust_width);
1316 sagaw = cap_sagaw(iommu->cap);
1317 if (!test_bit(agaw, &sagaw)) {
1318 /* hardware doesn't support it, choose a bigger one */
1319 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1320 agaw = find_next_bit(&sagaw, 5, agaw);
1321 if (agaw >= 5)
1322 return -ENODEV;
1323 }
1324 domain->agaw = agaw;
1325 INIT_LIST_HEAD(&domain->devices);
1326
1327 if (ecap_coherent(iommu->ecap))
1328 domain->iommu_coherency = 1;
1329 else
1330 domain->iommu_coherency = 0;
1331
1332 if (ecap_sc_support(iommu->ecap))
1333 domain->iommu_snooping = 1;
1334 else
1335 domain->iommu_snooping = 0;
1336
1337 domain->iommu_count = 1;
1338
1339 /* always allocate the top pgd */
1340 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1341 if (!domain->pgd)
1342 return -ENOMEM;
1343 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1344 return 0;
1345 }
1346
1347 static void domain_exit(struct dmar_domain *domain)
1348 {
1349 u64 end;
1350
1351 /* Domain 0 is reserved, so dont process it */
1352 if (!domain)
1353 return;
1354
1355 domain_remove_dev_info(domain);
1356 /* destroy iovas */
1357 put_iova_domain(&domain->iovad);
1358 end = DOMAIN_MAX_ADDR(domain->gaw);
1359 end = end & (~PAGE_MASK);
1360
1361 /* clear ptes */
1362 dma_pte_clear_range(domain, 0, end);
1363
1364 /* free page tables */
1365 dma_pte_free_pagetable(domain, 0, end);
1366
1367 iommu_free_domain(domain);
1368 free_domain_mem(domain);
1369 }
1370
1371 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1372 u8 bus, u8 devfn, int translation)
1373 {
1374 struct context_entry *context;
1375 unsigned long flags;
1376 struct intel_iommu *iommu;
1377 struct dma_pte *pgd;
1378 unsigned long num;
1379 unsigned long ndomains;
1380 int id;
1381 int agaw;
1382 struct device_domain_info *info = NULL;
1383
1384 pr_debug("Set context mapping for %02x:%02x.%d\n",
1385 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1386
1387 BUG_ON(!domain->pgd);
1388 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1389 translation != CONTEXT_TT_MULTI_LEVEL);
1390
1391 iommu = device_to_iommu(segment, bus, devfn);
1392 if (!iommu)
1393 return -ENODEV;
1394
1395 context = device_to_context_entry(iommu, bus, devfn);
1396 if (!context)
1397 return -ENOMEM;
1398 spin_lock_irqsave(&iommu->lock, flags);
1399 if (context_present(context)) {
1400 spin_unlock_irqrestore(&iommu->lock, flags);
1401 return 0;
1402 }
1403
1404 id = domain->id;
1405 pgd = domain->pgd;
1406
1407 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1408 int found = 0;
1409
1410 /* find an available domain id for this device in iommu */
1411 ndomains = cap_ndoms(iommu->cap);
1412 num = find_first_bit(iommu->domain_ids, ndomains);
1413 for (; num < ndomains; ) {
1414 if (iommu->domains[num] == domain) {
1415 id = num;
1416 found = 1;
1417 break;
1418 }
1419 num = find_next_bit(iommu->domain_ids,
1420 cap_ndoms(iommu->cap), num+1);
1421 }
1422
1423 if (found == 0) {
1424 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1425 if (num >= ndomains) {
1426 spin_unlock_irqrestore(&iommu->lock, flags);
1427 printk(KERN_ERR "IOMMU: no free domain ids\n");
1428 return -EFAULT;
1429 }
1430
1431 set_bit(num, iommu->domain_ids);
1432 iommu->domains[num] = domain;
1433 id = num;
1434 }
1435
1436 /* Skip top levels of page tables for
1437 * iommu which has less agaw than default.
1438 */
1439 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1440 pgd = phys_to_virt(dma_pte_addr(pgd));
1441 if (!dma_pte_present(pgd)) {
1442 spin_unlock_irqrestore(&iommu->lock, flags);
1443 return -ENOMEM;
1444 }
1445 }
1446 }
1447
1448 context_set_domain_id(context, id);
1449
1450 if (translation != CONTEXT_TT_PASS_THROUGH) {
1451 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1452 translation = info ? CONTEXT_TT_DEV_IOTLB :
1453 CONTEXT_TT_MULTI_LEVEL;
1454 }
1455 /*
1456 * In pass through mode, AW must be programmed to indicate the largest
1457 * AGAW value supported by hardware. And ASR is ignored by hardware.
1458 */
1459 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1460 context_set_address_width(context, iommu->msagaw);
1461 else {
1462 context_set_address_root(context, virt_to_phys(pgd));
1463 context_set_address_width(context, iommu->agaw);
1464 }
1465
1466 context_set_translation_type(context, translation);
1467 context_set_fault_enable(context);
1468 context_set_present(context);
1469 domain_flush_cache(domain, context, sizeof(*context));
1470
1471 /*
1472 * It's a non-present to present mapping. If hardware doesn't cache
1473 * non-present entry we only need to flush the write-buffer. If the
1474 * _does_ cache non-present entries, then it does so in the special
1475 * domain #0, which we have to flush:
1476 */
1477 if (cap_caching_mode(iommu->cap)) {
1478 iommu->flush.flush_context(iommu, 0,
1479 (((u16)bus) << 8) | devfn,
1480 DMA_CCMD_MASK_NOBIT,
1481 DMA_CCMD_DEVICE_INVL);
1482 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1483 } else {
1484 iommu_flush_write_buffer(iommu);
1485 }
1486 iommu_enable_dev_iotlb(info);
1487 spin_unlock_irqrestore(&iommu->lock, flags);
1488
1489 spin_lock_irqsave(&domain->iommu_lock, flags);
1490 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1491 domain->iommu_count++;
1492 domain_update_iommu_cap(domain);
1493 }
1494 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1495 return 0;
1496 }
1497
1498 static int
1499 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1500 int translation)
1501 {
1502 int ret;
1503 struct pci_dev *tmp, *parent;
1504
1505 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1506 pdev->bus->number, pdev->devfn,
1507 translation);
1508 if (ret)
1509 return ret;
1510
1511 /* dependent device mapping */
1512 tmp = pci_find_upstream_pcie_bridge(pdev);
1513 if (!tmp)
1514 return 0;
1515 /* Secondary interface's bus number and devfn 0 */
1516 parent = pdev->bus->self;
1517 while (parent != tmp) {
1518 ret = domain_context_mapping_one(domain,
1519 pci_domain_nr(parent->bus),
1520 parent->bus->number,
1521 parent->devfn, translation);
1522 if (ret)
1523 return ret;
1524 parent = parent->bus->self;
1525 }
1526 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1527 return domain_context_mapping_one(domain,
1528 pci_domain_nr(tmp->subordinate),
1529 tmp->subordinate->number, 0,
1530 translation);
1531 else /* this is a legacy PCI bridge */
1532 return domain_context_mapping_one(domain,
1533 pci_domain_nr(tmp->bus),
1534 tmp->bus->number,
1535 tmp->devfn,
1536 translation);
1537 }
1538
1539 static int domain_context_mapped(struct pci_dev *pdev)
1540 {
1541 int ret;
1542 struct pci_dev *tmp, *parent;
1543 struct intel_iommu *iommu;
1544
1545 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1546 pdev->devfn);
1547 if (!iommu)
1548 return -ENODEV;
1549
1550 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1551 if (!ret)
1552 return ret;
1553 /* dependent device mapping */
1554 tmp = pci_find_upstream_pcie_bridge(pdev);
1555 if (!tmp)
1556 return ret;
1557 /* Secondary interface's bus number and devfn 0 */
1558 parent = pdev->bus->self;
1559 while (parent != tmp) {
1560 ret = device_context_mapped(iommu, parent->bus->number,
1561 parent->devfn);
1562 if (!ret)
1563 return ret;
1564 parent = parent->bus->self;
1565 }
1566 if (tmp->is_pcie)
1567 return device_context_mapped(iommu, tmp->subordinate->number,
1568 0);
1569 else
1570 return device_context_mapped(iommu, tmp->bus->number,
1571 tmp->devfn);
1572 }
1573
1574 static int
1575 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1576 u64 hpa, size_t size, int prot)
1577 {
1578 u64 start_pfn, end_pfn;
1579 struct dma_pte *pte;
1580 int index;
1581 int addr_width = agaw_to_width(domain->agaw);
1582
1583 hpa &= (((u64)1) << addr_width) - 1;
1584
1585 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1586 return -EINVAL;
1587 iova &= PAGE_MASK;
1588 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1589 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1590 index = 0;
1591 while (start_pfn < end_pfn) {
1592 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1593 if (!pte)
1594 return -ENOMEM;
1595 /* We don't need lock here, nobody else
1596 * touches the iova range
1597 */
1598 BUG_ON(dma_pte_addr(pte));
1599 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1600 dma_set_pte_prot(pte, prot);
1601 if (prot & DMA_PTE_SNP)
1602 dma_set_pte_snp(pte);
1603 domain_flush_cache(domain, pte, sizeof(*pte));
1604 start_pfn++;
1605 index++;
1606 }
1607 return 0;
1608 }
1609
1610 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1611 {
1612 if (!iommu)
1613 return;
1614
1615 clear_context_table(iommu, bus, devfn);
1616 iommu->flush.flush_context(iommu, 0, 0, 0,
1617 DMA_CCMD_GLOBAL_INVL);
1618 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1619 }
1620
1621 static void domain_remove_dev_info(struct dmar_domain *domain)
1622 {
1623 struct device_domain_info *info;
1624 unsigned long flags;
1625 struct intel_iommu *iommu;
1626
1627 spin_lock_irqsave(&device_domain_lock, flags);
1628 while (!list_empty(&domain->devices)) {
1629 info = list_entry(domain->devices.next,
1630 struct device_domain_info, link);
1631 list_del(&info->link);
1632 list_del(&info->global);
1633 if (info->dev)
1634 info->dev->dev.archdata.iommu = NULL;
1635 spin_unlock_irqrestore(&device_domain_lock, flags);
1636
1637 iommu_disable_dev_iotlb(info);
1638 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1639 iommu_detach_dev(iommu, info->bus, info->devfn);
1640 free_devinfo_mem(info);
1641
1642 spin_lock_irqsave(&device_domain_lock, flags);
1643 }
1644 spin_unlock_irqrestore(&device_domain_lock, flags);
1645 }
1646
1647 /*
1648 * find_domain
1649 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1650 */
1651 static struct dmar_domain *
1652 find_domain(struct pci_dev *pdev)
1653 {
1654 struct device_domain_info *info;
1655
1656 /* No lock here, assumes no domain exit in normal case */
1657 info = pdev->dev.archdata.iommu;
1658 if (info)
1659 return info->domain;
1660 return NULL;
1661 }
1662
1663 /* domain is initialized */
1664 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1665 {
1666 struct dmar_domain *domain, *found = NULL;
1667 struct intel_iommu *iommu;
1668 struct dmar_drhd_unit *drhd;
1669 struct device_domain_info *info, *tmp;
1670 struct pci_dev *dev_tmp;
1671 unsigned long flags;
1672 int bus = 0, devfn = 0;
1673 int segment;
1674
1675 domain = find_domain(pdev);
1676 if (domain)
1677 return domain;
1678
1679 segment = pci_domain_nr(pdev->bus);
1680
1681 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1682 if (dev_tmp) {
1683 if (dev_tmp->is_pcie) {
1684 bus = dev_tmp->subordinate->number;
1685 devfn = 0;
1686 } else {
1687 bus = dev_tmp->bus->number;
1688 devfn = dev_tmp->devfn;
1689 }
1690 spin_lock_irqsave(&device_domain_lock, flags);
1691 list_for_each_entry(info, &device_domain_list, global) {
1692 if (info->segment == segment &&
1693 info->bus == bus && info->devfn == devfn) {
1694 found = info->domain;
1695 break;
1696 }
1697 }
1698 spin_unlock_irqrestore(&device_domain_lock, flags);
1699 /* pcie-pci bridge already has a domain, uses it */
1700 if (found) {
1701 domain = found;
1702 goto found_domain;
1703 }
1704 }
1705
1706 /* Allocate new domain for the device */
1707 drhd = dmar_find_matched_drhd_unit(pdev);
1708 if (!drhd) {
1709 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1710 pci_name(pdev));
1711 return NULL;
1712 }
1713 iommu = drhd->iommu;
1714
1715 domain = iommu_alloc_domain(iommu);
1716 if (!domain)
1717 goto error;
1718
1719 if (domain_init(domain, gaw)) {
1720 domain_exit(domain);
1721 goto error;
1722 }
1723
1724 /* register pcie-to-pci device */
1725 if (dev_tmp) {
1726 info = alloc_devinfo_mem();
1727 if (!info) {
1728 domain_exit(domain);
1729 goto error;
1730 }
1731 info->segment = segment;
1732 info->bus = bus;
1733 info->devfn = devfn;
1734 info->dev = NULL;
1735 info->domain = domain;
1736 /* This domain is shared by devices under p2p bridge */
1737 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1738
1739 /* pcie-to-pci bridge already has a domain, uses it */
1740 found = NULL;
1741 spin_lock_irqsave(&device_domain_lock, flags);
1742 list_for_each_entry(tmp, &device_domain_list, global) {
1743 if (tmp->segment == segment &&
1744 tmp->bus == bus && tmp->devfn == devfn) {
1745 found = tmp->domain;
1746 break;
1747 }
1748 }
1749 if (found) {
1750 free_devinfo_mem(info);
1751 domain_exit(domain);
1752 domain = found;
1753 } else {
1754 list_add(&info->link, &domain->devices);
1755 list_add(&info->global, &device_domain_list);
1756 }
1757 spin_unlock_irqrestore(&device_domain_lock, flags);
1758 }
1759
1760 found_domain:
1761 info = alloc_devinfo_mem();
1762 if (!info)
1763 goto error;
1764 info->segment = segment;
1765 info->bus = pdev->bus->number;
1766 info->devfn = pdev->devfn;
1767 info->dev = pdev;
1768 info->domain = domain;
1769 spin_lock_irqsave(&device_domain_lock, flags);
1770 /* somebody is fast */
1771 found = find_domain(pdev);
1772 if (found != NULL) {
1773 spin_unlock_irqrestore(&device_domain_lock, flags);
1774 if (found != domain) {
1775 domain_exit(domain);
1776 domain = found;
1777 }
1778 free_devinfo_mem(info);
1779 return domain;
1780 }
1781 list_add(&info->link, &domain->devices);
1782 list_add(&info->global, &device_domain_list);
1783 pdev->dev.archdata.iommu = info;
1784 spin_unlock_irqrestore(&device_domain_lock, flags);
1785 return domain;
1786 error:
1787 /* recheck it here, maybe others set it */
1788 return find_domain(pdev);
1789 }
1790
1791 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1792 unsigned long long start,
1793 unsigned long long end)
1794 {
1795 struct dmar_domain *domain;
1796 unsigned long size;
1797 unsigned long long base;
1798 int ret;
1799
1800 printk(KERN_INFO
1801 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1802 pci_name(pdev), start, end);
1803 /* page table init */
1804 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1805 if (!domain)
1806 return -ENOMEM;
1807
1808 /* The address might not be aligned */
1809 base = start & PAGE_MASK;
1810 size = end - base;
1811 size = PAGE_ALIGN(size);
1812 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1813 IOVA_PFN(base + size) - 1)) {
1814 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1815 ret = -ENOMEM;
1816 goto error;
1817 }
1818
1819 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1820 size, base, pci_name(pdev));
1821 /*
1822 * RMRR range might have overlap with physical memory range,
1823 * clear it first
1824 */
1825 dma_pte_clear_range(domain, base, base + size);
1826
1827 ret = domain_page_mapping(domain, base, base, size,
1828 DMA_PTE_READ|DMA_PTE_WRITE);
1829 if (ret)
1830 goto error;
1831
1832 /* context entry init */
1833 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1834 if (!ret)
1835 return 0;
1836 error:
1837 domain_exit(domain);
1838 return ret;
1839
1840 }
1841
1842 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1843 struct pci_dev *pdev)
1844 {
1845 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1846 return 0;
1847 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1848 rmrr->end_address + 1);
1849 }
1850
1851 #ifdef CONFIG_DMAR_GFX_WA
1852 struct iommu_prepare_data {
1853 struct pci_dev *pdev;
1854 int ret;
1855 };
1856
1857 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1858 unsigned long end_pfn, void *datax)
1859 {
1860 struct iommu_prepare_data *data;
1861
1862 data = (struct iommu_prepare_data *)datax;
1863
1864 data->ret = iommu_prepare_identity_map(data->pdev,
1865 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1866 return data->ret;
1867
1868 }
1869
1870 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1871 {
1872 int nid;
1873 struct iommu_prepare_data data;
1874
1875 data.pdev = pdev;
1876 data.ret = 0;
1877
1878 for_each_online_node(nid) {
1879 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1880 if (data.ret)
1881 return data.ret;
1882 }
1883 return data.ret;
1884 }
1885
1886 static void __init iommu_prepare_gfx_mapping(void)
1887 {
1888 struct pci_dev *pdev = NULL;
1889 int ret;
1890
1891 for_each_pci_dev(pdev) {
1892 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1893 !IS_GFX_DEVICE(pdev))
1894 continue;
1895 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1896 pci_name(pdev));
1897 ret = iommu_prepare_with_active_regions(pdev);
1898 if (ret)
1899 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1900 }
1901 }
1902 #else /* !CONFIG_DMAR_GFX_WA */
1903 static inline void iommu_prepare_gfx_mapping(void)
1904 {
1905 return;
1906 }
1907 #endif
1908
1909 #ifdef CONFIG_DMAR_FLOPPY_WA
1910 static inline void iommu_prepare_isa(void)
1911 {
1912 struct pci_dev *pdev;
1913 int ret;
1914
1915 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1916 if (!pdev)
1917 return;
1918
1919 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1920 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1921
1922 if (ret)
1923 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1924 "floppy might not work\n");
1925
1926 }
1927 #else
1928 static inline void iommu_prepare_isa(void)
1929 {
1930 return;
1931 }
1932 #endif /* !CONFIG_DMAR_FLPY_WA */
1933
1934 /* Initialize each context entry as pass through.*/
1935 static int __init init_context_pass_through(void)
1936 {
1937 struct pci_dev *pdev = NULL;
1938 struct dmar_domain *domain;
1939 int ret;
1940
1941 for_each_pci_dev(pdev) {
1942 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1943 ret = domain_context_mapping(domain, pdev,
1944 CONTEXT_TT_PASS_THROUGH);
1945 if (ret)
1946 return ret;
1947 }
1948 return 0;
1949 }
1950
1951 static int __init init_dmars(void)
1952 {
1953 struct dmar_drhd_unit *drhd;
1954 struct dmar_rmrr_unit *rmrr;
1955 struct pci_dev *pdev;
1956 struct intel_iommu *iommu;
1957 int i, ret;
1958 int pass_through = 1;
1959
1960 /*
1961 * for each drhd
1962 * allocate root
1963 * initialize and program root entry to not present
1964 * endfor
1965 */
1966 for_each_drhd_unit(drhd) {
1967 g_num_of_iommus++;
1968 /*
1969 * lock not needed as this is only incremented in the single
1970 * threaded kernel __init code path all other access are read
1971 * only
1972 */
1973 }
1974
1975 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1976 GFP_KERNEL);
1977 if (!g_iommus) {
1978 printk(KERN_ERR "Allocating global iommu array failed\n");
1979 ret = -ENOMEM;
1980 goto error;
1981 }
1982
1983 deferred_flush = kzalloc(g_num_of_iommus *
1984 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1985 if (!deferred_flush) {
1986 kfree(g_iommus);
1987 ret = -ENOMEM;
1988 goto error;
1989 }
1990
1991 for_each_drhd_unit(drhd) {
1992 if (drhd->ignored)
1993 continue;
1994
1995 iommu = drhd->iommu;
1996 g_iommus[iommu->seq_id] = iommu;
1997
1998 ret = iommu_init_domains(iommu);
1999 if (ret)
2000 goto error;
2001
2002 /*
2003 * TBD:
2004 * we could share the same root & context tables
2005 * amoung all IOMMU's. Need to Split it later.
2006 */
2007 ret = iommu_alloc_root_entry(iommu);
2008 if (ret) {
2009 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2010 goto error;
2011 }
2012 if (!ecap_pass_through(iommu->ecap))
2013 pass_through = 0;
2014 }
2015 if (iommu_pass_through)
2016 if (!pass_through) {
2017 printk(KERN_INFO
2018 "Pass Through is not supported by hardware.\n");
2019 iommu_pass_through = 0;
2020 }
2021
2022 /*
2023 * Start from the sane iommu hardware state.
2024 */
2025 for_each_drhd_unit(drhd) {
2026 if (drhd->ignored)
2027 continue;
2028
2029 iommu = drhd->iommu;
2030
2031 /*
2032 * If the queued invalidation is already initialized by us
2033 * (for example, while enabling interrupt-remapping) then
2034 * we got the things already rolling from a sane state.
2035 */
2036 if (iommu->qi)
2037 continue;
2038
2039 /*
2040 * Clear any previous faults.
2041 */
2042 dmar_fault(-1, iommu);
2043 /*
2044 * Disable queued invalidation if supported and already enabled
2045 * before OS handover.
2046 */
2047 dmar_disable_qi(iommu);
2048 }
2049
2050 for_each_drhd_unit(drhd) {
2051 if (drhd->ignored)
2052 continue;
2053
2054 iommu = drhd->iommu;
2055
2056 if (dmar_enable_qi(iommu)) {
2057 /*
2058 * Queued Invalidate not enabled, use Register Based
2059 * Invalidate
2060 */
2061 iommu->flush.flush_context = __iommu_flush_context;
2062 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2063 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2064 "invalidation\n",
2065 (unsigned long long)drhd->reg_base_addr);
2066 } else {
2067 iommu->flush.flush_context = qi_flush_context;
2068 iommu->flush.flush_iotlb = qi_flush_iotlb;
2069 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2070 "invalidation\n",
2071 (unsigned long long)drhd->reg_base_addr);
2072 }
2073 }
2074
2075 #ifdef CONFIG_INTR_REMAP
2076 if (!intr_remapping_enabled) {
2077 ret = enable_intr_remapping(0);
2078 if (ret)
2079 printk(KERN_ERR
2080 "IOMMU: enable interrupt remapping failed\n");
2081 }
2082 #endif
2083 /*
2084 * If pass through is set and enabled, context entries of all pci
2085 * devices are intialized by pass through translation type.
2086 */
2087 if (iommu_pass_through) {
2088 ret = init_context_pass_through();
2089 if (ret) {
2090 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2091 iommu_pass_through = 0;
2092 }
2093 }
2094
2095 /*
2096 * If pass through is not set or not enabled, setup context entries for
2097 * identity mappings for rmrr, gfx, and isa.
2098 */
2099 if (!iommu_pass_through) {
2100 /*
2101 * For each rmrr
2102 * for each dev attached to rmrr
2103 * do
2104 * locate drhd for dev, alloc domain for dev
2105 * allocate free domain
2106 * allocate page table entries for rmrr
2107 * if context not allocated for bus
2108 * allocate and init context
2109 * set present in root table for this bus
2110 * init context with domain, translation etc
2111 * endfor
2112 * endfor
2113 */
2114 for_each_rmrr_units(rmrr) {
2115 for (i = 0; i < rmrr->devices_cnt; i++) {
2116 pdev = rmrr->devices[i];
2117 /*
2118 * some BIOS lists non-exist devices in DMAR
2119 * table.
2120 */
2121 if (!pdev)
2122 continue;
2123 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2124 if (ret)
2125 printk(KERN_ERR
2126 "IOMMU: mapping reserved region failed\n");
2127 }
2128 }
2129
2130 iommu_prepare_gfx_mapping();
2131
2132 iommu_prepare_isa();
2133 }
2134
2135 /*
2136 * for each drhd
2137 * enable fault log
2138 * global invalidate context cache
2139 * global invalidate iotlb
2140 * enable translation
2141 */
2142 for_each_drhd_unit(drhd) {
2143 if (drhd->ignored)
2144 continue;
2145 iommu = drhd->iommu;
2146
2147 iommu_flush_write_buffer(iommu);
2148
2149 ret = dmar_set_interrupt(iommu);
2150 if (ret)
2151 goto error;
2152
2153 iommu_set_root_entry(iommu);
2154
2155 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2156 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2157 iommu_disable_protect_mem_regions(iommu);
2158
2159 ret = iommu_enable_translation(iommu);
2160 if (ret)
2161 goto error;
2162 }
2163
2164 return 0;
2165 error:
2166 for_each_drhd_unit(drhd) {
2167 if (drhd->ignored)
2168 continue;
2169 iommu = drhd->iommu;
2170 free_iommu(iommu);
2171 }
2172 kfree(g_iommus);
2173 return ret;
2174 }
2175
2176 static inline u64 aligned_size(u64 host_addr, size_t size)
2177 {
2178 u64 addr;
2179 addr = (host_addr & (~PAGE_MASK)) + size;
2180 return PAGE_ALIGN(addr);
2181 }
2182
2183 struct iova *
2184 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2185 {
2186 struct iova *piova;
2187
2188 /* Make sure it's in range */
2189 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2190 if (!size || (IOVA_START_ADDR + size > end))
2191 return NULL;
2192
2193 piova = alloc_iova(&domain->iovad,
2194 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2195 return piova;
2196 }
2197
2198 static struct iova *
2199 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2200 size_t size, u64 dma_mask)
2201 {
2202 struct pci_dev *pdev = to_pci_dev(dev);
2203 struct iova *iova = NULL;
2204
2205 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2206 iova = iommu_alloc_iova(domain, size, dma_mask);
2207 else {
2208 /*
2209 * First try to allocate an io virtual address in
2210 * DMA_BIT_MASK(32) and if that fails then try allocating
2211 * from higher range
2212 */
2213 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2214 if (!iova)
2215 iova = iommu_alloc_iova(domain, size, dma_mask);
2216 }
2217
2218 if (!iova) {
2219 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2220 return NULL;
2221 }
2222
2223 return iova;
2224 }
2225
2226 static struct dmar_domain *
2227 get_valid_domain_for_dev(struct pci_dev *pdev)
2228 {
2229 struct dmar_domain *domain;
2230 int ret;
2231
2232 domain = get_domain_for_dev(pdev,
2233 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2234 if (!domain) {
2235 printk(KERN_ERR
2236 "Allocating domain for %s failed", pci_name(pdev));
2237 return NULL;
2238 }
2239
2240 /* make sure context mapping is ok */
2241 if (unlikely(!domain_context_mapped(pdev))) {
2242 ret = domain_context_mapping(domain, pdev,
2243 CONTEXT_TT_MULTI_LEVEL);
2244 if (ret) {
2245 printk(KERN_ERR
2246 "Domain context map for %s failed",
2247 pci_name(pdev));
2248 return NULL;
2249 }
2250 }
2251
2252 return domain;
2253 }
2254
2255 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2256 size_t size, int dir, u64 dma_mask)
2257 {
2258 struct pci_dev *pdev = to_pci_dev(hwdev);
2259 struct dmar_domain *domain;
2260 phys_addr_t start_paddr;
2261 struct iova *iova;
2262 int prot = 0;
2263 int ret;
2264 struct intel_iommu *iommu;
2265
2266 BUG_ON(dir == DMA_NONE);
2267 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2268 return paddr;
2269
2270 domain = get_valid_domain_for_dev(pdev);
2271 if (!domain)
2272 return 0;
2273
2274 iommu = domain_get_iommu(domain);
2275 size = aligned_size((u64)paddr, size);
2276
2277 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2278 if (!iova)
2279 goto error;
2280
2281 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2282
2283 /*
2284 * Check if DMAR supports zero-length reads on write only
2285 * mappings..
2286 */
2287 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2288 !cap_zlr(iommu->cap))
2289 prot |= DMA_PTE_READ;
2290 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2291 prot |= DMA_PTE_WRITE;
2292 /*
2293 * paddr - (paddr + size) might be partial page, we should map the whole
2294 * page. Note: if two part of one page are separately mapped, we
2295 * might have two guest_addr mapping to the same host paddr, but this
2296 * is not a big problem
2297 */
2298 ret = domain_page_mapping(domain, start_paddr,
2299 ((u64)paddr) & PAGE_MASK, size, prot);
2300 if (ret)
2301 goto error;
2302
2303 /* it's a non-present to present mapping. Only flush if caching mode */
2304 if (cap_caching_mode(iommu->cap))
2305 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2306 size >> VTD_PAGE_SHIFT);
2307 else
2308 iommu_flush_write_buffer(iommu);
2309
2310 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2311
2312 error:
2313 if (iova)
2314 __free_iova(&domain->iovad, iova);
2315 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2316 pci_name(pdev), size, (unsigned long long)paddr, dir);
2317 return 0;
2318 }
2319
2320 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2321 unsigned long offset, size_t size,
2322 enum dma_data_direction dir,
2323 struct dma_attrs *attrs)
2324 {
2325 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2326 dir, to_pci_dev(dev)->dma_mask);
2327 }
2328
2329 static void flush_unmaps(void)
2330 {
2331 int i, j;
2332
2333 timer_on = 0;
2334
2335 /* just flush them all */
2336 for (i = 0; i < g_num_of_iommus; i++) {
2337 struct intel_iommu *iommu = g_iommus[i];
2338 if (!iommu)
2339 continue;
2340
2341 if (!deferred_flush[i].next)
2342 continue;
2343
2344 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2345 DMA_TLB_GLOBAL_FLUSH);
2346 for (j = 0; j < deferred_flush[i].next; j++) {
2347 unsigned long mask;
2348 struct iova *iova = deferred_flush[i].iova[j];
2349
2350 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2351 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2352 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2353 iova->pfn_lo << PAGE_SHIFT, mask);
2354 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2355 }
2356 deferred_flush[i].next = 0;
2357 }
2358
2359 list_size = 0;
2360 }
2361
2362 static void flush_unmaps_timeout(unsigned long data)
2363 {
2364 unsigned long flags;
2365
2366 spin_lock_irqsave(&async_umap_flush_lock, flags);
2367 flush_unmaps();
2368 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2369 }
2370
2371 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2372 {
2373 unsigned long flags;
2374 int next, iommu_id;
2375 struct intel_iommu *iommu;
2376
2377 spin_lock_irqsave(&async_umap_flush_lock, flags);
2378 if (list_size == HIGH_WATER_MARK)
2379 flush_unmaps();
2380
2381 iommu = domain_get_iommu(dom);
2382 iommu_id = iommu->seq_id;
2383
2384 next = deferred_flush[iommu_id].next;
2385 deferred_flush[iommu_id].domain[next] = dom;
2386 deferred_flush[iommu_id].iova[next] = iova;
2387 deferred_flush[iommu_id].next++;
2388
2389 if (!timer_on) {
2390 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2391 timer_on = 1;
2392 }
2393 list_size++;
2394 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2395 }
2396
2397 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2398 size_t size, enum dma_data_direction dir,
2399 struct dma_attrs *attrs)
2400 {
2401 struct pci_dev *pdev = to_pci_dev(dev);
2402 struct dmar_domain *domain;
2403 unsigned long start_addr;
2404 struct iova *iova;
2405 struct intel_iommu *iommu;
2406
2407 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2408 return;
2409 domain = find_domain(pdev);
2410 BUG_ON(!domain);
2411
2412 iommu = domain_get_iommu(domain);
2413
2414 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2415 if (!iova)
2416 return;
2417
2418 start_addr = iova->pfn_lo << PAGE_SHIFT;
2419 size = aligned_size((u64)dev_addr, size);
2420
2421 pr_debug("Device %s unmapping: %zx@%llx\n",
2422 pci_name(pdev), size, (unsigned long long)start_addr);
2423
2424 /* clear the whole page */
2425 dma_pte_clear_range(domain, start_addr, start_addr + size);
2426 /* free page tables */
2427 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2428 if (intel_iommu_strict) {
2429 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2430 size >> VTD_PAGE_SHIFT);
2431 /* free iova */
2432 __free_iova(&domain->iovad, iova);
2433 } else {
2434 add_unmap(domain, iova);
2435 /*
2436 * queue up the release of the unmap to save the 1/6th of the
2437 * cpu used up by the iotlb flush operation...
2438 */
2439 }
2440 }
2441
2442 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2443 int dir)
2444 {
2445 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2446 }
2447
2448 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2449 dma_addr_t *dma_handle, gfp_t flags)
2450 {
2451 void *vaddr;
2452 int order;
2453
2454 size = PAGE_ALIGN(size);
2455 order = get_order(size);
2456 flags &= ~(GFP_DMA | GFP_DMA32);
2457
2458 vaddr = (void *)__get_free_pages(flags, order);
2459 if (!vaddr)
2460 return NULL;
2461 memset(vaddr, 0, size);
2462
2463 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2464 DMA_BIDIRECTIONAL,
2465 hwdev->coherent_dma_mask);
2466 if (*dma_handle)
2467 return vaddr;
2468 free_pages((unsigned long)vaddr, order);
2469 return NULL;
2470 }
2471
2472 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2473 dma_addr_t dma_handle)
2474 {
2475 int order;
2476
2477 size = PAGE_ALIGN(size);
2478 order = get_order(size);
2479
2480 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2481 free_pages((unsigned long)vaddr, order);
2482 }
2483
2484 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2485 int nelems, enum dma_data_direction dir,
2486 struct dma_attrs *attrs)
2487 {
2488 int i;
2489 struct pci_dev *pdev = to_pci_dev(hwdev);
2490 struct dmar_domain *domain;
2491 unsigned long start_addr;
2492 struct iova *iova;
2493 size_t size = 0;
2494 phys_addr_t addr;
2495 struct scatterlist *sg;
2496 struct intel_iommu *iommu;
2497
2498 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2499 return;
2500
2501 domain = find_domain(pdev);
2502 BUG_ON(!domain);
2503
2504 iommu = domain_get_iommu(domain);
2505
2506 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2507 if (!iova)
2508 return;
2509 for_each_sg(sglist, sg, nelems, i) {
2510 addr = page_to_phys(sg_page(sg)) + sg->offset;
2511 size += aligned_size((u64)addr, sg->length);
2512 }
2513
2514 start_addr = iova->pfn_lo << PAGE_SHIFT;
2515
2516 /* clear the whole page */
2517 dma_pte_clear_range(domain, start_addr, start_addr + size);
2518 /* free page tables */
2519 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2520
2521 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2522 size >> VTD_PAGE_SHIFT);
2523
2524 /* free iova */
2525 __free_iova(&domain->iovad, iova);
2526 }
2527
2528 static int intel_nontranslate_map_sg(struct device *hddev,
2529 struct scatterlist *sglist, int nelems, int dir)
2530 {
2531 int i;
2532 struct scatterlist *sg;
2533
2534 for_each_sg(sglist, sg, nelems, i) {
2535 BUG_ON(!sg_page(sg));
2536 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2537 sg->dma_length = sg->length;
2538 }
2539 return nelems;
2540 }
2541
2542 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2543 enum dma_data_direction dir, struct dma_attrs *attrs)
2544 {
2545 phys_addr_t addr;
2546 int i;
2547 struct pci_dev *pdev = to_pci_dev(hwdev);
2548 struct dmar_domain *domain;
2549 size_t size = 0;
2550 int prot = 0;
2551 size_t offset = 0;
2552 struct iova *iova = NULL;
2553 int ret;
2554 struct scatterlist *sg;
2555 unsigned long start_addr;
2556 struct intel_iommu *iommu;
2557
2558 BUG_ON(dir == DMA_NONE);
2559 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2560 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2561
2562 domain = get_valid_domain_for_dev(pdev);
2563 if (!domain)
2564 return 0;
2565
2566 iommu = domain_get_iommu(domain);
2567
2568 for_each_sg(sglist, sg, nelems, i) {
2569 addr = page_to_phys(sg_page(sg)) + sg->offset;
2570 size += aligned_size((u64)addr, sg->length);
2571 }
2572
2573 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2574 if (!iova) {
2575 sglist->dma_length = 0;
2576 return 0;
2577 }
2578
2579 /*
2580 * Check if DMAR supports zero-length reads on write only
2581 * mappings..
2582 */
2583 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2584 !cap_zlr(iommu->cap))
2585 prot |= DMA_PTE_READ;
2586 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2587 prot |= DMA_PTE_WRITE;
2588
2589 start_addr = iova->pfn_lo << PAGE_SHIFT;
2590 offset = 0;
2591 for_each_sg(sglist, sg, nelems, i) {
2592 addr = page_to_phys(sg_page(sg)) + sg->offset;
2593 size = aligned_size((u64)addr, sg->length);
2594 ret = domain_page_mapping(domain, start_addr + offset,
2595 ((u64)addr) & PAGE_MASK,
2596 size, prot);
2597 if (ret) {
2598 /* clear the page */
2599 dma_pte_clear_range(domain, start_addr,
2600 start_addr + offset);
2601 /* free page tables */
2602 dma_pte_free_pagetable(domain, start_addr,
2603 start_addr + offset);
2604 /* free iova */
2605 __free_iova(&domain->iovad, iova);
2606 return 0;
2607 }
2608 sg->dma_address = start_addr + offset +
2609 ((u64)addr & (~PAGE_MASK));
2610 sg->dma_length = sg->length;
2611 offset += size;
2612 }
2613
2614 /* it's a non-present to present mapping. Only flush if caching mode */
2615 if (cap_caching_mode(iommu->cap))
2616 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2617 offset >> VTD_PAGE_SHIFT);
2618 else
2619 iommu_flush_write_buffer(iommu);
2620
2621 return nelems;
2622 }
2623
2624 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2625 {
2626 return !dma_addr;
2627 }
2628
2629 struct dma_map_ops intel_dma_ops = {
2630 .alloc_coherent = intel_alloc_coherent,
2631 .free_coherent = intel_free_coherent,
2632 .map_sg = intel_map_sg,
2633 .unmap_sg = intel_unmap_sg,
2634 .map_page = intel_map_page,
2635 .unmap_page = intel_unmap_page,
2636 .mapping_error = intel_mapping_error,
2637 };
2638
2639 static inline int iommu_domain_cache_init(void)
2640 {
2641 int ret = 0;
2642
2643 iommu_domain_cache = kmem_cache_create("iommu_domain",
2644 sizeof(struct dmar_domain),
2645 0,
2646 SLAB_HWCACHE_ALIGN,
2647
2648 NULL);
2649 if (!iommu_domain_cache) {
2650 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2651 ret = -ENOMEM;
2652 }
2653
2654 return ret;
2655 }
2656
2657 static inline int iommu_devinfo_cache_init(void)
2658 {
2659 int ret = 0;
2660
2661 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2662 sizeof(struct device_domain_info),
2663 0,
2664 SLAB_HWCACHE_ALIGN,
2665 NULL);
2666 if (!iommu_devinfo_cache) {
2667 printk(KERN_ERR "Couldn't create devinfo cache\n");
2668 ret = -ENOMEM;
2669 }
2670
2671 return ret;
2672 }
2673
2674 static inline int iommu_iova_cache_init(void)
2675 {
2676 int ret = 0;
2677
2678 iommu_iova_cache = kmem_cache_create("iommu_iova",
2679 sizeof(struct iova),
2680 0,
2681 SLAB_HWCACHE_ALIGN,
2682 NULL);
2683 if (!iommu_iova_cache) {
2684 printk(KERN_ERR "Couldn't create iova cache\n");
2685 ret = -ENOMEM;
2686 }
2687
2688 return ret;
2689 }
2690
2691 static int __init iommu_init_mempool(void)
2692 {
2693 int ret;
2694 ret = iommu_iova_cache_init();
2695 if (ret)
2696 return ret;
2697
2698 ret = iommu_domain_cache_init();
2699 if (ret)
2700 goto domain_error;
2701
2702 ret = iommu_devinfo_cache_init();
2703 if (!ret)
2704 return ret;
2705
2706 kmem_cache_destroy(iommu_domain_cache);
2707 domain_error:
2708 kmem_cache_destroy(iommu_iova_cache);
2709
2710 return -ENOMEM;
2711 }
2712
2713 static void __init iommu_exit_mempool(void)
2714 {
2715 kmem_cache_destroy(iommu_devinfo_cache);
2716 kmem_cache_destroy(iommu_domain_cache);
2717 kmem_cache_destroy(iommu_iova_cache);
2718
2719 }
2720
2721 static void __init init_no_remapping_devices(void)
2722 {
2723 struct dmar_drhd_unit *drhd;
2724
2725 for_each_drhd_unit(drhd) {
2726 if (!drhd->include_all) {
2727 int i;
2728 for (i = 0; i < drhd->devices_cnt; i++)
2729 if (drhd->devices[i] != NULL)
2730 break;
2731 /* ignore DMAR unit if no pci devices exist */
2732 if (i == drhd->devices_cnt)
2733 drhd->ignored = 1;
2734 }
2735 }
2736
2737 if (dmar_map_gfx)
2738 return;
2739
2740 for_each_drhd_unit(drhd) {
2741 int i;
2742 if (drhd->ignored || drhd->include_all)
2743 continue;
2744
2745 for (i = 0; i < drhd->devices_cnt; i++)
2746 if (drhd->devices[i] &&
2747 !IS_GFX_DEVICE(drhd->devices[i]))
2748 break;
2749
2750 if (i < drhd->devices_cnt)
2751 continue;
2752
2753 /* bypass IOMMU if it is just for gfx devices */
2754 drhd->ignored = 1;
2755 for (i = 0; i < drhd->devices_cnt; i++) {
2756 if (!drhd->devices[i])
2757 continue;
2758 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2759 }
2760 }
2761 }
2762
2763 #ifdef CONFIG_SUSPEND
2764 static int init_iommu_hw(void)
2765 {
2766 struct dmar_drhd_unit *drhd;
2767 struct intel_iommu *iommu = NULL;
2768
2769 for_each_active_iommu(iommu, drhd)
2770 if (iommu->qi)
2771 dmar_reenable_qi(iommu);
2772
2773 for_each_active_iommu(iommu, drhd) {
2774 iommu_flush_write_buffer(iommu);
2775
2776 iommu_set_root_entry(iommu);
2777
2778 iommu->flush.flush_context(iommu, 0, 0, 0,
2779 DMA_CCMD_GLOBAL_INVL);
2780 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2781 DMA_TLB_GLOBAL_FLUSH);
2782 iommu_disable_protect_mem_regions(iommu);
2783 iommu_enable_translation(iommu);
2784 }
2785
2786 return 0;
2787 }
2788
2789 static void iommu_flush_all(void)
2790 {
2791 struct dmar_drhd_unit *drhd;
2792 struct intel_iommu *iommu;
2793
2794 for_each_active_iommu(iommu, drhd) {
2795 iommu->flush.flush_context(iommu, 0, 0, 0,
2796 DMA_CCMD_GLOBAL_INVL);
2797 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2798 DMA_TLB_GLOBAL_FLUSH);
2799 }
2800 }
2801
2802 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2803 {
2804 struct dmar_drhd_unit *drhd;
2805 struct intel_iommu *iommu = NULL;
2806 unsigned long flag;
2807
2808 for_each_active_iommu(iommu, drhd) {
2809 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2810 GFP_ATOMIC);
2811 if (!iommu->iommu_state)
2812 goto nomem;
2813 }
2814
2815 iommu_flush_all();
2816
2817 for_each_active_iommu(iommu, drhd) {
2818 iommu_disable_translation(iommu);
2819
2820 spin_lock_irqsave(&iommu->register_lock, flag);
2821
2822 iommu->iommu_state[SR_DMAR_FECTL_REG] =
2823 readl(iommu->reg + DMAR_FECTL_REG);
2824 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2825 readl(iommu->reg + DMAR_FEDATA_REG);
2826 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2827 readl(iommu->reg + DMAR_FEADDR_REG);
2828 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2829 readl(iommu->reg + DMAR_FEUADDR_REG);
2830
2831 spin_unlock_irqrestore(&iommu->register_lock, flag);
2832 }
2833 return 0;
2834
2835 nomem:
2836 for_each_active_iommu(iommu, drhd)
2837 kfree(iommu->iommu_state);
2838
2839 return -ENOMEM;
2840 }
2841
2842 static int iommu_resume(struct sys_device *dev)
2843 {
2844 struct dmar_drhd_unit *drhd;
2845 struct intel_iommu *iommu = NULL;
2846 unsigned long flag;
2847
2848 if (init_iommu_hw()) {
2849 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2850 return -EIO;
2851 }
2852
2853 for_each_active_iommu(iommu, drhd) {
2854
2855 spin_lock_irqsave(&iommu->register_lock, flag);
2856
2857 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2858 iommu->reg + DMAR_FECTL_REG);
2859 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2860 iommu->reg + DMAR_FEDATA_REG);
2861 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2862 iommu->reg + DMAR_FEADDR_REG);
2863 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2864 iommu->reg + DMAR_FEUADDR_REG);
2865
2866 spin_unlock_irqrestore(&iommu->register_lock, flag);
2867 }
2868
2869 for_each_active_iommu(iommu, drhd)
2870 kfree(iommu->iommu_state);
2871
2872 return 0;
2873 }
2874
2875 static struct sysdev_class iommu_sysclass = {
2876 .name = "iommu",
2877 .resume = iommu_resume,
2878 .suspend = iommu_suspend,
2879 };
2880
2881 static struct sys_device device_iommu = {
2882 .cls = &iommu_sysclass,
2883 };
2884
2885 static int __init init_iommu_sysfs(void)
2886 {
2887 int error;
2888
2889 error = sysdev_class_register(&iommu_sysclass);
2890 if (error)
2891 return error;
2892
2893 error = sysdev_register(&device_iommu);
2894 if (error)
2895 sysdev_class_unregister(&iommu_sysclass);
2896
2897 return error;
2898 }
2899
2900 #else
2901 static int __init init_iommu_sysfs(void)
2902 {
2903 return 0;
2904 }
2905 #endif /* CONFIG_PM */
2906
2907 int __init intel_iommu_init(void)
2908 {
2909 int ret = 0;
2910
2911 if (dmar_table_init())
2912 return -ENODEV;
2913
2914 if (dmar_dev_scope_init())
2915 return -ENODEV;
2916
2917 /*
2918 * Check the need for DMA-remapping initialization now.
2919 * Above initialization will also be used by Interrupt-remapping.
2920 */
2921 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
2922 return -ENODEV;
2923
2924 iommu_init_mempool();
2925 dmar_init_reserved_ranges();
2926
2927 init_no_remapping_devices();
2928
2929 ret = init_dmars();
2930 if (ret) {
2931 printk(KERN_ERR "IOMMU: dmar init failed\n");
2932 put_iova_domain(&reserved_iova_list);
2933 iommu_exit_mempool();
2934 return ret;
2935 }
2936 printk(KERN_INFO
2937 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2938
2939 init_timer(&unmap_timer);
2940 force_iommu = 1;
2941
2942 if (!iommu_pass_through) {
2943 printk(KERN_INFO
2944 "Multi-level page-table translation for DMAR.\n");
2945 dma_ops = &intel_dma_ops;
2946 } else
2947 printk(KERN_INFO
2948 "DMAR: Pass through translation for DMAR.\n");
2949
2950 init_iommu_sysfs();
2951
2952 register_iommu(&intel_iommu_ops);
2953
2954 return 0;
2955 }
2956
2957 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2958 struct pci_dev *pdev)
2959 {
2960 struct device_domain_info *info;
2961 unsigned long flags;
2962
2963 info = alloc_devinfo_mem();
2964 if (!info)
2965 return -ENOMEM;
2966
2967 info->segment = pci_domain_nr(pdev->bus);
2968 info->bus = pdev->bus->number;
2969 info->devfn = pdev->devfn;
2970 info->dev = pdev;
2971 info->domain = domain;
2972
2973 spin_lock_irqsave(&device_domain_lock, flags);
2974 list_add(&info->link, &domain->devices);
2975 list_add(&info->global, &device_domain_list);
2976 pdev->dev.archdata.iommu = info;
2977 spin_unlock_irqrestore(&device_domain_lock, flags);
2978
2979 return 0;
2980 }
2981
2982 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
2983 struct pci_dev *pdev)
2984 {
2985 struct pci_dev *tmp, *parent;
2986
2987 if (!iommu || !pdev)
2988 return;
2989
2990 /* dependent device detach */
2991 tmp = pci_find_upstream_pcie_bridge(pdev);
2992 /* Secondary interface's bus number and devfn 0 */
2993 if (tmp) {
2994 parent = pdev->bus->self;
2995 while (parent != tmp) {
2996 iommu_detach_dev(iommu, parent->bus->number,
2997 parent->devfn);
2998 parent = parent->bus->self;
2999 }
3000 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3001 iommu_detach_dev(iommu,
3002 tmp->subordinate->number, 0);
3003 else /* this is a legacy PCI bridge */
3004 iommu_detach_dev(iommu, tmp->bus->number,
3005 tmp->devfn);
3006 }
3007 }
3008
3009 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
3010 struct pci_dev *pdev)
3011 {
3012 struct device_domain_info *info;
3013 struct intel_iommu *iommu;
3014 unsigned long flags;
3015 int found = 0;
3016 struct list_head *entry, *tmp;
3017
3018 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3019 pdev->devfn);
3020 if (!iommu)
3021 return;
3022
3023 spin_lock_irqsave(&device_domain_lock, flags);
3024 list_for_each_safe(entry, tmp, &domain->devices) {
3025 info = list_entry(entry, struct device_domain_info, link);
3026 /* No need to compare PCI domain; it has to be the same */
3027 if (info->bus == pdev->bus->number &&
3028 info->devfn == pdev->devfn) {
3029 list_del(&info->link);
3030 list_del(&info->global);
3031 if (info->dev)
3032 info->dev->dev.archdata.iommu = NULL;
3033 spin_unlock_irqrestore(&device_domain_lock, flags);
3034
3035 iommu_disable_dev_iotlb(info);
3036 iommu_detach_dev(iommu, info->bus, info->devfn);
3037 iommu_detach_dependent_devices(iommu, pdev);
3038 free_devinfo_mem(info);
3039
3040 spin_lock_irqsave(&device_domain_lock, flags);
3041
3042 if (found)
3043 break;
3044 else
3045 continue;
3046 }
3047
3048 /* if there is no other devices under the same iommu
3049 * owned by this domain, clear this iommu in iommu_bmp
3050 * update iommu count and coherency
3051 */
3052 if (iommu == device_to_iommu(info->segment, info->bus,
3053 info->devfn))
3054 found = 1;
3055 }
3056
3057 if (found == 0) {
3058 unsigned long tmp_flags;
3059 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3060 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3061 domain->iommu_count--;
3062 domain_update_iommu_cap(domain);
3063 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3064 }
3065
3066 spin_unlock_irqrestore(&device_domain_lock, flags);
3067 }
3068
3069 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3070 {
3071 struct device_domain_info *info;
3072 struct intel_iommu *iommu;
3073 unsigned long flags1, flags2;
3074
3075 spin_lock_irqsave(&device_domain_lock, flags1);
3076 while (!list_empty(&domain->devices)) {
3077 info = list_entry(domain->devices.next,
3078 struct device_domain_info, link);
3079 list_del(&info->link);
3080 list_del(&info->global);
3081 if (info->dev)
3082 info->dev->dev.archdata.iommu = NULL;
3083
3084 spin_unlock_irqrestore(&device_domain_lock, flags1);
3085
3086 iommu_disable_dev_iotlb(info);
3087 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3088 iommu_detach_dev(iommu, info->bus, info->devfn);
3089 iommu_detach_dependent_devices(iommu, info->dev);
3090
3091 /* clear this iommu in iommu_bmp, update iommu count
3092 * and capabilities
3093 */
3094 spin_lock_irqsave(&domain->iommu_lock, flags2);
3095 if (test_and_clear_bit(iommu->seq_id,
3096 &domain->iommu_bmp)) {
3097 domain->iommu_count--;
3098 domain_update_iommu_cap(domain);
3099 }
3100 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3101
3102 free_devinfo_mem(info);
3103 spin_lock_irqsave(&device_domain_lock, flags1);
3104 }
3105 spin_unlock_irqrestore(&device_domain_lock, flags1);
3106 }
3107
3108 /* domain id for virtual machine, it won't be set in context */
3109 static unsigned long vm_domid;
3110
3111 static int vm_domain_min_agaw(struct dmar_domain *domain)
3112 {
3113 int i;
3114 int min_agaw = domain->agaw;
3115
3116 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3117 for (; i < g_num_of_iommus; ) {
3118 if (min_agaw > g_iommus[i]->agaw)
3119 min_agaw = g_iommus[i]->agaw;
3120
3121 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3122 }
3123
3124 return min_agaw;
3125 }
3126
3127 static struct dmar_domain *iommu_alloc_vm_domain(void)
3128 {
3129 struct dmar_domain *domain;
3130
3131 domain = alloc_domain_mem();
3132 if (!domain)
3133 return NULL;
3134
3135 domain->id = vm_domid++;
3136 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3137 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3138
3139 return domain;
3140 }
3141
3142 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
3143 {
3144 int adjust_width;
3145
3146 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3147 spin_lock_init(&domain->mapping_lock);
3148 spin_lock_init(&domain->iommu_lock);
3149
3150 domain_reserve_special_ranges(domain);
3151
3152 /* calculate AGAW */
3153 domain->gaw = guest_width;
3154 adjust_width = guestwidth_to_adjustwidth(guest_width);
3155 domain->agaw = width_to_agaw(adjust_width);
3156
3157 INIT_LIST_HEAD(&domain->devices);
3158
3159 domain->iommu_count = 0;
3160 domain->iommu_coherency = 0;
3161 domain->max_addr = 0;
3162
3163 /* always allocate the top pgd */
3164 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3165 if (!domain->pgd)
3166 return -ENOMEM;
3167 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3168 return 0;
3169 }
3170
3171 static void iommu_free_vm_domain(struct dmar_domain *domain)
3172 {
3173 unsigned long flags;
3174 struct dmar_drhd_unit *drhd;
3175 struct intel_iommu *iommu;
3176 unsigned long i;
3177 unsigned long ndomains;
3178
3179 for_each_drhd_unit(drhd) {
3180 if (drhd->ignored)
3181 continue;
3182 iommu = drhd->iommu;
3183
3184 ndomains = cap_ndoms(iommu->cap);
3185 i = find_first_bit(iommu->domain_ids, ndomains);
3186 for (; i < ndomains; ) {
3187 if (iommu->domains[i] == domain) {
3188 spin_lock_irqsave(&iommu->lock, flags);
3189 clear_bit(i, iommu->domain_ids);
3190 iommu->domains[i] = NULL;
3191 spin_unlock_irqrestore(&iommu->lock, flags);
3192 break;
3193 }
3194 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3195 }
3196 }
3197 }
3198
3199 static void vm_domain_exit(struct dmar_domain *domain)
3200 {
3201 u64 end;
3202
3203 /* Domain 0 is reserved, so dont process it */
3204 if (!domain)
3205 return;
3206
3207 vm_domain_remove_all_dev_info(domain);
3208 /* destroy iovas */
3209 put_iova_domain(&domain->iovad);
3210 end = DOMAIN_MAX_ADDR(domain->gaw);
3211 end = end & (~VTD_PAGE_MASK);
3212
3213 /* clear ptes */
3214 dma_pte_clear_range(domain, 0, end);
3215
3216 /* free page tables */
3217 dma_pte_free_pagetable(domain, 0, end);
3218
3219 iommu_free_vm_domain(domain);
3220 free_domain_mem(domain);
3221 }
3222
3223 static int intel_iommu_domain_init(struct iommu_domain *domain)
3224 {
3225 struct dmar_domain *dmar_domain;
3226
3227 dmar_domain = iommu_alloc_vm_domain();
3228 if (!dmar_domain) {
3229 printk(KERN_ERR
3230 "intel_iommu_domain_init: dmar_domain == NULL\n");
3231 return -ENOMEM;
3232 }
3233 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3234 printk(KERN_ERR
3235 "intel_iommu_domain_init() failed\n");
3236 vm_domain_exit(dmar_domain);
3237 return -ENOMEM;
3238 }
3239 domain->priv = dmar_domain;
3240
3241 return 0;
3242 }
3243
3244 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3245 {
3246 struct dmar_domain *dmar_domain = domain->priv;
3247
3248 domain->priv = NULL;
3249 vm_domain_exit(dmar_domain);
3250 }
3251
3252 static int intel_iommu_attach_device(struct iommu_domain *domain,
3253 struct device *dev)
3254 {
3255 struct dmar_domain *dmar_domain = domain->priv;
3256 struct pci_dev *pdev = to_pci_dev(dev);
3257 struct intel_iommu *iommu;
3258 int addr_width;
3259 u64 end;
3260 int ret;
3261
3262 /* normally pdev is not mapped */
3263 if (unlikely(domain_context_mapped(pdev))) {
3264 struct dmar_domain *old_domain;
3265
3266 old_domain = find_domain(pdev);
3267 if (old_domain) {
3268 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
3269 vm_domain_remove_one_dev_info(old_domain, pdev);
3270 else
3271 domain_remove_dev_info(old_domain);
3272 }
3273 }
3274
3275 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3276 pdev->devfn);
3277 if (!iommu)
3278 return -ENODEV;
3279
3280 /* check if this iommu agaw is sufficient for max mapped address */
3281 addr_width = agaw_to_width(iommu->agaw);
3282 end = DOMAIN_MAX_ADDR(addr_width);
3283 end = end & VTD_PAGE_MASK;
3284 if (end < dmar_domain->max_addr) {
3285 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3286 "sufficient for the mapped address (%llx)\n",
3287 __func__, iommu->agaw, dmar_domain->max_addr);
3288 return -EFAULT;
3289 }
3290
3291 ret = vm_domain_add_dev_info(dmar_domain, pdev);
3292 if (ret)
3293 return ret;
3294
3295 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3296 return ret;
3297 }
3298
3299 static void intel_iommu_detach_device(struct iommu_domain *domain,
3300 struct device *dev)
3301 {
3302 struct dmar_domain *dmar_domain = domain->priv;
3303 struct pci_dev *pdev = to_pci_dev(dev);
3304
3305 vm_domain_remove_one_dev_info(dmar_domain, pdev);
3306 }
3307
3308 static int intel_iommu_map_range(struct iommu_domain *domain,
3309 unsigned long iova, phys_addr_t hpa,
3310 size_t size, int iommu_prot)
3311 {
3312 struct dmar_domain *dmar_domain = domain->priv;
3313 u64 max_addr;
3314 int addr_width;
3315 int prot = 0;
3316 int ret;
3317
3318 if (iommu_prot & IOMMU_READ)
3319 prot |= DMA_PTE_READ;
3320 if (iommu_prot & IOMMU_WRITE)
3321 prot |= DMA_PTE_WRITE;
3322 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3323 prot |= DMA_PTE_SNP;
3324
3325 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3326 if (dmar_domain->max_addr < max_addr) {
3327 int min_agaw;
3328 u64 end;
3329
3330 /* check if minimum agaw is sufficient for mapped address */
3331 min_agaw = vm_domain_min_agaw(dmar_domain);
3332 addr_width = agaw_to_width(min_agaw);
3333 end = DOMAIN_MAX_ADDR(addr_width);
3334 end = end & VTD_PAGE_MASK;
3335 if (end < max_addr) {
3336 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3337 "sufficient for the mapped address (%llx)\n",
3338 __func__, min_agaw, max_addr);
3339 return -EFAULT;
3340 }
3341 dmar_domain->max_addr = max_addr;
3342 }
3343
3344 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3345 return ret;
3346 }
3347
3348 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3349 unsigned long iova, size_t size)
3350 {
3351 struct dmar_domain *dmar_domain = domain->priv;
3352 dma_addr_t base;
3353
3354 /* The address might not be aligned */
3355 base = iova & VTD_PAGE_MASK;
3356 size = VTD_PAGE_ALIGN(size);
3357 dma_pte_clear_range(dmar_domain, base, base + size);
3358
3359 if (dmar_domain->max_addr == base + size)
3360 dmar_domain->max_addr = base;
3361 }
3362
3363 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3364 unsigned long iova)
3365 {
3366 struct dmar_domain *dmar_domain = domain->priv;
3367 struct dma_pte *pte;
3368 u64 phys = 0;
3369
3370 pte = addr_to_dma_pte(dmar_domain, iova);
3371 if (pte)
3372 phys = dma_pte_addr(pte);
3373
3374 return phys;
3375 }
3376
3377 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3378 unsigned long cap)
3379 {
3380 struct dmar_domain *dmar_domain = domain->priv;
3381
3382 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3383 return dmar_domain->iommu_snooping;
3384
3385 return 0;
3386 }
3387
3388 static struct iommu_ops intel_iommu_ops = {
3389 .domain_init = intel_iommu_domain_init,
3390 .domain_destroy = intel_iommu_domain_destroy,
3391 .attach_dev = intel_iommu_attach_device,
3392 .detach_dev = intel_iommu_detach_device,
3393 .map = intel_iommu_map_range,
3394 .unmap = intel_iommu_unmap_range,
3395 .iova_to_phys = intel_iommu_iova_to_phys,
3396 .domain_has_cap = intel_iommu_domain_has_cap,
3397 };
3398
3399 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3400 {
3401 /*
3402 * Mobile 4 Series Chipset neglects to set RWBF capability,
3403 * but needs it:
3404 */
3405 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3406 rwbf_quirk = 1;
3407 }
3408
3409 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
This page took 0.100215 seconds and 5 git commands to generate.