intel-iommu: fix VT-d PMR disable for TXT on S3 resume
[deliverable/linux.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/syscore_ops.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
44 #include "pci.h"
45
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
48
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
52
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
56
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
58
59 #define MAX_AGAW_WIDTH 64
60
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
63
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
69
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
73
74 /* page table handling */
75 #define LEVEL_STRIDE (9)
76 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
77
78 static inline int agaw_to_level(int agaw)
79 {
80 return agaw + 2;
81 }
82
83 static inline int agaw_to_width(int agaw)
84 {
85 return 30 + agaw * LEVEL_STRIDE;
86 }
87
88 static inline int width_to_agaw(int width)
89 {
90 return (width - 30) / LEVEL_STRIDE;
91 }
92
93 static inline unsigned int level_to_offset_bits(int level)
94 {
95 return (level - 1) * LEVEL_STRIDE;
96 }
97
98 static inline int pfn_level_offset(unsigned long pfn, int level)
99 {
100 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
101 }
102
103 static inline unsigned long level_mask(int level)
104 {
105 return -1UL << level_to_offset_bits(level);
106 }
107
108 static inline unsigned long level_size(int level)
109 {
110 return 1UL << level_to_offset_bits(level);
111 }
112
113 static inline unsigned long align_to_level(unsigned long pfn, int level)
114 {
115 return (pfn + level_size(level) - 1) & level_mask(level);
116 }
117
118 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
119 are never going to work. */
120 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
121 {
122 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
123 }
124
125 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
126 {
127 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
128 }
129 static inline unsigned long page_to_dma_pfn(struct page *pg)
130 {
131 return mm_to_dma_pfn(page_to_pfn(pg));
132 }
133 static inline unsigned long virt_to_dma_pfn(void *p)
134 {
135 return page_to_dma_pfn(virt_to_page(p));
136 }
137
138 /* global iommu list, set NULL for ignored DMAR units */
139 static struct intel_iommu **g_iommus;
140
141 static void __init check_tylersburg_isoch(void);
142 static int rwbf_quirk;
143
144 /*
145 * set to 1 to panic kernel if can't successfully enable VT-d
146 * (used when kernel is launched w/ TXT)
147 */
148 static int force_on = 0;
149
150 /*
151 * 0: Present
152 * 1-11: Reserved
153 * 12-63: Context Ptr (12 - (haw-1))
154 * 64-127: Reserved
155 */
156 struct root_entry {
157 u64 val;
158 u64 rsvd1;
159 };
160 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
161 static inline bool root_present(struct root_entry *root)
162 {
163 return (root->val & 1);
164 }
165 static inline void set_root_present(struct root_entry *root)
166 {
167 root->val |= 1;
168 }
169 static inline void set_root_value(struct root_entry *root, unsigned long value)
170 {
171 root->val |= value & VTD_PAGE_MASK;
172 }
173
174 static inline struct context_entry *
175 get_context_addr_from_root(struct root_entry *root)
176 {
177 return (struct context_entry *)
178 (root_present(root)?phys_to_virt(
179 root->val & VTD_PAGE_MASK) :
180 NULL);
181 }
182
183 /*
184 * low 64 bits:
185 * 0: present
186 * 1: fault processing disable
187 * 2-3: translation type
188 * 12-63: address space root
189 * high 64 bits:
190 * 0-2: address width
191 * 3-6: aval
192 * 8-23: domain id
193 */
194 struct context_entry {
195 u64 lo;
196 u64 hi;
197 };
198
199 static inline bool context_present(struct context_entry *context)
200 {
201 return (context->lo & 1);
202 }
203 static inline void context_set_present(struct context_entry *context)
204 {
205 context->lo |= 1;
206 }
207
208 static inline void context_set_fault_enable(struct context_entry *context)
209 {
210 context->lo &= (((u64)-1) << 2) | 1;
211 }
212
213 static inline void context_set_translation_type(struct context_entry *context,
214 unsigned long value)
215 {
216 context->lo &= (((u64)-1) << 4) | 3;
217 context->lo |= (value & 3) << 2;
218 }
219
220 static inline void context_set_address_root(struct context_entry *context,
221 unsigned long value)
222 {
223 context->lo |= value & VTD_PAGE_MASK;
224 }
225
226 static inline void context_set_address_width(struct context_entry *context,
227 unsigned long value)
228 {
229 context->hi |= value & 7;
230 }
231
232 static inline void context_set_domain_id(struct context_entry *context,
233 unsigned long value)
234 {
235 context->hi |= (value & ((1 << 16) - 1)) << 8;
236 }
237
238 static inline void context_clear_entry(struct context_entry *context)
239 {
240 context->lo = 0;
241 context->hi = 0;
242 }
243
244 /*
245 * 0: readable
246 * 1: writable
247 * 2-6: reserved
248 * 7: super page
249 * 8-10: available
250 * 11: snoop behavior
251 * 12-63: Host physcial address
252 */
253 struct dma_pte {
254 u64 val;
255 };
256
257 static inline void dma_clear_pte(struct dma_pte *pte)
258 {
259 pte->val = 0;
260 }
261
262 static inline void dma_set_pte_readable(struct dma_pte *pte)
263 {
264 pte->val |= DMA_PTE_READ;
265 }
266
267 static inline void dma_set_pte_writable(struct dma_pte *pte)
268 {
269 pte->val |= DMA_PTE_WRITE;
270 }
271
272 static inline void dma_set_pte_snp(struct dma_pte *pte)
273 {
274 pte->val |= DMA_PTE_SNP;
275 }
276
277 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
278 {
279 pte->val = (pte->val & ~3) | (prot & 3);
280 }
281
282 static inline u64 dma_pte_addr(struct dma_pte *pte)
283 {
284 #ifdef CONFIG_64BIT
285 return pte->val & VTD_PAGE_MASK;
286 #else
287 /* Must have a full atomic 64-bit read */
288 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
289 #endif
290 }
291
292 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
293 {
294 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
295 }
296
297 static inline bool dma_pte_present(struct dma_pte *pte)
298 {
299 return (pte->val & 3) != 0;
300 }
301
302 static inline int first_pte_in_page(struct dma_pte *pte)
303 {
304 return !((unsigned long)pte & ~VTD_PAGE_MASK);
305 }
306
307 /*
308 * This domain is a statically identity mapping domain.
309 * 1. This domain creats a static 1:1 mapping to all usable memory.
310 * 2. It maps to each iommu if successful.
311 * 3. Each iommu mapps to this domain if successful.
312 */
313 static struct dmar_domain *si_domain;
314 static int hw_pass_through = 1;
315
316 /* devices under the same p2p bridge are owned in one domain */
317 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
318
319 /* domain represents a virtual machine, more than one devices
320 * across iommus may be owned in one domain, e.g. kvm guest.
321 */
322 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
323
324 /* si_domain contains mulitple devices */
325 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
326
327 struct dmar_domain {
328 int id; /* domain id */
329 int nid; /* node id */
330 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
331
332 struct list_head devices; /* all devices' list */
333 struct iova_domain iovad; /* iova's that belong to this domain */
334
335 struct dma_pte *pgd; /* virtual address */
336 int gaw; /* max guest address width */
337
338 /* adjusted guest address width, 0 is level 2 30-bit */
339 int agaw;
340
341 int flags; /* flags to find out type of domain */
342
343 int iommu_coherency;/* indicate coherency of iommu access */
344 int iommu_snooping; /* indicate snooping control feature*/
345 int iommu_count; /* reference count of iommu */
346 spinlock_t iommu_lock; /* protect iommu set in domain */
347 u64 max_addr; /* maximum mapped address */
348 };
349
350 /* PCI domain-device relationship */
351 struct device_domain_info {
352 struct list_head link; /* link to domain siblings */
353 struct list_head global; /* link to global list */
354 int segment; /* PCI domain */
355 u8 bus; /* PCI bus number */
356 u8 devfn; /* PCI devfn number */
357 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
358 struct intel_iommu *iommu; /* IOMMU used by this device */
359 struct dmar_domain *domain; /* pointer to domain */
360 };
361
362 static void flush_unmaps_timeout(unsigned long data);
363
364 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
365
366 #define HIGH_WATER_MARK 250
367 struct deferred_flush_tables {
368 int next;
369 struct iova *iova[HIGH_WATER_MARK];
370 struct dmar_domain *domain[HIGH_WATER_MARK];
371 };
372
373 static struct deferred_flush_tables *deferred_flush;
374
375 /* bitmap for indexing intel_iommus */
376 static int g_num_of_iommus;
377
378 static DEFINE_SPINLOCK(async_umap_flush_lock);
379 static LIST_HEAD(unmaps_to_do);
380
381 static int timer_on;
382 static long list_size;
383
384 static void domain_remove_dev_info(struct dmar_domain *domain);
385
386 #ifdef CONFIG_DMAR_DEFAULT_ON
387 int dmar_disabled = 0;
388 #else
389 int dmar_disabled = 1;
390 #endif /*CONFIG_DMAR_DEFAULT_ON*/
391
392 static int dmar_map_gfx = 1;
393 static int dmar_forcedac;
394 static int intel_iommu_strict;
395
396 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
397 static DEFINE_SPINLOCK(device_domain_lock);
398 static LIST_HEAD(device_domain_list);
399
400 static struct iommu_ops intel_iommu_ops;
401
402 static int __init intel_iommu_setup(char *str)
403 {
404 if (!str)
405 return -EINVAL;
406 while (*str) {
407 if (!strncmp(str, "on", 2)) {
408 dmar_disabled = 0;
409 printk(KERN_INFO "Intel-IOMMU: enabled\n");
410 } else if (!strncmp(str, "off", 3)) {
411 dmar_disabled = 1;
412 printk(KERN_INFO "Intel-IOMMU: disabled\n");
413 } else if (!strncmp(str, "igfx_off", 8)) {
414 dmar_map_gfx = 0;
415 printk(KERN_INFO
416 "Intel-IOMMU: disable GFX device mapping\n");
417 } else if (!strncmp(str, "forcedac", 8)) {
418 printk(KERN_INFO
419 "Intel-IOMMU: Forcing DAC for PCI devices\n");
420 dmar_forcedac = 1;
421 } else if (!strncmp(str, "strict", 6)) {
422 printk(KERN_INFO
423 "Intel-IOMMU: disable batched IOTLB flush\n");
424 intel_iommu_strict = 1;
425 }
426
427 str += strcspn(str, ",");
428 while (*str == ',')
429 str++;
430 }
431 return 0;
432 }
433 __setup("intel_iommu=", intel_iommu_setup);
434
435 static struct kmem_cache *iommu_domain_cache;
436 static struct kmem_cache *iommu_devinfo_cache;
437 static struct kmem_cache *iommu_iova_cache;
438
439 static inline void *alloc_pgtable_page(int node)
440 {
441 struct page *page;
442 void *vaddr = NULL;
443
444 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
445 if (page)
446 vaddr = page_address(page);
447 return vaddr;
448 }
449
450 static inline void free_pgtable_page(void *vaddr)
451 {
452 free_page((unsigned long)vaddr);
453 }
454
455 static inline void *alloc_domain_mem(void)
456 {
457 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
458 }
459
460 static void free_domain_mem(void *vaddr)
461 {
462 kmem_cache_free(iommu_domain_cache, vaddr);
463 }
464
465 static inline void * alloc_devinfo_mem(void)
466 {
467 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
468 }
469
470 static inline void free_devinfo_mem(void *vaddr)
471 {
472 kmem_cache_free(iommu_devinfo_cache, vaddr);
473 }
474
475 struct iova *alloc_iova_mem(void)
476 {
477 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
478 }
479
480 void free_iova_mem(struct iova *iova)
481 {
482 kmem_cache_free(iommu_iova_cache, iova);
483 }
484
485
486 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
487 {
488 unsigned long sagaw;
489 int agaw = -1;
490
491 sagaw = cap_sagaw(iommu->cap);
492 for (agaw = width_to_agaw(max_gaw);
493 agaw >= 0; agaw--) {
494 if (test_bit(agaw, &sagaw))
495 break;
496 }
497
498 return agaw;
499 }
500
501 /*
502 * Calculate max SAGAW for each iommu.
503 */
504 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
505 {
506 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
507 }
508
509 /*
510 * calculate agaw for each iommu.
511 * "SAGAW" may be different across iommus, use a default agaw, and
512 * get a supported less agaw for iommus that don't support the default agaw.
513 */
514 int iommu_calculate_agaw(struct intel_iommu *iommu)
515 {
516 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
517 }
518
519 /* This functionin only returns single iommu in a domain */
520 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
521 {
522 int iommu_id;
523
524 /* si_domain and vm domain should not get here. */
525 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
526 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
527
528 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
529 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
530 return NULL;
531
532 return g_iommus[iommu_id];
533 }
534
535 static void domain_update_iommu_coherency(struct dmar_domain *domain)
536 {
537 int i;
538
539 domain->iommu_coherency = 1;
540
541 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
542 if (!ecap_coherent(g_iommus[i]->ecap)) {
543 domain->iommu_coherency = 0;
544 break;
545 }
546 }
547 }
548
549 static void domain_update_iommu_snooping(struct dmar_domain *domain)
550 {
551 int i;
552
553 domain->iommu_snooping = 1;
554
555 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
556 if (!ecap_sc_support(g_iommus[i]->ecap)) {
557 domain->iommu_snooping = 0;
558 break;
559 }
560 }
561 }
562
563 /* Some capabilities may be different across iommus */
564 static void domain_update_iommu_cap(struct dmar_domain *domain)
565 {
566 domain_update_iommu_coherency(domain);
567 domain_update_iommu_snooping(domain);
568 }
569
570 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
571 {
572 struct dmar_drhd_unit *drhd = NULL;
573 int i;
574
575 for_each_drhd_unit(drhd) {
576 if (drhd->ignored)
577 continue;
578 if (segment != drhd->segment)
579 continue;
580
581 for (i = 0; i < drhd->devices_cnt; i++) {
582 if (drhd->devices[i] &&
583 drhd->devices[i]->bus->number == bus &&
584 drhd->devices[i]->devfn == devfn)
585 return drhd->iommu;
586 if (drhd->devices[i] &&
587 drhd->devices[i]->subordinate &&
588 drhd->devices[i]->subordinate->number <= bus &&
589 drhd->devices[i]->subordinate->subordinate >= bus)
590 return drhd->iommu;
591 }
592
593 if (drhd->include_all)
594 return drhd->iommu;
595 }
596
597 return NULL;
598 }
599
600 static void domain_flush_cache(struct dmar_domain *domain,
601 void *addr, int size)
602 {
603 if (!domain->iommu_coherency)
604 clflush_cache_range(addr, size);
605 }
606
607 /* Gets context entry for a given bus and devfn */
608 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
609 u8 bus, u8 devfn)
610 {
611 struct root_entry *root;
612 struct context_entry *context;
613 unsigned long phy_addr;
614 unsigned long flags;
615
616 spin_lock_irqsave(&iommu->lock, flags);
617 root = &iommu->root_entry[bus];
618 context = get_context_addr_from_root(root);
619 if (!context) {
620 context = (struct context_entry *)
621 alloc_pgtable_page(iommu->node);
622 if (!context) {
623 spin_unlock_irqrestore(&iommu->lock, flags);
624 return NULL;
625 }
626 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
627 phy_addr = virt_to_phys((void *)context);
628 set_root_value(root, phy_addr);
629 set_root_present(root);
630 __iommu_flush_cache(iommu, root, sizeof(*root));
631 }
632 spin_unlock_irqrestore(&iommu->lock, flags);
633 return &context[devfn];
634 }
635
636 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
637 {
638 struct root_entry *root;
639 struct context_entry *context;
640 int ret;
641 unsigned long flags;
642
643 spin_lock_irqsave(&iommu->lock, flags);
644 root = &iommu->root_entry[bus];
645 context = get_context_addr_from_root(root);
646 if (!context) {
647 ret = 0;
648 goto out;
649 }
650 ret = context_present(&context[devfn]);
651 out:
652 spin_unlock_irqrestore(&iommu->lock, flags);
653 return ret;
654 }
655
656 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
657 {
658 struct root_entry *root;
659 struct context_entry *context;
660 unsigned long flags;
661
662 spin_lock_irqsave(&iommu->lock, flags);
663 root = &iommu->root_entry[bus];
664 context = get_context_addr_from_root(root);
665 if (context) {
666 context_clear_entry(&context[devfn]);
667 __iommu_flush_cache(iommu, &context[devfn], \
668 sizeof(*context));
669 }
670 spin_unlock_irqrestore(&iommu->lock, flags);
671 }
672
673 static void free_context_table(struct intel_iommu *iommu)
674 {
675 struct root_entry *root;
676 int i;
677 unsigned long flags;
678 struct context_entry *context;
679
680 spin_lock_irqsave(&iommu->lock, flags);
681 if (!iommu->root_entry) {
682 goto out;
683 }
684 for (i = 0; i < ROOT_ENTRY_NR; i++) {
685 root = &iommu->root_entry[i];
686 context = get_context_addr_from_root(root);
687 if (context)
688 free_pgtable_page(context);
689 }
690 free_pgtable_page(iommu->root_entry);
691 iommu->root_entry = NULL;
692 out:
693 spin_unlock_irqrestore(&iommu->lock, flags);
694 }
695
696 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
697 unsigned long pfn)
698 {
699 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
700 struct dma_pte *parent, *pte = NULL;
701 int level = agaw_to_level(domain->agaw);
702 int offset;
703
704 BUG_ON(!domain->pgd);
705 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
706 parent = domain->pgd;
707
708 while (level > 0) {
709 void *tmp_page;
710
711 offset = pfn_level_offset(pfn, level);
712 pte = &parent[offset];
713 if (level == 1)
714 break;
715
716 if (!dma_pte_present(pte)) {
717 uint64_t pteval;
718
719 tmp_page = alloc_pgtable_page(domain->nid);
720
721 if (!tmp_page)
722 return NULL;
723
724 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
725 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
726 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
727 /* Someone else set it while we were thinking; use theirs. */
728 free_pgtable_page(tmp_page);
729 } else {
730 dma_pte_addr(pte);
731 domain_flush_cache(domain, pte, sizeof(*pte));
732 }
733 }
734 parent = phys_to_virt(dma_pte_addr(pte));
735 level--;
736 }
737
738 return pte;
739 }
740
741 /* return address's pte at specific level */
742 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
743 unsigned long pfn,
744 int level)
745 {
746 struct dma_pte *parent, *pte = NULL;
747 int total = agaw_to_level(domain->agaw);
748 int offset;
749
750 parent = domain->pgd;
751 while (level <= total) {
752 offset = pfn_level_offset(pfn, total);
753 pte = &parent[offset];
754 if (level == total)
755 return pte;
756
757 if (!dma_pte_present(pte))
758 break;
759 parent = phys_to_virt(dma_pte_addr(pte));
760 total--;
761 }
762 return NULL;
763 }
764
765 /* clear last level pte, a tlb flush should be followed */
766 static void dma_pte_clear_range(struct dmar_domain *domain,
767 unsigned long start_pfn,
768 unsigned long last_pfn)
769 {
770 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
771 struct dma_pte *first_pte, *pte;
772
773 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
774 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
775 BUG_ON(start_pfn > last_pfn);
776
777 /* we don't need lock here; nobody else touches the iova range */
778 do {
779 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
780 if (!pte) {
781 start_pfn = align_to_level(start_pfn + 1, 2);
782 continue;
783 }
784 do {
785 dma_clear_pte(pte);
786 start_pfn++;
787 pte++;
788 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
789
790 domain_flush_cache(domain, first_pte,
791 (void *)pte - (void *)first_pte);
792
793 } while (start_pfn && start_pfn <= last_pfn);
794 }
795
796 /* free page table pages. last level pte should already be cleared */
797 static void dma_pte_free_pagetable(struct dmar_domain *domain,
798 unsigned long start_pfn,
799 unsigned long last_pfn)
800 {
801 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
802 struct dma_pte *first_pte, *pte;
803 int total = agaw_to_level(domain->agaw);
804 int level;
805 unsigned long tmp;
806
807 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
808 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
809 BUG_ON(start_pfn > last_pfn);
810
811 /* We don't need lock here; nobody else touches the iova range */
812 level = 2;
813 while (level <= total) {
814 tmp = align_to_level(start_pfn, level);
815
816 /* If we can't even clear one PTE at this level, we're done */
817 if (tmp + level_size(level) - 1 > last_pfn)
818 return;
819
820 do {
821 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
822 if (!pte) {
823 tmp = align_to_level(tmp + 1, level + 1);
824 continue;
825 }
826 do {
827 if (dma_pte_present(pte)) {
828 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
829 dma_clear_pte(pte);
830 }
831 pte++;
832 tmp += level_size(level);
833 } while (!first_pte_in_page(pte) &&
834 tmp + level_size(level) - 1 <= last_pfn);
835
836 domain_flush_cache(domain, first_pte,
837 (void *)pte - (void *)first_pte);
838
839 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
840 level++;
841 }
842 /* free pgd */
843 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
844 free_pgtable_page(domain->pgd);
845 domain->pgd = NULL;
846 }
847 }
848
849 /* iommu handling */
850 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
851 {
852 struct root_entry *root;
853 unsigned long flags;
854
855 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
856 if (!root)
857 return -ENOMEM;
858
859 __iommu_flush_cache(iommu, root, ROOT_SIZE);
860
861 spin_lock_irqsave(&iommu->lock, flags);
862 iommu->root_entry = root;
863 spin_unlock_irqrestore(&iommu->lock, flags);
864
865 return 0;
866 }
867
868 static void iommu_set_root_entry(struct intel_iommu *iommu)
869 {
870 void *addr;
871 u32 sts;
872 unsigned long flag;
873
874 addr = iommu->root_entry;
875
876 spin_lock_irqsave(&iommu->register_lock, flag);
877 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
878
879 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
880
881 /* Make sure hardware complete it */
882 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
883 readl, (sts & DMA_GSTS_RTPS), sts);
884
885 spin_unlock_irqrestore(&iommu->register_lock, flag);
886 }
887
888 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
889 {
890 u32 val;
891 unsigned long flag;
892
893 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
894 return;
895
896 spin_lock_irqsave(&iommu->register_lock, flag);
897 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
898
899 /* Make sure hardware complete it */
900 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
901 readl, (!(val & DMA_GSTS_WBFS)), val);
902
903 spin_unlock_irqrestore(&iommu->register_lock, flag);
904 }
905
906 /* return value determine if we need a write buffer flush */
907 static void __iommu_flush_context(struct intel_iommu *iommu,
908 u16 did, u16 source_id, u8 function_mask,
909 u64 type)
910 {
911 u64 val = 0;
912 unsigned long flag;
913
914 switch (type) {
915 case DMA_CCMD_GLOBAL_INVL:
916 val = DMA_CCMD_GLOBAL_INVL;
917 break;
918 case DMA_CCMD_DOMAIN_INVL:
919 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
920 break;
921 case DMA_CCMD_DEVICE_INVL:
922 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
923 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
924 break;
925 default:
926 BUG();
927 }
928 val |= DMA_CCMD_ICC;
929
930 spin_lock_irqsave(&iommu->register_lock, flag);
931 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
932
933 /* Make sure hardware complete it */
934 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
935 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
936
937 spin_unlock_irqrestore(&iommu->register_lock, flag);
938 }
939
940 /* return value determine if we need a write buffer flush */
941 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
942 u64 addr, unsigned int size_order, u64 type)
943 {
944 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
945 u64 val = 0, val_iva = 0;
946 unsigned long flag;
947
948 switch (type) {
949 case DMA_TLB_GLOBAL_FLUSH:
950 /* global flush doesn't need set IVA_REG */
951 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
952 break;
953 case DMA_TLB_DSI_FLUSH:
954 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
955 break;
956 case DMA_TLB_PSI_FLUSH:
957 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
958 /* Note: always flush non-leaf currently */
959 val_iva = size_order | addr;
960 break;
961 default:
962 BUG();
963 }
964 /* Note: set drain read/write */
965 #if 0
966 /*
967 * This is probably to be super secure.. Looks like we can
968 * ignore it without any impact.
969 */
970 if (cap_read_drain(iommu->cap))
971 val |= DMA_TLB_READ_DRAIN;
972 #endif
973 if (cap_write_drain(iommu->cap))
974 val |= DMA_TLB_WRITE_DRAIN;
975
976 spin_lock_irqsave(&iommu->register_lock, flag);
977 /* Note: Only uses first TLB reg currently */
978 if (val_iva)
979 dmar_writeq(iommu->reg + tlb_offset, val_iva);
980 dmar_writeq(iommu->reg + tlb_offset + 8, val);
981
982 /* Make sure hardware complete it */
983 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
984 dmar_readq, (!(val & DMA_TLB_IVT)), val);
985
986 spin_unlock_irqrestore(&iommu->register_lock, flag);
987
988 /* check IOTLB invalidation granularity */
989 if (DMA_TLB_IAIG(val) == 0)
990 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
991 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
992 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
993 (unsigned long long)DMA_TLB_IIRG(type),
994 (unsigned long long)DMA_TLB_IAIG(val));
995 }
996
997 static struct device_domain_info *iommu_support_dev_iotlb(
998 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
999 {
1000 int found = 0;
1001 unsigned long flags;
1002 struct device_domain_info *info;
1003 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1004
1005 if (!ecap_dev_iotlb_support(iommu->ecap))
1006 return NULL;
1007
1008 if (!iommu->qi)
1009 return NULL;
1010
1011 spin_lock_irqsave(&device_domain_lock, flags);
1012 list_for_each_entry(info, &domain->devices, link)
1013 if (info->bus == bus && info->devfn == devfn) {
1014 found = 1;
1015 break;
1016 }
1017 spin_unlock_irqrestore(&device_domain_lock, flags);
1018
1019 if (!found || !info->dev)
1020 return NULL;
1021
1022 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1023 return NULL;
1024
1025 if (!dmar_find_matched_atsr_unit(info->dev))
1026 return NULL;
1027
1028 info->iommu = iommu;
1029
1030 return info;
1031 }
1032
1033 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1034 {
1035 if (!info)
1036 return;
1037
1038 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1039 }
1040
1041 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1042 {
1043 if (!info->dev || !pci_ats_enabled(info->dev))
1044 return;
1045
1046 pci_disable_ats(info->dev);
1047 }
1048
1049 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1050 u64 addr, unsigned mask)
1051 {
1052 u16 sid, qdep;
1053 unsigned long flags;
1054 struct device_domain_info *info;
1055
1056 spin_lock_irqsave(&device_domain_lock, flags);
1057 list_for_each_entry(info, &domain->devices, link) {
1058 if (!info->dev || !pci_ats_enabled(info->dev))
1059 continue;
1060
1061 sid = info->bus << 8 | info->devfn;
1062 qdep = pci_ats_queue_depth(info->dev);
1063 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1064 }
1065 spin_unlock_irqrestore(&device_domain_lock, flags);
1066 }
1067
1068 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1069 unsigned long pfn, unsigned int pages, int map)
1070 {
1071 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1072 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1073
1074 BUG_ON(pages == 0);
1075
1076 /*
1077 * Fallback to domain selective flush if no PSI support or the size is
1078 * too big.
1079 * PSI requires page size to be 2 ^ x, and the base address is naturally
1080 * aligned to the size
1081 */
1082 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1083 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1084 DMA_TLB_DSI_FLUSH);
1085 else
1086 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1087 DMA_TLB_PSI_FLUSH);
1088
1089 /*
1090 * In caching mode, changes of pages from non-present to present require
1091 * flush. However, device IOTLB doesn't need to be flushed in this case.
1092 */
1093 if (!cap_caching_mode(iommu->cap) || !map)
1094 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1095 }
1096
1097 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1098 {
1099 u32 pmen;
1100 unsigned long flags;
1101
1102 spin_lock_irqsave(&iommu->register_lock, flags);
1103 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1104 pmen &= ~DMA_PMEN_EPM;
1105 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1106
1107 /* wait for the protected region status bit to clear */
1108 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1109 readl, !(pmen & DMA_PMEN_PRS), pmen);
1110
1111 spin_unlock_irqrestore(&iommu->register_lock, flags);
1112 }
1113
1114 static int iommu_enable_translation(struct intel_iommu *iommu)
1115 {
1116 u32 sts;
1117 unsigned long flags;
1118
1119 spin_lock_irqsave(&iommu->register_lock, flags);
1120 iommu->gcmd |= DMA_GCMD_TE;
1121 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1122
1123 /* Make sure hardware complete it */
1124 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1125 readl, (sts & DMA_GSTS_TES), sts);
1126
1127 spin_unlock_irqrestore(&iommu->register_lock, flags);
1128 return 0;
1129 }
1130
1131 static int iommu_disable_translation(struct intel_iommu *iommu)
1132 {
1133 u32 sts;
1134 unsigned long flag;
1135
1136 spin_lock_irqsave(&iommu->register_lock, flag);
1137 iommu->gcmd &= ~DMA_GCMD_TE;
1138 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1139
1140 /* Make sure hardware complete it */
1141 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1142 readl, (!(sts & DMA_GSTS_TES)), sts);
1143
1144 spin_unlock_irqrestore(&iommu->register_lock, flag);
1145 return 0;
1146 }
1147
1148
1149 static int iommu_init_domains(struct intel_iommu *iommu)
1150 {
1151 unsigned long ndomains;
1152 unsigned long nlongs;
1153
1154 ndomains = cap_ndoms(iommu->cap);
1155 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1156 ndomains);
1157 nlongs = BITS_TO_LONGS(ndomains);
1158
1159 spin_lock_init(&iommu->lock);
1160
1161 /* TBD: there might be 64K domains,
1162 * consider other allocation for future chip
1163 */
1164 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1165 if (!iommu->domain_ids) {
1166 printk(KERN_ERR "Allocating domain id array failed\n");
1167 return -ENOMEM;
1168 }
1169 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1170 GFP_KERNEL);
1171 if (!iommu->domains) {
1172 printk(KERN_ERR "Allocating domain array failed\n");
1173 return -ENOMEM;
1174 }
1175
1176 /*
1177 * if Caching mode is set, then invalid translations are tagged
1178 * with domainid 0. Hence we need to pre-allocate it.
1179 */
1180 if (cap_caching_mode(iommu->cap))
1181 set_bit(0, iommu->domain_ids);
1182 return 0;
1183 }
1184
1185
1186 static void domain_exit(struct dmar_domain *domain);
1187 static void vm_domain_exit(struct dmar_domain *domain);
1188
1189 void free_dmar_iommu(struct intel_iommu *iommu)
1190 {
1191 struct dmar_domain *domain;
1192 int i;
1193 unsigned long flags;
1194
1195 if ((iommu->domains) && (iommu->domain_ids)) {
1196 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1197 domain = iommu->domains[i];
1198 clear_bit(i, iommu->domain_ids);
1199
1200 spin_lock_irqsave(&domain->iommu_lock, flags);
1201 if (--domain->iommu_count == 0) {
1202 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1203 vm_domain_exit(domain);
1204 else
1205 domain_exit(domain);
1206 }
1207 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1208 }
1209 }
1210
1211 if (iommu->gcmd & DMA_GCMD_TE)
1212 iommu_disable_translation(iommu);
1213
1214 if (iommu->irq) {
1215 irq_set_handler_data(iommu->irq, NULL);
1216 /* This will mask the irq */
1217 free_irq(iommu->irq, iommu);
1218 destroy_irq(iommu->irq);
1219 }
1220
1221 kfree(iommu->domains);
1222 kfree(iommu->domain_ids);
1223
1224 g_iommus[iommu->seq_id] = NULL;
1225
1226 /* if all iommus are freed, free g_iommus */
1227 for (i = 0; i < g_num_of_iommus; i++) {
1228 if (g_iommus[i])
1229 break;
1230 }
1231
1232 if (i == g_num_of_iommus)
1233 kfree(g_iommus);
1234
1235 /* free context mapping */
1236 free_context_table(iommu);
1237 }
1238
1239 static struct dmar_domain *alloc_domain(void)
1240 {
1241 struct dmar_domain *domain;
1242
1243 domain = alloc_domain_mem();
1244 if (!domain)
1245 return NULL;
1246
1247 domain->nid = -1;
1248 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1249 domain->flags = 0;
1250
1251 return domain;
1252 }
1253
1254 static int iommu_attach_domain(struct dmar_domain *domain,
1255 struct intel_iommu *iommu)
1256 {
1257 int num;
1258 unsigned long ndomains;
1259 unsigned long flags;
1260
1261 ndomains = cap_ndoms(iommu->cap);
1262
1263 spin_lock_irqsave(&iommu->lock, flags);
1264
1265 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1266 if (num >= ndomains) {
1267 spin_unlock_irqrestore(&iommu->lock, flags);
1268 printk(KERN_ERR "IOMMU: no free domain ids\n");
1269 return -ENOMEM;
1270 }
1271
1272 domain->id = num;
1273 set_bit(num, iommu->domain_ids);
1274 set_bit(iommu->seq_id, &domain->iommu_bmp);
1275 iommu->domains[num] = domain;
1276 spin_unlock_irqrestore(&iommu->lock, flags);
1277
1278 return 0;
1279 }
1280
1281 static void iommu_detach_domain(struct dmar_domain *domain,
1282 struct intel_iommu *iommu)
1283 {
1284 unsigned long flags;
1285 int num, ndomains;
1286 int found = 0;
1287
1288 spin_lock_irqsave(&iommu->lock, flags);
1289 ndomains = cap_ndoms(iommu->cap);
1290 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1291 if (iommu->domains[num] == domain) {
1292 found = 1;
1293 break;
1294 }
1295 }
1296
1297 if (found) {
1298 clear_bit(num, iommu->domain_ids);
1299 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1300 iommu->domains[num] = NULL;
1301 }
1302 spin_unlock_irqrestore(&iommu->lock, flags);
1303 }
1304
1305 static struct iova_domain reserved_iova_list;
1306 static struct lock_class_key reserved_rbtree_key;
1307
1308 static int dmar_init_reserved_ranges(void)
1309 {
1310 struct pci_dev *pdev = NULL;
1311 struct iova *iova;
1312 int i;
1313
1314 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1315
1316 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1317 &reserved_rbtree_key);
1318
1319 /* IOAPIC ranges shouldn't be accessed by DMA */
1320 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1321 IOVA_PFN(IOAPIC_RANGE_END));
1322 if (!iova) {
1323 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1324 return -ENODEV;
1325 }
1326
1327 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1328 for_each_pci_dev(pdev) {
1329 struct resource *r;
1330
1331 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1332 r = &pdev->resource[i];
1333 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1334 continue;
1335 iova = reserve_iova(&reserved_iova_list,
1336 IOVA_PFN(r->start),
1337 IOVA_PFN(r->end));
1338 if (!iova) {
1339 printk(KERN_ERR "Reserve iova failed\n");
1340 return -ENODEV;
1341 }
1342 }
1343 }
1344 return 0;
1345 }
1346
1347 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1348 {
1349 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1350 }
1351
1352 static inline int guestwidth_to_adjustwidth(int gaw)
1353 {
1354 int agaw;
1355 int r = (gaw - 12) % 9;
1356
1357 if (r == 0)
1358 agaw = gaw;
1359 else
1360 agaw = gaw + 9 - r;
1361 if (agaw > 64)
1362 agaw = 64;
1363 return agaw;
1364 }
1365
1366 static int domain_init(struct dmar_domain *domain, int guest_width)
1367 {
1368 struct intel_iommu *iommu;
1369 int adjust_width, agaw;
1370 unsigned long sagaw;
1371
1372 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1373 spin_lock_init(&domain->iommu_lock);
1374
1375 domain_reserve_special_ranges(domain);
1376
1377 /* calculate AGAW */
1378 iommu = domain_get_iommu(domain);
1379 if (guest_width > cap_mgaw(iommu->cap))
1380 guest_width = cap_mgaw(iommu->cap);
1381 domain->gaw = guest_width;
1382 adjust_width = guestwidth_to_adjustwidth(guest_width);
1383 agaw = width_to_agaw(adjust_width);
1384 sagaw = cap_sagaw(iommu->cap);
1385 if (!test_bit(agaw, &sagaw)) {
1386 /* hardware doesn't support it, choose a bigger one */
1387 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1388 agaw = find_next_bit(&sagaw, 5, agaw);
1389 if (agaw >= 5)
1390 return -ENODEV;
1391 }
1392 domain->agaw = agaw;
1393 INIT_LIST_HEAD(&domain->devices);
1394
1395 if (ecap_coherent(iommu->ecap))
1396 domain->iommu_coherency = 1;
1397 else
1398 domain->iommu_coherency = 0;
1399
1400 if (ecap_sc_support(iommu->ecap))
1401 domain->iommu_snooping = 1;
1402 else
1403 domain->iommu_snooping = 0;
1404
1405 domain->iommu_count = 1;
1406 domain->nid = iommu->node;
1407
1408 /* always allocate the top pgd */
1409 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1410 if (!domain->pgd)
1411 return -ENOMEM;
1412 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1413 return 0;
1414 }
1415
1416 static void domain_exit(struct dmar_domain *domain)
1417 {
1418 struct dmar_drhd_unit *drhd;
1419 struct intel_iommu *iommu;
1420
1421 /* Domain 0 is reserved, so dont process it */
1422 if (!domain)
1423 return;
1424
1425 domain_remove_dev_info(domain);
1426 /* destroy iovas */
1427 put_iova_domain(&domain->iovad);
1428
1429 /* clear ptes */
1430 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1431
1432 /* free page tables */
1433 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1434
1435 for_each_active_iommu(iommu, drhd)
1436 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1437 iommu_detach_domain(domain, iommu);
1438
1439 free_domain_mem(domain);
1440 }
1441
1442 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1443 u8 bus, u8 devfn, int translation)
1444 {
1445 struct context_entry *context;
1446 unsigned long flags;
1447 struct intel_iommu *iommu;
1448 struct dma_pte *pgd;
1449 unsigned long num;
1450 unsigned long ndomains;
1451 int id;
1452 int agaw;
1453 struct device_domain_info *info = NULL;
1454
1455 pr_debug("Set context mapping for %02x:%02x.%d\n",
1456 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1457
1458 BUG_ON(!domain->pgd);
1459 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1460 translation != CONTEXT_TT_MULTI_LEVEL);
1461
1462 iommu = device_to_iommu(segment, bus, devfn);
1463 if (!iommu)
1464 return -ENODEV;
1465
1466 context = device_to_context_entry(iommu, bus, devfn);
1467 if (!context)
1468 return -ENOMEM;
1469 spin_lock_irqsave(&iommu->lock, flags);
1470 if (context_present(context)) {
1471 spin_unlock_irqrestore(&iommu->lock, flags);
1472 return 0;
1473 }
1474
1475 id = domain->id;
1476 pgd = domain->pgd;
1477
1478 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1479 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1480 int found = 0;
1481
1482 /* find an available domain id for this device in iommu */
1483 ndomains = cap_ndoms(iommu->cap);
1484 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1485 if (iommu->domains[num] == domain) {
1486 id = num;
1487 found = 1;
1488 break;
1489 }
1490 }
1491
1492 if (found == 0) {
1493 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1494 if (num >= ndomains) {
1495 spin_unlock_irqrestore(&iommu->lock, flags);
1496 printk(KERN_ERR "IOMMU: no free domain ids\n");
1497 return -EFAULT;
1498 }
1499
1500 set_bit(num, iommu->domain_ids);
1501 iommu->domains[num] = domain;
1502 id = num;
1503 }
1504
1505 /* Skip top levels of page tables for
1506 * iommu which has less agaw than default.
1507 * Unnecessary for PT mode.
1508 */
1509 if (translation != CONTEXT_TT_PASS_THROUGH) {
1510 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1511 pgd = phys_to_virt(dma_pte_addr(pgd));
1512 if (!dma_pte_present(pgd)) {
1513 spin_unlock_irqrestore(&iommu->lock, flags);
1514 return -ENOMEM;
1515 }
1516 }
1517 }
1518 }
1519
1520 context_set_domain_id(context, id);
1521
1522 if (translation != CONTEXT_TT_PASS_THROUGH) {
1523 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1524 translation = info ? CONTEXT_TT_DEV_IOTLB :
1525 CONTEXT_TT_MULTI_LEVEL;
1526 }
1527 /*
1528 * In pass through mode, AW must be programmed to indicate the largest
1529 * AGAW value supported by hardware. And ASR is ignored by hardware.
1530 */
1531 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1532 context_set_address_width(context, iommu->msagaw);
1533 else {
1534 context_set_address_root(context, virt_to_phys(pgd));
1535 context_set_address_width(context, iommu->agaw);
1536 }
1537
1538 context_set_translation_type(context, translation);
1539 context_set_fault_enable(context);
1540 context_set_present(context);
1541 domain_flush_cache(domain, context, sizeof(*context));
1542
1543 /*
1544 * It's a non-present to present mapping. If hardware doesn't cache
1545 * non-present entry we only need to flush the write-buffer. If the
1546 * _does_ cache non-present entries, then it does so in the special
1547 * domain #0, which we have to flush:
1548 */
1549 if (cap_caching_mode(iommu->cap)) {
1550 iommu->flush.flush_context(iommu, 0,
1551 (((u16)bus) << 8) | devfn,
1552 DMA_CCMD_MASK_NOBIT,
1553 DMA_CCMD_DEVICE_INVL);
1554 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1555 } else {
1556 iommu_flush_write_buffer(iommu);
1557 }
1558 iommu_enable_dev_iotlb(info);
1559 spin_unlock_irqrestore(&iommu->lock, flags);
1560
1561 spin_lock_irqsave(&domain->iommu_lock, flags);
1562 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1563 domain->iommu_count++;
1564 if (domain->iommu_count == 1)
1565 domain->nid = iommu->node;
1566 domain_update_iommu_cap(domain);
1567 }
1568 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1569 return 0;
1570 }
1571
1572 static int
1573 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1574 int translation)
1575 {
1576 int ret;
1577 struct pci_dev *tmp, *parent;
1578
1579 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1580 pdev->bus->number, pdev->devfn,
1581 translation);
1582 if (ret)
1583 return ret;
1584
1585 /* dependent device mapping */
1586 tmp = pci_find_upstream_pcie_bridge(pdev);
1587 if (!tmp)
1588 return 0;
1589 /* Secondary interface's bus number and devfn 0 */
1590 parent = pdev->bus->self;
1591 while (parent != tmp) {
1592 ret = domain_context_mapping_one(domain,
1593 pci_domain_nr(parent->bus),
1594 parent->bus->number,
1595 parent->devfn, translation);
1596 if (ret)
1597 return ret;
1598 parent = parent->bus->self;
1599 }
1600 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1601 return domain_context_mapping_one(domain,
1602 pci_domain_nr(tmp->subordinate),
1603 tmp->subordinate->number, 0,
1604 translation);
1605 else /* this is a legacy PCI bridge */
1606 return domain_context_mapping_one(domain,
1607 pci_domain_nr(tmp->bus),
1608 tmp->bus->number,
1609 tmp->devfn,
1610 translation);
1611 }
1612
1613 static int domain_context_mapped(struct pci_dev *pdev)
1614 {
1615 int ret;
1616 struct pci_dev *tmp, *parent;
1617 struct intel_iommu *iommu;
1618
1619 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1620 pdev->devfn);
1621 if (!iommu)
1622 return -ENODEV;
1623
1624 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1625 if (!ret)
1626 return ret;
1627 /* dependent device mapping */
1628 tmp = pci_find_upstream_pcie_bridge(pdev);
1629 if (!tmp)
1630 return ret;
1631 /* Secondary interface's bus number and devfn 0 */
1632 parent = pdev->bus->self;
1633 while (parent != tmp) {
1634 ret = device_context_mapped(iommu, parent->bus->number,
1635 parent->devfn);
1636 if (!ret)
1637 return ret;
1638 parent = parent->bus->self;
1639 }
1640 if (pci_is_pcie(tmp))
1641 return device_context_mapped(iommu, tmp->subordinate->number,
1642 0);
1643 else
1644 return device_context_mapped(iommu, tmp->bus->number,
1645 tmp->devfn);
1646 }
1647
1648 /* Returns a number of VTD pages, but aligned to MM page size */
1649 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1650 size_t size)
1651 {
1652 host_addr &= ~PAGE_MASK;
1653 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1654 }
1655
1656 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1657 struct scatterlist *sg, unsigned long phys_pfn,
1658 unsigned long nr_pages, int prot)
1659 {
1660 struct dma_pte *first_pte = NULL, *pte = NULL;
1661 phys_addr_t uninitialized_var(pteval);
1662 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1663 unsigned long sg_res;
1664
1665 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1666
1667 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1668 return -EINVAL;
1669
1670 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1671
1672 if (sg)
1673 sg_res = 0;
1674 else {
1675 sg_res = nr_pages + 1;
1676 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1677 }
1678
1679 while (nr_pages--) {
1680 uint64_t tmp;
1681
1682 if (!sg_res) {
1683 sg_res = aligned_nrpages(sg->offset, sg->length);
1684 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1685 sg->dma_length = sg->length;
1686 pteval = page_to_phys(sg_page(sg)) | prot;
1687 }
1688 if (!pte) {
1689 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1690 if (!pte)
1691 return -ENOMEM;
1692 }
1693 /* We don't need lock here, nobody else
1694 * touches the iova range
1695 */
1696 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1697 if (tmp) {
1698 static int dumps = 5;
1699 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1700 iov_pfn, tmp, (unsigned long long)pteval);
1701 if (dumps) {
1702 dumps--;
1703 debug_dma_dump_mappings(NULL);
1704 }
1705 WARN_ON(1);
1706 }
1707 pte++;
1708 if (!nr_pages || first_pte_in_page(pte)) {
1709 domain_flush_cache(domain, first_pte,
1710 (void *)pte - (void *)first_pte);
1711 pte = NULL;
1712 }
1713 iov_pfn++;
1714 pteval += VTD_PAGE_SIZE;
1715 sg_res--;
1716 if (!sg_res)
1717 sg = sg_next(sg);
1718 }
1719 return 0;
1720 }
1721
1722 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1723 struct scatterlist *sg, unsigned long nr_pages,
1724 int prot)
1725 {
1726 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1727 }
1728
1729 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1730 unsigned long phys_pfn, unsigned long nr_pages,
1731 int prot)
1732 {
1733 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1734 }
1735
1736 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1737 {
1738 if (!iommu)
1739 return;
1740
1741 clear_context_table(iommu, bus, devfn);
1742 iommu->flush.flush_context(iommu, 0, 0, 0,
1743 DMA_CCMD_GLOBAL_INVL);
1744 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1745 }
1746
1747 static void domain_remove_dev_info(struct dmar_domain *domain)
1748 {
1749 struct device_domain_info *info;
1750 unsigned long flags;
1751 struct intel_iommu *iommu;
1752
1753 spin_lock_irqsave(&device_domain_lock, flags);
1754 while (!list_empty(&domain->devices)) {
1755 info = list_entry(domain->devices.next,
1756 struct device_domain_info, link);
1757 list_del(&info->link);
1758 list_del(&info->global);
1759 if (info->dev)
1760 info->dev->dev.archdata.iommu = NULL;
1761 spin_unlock_irqrestore(&device_domain_lock, flags);
1762
1763 iommu_disable_dev_iotlb(info);
1764 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1765 iommu_detach_dev(iommu, info->bus, info->devfn);
1766 free_devinfo_mem(info);
1767
1768 spin_lock_irqsave(&device_domain_lock, flags);
1769 }
1770 spin_unlock_irqrestore(&device_domain_lock, flags);
1771 }
1772
1773 /*
1774 * find_domain
1775 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1776 */
1777 static struct dmar_domain *
1778 find_domain(struct pci_dev *pdev)
1779 {
1780 struct device_domain_info *info;
1781
1782 /* No lock here, assumes no domain exit in normal case */
1783 info = pdev->dev.archdata.iommu;
1784 if (info)
1785 return info->domain;
1786 return NULL;
1787 }
1788
1789 /* domain is initialized */
1790 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1791 {
1792 struct dmar_domain *domain, *found = NULL;
1793 struct intel_iommu *iommu;
1794 struct dmar_drhd_unit *drhd;
1795 struct device_domain_info *info, *tmp;
1796 struct pci_dev *dev_tmp;
1797 unsigned long flags;
1798 int bus = 0, devfn = 0;
1799 int segment;
1800 int ret;
1801
1802 domain = find_domain(pdev);
1803 if (domain)
1804 return domain;
1805
1806 segment = pci_domain_nr(pdev->bus);
1807
1808 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1809 if (dev_tmp) {
1810 if (pci_is_pcie(dev_tmp)) {
1811 bus = dev_tmp->subordinate->number;
1812 devfn = 0;
1813 } else {
1814 bus = dev_tmp->bus->number;
1815 devfn = dev_tmp->devfn;
1816 }
1817 spin_lock_irqsave(&device_domain_lock, flags);
1818 list_for_each_entry(info, &device_domain_list, global) {
1819 if (info->segment == segment &&
1820 info->bus == bus && info->devfn == devfn) {
1821 found = info->domain;
1822 break;
1823 }
1824 }
1825 spin_unlock_irqrestore(&device_domain_lock, flags);
1826 /* pcie-pci bridge already has a domain, uses it */
1827 if (found) {
1828 domain = found;
1829 goto found_domain;
1830 }
1831 }
1832
1833 domain = alloc_domain();
1834 if (!domain)
1835 goto error;
1836
1837 /* Allocate new domain for the device */
1838 drhd = dmar_find_matched_drhd_unit(pdev);
1839 if (!drhd) {
1840 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1841 pci_name(pdev));
1842 return NULL;
1843 }
1844 iommu = drhd->iommu;
1845
1846 ret = iommu_attach_domain(domain, iommu);
1847 if (ret) {
1848 free_domain_mem(domain);
1849 goto error;
1850 }
1851
1852 if (domain_init(domain, gaw)) {
1853 domain_exit(domain);
1854 goto error;
1855 }
1856
1857 /* register pcie-to-pci device */
1858 if (dev_tmp) {
1859 info = alloc_devinfo_mem();
1860 if (!info) {
1861 domain_exit(domain);
1862 goto error;
1863 }
1864 info->segment = segment;
1865 info->bus = bus;
1866 info->devfn = devfn;
1867 info->dev = NULL;
1868 info->domain = domain;
1869 /* This domain is shared by devices under p2p bridge */
1870 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1871
1872 /* pcie-to-pci bridge already has a domain, uses it */
1873 found = NULL;
1874 spin_lock_irqsave(&device_domain_lock, flags);
1875 list_for_each_entry(tmp, &device_domain_list, global) {
1876 if (tmp->segment == segment &&
1877 tmp->bus == bus && tmp->devfn == devfn) {
1878 found = tmp->domain;
1879 break;
1880 }
1881 }
1882 if (found) {
1883 spin_unlock_irqrestore(&device_domain_lock, flags);
1884 free_devinfo_mem(info);
1885 domain_exit(domain);
1886 domain = found;
1887 } else {
1888 list_add(&info->link, &domain->devices);
1889 list_add(&info->global, &device_domain_list);
1890 spin_unlock_irqrestore(&device_domain_lock, flags);
1891 }
1892 }
1893
1894 found_domain:
1895 info = alloc_devinfo_mem();
1896 if (!info)
1897 goto error;
1898 info->segment = segment;
1899 info->bus = pdev->bus->number;
1900 info->devfn = pdev->devfn;
1901 info->dev = pdev;
1902 info->domain = domain;
1903 spin_lock_irqsave(&device_domain_lock, flags);
1904 /* somebody is fast */
1905 found = find_domain(pdev);
1906 if (found != NULL) {
1907 spin_unlock_irqrestore(&device_domain_lock, flags);
1908 if (found != domain) {
1909 domain_exit(domain);
1910 domain = found;
1911 }
1912 free_devinfo_mem(info);
1913 return domain;
1914 }
1915 list_add(&info->link, &domain->devices);
1916 list_add(&info->global, &device_domain_list);
1917 pdev->dev.archdata.iommu = info;
1918 spin_unlock_irqrestore(&device_domain_lock, flags);
1919 return domain;
1920 error:
1921 /* recheck it here, maybe others set it */
1922 return find_domain(pdev);
1923 }
1924
1925 static int iommu_identity_mapping;
1926 #define IDENTMAP_ALL 1
1927 #define IDENTMAP_GFX 2
1928 #define IDENTMAP_AZALIA 4
1929
1930 static int iommu_domain_identity_map(struct dmar_domain *domain,
1931 unsigned long long start,
1932 unsigned long long end)
1933 {
1934 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1935 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1936
1937 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1938 dma_to_mm_pfn(last_vpfn))) {
1939 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1940 return -ENOMEM;
1941 }
1942
1943 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1944 start, end, domain->id);
1945 /*
1946 * RMRR range might have overlap with physical memory range,
1947 * clear it first
1948 */
1949 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1950
1951 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1952 last_vpfn - first_vpfn + 1,
1953 DMA_PTE_READ|DMA_PTE_WRITE);
1954 }
1955
1956 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1957 unsigned long long start,
1958 unsigned long long end)
1959 {
1960 struct dmar_domain *domain;
1961 int ret;
1962
1963 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1964 if (!domain)
1965 return -ENOMEM;
1966
1967 /* For _hardware_ passthrough, don't bother. But for software
1968 passthrough, we do it anyway -- it may indicate a memory
1969 range which is reserved in E820, so which didn't get set
1970 up to start with in si_domain */
1971 if (domain == si_domain && hw_pass_through) {
1972 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1973 pci_name(pdev), start, end);
1974 return 0;
1975 }
1976
1977 printk(KERN_INFO
1978 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1979 pci_name(pdev), start, end);
1980
1981 if (end < start) {
1982 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
1983 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1984 dmi_get_system_info(DMI_BIOS_VENDOR),
1985 dmi_get_system_info(DMI_BIOS_VERSION),
1986 dmi_get_system_info(DMI_PRODUCT_VERSION));
1987 ret = -EIO;
1988 goto error;
1989 }
1990
1991 if (end >> agaw_to_width(domain->agaw)) {
1992 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1993 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1994 agaw_to_width(domain->agaw),
1995 dmi_get_system_info(DMI_BIOS_VENDOR),
1996 dmi_get_system_info(DMI_BIOS_VERSION),
1997 dmi_get_system_info(DMI_PRODUCT_VERSION));
1998 ret = -EIO;
1999 goto error;
2000 }
2001
2002 ret = iommu_domain_identity_map(domain, start, end);
2003 if (ret)
2004 goto error;
2005
2006 /* context entry init */
2007 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2008 if (ret)
2009 goto error;
2010
2011 return 0;
2012
2013 error:
2014 domain_exit(domain);
2015 return ret;
2016 }
2017
2018 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2019 struct pci_dev *pdev)
2020 {
2021 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2022 return 0;
2023 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2024 rmrr->end_address + 1);
2025 }
2026
2027 #ifdef CONFIG_DMAR_FLOPPY_WA
2028 static inline void iommu_prepare_isa(void)
2029 {
2030 struct pci_dev *pdev;
2031 int ret;
2032
2033 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2034 if (!pdev)
2035 return;
2036
2037 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2038 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2039
2040 if (ret)
2041 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2042 "floppy might not work\n");
2043
2044 }
2045 #else
2046 static inline void iommu_prepare_isa(void)
2047 {
2048 return;
2049 }
2050 #endif /* !CONFIG_DMAR_FLPY_WA */
2051
2052 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2053
2054 static int __init si_domain_work_fn(unsigned long start_pfn,
2055 unsigned long end_pfn, void *datax)
2056 {
2057 int *ret = datax;
2058
2059 *ret = iommu_domain_identity_map(si_domain,
2060 (uint64_t)start_pfn << PAGE_SHIFT,
2061 (uint64_t)end_pfn << PAGE_SHIFT);
2062 return *ret;
2063
2064 }
2065
2066 static int __init si_domain_init(int hw)
2067 {
2068 struct dmar_drhd_unit *drhd;
2069 struct intel_iommu *iommu;
2070 int nid, ret = 0;
2071
2072 si_domain = alloc_domain();
2073 if (!si_domain)
2074 return -EFAULT;
2075
2076 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2077
2078 for_each_active_iommu(iommu, drhd) {
2079 ret = iommu_attach_domain(si_domain, iommu);
2080 if (ret) {
2081 domain_exit(si_domain);
2082 return -EFAULT;
2083 }
2084 }
2085
2086 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2087 domain_exit(si_domain);
2088 return -EFAULT;
2089 }
2090
2091 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2092
2093 if (hw)
2094 return 0;
2095
2096 for_each_online_node(nid) {
2097 work_with_active_regions(nid, si_domain_work_fn, &ret);
2098 if (ret)
2099 return ret;
2100 }
2101
2102 return 0;
2103 }
2104
2105 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2106 struct pci_dev *pdev);
2107 static int identity_mapping(struct pci_dev *pdev)
2108 {
2109 struct device_domain_info *info;
2110
2111 if (likely(!iommu_identity_mapping))
2112 return 0;
2113
2114
2115 list_for_each_entry(info, &si_domain->devices, link)
2116 if (info->dev == pdev)
2117 return 1;
2118 return 0;
2119 }
2120
2121 static int domain_add_dev_info(struct dmar_domain *domain,
2122 struct pci_dev *pdev,
2123 int translation)
2124 {
2125 struct device_domain_info *info;
2126 unsigned long flags;
2127 int ret;
2128
2129 info = alloc_devinfo_mem();
2130 if (!info)
2131 return -ENOMEM;
2132
2133 ret = domain_context_mapping(domain, pdev, translation);
2134 if (ret) {
2135 free_devinfo_mem(info);
2136 return ret;
2137 }
2138
2139 info->segment = pci_domain_nr(pdev->bus);
2140 info->bus = pdev->bus->number;
2141 info->devfn = pdev->devfn;
2142 info->dev = pdev;
2143 info->domain = domain;
2144
2145 spin_lock_irqsave(&device_domain_lock, flags);
2146 list_add(&info->link, &domain->devices);
2147 list_add(&info->global, &device_domain_list);
2148 pdev->dev.archdata.iommu = info;
2149 spin_unlock_irqrestore(&device_domain_lock, flags);
2150
2151 return 0;
2152 }
2153
2154 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2155 {
2156 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2157 return 1;
2158
2159 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2160 return 1;
2161
2162 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2163 return 0;
2164
2165 /*
2166 * We want to start off with all devices in the 1:1 domain, and
2167 * take them out later if we find they can't access all of memory.
2168 *
2169 * However, we can't do this for PCI devices behind bridges,
2170 * because all PCI devices behind the same bridge will end up
2171 * with the same source-id on their transactions.
2172 *
2173 * Practically speaking, we can't change things around for these
2174 * devices at run-time, because we can't be sure there'll be no
2175 * DMA transactions in flight for any of their siblings.
2176 *
2177 * So PCI devices (unless they're on the root bus) as well as
2178 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2179 * the 1:1 domain, just in _case_ one of their siblings turns out
2180 * not to be able to map all of memory.
2181 */
2182 if (!pci_is_pcie(pdev)) {
2183 if (!pci_is_root_bus(pdev->bus))
2184 return 0;
2185 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2186 return 0;
2187 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2188 return 0;
2189
2190 /*
2191 * At boot time, we don't yet know if devices will be 64-bit capable.
2192 * Assume that they will -- if they turn out not to be, then we can
2193 * take them out of the 1:1 domain later.
2194 */
2195 if (!startup)
2196 return pdev->dma_mask > DMA_BIT_MASK(32);
2197
2198 return 1;
2199 }
2200
2201 static int __init iommu_prepare_static_identity_mapping(int hw)
2202 {
2203 struct pci_dev *pdev = NULL;
2204 int ret;
2205
2206 ret = si_domain_init(hw);
2207 if (ret)
2208 return -EFAULT;
2209
2210 for_each_pci_dev(pdev) {
2211 if (iommu_should_identity_map(pdev, 1)) {
2212 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2213 hw ? "hardware" : "software", pci_name(pdev));
2214
2215 ret = domain_add_dev_info(si_domain, pdev,
2216 hw ? CONTEXT_TT_PASS_THROUGH :
2217 CONTEXT_TT_MULTI_LEVEL);
2218 if (ret)
2219 return ret;
2220 }
2221 }
2222
2223 return 0;
2224 }
2225
2226 static int __init init_dmars(void)
2227 {
2228 struct dmar_drhd_unit *drhd;
2229 struct dmar_rmrr_unit *rmrr;
2230 struct pci_dev *pdev;
2231 struct intel_iommu *iommu;
2232 int i, ret;
2233
2234 /*
2235 * for each drhd
2236 * allocate root
2237 * initialize and program root entry to not present
2238 * endfor
2239 */
2240 for_each_drhd_unit(drhd) {
2241 g_num_of_iommus++;
2242 /*
2243 * lock not needed as this is only incremented in the single
2244 * threaded kernel __init code path all other access are read
2245 * only
2246 */
2247 }
2248
2249 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2250 GFP_KERNEL);
2251 if (!g_iommus) {
2252 printk(KERN_ERR "Allocating global iommu array failed\n");
2253 ret = -ENOMEM;
2254 goto error;
2255 }
2256
2257 deferred_flush = kzalloc(g_num_of_iommus *
2258 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2259 if (!deferred_flush) {
2260 ret = -ENOMEM;
2261 goto error;
2262 }
2263
2264 for_each_drhd_unit(drhd) {
2265 if (drhd->ignored)
2266 continue;
2267
2268 iommu = drhd->iommu;
2269 g_iommus[iommu->seq_id] = iommu;
2270
2271 ret = iommu_init_domains(iommu);
2272 if (ret)
2273 goto error;
2274
2275 /*
2276 * TBD:
2277 * we could share the same root & context tables
2278 * among all IOMMU's. Need to Split it later.
2279 */
2280 ret = iommu_alloc_root_entry(iommu);
2281 if (ret) {
2282 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2283 goto error;
2284 }
2285 if (!ecap_pass_through(iommu->ecap))
2286 hw_pass_through = 0;
2287 }
2288
2289 /*
2290 * Start from the sane iommu hardware state.
2291 */
2292 for_each_drhd_unit(drhd) {
2293 if (drhd->ignored)
2294 continue;
2295
2296 iommu = drhd->iommu;
2297
2298 /*
2299 * If the queued invalidation is already initialized by us
2300 * (for example, while enabling interrupt-remapping) then
2301 * we got the things already rolling from a sane state.
2302 */
2303 if (iommu->qi)
2304 continue;
2305
2306 /*
2307 * Clear any previous faults.
2308 */
2309 dmar_fault(-1, iommu);
2310 /*
2311 * Disable queued invalidation if supported and already enabled
2312 * before OS handover.
2313 */
2314 dmar_disable_qi(iommu);
2315 }
2316
2317 for_each_drhd_unit(drhd) {
2318 if (drhd->ignored)
2319 continue;
2320
2321 iommu = drhd->iommu;
2322
2323 if (dmar_enable_qi(iommu)) {
2324 /*
2325 * Queued Invalidate not enabled, use Register Based
2326 * Invalidate
2327 */
2328 iommu->flush.flush_context = __iommu_flush_context;
2329 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2330 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2331 "invalidation\n",
2332 iommu->seq_id,
2333 (unsigned long long)drhd->reg_base_addr);
2334 } else {
2335 iommu->flush.flush_context = qi_flush_context;
2336 iommu->flush.flush_iotlb = qi_flush_iotlb;
2337 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2338 "invalidation\n",
2339 iommu->seq_id,
2340 (unsigned long long)drhd->reg_base_addr);
2341 }
2342 }
2343
2344 if (iommu_pass_through)
2345 iommu_identity_mapping |= IDENTMAP_ALL;
2346
2347 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2348 iommu_identity_mapping |= IDENTMAP_GFX;
2349 #endif
2350
2351 check_tylersburg_isoch();
2352
2353 /*
2354 * If pass through is not set or not enabled, setup context entries for
2355 * identity mappings for rmrr, gfx, and isa and may fall back to static
2356 * identity mapping if iommu_identity_mapping is set.
2357 */
2358 if (iommu_identity_mapping) {
2359 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2360 if (ret) {
2361 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2362 goto error;
2363 }
2364 }
2365 /*
2366 * For each rmrr
2367 * for each dev attached to rmrr
2368 * do
2369 * locate drhd for dev, alloc domain for dev
2370 * allocate free domain
2371 * allocate page table entries for rmrr
2372 * if context not allocated for bus
2373 * allocate and init context
2374 * set present in root table for this bus
2375 * init context with domain, translation etc
2376 * endfor
2377 * endfor
2378 */
2379 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2380 for_each_rmrr_units(rmrr) {
2381 for (i = 0; i < rmrr->devices_cnt; i++) {
2382 pdev = rmrr->devices[i];
2383 /*
2384 * some BIOS lists non-exist devices in DMAR
2385 * table.
2386 */
2387 if (!pdev)
2388 continue;
2389 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2390 if (ret)
2391 printk(KERN_ERR
2392 "IOMMU: mapping reserved region failed\n");
2393 }
2394 }
2395
2396 iommu_prepare_isa();
2397
2398 /*
2399 * for each drhd
2400 * enable fault log
2401 * global invalidate context cache
2402 * global invalidate iotlb
2403 * enable translation
2404 */
2405 for_each_drhd_unit(drhd) {
2406 if (drhd->ignored) {
2407 /*
2408 * we always have to disable PMRs or DMA may fail on
2409 * this device
2410 */
2411 if (force_on)
2412 iommu_disable_protect_mem_regions(drhd->iommu);
2413 continue;
2414 }
2415 iommu = drhd->iommu;
2416
2417 iommu_flush_write_buffer(iommu);
2418
2419 ret = dmar_set_interrupt(iommu);
2420 if (ret)
2421 goto error;
2422
2423 iommu_set_root_entry(iommu);
2424
2425 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2426 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2427
2428 ret = iommu_enable_translation(iommu);
2429 if (ret)
2430 goto error;
2431
2432 iommu_disable_protect_mem_regions(iommu);
2433 }
2434
2435 return 0;
2436 error:
2437 for_each_drhd_unit(drhd) {
2438 if (drhd->ignored)
2439 continue;
2440 iommu = drhd->iommu;
2441 free_iommu(iommu);
2442 }
2443 kfree(g_iommus);
2444 return ret;
2445 }
2446
2447 /* This takes a number of _MM_ pages, not VTD pages */
2448 static struct iova *intel_alloc_iova(struct device *dev,
2449 struct dmar_domain *domain,
2450 unsigned long nrpages, uint64_t dma_mask)
2451 {
2452 struct pci_dev *pdev = to_pci_dev(dev);
2453 struct iova *iova = NULL;
2454
2455 /* Restrict dma_mask to the width that the iommu can handle */
2456 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2457
2458 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2459 /*
2460 * First try to allocate an io virtual address in
2461 * DMA_BIT_MASK(32) and if that fails then try allocating
2462 * from higher range
2463 */
2464 iova = alloc_iova(&domain->iovad, nrpages,
2465 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2466 if (iova)
2467 return iova;
2468 }
2469 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2470 if (unlikely(!iova)) {
2471 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2472 nrpages, pci_name(pdev));
2473 return NULL;
2474 }
2475
2476 return iova;
2477 }
2478
2479 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2480 {
2481 struct dmar_domain *domain;
2482 int ret;
2483
2484 domain = get_domain_for_dev(pdev,
2485 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2486 if (!domain) {
2487 printk(KERN_ERR
2488 "Allocating domain for %s failed", pci_name(pdev));
2489 return NULL;
2490 }
2491
2492 /* make sure context mapping is ok */
2493 if (unlikely(!domain_context_mapped(pdev))) {
2494 ret = domain_context_mapping(domain, pdev,
2495 CONTEXT_TT_MULTI_LEVEL);
2496 if (ret) {
2497 printk(KERN_ERR
2498 "Domain context map for %s failed",
2499 pci_name(pdev));
2500 return NULL;
2501 }
2502 }
2503
2504 return domain;
2505 }
2506
2507 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2508 {
2509 struct device_domain_info *info;
2510
2511 /* No lock here, assumes no domain exit in normal case */
2512 info = dev->dev.archdata.iommu;
2513 if (likely(info))
2514 return info->domain;
2515
2516 return __get_valid_domain_for_dev(dev);
2517 }
2518
2519 static int iommu_dummy(struct pci_dev *pdev)
2520 {
2521 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2522 }
2523
2524 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2525 static int iommu_no_mapping(struct device *dev)
2526 {
2527 struct pci_dev *pdev;
2528 int found;
2529
2530 if (unlikely(dev->bus != &pci_bus_type))
2531 return 1;
2532
2533 pdev = to_pci_dev(dev);
2534 if (iommu_dummy(pdev))
2535 return 1;
2536
2537 if (!iommu_identity_mapping)
2538 return 0;
2539
2540 found = identity_mapping(pdev);
2541 if (found) {
2542 if (iommu_should_identity_map(pdev, 0))
2543 return 1;
2544 else {
2545 /*
2546 * 32 bit DMA is removed from si_domain and fall back
2547 * to non-identity mapping.
2548 */
2549 domain_remove_one_dev_info(si_domain, pdev);
2550 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2551 pci_name(pdev));
2552 return 0;
2553 }
2554 } else {
2555 /*
2556 * In case of a detached 64 bit DMA device from vm, the device
2557 * is put into si_domain for identity mapping.
2558 */
2559 if (iommu_should_identity_map(pdev, 0)) {
2560 int ret;
2561 ret = domain_add_dev_info(si_domain, pdev,
2562 hw_pass_through ?
2563 CONTEXT_TT_PASS_THROUGH :
2564 CONTEXT_TT_MULTI_LEVEL);
2565 if (!ret) {
2566 printk(KERN_INFO "64bit %s uses identity mapping\n",
2567 pci_name(pdev));
2568 return 1;
2569 }
2570 }
2571 }
2572
2573 return 0;
2574 }
2575
2576 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2577 size_t size, int dir, u64 dma_mask)
2578 {
2579 struct pci_dev *pdev = to_pci_dev(hwdev);
2580 struct dmar_domain *domain;
2581 phys_addr_t start_paddr;
2582 struct iova *iova;
2583 int prot = 0;
2584 int ret;
2585 struct intel_iommu *iommu;
2586 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2587
2588 BUG_ON(dir == DMA_NONE);
2589
2590 if (iommu_no_mapping(hwdev))
2591 return paddr;
2592
2593 domain = get_valid_domain_for_dev(pdev);
2594 if (!domain)
2595 return 0;
2596
2597 iommu = domain_get_iommu(domain);
2598 size = aligned_nrpages(paddr, size);
2599
2600 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2601 pdev->dma_mask);
2602 if (!iova)
2603 goto error;
2604
2605 /*
2606 * Check if DMAR supports zero-length reads on write only
2607 * mappings..
2608 */
2609 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2610 !cap_zlr(iommu->cap))
2611 prot |= DMA_PTE_READ;
2612 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2613 prot |= DMA_PTE_WRITE;
2614 /*
2615 * paddr - (paddr + size) might be partial page, we should map the whole
2616 * page. Note: if two part of one page are separately mapped, we
2617 * might have two guest_addr mapping to the same host paddr, but this
2618 * is not a big problem
2619 */
2620 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2621 mm_to_dma_pfn(paddr_pfn), size, prot);
2622 if (ret)
2623 goto error;
2624
2625 /* it's a non-present to present mapping. Only flush if caching mode */
2626 if (cap_caching_mode(iommu->cap))
2627 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2628 else
2629 iommu_flush_write_buffer(iommu);
2630
2631 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2632 start_paddr += paddr & ~PAGE_MASK;
2633 return start_paddr;
2634
2635 error:
2636 if (iova)
2637 __free_iova(&domain->iovad, iova);
2638 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2639 pci_name(pdev), size, (unsigned long long)paddr, dir);
2640 return 0;
2641 }
2642
2643 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2644 unsigned long offset, size_t size,
2645 enum dma_data_direction dir,
2646 struct dma_attrs *attrs)
2647 {
2648 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2649 dir, to_pci_dev(dev)->dma_mask);
2650 }
2651
2652 static void flush_unmaps(void)
2653 {
2654 int i, j;
2655
2656 timer_on = 0;
2657
2658 /* just flush them all */
2659 for (i = 0; i < g_num_of_iommus; i++) {
2660 struct intel_iommu *iommu = g_iommus[i];
2661 if (!iommu)
2662 continue;
2663
2664 if (!deferred_flush[i].next)
2665 continue;
2666
2667 /* In caching mode, global flushes turn emulation expensive */
2668 if (!cap_caching_mode(iommu->cap))
2669 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2670 DMA_TLB_GLOBAL_FLUSH);
2671 for (j = 0; j < deferred_flush[i].next; j++) {
2672 unsigned long mask;
2673 struct iova *iova = deferred_flush[i].iova[j];
2674 struct dmar_domain *domain = deferred_flush[i].domain[j];
2675
2676 /* On real hardware multiple invalidations are expensive */
2677 if (cap_caching_mode(iommu->cap))
2678 iommu_flush_iotlb_psi(iommu, domain->id,
2679 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2680 else {
2681 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2682 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2683 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2684 }
2685 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2686 }
2687 deferred_flush[i].next = 0;
2688 }
2689
2690 list_size = 0;
2691 }
2692
2693 static void flush_unmaps_timeout(unsigned long data)
2694 {
2695 unsigned long flags;
2696
2697 spin_lock_irqsave(&async_umap_flush_lock, flags);
2698 flush_unmaps();
2699 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2700 }
2701
2702 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2703 {
2704 unsigned long flags;
2705 int next, iommu_id;
2706 struct intel_iommu *iommu;
2707
2708 spin_lock_irqsave(&async_umap_flush_lock, flags);
2709 if (list_size == HIGH_WATER_MARK)
2710 flush_unmaps();
2711
2712 iommu = domain_get_iommu(dom);
2713 iommu_id = iommu->seq_id;
2714
2715 next = deferred_flush[iommu_id].next;
2716 deferred_flush[iommu_id].domain[next] = dom;
2717 deferred_flush[iommu_id].iova[next] = iova;
2718 deferred_flush[iommu_id].next++;
2719
2720 if (!timer_on) {
2721 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2722 timer_on = 1;
2723 }
2724 list_size++;
2725 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2726 }
2727
2728 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2729 size_t size, enum dma_data_direction dir,
2730 struct dma_attrs *attrs)
2731 {
2732 struct pci_dev *pdev = to_pci_dev(dev);
2733 struct dmar_domain *domain;
2734 unsigned long start_pfn, last_pfn;
2735 struct iova *iova;
2736 struct intel_iommu *iommu;
2737
2738 if (iommu_no_mapping(dev))
2739 return;
2740
2741 domain = find_domain(pdev);
2742 BUG_ON(!domain);
2743
2744 iommu = domain_get_iommu(domain);
2745
2746 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2747 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2748 (unsigned long long)dev_addr))
2749 return;
2750
2751 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2752 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2753
2754 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2755 pci_name(pdev), start_pfn, last_pfn);
2756
2757 /* clear the whole page */
2758 dma_pte_clear_range(domain, start_pfn, last_pfn);
2759
2760 /* free page tables */
2761 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2762
2763 if (intel_iommu_strict) {
2764 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2765 last_pfn - start_pfn + 1, 0);
2766 /* free iova */
2767 __free_iova(&domain->iovad, iova);
2768 } else {
2769 add_unmap(domain, iova);
2770 /*
2771 * queue up the release of the unmap to save the 1/6th of the
2772 * cpu used up by the iotlb flush operation...
2773 */
2774 }
2775 }
2776
2777 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2778 dma_addr_t *dma_handle, gfp_t flags)
2779 {
2780 void *vaddr;
2781 int order;
2782
2783 size = PAGE_ALIGN(size);
2784 order = get_order(size);
2785
2786 if (!iommu_no_mapping(hwdev))
2787 flags &= ~(GFP_DMA | GFP_DMA32);
2788 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2789 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2790 flags |= GFP_DMA;
2791 else
2792 flags |= GFP_DMA32;
2793 }
2794
2795 vaddr = (void *)__get_free_pages(flags, order);
2796 if (!vaddr)
2797 return NULL;
2798 memset(vaddr, 0, size);
2799
2800 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2801 DMA_BIDIRECTIONAL,
2802 hwdev->coherent_dma_mask);
2803 if (*dma_handle)
2804 return vaddr;
2805 free_pages((unsigned long)vaddr, order);
2806 return NULL;
2807 }
2808
2809 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2810 dma_addr_t dma_handle)
2811 {
2812 int order;
2813
2814 size = PAGE_ALIGN(size);
2815 order = get_order(size);
2816
2817 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2818 free_pages((unsigned long)vaddr, order);
2819 }
2820
2821 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2822 int nelems, enum dma_data_direction dir,
2823 struct dma_attrs *attrs)
2824 {
2825 struct pci_dev *pdev = to_pci_dev(hwdev);
2826 struct dmar_domain *domain;
2827 unsigned long start_pfn, last_pfn;
2828 struct iova *iova;
2829 struct intel_iommu *iommu;
2830
2831 if (iommu_no_mapping(hwdev))
2832 return;
2833
2834 domain = find_domain(pdev);
2835 BUG_ON(!domain);
2836
2837 iommu = domain_get_iommu(domain);
2838
2839 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2840 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2841 (unsigned long long)sglist[0].dma_address))
2842 return;
2843
2844 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2845 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2846
2847 /* clear the whole page */
2848 dma_pte_clear_range(domain, start_pfn, last_pfn);
2849
2850 /* free page tables */
2851 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2852
2853 if (intel_iommu_strict) {
2854 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2855 last_pfn - start_pfn + 1, 0);
2856 /* free iova */
2857 __free_iova(&domain->iovad, iova);
2858 } else {
2859 add_unmap(domain, iova);
2860 /*
2861 * queue up the release of the unmap to save the 1/6th of the
2862 * cpu used up by the iotlb flush operation...
2863 */
2864 }
2865 }
2866
2867 static int intel_nontranslate_map_sg(struct device *hddev,
2868 struct scatterlist *sglist, int nelems, int dir)
2869 {
2870 int i;
2871 struct scatterlist *sg;
2872
2873 for_each_sg(sglist, sg, nelems, i) {
2874 BUG_ON(!sg_page(sg));
2875 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2876 sg->dma_length = sg->length;
2877 }
2878 return nelems;
2879 }
2880
2881 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2882 enum dma_data_direction dir, struct dma_attrs *attrs)
2883 {
2884 int i;
2885 struct pci_dev *pdev = to_pci_dev(hwdev);
2886 struct dmar_domain *domain;
2887 size_t size = 0;
2888 int prot = 0;
2889 struct iova *iova = NULL;
2890 int ret;
2891 struct scatterlist *sg;
2892 unsigned long start_vpfn;
2893 struct intel_iommu *iommu;
2894
2895 BUG_ON(dir == DMA_NONE);
2896 if (iommu_no_mapping(hwdev))
2897 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2898
2899 domain = get_valid_domain_for_dev(pdev);
2900 if (!domain)
2901 return 0;
2902
2903 iommu = domain_get_iommu(domain);
2904
2905 for_each_sg(sglist, sg, nelems, i)
2906 size += aligned_nrpages(sg->offset, sg->length);
2907
2908 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2909 pdev->dma_mask);
2910 if (!iova) {
2911 sglist->dma_length = 0;
2912 return 0;
2913 }
2914
2915 /*
2916 * Check if DMAR supports zero-length reads on write only
2917 * mappings..
2918 */
2919 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2920 !cap_zlr(iommu->cap))
2921 prot |= DMA_PTE_READ;
2922 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2923 prot |= DMA_PTE_WRITE;
2924
2925 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2926
2927 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2928 if (unlikely(ret)) {
2929 /* clear the page */
2930 dma_pte_clear_range(domain, start_vpfn,
2931 start_vpfn + size - 1);
2932 /* free page tables */
2933 dma_pte_free_pagetable(domain, start_vpfn,
2934 start_vpfn + size - 1);
2935 /* free iova */
2936 __free_iova(&domain->iovad, iova);
2937 return 0;
2938 }
2939
2940 /* it's a non-present to present mapping. Only flush if caching mode */
2941 if (cap_caching_mode(iommu->cap))
2942 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
2943 else
2944 iommu_flush_write_buffer(iommu);
2945
2946 return nelems;
2947 }
2948
2949 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2950 {
2951 return !dma_addr;
2952 }
2953
2954 struct dma_map_ops intel_dma_ops = {
2955 .alloc_coherent = intel_alloc_coherent,
2956 .free_coherent = intel_free_coherent,
2957 .map_sg = intel_map_sg,
2958 .unmap_sg = intel_unmap_sg,
2959 .map_page = intel_map_page,
2960 .unmap_page = intel_unmap_page,
2961 .mapping_error = intel_mapping_error,
2962 };
2963
2964 static inline int iommu_domain_cache_init(void)
2965 {
2966 int ret = 0;
2967
2968 iommu_domain_cache = kmem_cache_create("iommu_domain",
2969 sizeof(struct dmar_domain),
2970 0,
2971 SLAB_HWCACHE_ALIGN,
2972
2973 NULL);
2974 if (!iommu_domain_cache) {
2975 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2976 ret = -ENOMEM;
2977 }
2978
2979 return ret;
2980 }
2981
2982 static inline int iommu_devinfo_cache_init(void)
2983 {
2984 int ret = 0;
2985
2986 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2987 sizeof(struct device_domain_info),
2988 0,
2989 SLAB_HWCACHE_ALIGN,
2990 NULL);
2991 if (!iommu_devinfo_cache) {
2992 printk(KERN_ERR "Couldn't create devinfo cache\n");
2993 ret = -ENOMEM;
2994 }
2995
2996 return ret;
2997 }
2998
2999 static inline int iommu_iova_cache_init(void)
3000 {
3001 int ret = 0;
3002
3003 iommu_iova_cache = kmem_cache_create("iommu_iova",
3004 sizeof(struct iova),
3005 0,
3006 SLAB_HWCACHE_ALIGN,
3007 NULL);
3008 if (!iommu_iova_cache) {
3009 printk(KERN_ERR "Couldn't create iova cache\n");
3010 ret = -ENOMEM;
3011 }
3012
3013 return ret;
3014 }
3015
3016 static int __init iommu_init_mempool(void)
3017 {
3018 int ret;
3019 ret = iommu_iova_cache_init();
3020 if (ret)
3021 return ret;
3022
3023 ret = iommu_domain_cache_init();
3024 if (ret)
3025 goto domain_error;
3026
3027 ret = iommu_devinfo_cache_init();
3028 if (!ret)
3029 return ret;
3030
3031 kmem_cache_destroy(iommu_domain_cache);
3032 domain_error:
3033 kmem_cache_destroy(iommu_iova_cache);
3034
3035 return -ENOMEM;
3036 }
3037
3038 static void __init iommu_exit_mempool(void)
3039 {
3040 kmem_cache_destroy(iommu_devinfo_cache);
3041 kmem_cache_destroy(iommu_domain_cache);
3042 kmem_cache_destroy(iommu_iova_cache);
3043
3044 }
3045
3046 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3047 {
3048 struct dmar_drhd_unit *drhd;
3049 u32 vtbar;
3050 int rc;
3051
3052 /* We know that this device on this chipset has its own IOMMU.
3053 * If we find it under a different IOMMU, then the BIOS is lying
3054 * to us. Hope that the IOMMU for this device is actually
3055 * disabled, and it needs no translation...
3056 */
3057 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3058 if (rc) {
3059 /* "can't" happen */
3060 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3061 return;
3062 }
3063 vtbar &= 0xffff0000;
3064
3065 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3066 drhd = dmar_find_matched_drhd_unit(pdev);
3067 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3068 TAINT_FIRMWARE_WORKAROUND,
3069 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3070 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3071 }
3072 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3073
3074 static void __init init_no_remapping_devices(void)
3075 {
3076 struct dmar_drhd_unit *drhd;
3077
3078 for_each_drhd_unit(drhd) {
3079 if (!drhd->include_all) {
3080 int i;
3081 for (i = 0; i < drhd->devices_cnt; i++)
3082 if (drhd->devices[i] != NULL)
3083 break;
3084 /* ignore DMAR unit if no pci devices exist */
3085 if (i == drhd->devices_cnt)
3086 drhd->ignored = 1;
3087 }
3088 }
3089
3090 if (dmar_map_gfx)
3091 return;
3092
3093 for_each_drhd_unit(drhd) {
3094 int i;
3095 if (drhd->ignored || drhd->include_all)
3096 continue;
3097
3098 for (i = 0; i < drhd->devices_cnt; i++)
3099 if (drhd->devices[i] &&
3100 !IS_GFX_DEVICE(drhd->devices[i]))
3101 break;
3102
3103 if (i < drhd->devices_cnt)
3104 continue;
3105
3106 /* bypass IOMMU if it is just for gfx devices */
3107 drhd->ignored = 1;
3108 for (i = 0; i < drhd->devices_cnt; i++) {
3109 if (!drhd->devices[i])
3110 continue;
3111 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3112 }
3113 }
3114 }
3115
3116 #ifdef CONFIG_SUSPEND
3117 static int init_iommu_hw(void)
3118 {
3119 struct dmar_drhd_unit *drhd;
3120 struct intel_iommu *iommu = NULL;
3121
3122 for_each_active_iommu(iommu, drhd)
3123 if (iommu->qi)
3124 dmar_reenable_qi(iommu);
3125
3126 for_each_iommu(iommu, drhd) {
3127 if (drhd->ignored) {
3128 /*
3129 * we always have to disable PMRs or DMA may fail on
3130 * this device
3131 */
3132 if (force_on)
3133 iommu_disable_protect_mem_regions(iommu);
3134 continue;
3135 }
3136
3137 iommu_flush_write_buffer(iommu);
3138
3139 iommu_set_root_entry(iommu);
3140
3141 iommu->flush.flush_context(iommu, 0, 0, 0,
3142 DMA_CCMD_GLOBAL_INVL);
3143 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3144 DMA_TLB_GLOBAL_FLUSH);
3145 if (iommu_enable_translation(iommu))
3146 return 1;
3147 iommu_disable_protect_mem_regions(iommu);
3148 }
3149
3150 return 0;
3151 }
3152
3153 static void iommu_flush_all(void)
3154 {
3155 struct dmar_drhd_unit *drhd;
3156 struct intel_iommu *iommu;
3157
3158 for_each_active_iommu(iommu, drhd) {
3159 iommu->flush.flush_context(iommu, 0, 0, 0,
3160 DMA_CCMD_GLOBAL_INVL);
3161 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3162 DMA_TLB_GLOBAL_FLUSH);
3163 }
3164 }
3165
3166 static int iommu_suspend(void)
3167 {
3168 struct dmar_drhd_unit *drhd;
3169 struct intel_iommu *iommu = NULL;
3170 unsigned long flag;
3171
3172 for_each_active_iommu(iommu, drhd) {
3173 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3174 GFP_ATOMIC);
3175 if (!iommu->iommu_state)
3176 goto nomem;
3177 }
3178
3179 iommu_flush_all();
3180
3181 for_each_active_iommu(iommu, drhd) {
3182 iommu_disable_translation(iommu);
3183
3184 spin_lock_irqsave(&iommu->register_lock, flag);
3185
3186 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3187 readl(iommu->reg + DMAR_FECTL_REG);
3188 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3189 readl(iommu->reg + DMAR_FEDATA_REG);
3190 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3191 readl(iommu->reg + DMAR_FEADDR_REG);
3192 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3193 readl(iommu->reg + DMAR_FEUADDR_REG);
3194
3195 spin_unlock_irqrestore(&iommu->register_lock, flag);
3196 }
3197 return 0;
3198
3199 nomem:
3200 for_each_active_iommu(iommu, drhd)
3201 kfree(iommu->iommu_state);
3202
3203 return -ENOMEM;
3204 }
3205
3206 static void iommu_resume(void)
3207 {
3208 struct dmar_drhd_unit *drhd;
3209 struct intel_iommu *iommu = NULL;
3210 unsigned long flag;
3211
3212 if (init_iommu_hw()) {
3213 if (force_on)
3214 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3215 else
3216 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3217 return;
3218 }
3219
3220 for_each_active_iommu(iommu, drhd) {
3221
3222 spin_lock_irqsave(&iommu->register_lock, flag);
3223
3224 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3225 iommu->reg + DMAR_FECTL_REG);
3226 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3227 iommu->reg + DMAR_FEDATA_REG);
3228 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3229 iommu->reg + DMAR_FEADDR_REG);
3230 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3231 iommu->reg + DMAR_FEUADDR_REG);
3232
3233 spin_unlock_irqrestore(&iommu->register_lock, flag);
3234 }
3235
3236 for_each_active_iommu(iommu, drhd)
3237 kfree(iommu->iommu_state);
3238 }
3239
3240 static struct syscore_ops iommu_syscore_ops = {
3241 .resume = iommu_resume,
3242 .suspend = iommu_suspend,
3243 };
3244
3245 static void __init init_iommu_pm_ops(void)
3246 {
3247 register_syscore_ops(&iommu_syscore_ops);
3248 }
3249
3250 #else
3251 static inline int init_iommu_pm_ops(void) { }
3252 #endif /* CONFIG_PM */
3253
3254 /*
3255 * Here we only respond to action of unbound device from driver.
3256 *
3257 * Added device is not attached to its DMAR domain here yet. That will happen
3258 * when mapping the device to iova.
3259 */
3260 static int device_notifier(struct notifier_block *nb,
3261 unsigned long action, void *data)
3262 {
3263 struct device *dev = data;
3264 struct pci_dev *pdev = to_pci_dev(dev);
3265 struct dmar_domain *domain;
3266
3267 if (iommu_no_mapping(dev))
3268 return 0;
3269
3270 domain = find_domain(pdev);
3271 if (!domain)
3272 return 0;
3273
3274 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3275 domain_remove_one_dev_info(domain, pdev);
3276
3277 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3278 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3279 list_empty(&domain->devices))
3280 domain_exit(domain);
3281 }
3282
3283 return 0;
3284 }
3285
3286 static struct notifier_block device_nb = {
3287 .notifier_call = device_notifier,
3288 };
3289
3290 int __init intel_iommu_init(void)
3291 {
3292 int ret = 0;
3293
3294 /* VT-d is required for a TXT/tboot launch, so enforce that */
3295 force_on = tboot_force_iommu();
3296
3297 if (dmar_table_init()) {
3298 if (force_on)
3299 panic("tboot: Failed to initialize DMAR table\n");
3300 return -ENODEV;
3301 }
3302
3303 if (dmar_dev_scope_init()) {
3304 if (force_on)
3305 panic("tboot: Failed to initialize DMAR device scope\n");
3306 return -ENODEV;
3307 }
3308
3309 /*
3310 * Check the need for DMA-remapping initialization now.
3311 * Above initialization will also be used by Interrupt-remapping.
3312 */
3313 if (no_iommu || dmar_disabled)
3314 return -ENODEV;
3315
3316 if (iommu_init_mempool()) {
3317 if (force_on)
3318 panic("tboot: Failed to initialize iommu memory\n");
3319 return -ENODEV;
3320 }
3321
3322 if (dmar_init_reserved_ranges()) {
3323 if (force_on)
3324 panic("tboot: Failed to reserve iommu ranges\n");
3325 return -ENODEV;
3326 }
3327
3328 init_no_remapping_devices();
3329
3330 ret = init_dmars();
3331 if (ret) {
3332 if (force_on)
3333 panic("tboot: Failed to initialize DMARs\n");
3334 printk(KERN_ERR "IOMMU: dmar init failed\n");
3335 put_iova_domain(&reserved_iova_list);
3336 iommu_exit_mempool();
3337 return ret;
3338 }
3339 printk(KERN_INFO
3340 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3341
3342 init_timer(&unmap_timer);
3343 #ifdef CONFIG_SWIOTLB
3344 swiotlb = 0;
3345 #endif
3346 dma_ops = &intel_dma_ops;
3347
3348 init_iommu_pm_ops();
3349
3350 register_iommu(&intel_iommu_ops);
3351
3352 bus_register_notifier(&pci_bus_type, &device_nb);
3353
3354 return 0;
3355 }
3356
3357 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3358 struct pci_dev *pdev)
3359 {
3360 struct pci_dev *tmp, *parent;
3361
3362 if (!iommu || !pdev)
3363 return;
3364
3365 /* dependent device detach */
3366 tmp = pci_find_upstream_pcie_bridge(pdev);
3367 /* Secondary interface's bus number and devfn 0 */
3368 if (tmp) {
3369 parent = pdev->bus->self;
3370 while (parent != tmp) {
3371 iommu_detach_dev(iommu, parent->bus->number,
3372 parent->devfn);
3373 parent = parent->bus->self;
3374 }
3375 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3376 iommu_detach_dev(iommu,
3377 tmp->subordinate->number, 0);
3378 else /* this is a legacy PCI bridge */
3379 iommu_detach_dev(iommu, tmp->bus->number,
3380 tmp->devfn);
3381 }
3382 }
3383
3384 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3385 struct pci_dev *pdev)
3386 {
3387 struct device_domain_info *info;
3388 struct intel_iommu *iommu;
3389 unsigned long flags;
3390 int found = 0;
3391 struct list_head *entry, *tmp;
3392
3393 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3394 pdev->devfn);
3395 if (!iommu)
3396 return;
3397
3398 spin_lock_irqsave(&device_domain_lock, flags);
3399 list_for_each_safe(entry, tmp, &domain->devices) {
3400 info = list_entry(entry, struct device_domain_info, link);
3401 /* No need to compare PCI domain; it has to be the same */
3402 if (info->bus == pdev->bus->number &&
3403 info->devfn == pdev->devfn) {
3404 list_del(&info->link);
3405 list_del(&info->global);
3406 if (info->dev)
3407 info->dev->dev.archdata.iommu = NULL;
3408 spin_unlock_irqrestore(&device_domain_lock, flags);
3409
3410 iommu_disable_dev_iotlb(info);
3411 iommu_detach_dev(iommu, info->bus, info->devfn);
3412 iommu_detach_dependent_devices(iommu, pdev);
3413 free_devinfo_mem(info);
3414
3415 spin_lock_irqsave(&device_domain_lock, flags);
3416
3417 if (found)
3418 break;
3419 else
3420 continue;
3421 }
3422
3423 /* if there is no other devices under the same iommu
3424 * owned by this domain, clear this iommu in iommu_bmp
3425 * update iommu count and coherency
3426 */
3427 if (iommu == device_to_iommu(info->segment, info->bus,
3428 info->devfn))
3429 found = 1;
3430 }
3431
3432 if (found == 0) {
3433 unsigned long tmp_flags;
3434 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3435 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3436 domain->iommu_count--;
3437 domain_update_iommu_cap(domain);
3438 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3439
3440 spin_lock_irqsave(&iommu->lock, tmp_flags);
3441 clear_bit(domain->id, iommu->domain_ids);
3442 iommu->domains[domain->id] = NULL;
3443 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3444 }
3445
3446 spin_unlock_irqrestore(&device_domain_lock, flags);
3447 }
3448
3449 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3450 {
3451 struct device_domain_info *info;
3452 struct intel_iommu *iommu;
3453 unsigned long flags1, flags2;
3454
3455 spin_lock_irqsave(&device_domain_lock, flags1);
3456 while (!list_empty(&domain->devices)) {
3457 info = list_entry(domain->devices.next,
3458 struct device_domain_info, link);
3459 list_del(&info->link);
3460 list_del(&info->global);
3461 if (info->dev)
3462 info->dev->dev.archdata.iommu = NULL;
3463
3464 spin_unlock_irqrestore(&device_domain_lock, flags1);
3465
3466 iommu_disable_dev_iotlb(info);
3467 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3468 iommu_detach_dev(iommu, info->bus, info->devfn);
3469 iommu_detach_dependent_devices(iommu, info->dev);
3470
3471 /* clear this iommu in iommu_bmp, update iommu count
3472 * and capabilities
3473 */
3474 spin_lock_irqsave(&domain->iommu_lock, flags2);
3475 if (test_and_clear_bit(iommu->seq_id,
3476 &domain->iommu_bmp)) {
3477 domain->iommu_count--;
3478 domain_update_iommu_cap(domain);
3479 }
3480 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3481
3482 free_devinfo_mem(info);
3483 spin_lock_irqsave(&device_domain_lock, flags1);
3484 }
3485 spin_unlock_irqrestore(&device_domain_lock, flags1);
3486 }
3487
3488 /* domain id for virtual machine, it won't be set in context */
3489 static unsigned long vm_domid;
3490
3491 static struct dmar_domain *iommu_alloc_vm_domain(void)
3492 {
3493 struct dmar_domain *domain;
3494
3495 domain = alloc_domain_mem();
3496 if (!domain)
3497 return NULL;
3498
3499 domain->id = vm_domid++;
3500 domain->nid = -1;
3501 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3502 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3503
3504 return domain;
3505 }
3506
3507 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3508 {
3509 int adjust_width;
3510
3511 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3512 spin_lock_init(&domain->iommu_lock);
3513
3514 domain_reserve_special_ranges(domain);
3515
3516 /* calculate AGAW */
3517 domain->gaw = guest_width;
3518 adjust_width = guestwidth_to_adjustwidth(guest_width);
3519 domain->agaw = width_to_agaw(adjust_width);
3520
3521 INIT_LIST_HEAD(&domain->devices);
3522
3523 domain->iommu_count = 0;
3524 domain->iommu_coherency = 0;
3525 domain->iommu_snooping = 0;
3526 domain->max_addr = 0;
3527 domain->nid = -1;
3528
3529 /* always allocate the top pgd */
3530 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3531 if (!domain->pgd)
3532 return -ENOMEM;
3533 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3534 return 0;
3535 }
3536
3537 static void iommu_free_vm_domain(struct dmar_domain *domain)
3538 {
3539 unsigned long flags;
3540 struct dmar_drhd_unit *drhd;
3541 struct intel_iommu *iommu;
3542 unsigned long i;
3543 unsigned long ndomains;
3544
3545 for_each_drhd_unit(drhd) {
3546 if (drhd->ignored)
3547 continue;
3548 iommu = drhd->iommu;
3549
3550 ndomains = cap_ndoms(iommu->cap);
3551 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3552 if (iommu->domains[i] == domain) {
3553 spin_lock_irqsave(&iommu->lock, flags);
3554 clear_bit(i, iommu->domain_ids);
3555 iommu->domains[i] = NULL;
3556 spin_unlock_irqrestore(&iommu->lock, flags);
3557 break;
3558 }
3559 }
3560 }
3561 }
3562
3563 static void vm_domain_exit(struct dmar_domain *domain)
3564 {
3565 /* Domain 0 is reserved, so dont process it */
3566 if (!domain)
3567 return;
3568
3569 vm_domain_remove_all_dev_info(domain);
3570 /* destroy iovas */
3571 put_iova_domain(&domain->iovad);
3572
3573 /* clear ptes */
3574 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3575
3576 /* free page tables */
3577 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3578
3579 iommu_free_vm_domain(domain);
3580 free_domain_mem(domain);
3581 }
3582
3583 static int intel_iommu_domain_init(struct iommu_domain *domain)
3584 {
3585 struct dmar_domain *dmar_domain;
3586
3587 dmar_domain = iommu_alloc_vm_domain();
3588 if (!dmar_domain) {
3589 printk(KERN_ERR
3590 "intel_iommu_domain_init: dmar_domain == NULL\n");
3591 return -ENOMEM;
3592 }
3593 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3594 printk(KERN_ERR
3595 "intel_iommu_domain_init() failed\n");
3596 vm_domain_exit(dmar_domain);
3597 return -ENOMEM;
3598 }
3599 domain->priv = dmar_domain;
3600
3601 return 0;
3602 }
3603
3604 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3605 {
3606 struct dmar_domain *dmar_domain = domain->priv;
3607
3608 domain->priv = NULL;
3609 vm_domain_exit(dmar_domain);
3610 }
3611
3612 static int intel_iommu_attach_device(struct iommu_domain *domain,
3613 struct device *dev)
3614 {
3615 struct dmar_domain *dmar_domain = domain->priv;
3616 struct pci_dev *pdev = to_pci_dev(dev);
3617 struct intel_iommu *iommu;
3618 int addr_width;
3619
3620 /* normally pdev is not mapped */
3621 if (unlikely(domain_context_mapped(pdev))) {
3622 struct dmar_domain *old_domain;
3623
3624 old_domain = find_domain(pdev);
3625 if (old_domain) {
3626 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3627 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3628 domain_remove_one_dev_info(old_domain, pdev);
3629 else
3630 domain_remove_dev_info(old_domain);
3631 }
3632 }
3633
3634 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3635 pdev->devfn);
3636 if (!iommu)
3637 return -ENODEV;
3638
3639 /* check if this iommu agaw is sufficient for max mapped address */
3640 addr_width = agaw_to_width(iommu->agaw);
3641 if (addr_width > cap_mgaw(iommu->cap))
3642 addr_width = cap_mgaw(iommu->cap);
3643
3644 if (dmar_domain->max_addr > (1LL << addr_width)) {
3645 printk(KERN_ERR "%s: iommu width (%d) is not "
3646 "sufficient for the mapped address (%llx)\n",
3647 __func__, addr_width, dmar_domain->max_addr);
3648 return -EFAULT;
3649 }
3650 dmar_domain->gaw = addr_width;
3651
3652 /*
3653 * Knock out extra levels of page tables if necessary
3654 */
3655 while (iommu->agaw < dmar_domain->agaw) {
3656 struct dma_pte *pte;
3657
3658 pte = dmar_domain->pgd;
3659 if (dma_pte_present(pte)) {
3660 dmar_domain->pgd = (struct dma_pte *)
3661 phys_to_virt(dma_pte_addr(pte));
3662 free_pgtable_page(pte);
3663 }
3664 dmar_domain->agaw--;
3665 }
3666
3667 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3668 }
3669
3670 static void intel_iommu_detach_device(struct iommu_domain *domain,
3671 struct device *dev)
3672 {
3673 struct dmar_domain *dmar_domain = domain->priv;
3674 struct pci_dev *pdev = to_pci_dev(dev);
3675
3676 domain_remove_one_dev_info(dmar_domain, pdev);
3677 }
3678
3679 static int intel_iommu_map(struct iommu_domain *domain,
3680 unsigned long iova, phys_addr_t hpa,
3681 int gfp_order, int iommu_prot)
3682 {
3683 struct dmar_domain *dmar_domain = domain->priv;
3684 u64 max_addr;
3685 int prot = 0;
3686 size_t size;
3687 int ret;
3688
3689 if (iommu_prot & IOMMU_READ)
3690 prot |= DMA_PTE_READ;
3691 if (iommu_prot & IOMMU_WRITE)
3692 prot |= DMA_PTE_WRITE;
3693 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3694 prot |= DMA_PTE_SNP;
3695
3696 size = PAGE_SIZE << gfp_order;
3697 max_addr = iova + size;
3698 if (dmar_domain->max_addr < max_addr) {
3699 u64 end;
3700
3701 /* check if minimum agaw is sufficient for mapped address */
3702 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
3703 if (end < max_addr) {
3704 printk(KERN_ERR "%s: iommu width (%d) is not "
3705 "sufficient for the mapped address (%llx)\n",
3706 __func__, dmar_domain->gaw, max_addr);
3707 return -EFAULT;
3708 }
3709 dmar_domain->max_addr = max_addr;
3710 }
3711 /* Round up size to next multiple of PAGE_SIZE, if it and
3712 the low bits of hpa would take us onto the next page */
3713 size = aligned_nrpages(hpa, size);
3714 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3715 hpa >> VTD_PAGE_SHIFT, size, prot);
3716 return ret;
3717 }
3718
3719 static int intel_iommu_unmap(struct iommu_domain *domain,
3720 unsigned long iova, int gfp_order)
3721 {
3722 struct dmar_domain *dmar_domain = domain->priv;
3723 size_t size = PAGE_SIZE << gfp_order;
3724
3725 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3726 (iova + size - 1) >> VTD_PAGE_SHIFT);
3727
3728 if (dmar_domain->max_addr == iova + size)
3729 dmar_domain->max_addr = iova;
3730
3731 return gfp_order;
3732 }
3733
3734 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3735 unsigned long iova)
3736 {
3737 struct dmar_domain *dmar_domain = domain->priv;
3738 struct dma_pte *pte;
3739 u64 phys = 0;
3740
3741 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3742 if (pte)
3743 phys = dma_pte_addr(pte);
3744
3745 return phys;
3746 }
3747
3748 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3749 unsigned long cap)
3750 {
3751 struct dmar_domain *dmar_domain = domain->priv;
3752
3753 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3754 return dmar_domain->iommu_snooping;
3755 if (cap == IOMMU_CAP_INTR_REMAP)
3756 return intr_remapping_enabled;
3757
3758 return 0;
3759 }
3760
3761 static struct iommu_ops intel_iommu_ops = {
3762 .domain_init = intel_iommu_domain_init,
3763 .domain_destroy = intel_iommu_domain_destroy,
3764 .attach_dev = intel_iommu_attach_device,
3765 .detach_dev = intel_iommu_detach_device,
3766 .map = intel_iommu_map,
3767 .unmap = intel_iommu_unmap,
3768 .iova_to_phys = intel_iommu_iova_to_phys,
3769 .domain_has_cap = intel_iommu_domain_has_cap,
3770 };
3771
3772 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3773 {
3774 /*
3775 * Mobile 4 Series Chipset neglects to set RWBF capability,
3776 * but needs it:
3777 */
3778 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3779 rwbf_quirk = 1;
3780
3781 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
3782 if (dev->revision == 0x07) {
3783 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
3784 dmar_map_gfx = 0;
3785 }
3786 }
3787
3788 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
3789
3790 #define GGC 0x52
3791 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
3792 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
3793 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
3794 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
3795 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
3796 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
3797 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
3798 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
3799
3800 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
3801 {
3802 unsigned short ggc;
3803
3804 if (pci_read_config_word(dev, GGC, &ggc))
3805 return;
3806
3807 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
3808 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
3809 dmar_map_gfx = 0;
3810 }
3811 }
3812 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
3813 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
3814 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
3815 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
3816
3817 /* On Tylersburg chipsets, some BIOSes have been known to enable the
3818 ISOCH DMAR unit for the Azalia sound device, but not give it any
3819 TLB entries, which causes it to deadlock. Check for that. We do
3820 this in a function called from init_dmars(), instead of in a PCI
3821 quirk, because we don't want to print the obnoxious "BIOS broken"
3822 message if VT-d is actually disabled.
3823 */
3824 static void __init check_tylersburg_isoch(void)
3825 {
3826 struct pci_dev *pdev;
3827 uint32_t vtisochctrl;
3828
3829 /* If there's no Azalia in the system anyway, forget it. */
3830 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
3831 if (!pdev)
3832 return;
3833 pci_dev_put(pdev);
3834
3835 /* System Management Registers. Might be hidden, in which case
3836 we can't do the sanity check. But that's OK, because the
3837 known-broken BIOSes _don't_ actually hide it, so far. */
3838 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
3839 if (!pdev)
3840 return;
3841
3842 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
3843 pci_dev_put(pdev);
3844 return;
3845 }
3846
3847 pci_dev_put(pdev);
3848
3849 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
3850 if (vtisochctrl & 1)
3851 return;
3852
3853 /* Drop all bits other than the number of TLB entries */
3854 vtisochctrl &= 0x1c;
3855
3856 /* If we have the recommended number of TLB entries (16), fine. */
3857 if (vtisochctrl == 0x10)
3858 return;
3859
3860 /* Zero TLB entries? You get to ride the short bus to school. */
3861 if (!vtisochctrl) {
3862 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
3863 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3864 dmi_get_system_info(DMI_BIOS_VENDOR),
3865 dmi_get_system_info(DMI_BIOS_VERSION),
3866 dmi_get_system_info(DMI_PRODUCT_VERSION));
3867 iommu_identity_mapping |= IDENTMAP_AZALIA;
3868 return;
3869 }
3870
3871 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
3872 vtisochctrl);
3873 }
This page took 0.18834 seconds and 6 git commands to generate.