PCI / PM: Avoid resuming more devices during system suspend
[deliverable/linux.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 int retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = 0;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 if (retval)
200 return retval;
201 return count;
202 }
203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
204
205 static struct attribute *pci_drv_attrs[] = {
206 &driver_attr_new_id.attr,
207 &driver_attr_remove_id.attr,
208 NULL,
209 };
210 ATTRIBUTE_GROUPS(pci_drv);
211
212 /**
213 * pci_match_id - See if a pci device matches a given pci_id table
214 * @ids: array of PCI device id structures to search in
215 * @dev: the PCI device structure to match against.
216 *
217 * Used by a driver to check whether a PCI device present in the
218 * system is in its list of supported devices. Returns the matching
219 * pci_device_id structure or %NULL if there is no match.
220 *
221 * Deprecated, don't use this as it will not catch any dynamic ids
222 * that a driver might want to check for.
223 */
224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
225 struct pci_dev *dev)
226 {
227 if (ids) {
228 while (ids->vendor || ids->subvendor || ids->class_mask) {
229 if (pci_match_one_device(ids, dev))
230 return ids;
231 ids++;
232 }
233 }
234 return NULL;
235 }
236 EXPORT_SYMBOL(pci_match_id);
237
238 static const struct pci_device_id pci_device_id_any = {
239 .vendor = PCI_ANY_ID,
240 .device = PCI_ANY_ID,
241 .subvendor = PCI_ANY_ID,
242 .subdevice = PCI_ANY_ID,
243 };
244
245 /**
246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
247 * @drv: the PCI driver to match against
248 * @dev: the PCI device structure to match against
249 *
250 * Used by a driver to check whether a PCI device present in the
251 * system is in its list of supported devices. Returns the matching
252 * pci_device_id structure or %NULL if there is no match.
253 */
254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
255 struct pci_dev *dev)
256 {
257 struct pci_dynid *dynid;
258 const struct pci_device_id *found_id = NULL;
259
260 /* When driver_override is set, only bind to the matching driver */
261 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
262 return NULL;
263
264 /* Look at the dynamic ids first, before the static ones */
265 spin_lock(&drv->dynids.lock);
266 list_for_each_entry(dynid, &drv->dynids.list, node) {
267 if (pci_match_one_device(&dynid->id, dev)) {
268 found_id = &dynid->id;
269 break;
270 }
271 }
272 spin_unlock(&drv->dynids.lock);
273
274 if (!found_id)
275 found_id = pci_match_id(drv->id_table, dev);
276
277 /* driver_override will always match, send a dummy id */
278 if (!found_id && dev->driver_override)
279 found_id = &pci_device_id_any;
280
281 return found_id;
282 }
283
284 struct drv_dev_and_id {
285 struct pci_driver *drv;
286 struct pci_dev *dev;
287 const struct pci_device_id *id;
288 };
289
290 static long local_pci_probe(void *_ddi)
291 {
292 struct drv_dev_and_id *ddi = _ddi;
293 struct pci_dev *pci_dev = ddi->dev;
294 struct pci_driver *pci_drv = ddi->drv;
295 struct device *dev = &pci_dev->dev;
296 int rc;
297
298 /*
299 * Unbound PCI devices are always put in D0, regardless of
300 * runtime PM status. During probe, the device is set to
301 * active and the usage count is incremented. If the driver
302 * supports runtime PM, it should call pm_runtime_put_noidle(),
303 * or any other runtime PM helper function decrementing the usage
304 * count, in its probe routine and pm_runtime_get_noresume() in
305 * its remove routine.
306 */
307 pm_runtime_get_sync(dev);
308 pci_dev->driver = pci_drv;
309 rc = pci_drv->probe(pci_dev, ddi->id);
310 if (!rc)
311 return rc;
312 if (rc < 0) {
313 pci_dev->driver = NULL;
314 pm_runtime_put_sync(dev);
315 return rc;
316 }
317 /*
318 * Probe function should return < 0 for failure, 0 for success
319 * Treat values > 0 as success, but warn.
320 */
321 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
322 return 0;
323 }
324
325 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
326 const struct pci_device_id *id)
327 {
328 int error, node;
329 struct drv_dev_and_id ddi = { drv, dev, id };
330
331 /*
332 * Execute driver initialization on node where the device is
333 * attached. This way the driver likely allocates its local memory
334 * on the right node.
335 */
336 node = dev_to_node(&dev->dev);
337
338 /*
339 * On NUMA systems, we are likely to call a PF probe function using
340 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
341 * adds the VF devices via pci_bus_add_device()), we may re-enter
342 * this function to call the VF probe function. Calling
343 * work_on_cpu() again will cause a lockdep warning. Since VFs are
344 * always on the same node as the PF, we can work around this by
345 * avoiding work_on_cpu() when we're already on the correct node.
346 *
347 * Preemption is enabled, so it's theoretically unsafe to use
348 * numa_node_id(), but even if we run the probe function on the
349 * wrong node, it should be functionally correct.
350 */
351 if (node >= 0 && node != numa_node_id()) {
352 int cpu;
353
354 get_online_cpus();
355 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
356 if (cpu < nr_cpu_ids)
357 error = work_on_cpu(cpu, local_pci_probe, &ddi);
358 else
359 error = local_pci_probe(&ddi);
360 put_online_cpus();
361 } else
362 error = local_pci_probe(&ddi);
363
364 return error;
365 }
366
367 /**
368 * __pci_device_probe - check if a driver wants to claim a specific PCI device
369 * @drv: driver to call to check if it wants the PCI device
370 * @pci_dev: PCI device being probed
371 *
372 * returns 0 on success, else error.
373 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
374 */
375 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
376 {
377 const struct pci_device_id *id;
378 int error = 0;
379
380 if (!pci_dev->driver && drv->probe) {
381 error = -ENODEV;
382
383 id = pci_match_device(drv, pci_dev);
384 if (id)
385 error = pci_call_probe(drv, pci_dev, id);
386 if (error >= 0)
387 error = 0;
388 }
389 return error;
390 }
391
392 int __weak pcibios_alloc_irq(struct pci_dev *dev)
393 {
394 return 0;
395 }
396
397 void __weak pcibios_free_irq(struct pci_dev *dev)
398 {
399 }
400
401 static int pci_device_probe(struct device *dev)
402 {
403 int error;
404 struct pci_dev *pci_dev = to_pci_dev(dev);
405 struct pci_driver *drv = to_pci_driver(dev->driver);
406
407 error = pcibios_alloc_irq(pci_dev);
408 if (error < 0)
409 return error;
410
411 pci_dev_get(pci_dev);
412 error = __pci_device_probe(drv, pci_dev);
413 if (error) {
414 pcibios_free_irq(pci_dev);
415 pci_dev_put(pci_dev);
416 }
417
418 return error;
419 }
420
421 static int pci_device_remove(struct device *dev)
422 {
423 struct pci_dev *pci_dev = to_pci_dev(dev);
424 struct pci_driver *drv = pci_dev->driver;
425
426 if (drv) {
427 if (drv->remove) {
428 pm_runtime_get_sync(dev);
429 drv->remove(pci_dev);
430 pm_runtime_put_noidle(dev);
431 }
432 pcibios_free_irq(pci_dev);
433 pci_dev->driver = NULL;
434 }
435
436 /* Undo the runtime PM settings in local_pci_probe() */
437 pm_runtime_put_sync(dev);
438
439 /*
440 * If the device is still on, set the power state as "unknown",
441 * since it might change by the next time we load the driver.
442 */
443 if (pci_dev->current_state == PCI_D0)
444 pci_dev->current_state = PCI_UNKNOWN;
445
446 /*
447 * We would love to complain here if pci_dev->is_enabled is set, that
448 * the driver should have called pci_disable_device(), but the
449 * unfortunate fact is there are too many odd BIOS and bridge setups
450 * that don't like drivers doing that all of the time.
451 * Oh well, we can dream of sane hardware when we sleep, no matter how
452 * horrible the crap we have to deal with is when we are awake...
453 */
454
455 pci_dev_put(pci_dev);
456 return 0;
457 }
458
459 static void pci_device_shutdown(struct device *dev)
460 {
461 struct pci_dev *pci_dev = to_pci_dev(dev);
462 struct pci_driver *drv = pci_dev->driver;
463
464 pm_runtime_resume(dev);
465
466 if (drv && drv->shutdown)
467 drv->shutdown(pci_dev);
468 pci_msi_shutdown(pci_dev);
469 pci_msix_shutdown(pci_dev);
470
471 #ifdef CONFIG_KEXEC_CORE
472 /*
473 * If this is a kexec reboot, turn off Bus Master bit on the
474 * device to tell it to not continue to do DMA. Don't touch
475 * devices in D3cold or unknown states.
476 * If it is not a kexec reboot, firmware will hit the PCI
477 * devices with big hammer and stop their DMA any way.
478 */
479 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
480 pci_clear_master(pci_dev);
481 #endif
482 }
483
484 #ifdef CONFIG_PM
485
486 /* Auxiliary functions used for system resume and run-time resume. */
487
488 /**
489 * pci_restore_standard_config - restore standard config registers of PCI device
490 * @pci_dev: PCI device to handle
491 */
492 static int pci_restore_standard_config(struct pci_dev *pci_dev)
493 {
494 pci_update_current_state(pci_dev, PCI_UNKNOWN);
495
496 if (pci_dev->current_state != PCI_D0) {
497 int error = pci_set_power_state(pci_dev, PCI_D0);
498 if (error)
499 return error;
500 }
501
502 pci_restore_state(pci_dev);
503 return 0;
504 }
505
506 #endif
507
508 #ifdef CONFIG_PM_SLEEP
509
510 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
511 {
512 pci_power_up(pci_dev);
513 pci_restore_state(pci_dev);
514 pci_fixup_device(pci_fixup_resume_early, pci_dev);
515 }
516
517 /*
518 * Default "suspend" method for devices that have no driver provided suspend,
519 * or not even a driver at all (second part).
520 */
521 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
522 {
523 /*
524 * mark its power state as "unknown", since we don't know if
525 * e.g. the BIOS will change its device state when we suspend.
526 */
527 if (pci_dev->current_state == PCI_D0)
528 pci_dev->current_state = PCI_UNKNOWN;
529 }
530
531 /*
532 * Default "resume" method for devices that have no driver provided resume,
533 * or not even a driver at all (second part).
534 */
535 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
536 {
537 int retval;
538
539 /* if the device was enabled before suspend, reenable */
540 retval = pci_reenable_device(pci_dev);
541 /*
542 * if the device was busmaster before the suspend, make it busmaster
543 * again
544 */
545 if (pci_dev->is_busmaster)
546 pci_set_master(pci_dev);
547
548 return retval;
549 }
550
551 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
552 {
553 struct pci_dev *pci_dev = to_pci_dev(dev);
554 struct pci_driver *drv = pci_dev->driver;
555
556 if (drv && drv->suspend) {
557 pci_power_t prev = pci_dev->current_state;
558 int error;
559
560 error = drv->suspend(pci_dev, state);
561 suspend_report_result(drv->suspend, error);
562 if (error)
563 return error;
564
565 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
566 && pci_dev->current_state != PCI_UNKNOWN) {
567 WARN_ONCE(pci_dev->current_state != prev,
568 "PCI PM: Device state not saved by %pF\n",
569 drv->suspend);
570 }
571 }
572
573 pci_fixup_device(pci_fixup_suspend, pci_dev);
574
575 return 0;
576 }
577
578 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
579 {
580 struct pci_dev *pci_dev = to_pci_dev(dev);
581 struct pci_driver *drv = pci_dev->driver;
582
583 if (drv && drv->suspend_late) {
584 pci_power_t prev = pci_dev->current_state;
585 int error;
586
587 error = drv->suspend_late(pci_dev, state);
588 suspend_report_result(drv->suspend_late, error);
589 if (error)
590 return error;
591
592 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
593 && pci_dev->current_state != PCI_UNKNOWN) {
594 WARN_ONCE(pci_dev->current_state != prev,
595 "PCI PM: Device state not saved by %pF\n",
596 drv->suspend_late);
597 goto Fixup;
598 }
599 }
600
601 if (!pci_dev->state_saved)
602 pci_save_state(pci_dev);
603
604 pci_pm_set_unknown_state(pci_dev);
605
606 Fixup:
607 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
608
609 return 0;
610 }
611
612 static int pci_legacy_resume_early(struct device *dev)
613 {
614 struct pci_dev *pci_dev = to_pci_dev(dev);
615 struct pci_driver *drv = pci_dev->driver;
616
617 return drv && drv->resume_early ?
618 drv->resume_early(pci_dev) : 0;
619 }
620
621 static int pci_legacy_resume(struct device *dev)
622 {
623 struct pci_dev *pci_dev = to_pci_dev(dev);
624 struct pci_driver *drv = pci_dev->driver;
625
626 pci_fixup_device(pci_fixup_resume, pci_dev);
627
628 return drv && drv->resume ?
629 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
630 }
631
632 /* Auxiliary functions used by the new power management framework */
633
634 static void pci_pm_default_resume(struct pci_dev *pci_dev)
635 {
636 pci_fixup_device(pci_fixup_resume, pci_dev);
637
638 if (!pci_has_subordinate(pci_dev))
639 pci_enable_wake(pci_dev, PCI_D0, false);
640 }
641
642 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
643 {
644 /* Disable non-bridge devices without PM support */
645 if (!pci_has_subordinate(pci_dev))
646 pci_disable_enabled_device(pci_dev);
647 }
648
649 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
650 {
651 struct pci_driver *drv = pci_dev->driver;
652 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
653 || drv->resume_early);
654
655 /*
656 * Legacy PM support is used by default, so warn if the new framework is
657 * supported as well. Drivers are supposed to support either the
658 * former, or the latter, but not both at the same time.
659 */
660 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
661 drv->name, pci_dev->vendor, pci_dev->device);
662
663 return ret;
664 }
665
666 /* New power management framework */
667
668 static int pci_pm_prepare(struct device *dev)
669 {
670 struct device_driver *drv = dev->driver;
671
672 /*
673 * Devices having power.ignore_children set may still be necessary for
674 * suspending their children in the next phase of device suspend.
675 */
676 if (dev->power.ignore_children)
677 pm_runtime_resume(dev);
678
679 if (drv && drv->pm && drv->pm->prepare) {
680 int error = drv->pm->prepare(dev);
681 if (error)
682 return error;
683 }
684 return pci_dev_keep_suspended(to_pci_dev(dev));
685 }
686
687 static void pci_pm_complete(struct device *dev)
688 {
689 struct device_driver *drv = dev->driver;
690 struct pci_dev *pci_dev = to_pci_dev(dev);
691
692 pci_dev_complete_resume(pci_dev);
693
694 if (drv && drv->pm && drv->pm->complete)
695 drv->pm->complete(dev);
696 }
697
698 #else /* !CONFIG_PM_SLEEP */
699
700 #define pci_pm_prepare NULL
701 #define pci_pm_complete NULL
702
703 #endif /* !CONFIG_PM_SLEEP */
704
705 #ifdef CONFIG_SUSPEND
706
707 static int pci_pm_suspend(struct device *dev)
708 {
709 struct pci_dev *pci_dev = to_pci_dev(dev);
710 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
711
712 if (pci_has_legacy_pm_support(pci_dev))
713 return pci_legacy_suspend(dev, PMSG_SUSPEND);
714
715 if (!pm) {
716 pci_pm_default_suspend(pci_dev);
717 goto Fixup;
718 }
719
720 /*
721 * PCI devices suspended at run time need to be resumed at this point,
722 * because in general it is necessary to reconfigure them for system
723 * suspend. Namely, if the device is supposed to wake up the system
724 * from the sleep state, we may need to reconfigure it for this purpose.
725 * In turn, if the device is not supposed to wake up the system from the
726 * sleep state, we'll have to prevent it from signaling wake-up.
727 */
728 pm_runtime_resume(dev);
729
730 pci_dev->state_saved = false;
731 if (pm->suspend) {
732 pci_power_t prev = pci_dev->current_state;
733 int error;
734
735 error = pm->suspend(dev);
736 suspend_report_result(pm->suspend, error);
737 if (error)
738 return error;
739
740 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
741 && pci_dev->current_state != PCI_UNKNOWN) {
742 WARN_ONCE(pci_dev->current_state != prev,
743 "PCI PM: State of device not saved by %pF\n",
744 pm->suspend);
745 }
746 }
747
748 Fixup:
749 pci_fixup_device(pci_fixup_suspend, pci_dev);
750
751 return 0;
752 }
753
754 static int pci_pm_suspend_noirq(struct device *dev)
755 {
756 struct pci_dev *pci_dev = to_pci_dev(dev);
757 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
758
759 if (pci_has_legacy_pm_support(pci_dev))
760 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
761
762 if (!pm) {
763 pci_save_state(pci_dev);
764 goto Fixup;
765 }
766
767 if (pm->suspend_noirq) {
768 pci_power_t prev = pci_dev->current_state;
769 int error;
770
771 error = pm->suspend_noirq(dev);
772 suspend_report_result(pm->suspend_noirq, error);
773 if (error)
774 return error;
775
776 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
777 && pci_dev->current_state != PCI_UNKNOWN) {
778 WARN_ONCE(pci_dev->current_state != prev,
779 "PCI PM: State of device not saved by %pF\n",
780 pm->suspend_noirq);
781 goto Fixup;
782 }
783 }
784
785 if (!pci_dev->state_saved) {
786 pci_save_state(pci_dev);
787 if (!pci_has_subordinate(pci_dev))
788 pci_prepare_to_sleep(pci_dev);
789 }
790
791 pci_pm_set_unknown_state(pci_dev);
792
793 /*
794 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
795 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
796 * hasn't been quiesced and tries to turn it off. If the controller
797 * is already in D3, this can hang or cause memory corruption.
798 *
799 * Since the value of the COMMAND register doesn't matter once the
800 * device has been suspended, we can safely set it to 0 here.
801 */
802 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
803 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
804
805 Fixup:
806 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
807
808 return 0;
809 }
810
811 static int pci_pm_resume_noirq(struct device *dev)
812 {
813 struct pci_dev *pci_dev = to_pci_dev(dev);
814 struct device_driver *drv = dev->driver;
815 int error = 0;
816
817 pci_pm_default_resume_early(pci_dev);
818
819 if (pci_has_legacy_pm_support(pci_dev))
820 return pci_legacy_resume_early(dev);
821
822 if (drv && drv->pm && drv->pm->resume_noirq)
823 error = drv->pm->resume_noirq(dev);
824
825 return error;
826 }
827
828 static int pci_pm_resume(struct device *dev)
829 {
830 struct pci_dev *pci_dev = to_pci_dev(dev);
831 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
832 int error = 0;
833
834 /*
835 * This is necessary for the suspend error path in which resume is
836 * called without restoring the standard config registers of the device.
837 */
838 if (pci_dev->state_saved)
839 pci_restore_standard_config(pci_dev);
840
841 if (pci_has_legacy_pm_support(pci_dev))
842 return pci_legacy_resume(dev);
843
844 pci_pm_default_resume(pci_dev);
845
846 if (pm) {
847 if (pm->resume)
848 error = pm->resume(dev);
849 } else {
850 pci_pm_reenable_device(pci_dev);
851 }
852
853 return error;
854 }
855
856 #else /* !CONFIG_SUSPEND */
857
858 #define pci_pm_suspend NULL
859 #define pci_pm_suspend_noirq NULL
860 #define pci_pm_resume NULL
861 #define pci_pm_resume_noirq NULL
862
863 #endif /* !CONFIG_SUSPEND */
864
865 #ifdef CONFIG_HIBERNATE_CALLBACKS
866
867
868 /*
869 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
870 * a hibernate transition
871 */
872 struct dev_pm_ops __weak pcibios_pm_ops;
873
874 static int pci_pm_freeze(struct device *dev)
875 {
876 struct pci_dev *pci_dev = to_pci_dev(dev);
877 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
878
879 if (pci_has_legacy_pm_support(pci_dev))
880 return pci_legacy_suspend(dev, PMSG_FREEZE);
881
882 if (!pm) {
883 pci_pm_default_suspend(pci_dev);
884 return 0;
885 }
886
887 /*
888 * This used to be done in pci_pm_prepare() for all devices and some
889 * drivers may depend on it, so do it here. Ideally, runtime-suspended
890 * devices should not be touched during freeze/thaw transitions,
891 * however.
892 */
893 pm_runtime_resume(dev);
894
895 pci_dev->state_saved = false;
896 if (pm->freeze) {
897 int error;
898
899 error = pm->freeze(dev);
900 suspend_report_result(pm->freeze, error);
901 if (error)
902 return error;
903 }
904
905 if (pcibios_pm_ops.freeze)
906 return pcibios_pm_ops.freeze(dev);
907
908 return 0;
909 }
910
911 static int pci_pm_freeze_noirq(struct device *dev)
912 {
913 struct pci_dev *pci_dev = to_pci_dev(dev);
914 struct device_driver *drv = dev->driver;
915
916 if (pci_has_legacy_pm_support(pci_dev))
917 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
918
919 if (drv && drv->pm && drv->pm->freeze_noirq) {
920 int error;
921
922 error = drv->pm->freeze_noirq(dev);
923 suspend_report_result(drv->pm->freeze_noirq, error);
924 if (error)
925 return error;
926 }
927
928 if (!pci_dev->state_saved)
929 pci_save_state(pci_dev);
930
931 pci_pm_set_unknown_state(pci_dev);
932
933 if (pcibios_pm_ops.freeze_noirq)
934 return pcibios_pm_ops.freeze_noirq(dev);
935
936 return 0;
937 }
938
939 static int pci_pm_thaw_noirq(struct device *dev)
940 {
941 struct pci_dev *pci_dev = to_pci_dev(dev);
942 struct device_driver *drv = dev->driver;
943 int error = 0;
944
945 if (pcibios_pm_ops.thaw_noirq) {
946 error = pcibios_pm_ops.thaw_noirq(dev);
947 if (error)
948 return error;
949 }
950
951 if (pci_has_legacy_pm_support(pci_dev))
952 return pci_legacy_resume_early(dev);
953
954 pci_update_current_state(pci_dev, PCI_D0);
955
956 if (drv && drv->pm && drv->pm->thaw_noirq)
957 error = drv->pm->thaw_noirq(dev);
958
959 return error;
960 }
961
962 static int pci_pm_thaw(struct device *dev)
963 {
964 struct pci_dev *pci_dev = to_pci_dev(dev);
965 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
966 int error = 0;
967
968 if (pcibios_pm_ops.thaw) {
969 error = pcibios_pm_ops.thaw(dev);
970 if (error)
971 return error;
972 }
973
974 if (pci_has_legacy_pm_support(pci_dev))
975 return pci_legacy_resume(dev);
976
977 if (pm) {
978 if (pm->thaw)
979 error = pm->thaw(dev);
980 } else {
981 pci_pm_reenable_device(pci_dev);
982 }
983
984 pci_dev->state_saved = false;
985
986 return error;
987 }
988
989 static int pci_pm_poweroff(struct device *dev)
990 {
991 struct pci_dev *pci_dev = to_pci_dev(dev);
992 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
993
994 if (pci_has_legacy_pm_support(pci_dev))
995 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
996
997 if (!pm) {
998 pci_pm_default_suspend(pci_dev);
999 goto Fixup;
1000 }
1001
1002 /* The reason to do that is the same as in pci_pm_suspend(). */
1003 pm_runtime_resume(dev);
1004
1005 pci_dev->state_saved = false;
1006 if (pm->poweroff) {
1007 int error;
1008
1009 error = pm->poweroff(dev);
1010 suspend_report_result(pm->poweroff, error);
1011 if (error)
1012 return error;
1013 }
1014
1015 Fixup:
1016 pci_fixup_device(pci_fixup_suspend, pci_dev);
1017
1018 if (pcibios_pm_ops.poweroff)
1019 return pcibios_pm_ops.poweroff(dev);
1020
1021 return 0;
1022 }
1023
1024 static int pci_pm_poweroff_noirq(struct device *dev)
1025 {
1026 struct pci_dev *pci_dev = to_pci_dev(dev);
1027 struct device_driver *drv = dev->driver;
1028
1029 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1030 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1031
1032 if (!drv || !drv->pm) {
1033 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1034 return 0;
1035 }
1036
1037 if (drv->pm->poweroff_noirq) {
1038 int error;
1039
1040 error = drv->pm->poweroff_noirq(dev);
1041 suspend_report_result(drv->pm->poweroff_noirq, error);
1042 if (error)
1043 return error;
1044 }
1045
1046 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1047 pci_prepare_to_sleep(pci_dev);
1048
1049 /*
1050 * The reason for doing this here is the same as for the analogous code
1051 * in pci_pm_suspend_noirq().
1052 */
1053 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1054 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1055
1056 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1057
1058 if (pcibios_pm_ops.poweroff_noirq)
1059 return pcibios_pm_ops.poweroff_noirq(dev);
1060
1061 return 0;
1062 }
1063
1064 static int pci_pm_restore_noirq(struct device *dev)
1065 {
1066 struct pci_dev *pci_dev = to_pci_dev(dev);
1067 struct device_driver *drv = dev->driver;
1068 int error = 0;
1069
1070 if (pcibios_pm_ops.restore_noirq) {
1071 error = pcibios_pm_ops.restore_noirq(dev);
1072 if (error)
1073 return error;
1074 }
1075
1076 pci_pm_default_resume_early(pci_dev);
1077
1078 if (pci_has_legacy_pm_support(pci_dev))
1079 return pci_legacy_resume_early(dev);
1080
1081 if (drv && drv->pm && drv->pm->restore_noirq)
1082 error = drv->pm->restore_noirq(dev);
1083
1084 return error;
1085 }
1086
1087 static int pci_pm_restore(struct device *dev)
1088 {
1089 struct pci_dev *pci_dev = to_pci_dev(dev);
1090 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1091 int error = 0;
1092
1093 if (pcibios_pm_ops.restore) {
1094 error = pcibios_pm_ops.restore(dev);
1095 if (error)
1096 return error;
1097 }
1098
1099 /*
1100 * This is necessary for the hibernation error path in which restore is
1101 * called without restoring the standard config registers of the device.
1102 */
1103 if (pci_dev->state_saved)
1104 pci_restore_standard_config(pci_dev);
1105
1106 if (pci_has_legacy_pm_support(pci_dev))
1107 return pci_legacy_resume(dev);
1108
1109 pci_pm_default_resume(pci_dev);
1110
1111 if (pm) {
1112 if (pm->restore)
1113 error = pm->restore(dev);
1114 } else {
1115 pci_pm_reenable_device(pci_dev);
1116 }
1117
1118 return error;
1119 }
1120
1121 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1122
1123 #define pci_pm_freeze NULL
1124 #define pci_pm_freeze_noirq NULL
1125 #define pci_pm_thaw NULL
1126 #define pci_pm_thaw_noirq NULL
1127 #define pci_pm_poweroff NULL
1128 #define pci_pm_poweroff_noirq NULL
1129 #define pci_pm_restore NULL
1130 #define pci_pm_restore_noirq NULL
1131
1132 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1133
1134 #ifdef CONFIG_PM
1135
1136 static int pci_pm_runtime_suspend(struct device *dev)
1137 {
1138 struct pci_dev *pci_dev = to_pci_dev(dev);
1139 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1140 pci_power_t prev = pci_dev->current_state;
1141 int error;
1142
1143 /*
1144 * If pci_dev->driver is not set (unbound), the device should
1145 * always remain in D0 regardless of the runtime PM status
1146 */
1147 if (!pci_dev->driver)
1148 return 0;
1149
1150 if (!pm || !pm->runtime_suspend)
1151 return -ENOSYS;
1152
1153 pci_dev->state_saved = false;
1154 pci_dev->no_d3cold = false;
1155 error = pm->runtime_suspend(dev);
1156 suspend_report_result(pm->runtime_suspend, error);
1157 if (error)
1158 return error;
1159 if (!pci_dev->d3cold_allowed)
1160 pci_dev->no_d3cold = true;
1161
1162 pci_fixup_device(pci_fixup_suspend, pci_dev);
1163
1164 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1165 && pci_dev->current_state != PCI_UNKNOWN) {
1166 WARN_ONCE(pci_dev->current_state != prev,
1167 "PCI PM: State of device not saved by %pF\n",
1168 pm->runtime_suspend);
1169 return 0;
1170 }
1171
1172 if (!pci_dev->state_saved) {
1173 pci_save_state(pci_dev);
1174 pci_finish_runtime_suspend(pci_dev);
1175 }
1176
1177 return 0;
1178 }
1179
1180 static int pci_pm_runtime_resume(struct device *dev)
1181 {
1182 int rc;
1183 struct pci_dev *pci_dev = to_pci_dev(dev);
1184 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1185
1186 /*
1187 * If pci_dev->driver is not set (unbound), the device should
1188 * always remain in D0 regardless of the runtime PM status
1189 */
1190 if (!pci_dev->driver)
1191 return 0;
1192
1193 if (!pm || !pm->runtime_resume)
1194 return -ENOSYS;
1195
1196 pci_restore_standard_config(pci_dev);
1197 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1198 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1199 pci_fixup_device(pci_fixup_resume, pci_dev);
1200
1201 rc = pm->runtime_resume(dev);
1202
1203 pci_dev->runtime_d3cold = false;
1204
1205 return rc;
1206 }
1207
1208 static int pci_pm_runtime_idle(struct device *dev)
1209 {
1210 struct pci_dev *pci_dev = to_pci_dev(dev);
1211 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1212 int ret = 0;
1213
1214 /*
1215 * If pci_dev->driver is not set (unbound), the device should
1216 * always remain in D0 regardless of the runtime PM status
1217 */
1218 if (!pci_dev->driver)
1219 return 0;
1220
1221 if (!pm)
1222 return -ENOSYS;
1223
1224 if (pm->runtime_idle)
1225 ret = pm->runtime_idle(dev);
1226
1227 return ret;
1228 }
1229
1230 static const struct dev_pm_ops pci_dev_pm_ops = {
1231 .prepare = pci_pm_prepare,
1232 .complete = pci_pm_complete,
1233 .suspend = pci_pm_suspend,
1234 .resume = pci_pm_resume,
1235 .freeze = pci_pm_freeze,
1236 .thaw = pci_pm_thaw,
1237 .poweroff = pci_pm_poweroff,
1238 .restore = pci_pm_restore,
1239 .suspend_noirq = pci_pm_suspend_noirq,
1240 .resume_noirq = pci_pm_resume_noirq,
1241 .freeze_noirq = pci_pm_freeze_noirq,
1242 .thaw_noirq = pci_pm_thaw_noirq,
1243 .poweroff_noirq = pci_pm_poweroff_noirq,
1244 .restore_noirq = pci_pm_restore_noirq,
1245 .runtime_suspend = pci_pm_runtime_suspend,
1246 .runtime_resume = pci_pm_runtime_resume,
1247 .runtime_idle = pci_pm_runtime_idle,
1248 };
1249
1250 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1251
1252 #else /* !CONFIG_PM */
1253
1254 #define pci_pm_runtime_suspend NULL
1255 #define pci_pm_runtime_resume NULL
1256 #define pci_pm_runtime_idle NULL
1257
1258 #define PCI_PM_OPS_PTR NULL
1259
1260 #endif /* !CONFIG_PM */
1261
1262 /**
1263 * __pci_register_driver - register a new pci driver
1264 * @drv: the driver structure to register
1265 * @owner: owner module of drv
1266 * @mod_name: module name string
1267 *
1268 * Adds the driver structure to the list of registered drivers.
1269 * Returns a negative value on error, otherwise 0.
1270 * If no error occurred, the driver remains registered even if
1271 * no device was claimed during registration.
1272 */
1273 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1274 const char *mod_name)
1275 {
1276 /* initialize common driver fields */
1277 drv->driver.name = drv->name;
1278 drv->driver.bus = &pci_bus_type;
1279 drv->driver.owner = owner;
1280 drv->driver.mod_name = mod_name;
1281
1282 spin_lock_init(&drv->dynids.lock);
1283 INIT_LIST_HEAD(&drv->dynids.list);
1284
1285 /* register with core */
1286 return driver_register(&drv->driver);
1287 }
1288 EXPORT_SYMBOL(__pci_register_driver);
1289
1290 /**
1291 * pci_unregister_driver - unregister a pci driver
1292 * @drv: the driver structure to unregister
1293 *
1294 * Deletes the driver structure from the list of registered PCI drivers,
1295 * gives it a chance to clean up by calling its remove() function for
1296 * each device it was responsible for, and marks those devices as
1297 * driverless.
1298 */
1299
1300 void pci_unregister_driver(struct pci_driver *drv)
1301 {
1302 driver_unregister(&drv->driver);
1303 pci_free_dynids(drv);
1304 }
1305 EXPORT_SYMBOL(pci_unregister_driver);
1306
1307 static struct pci_driver pci_compat_driver = {
1308 .name = "compat"
1309 };
1310
1311 /**
1312 * pci_dev_driver - get the pci_driver of a device
1313 * @dev: the device to query
1314 *
1315 * Returns the appropriate pci_driver structure or %NULL if there is no
1316 * registered driver for the device.
1317 */
1318 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1319 {
1320 if (dev->driver)
1321 return dev->driver;
1322 else {
1323 int i;
1324 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1325 if (dev->resource[i].flags & IORESOURCE_BUSY)
1326 return &pci_compat_driver;
1327 }
1328 return NULL;
1329 }
1330 EXPORT_SYMBOL(pci_dev_driver);
1331
1332 /**
1333 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1334 * @dev: the PCI device structure to match against
1335 * @drv: the device driver to search for matching PCI device id structures
1336 *
1337 * Used by a driver to check whether a PCI device present in the
1338 * system is in its list of supported devices. Returns the matching
1339 * pci_device_id structure or %NULL if there is no match.
1340 */
1341 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1342 {
1343 struct pci_dev *pci_dev = to_pci_dev(dev);
1344 struct pci_driver *pci_drv;
1345 const struct pci_device_id *found_id;
1346
1347 if (!pci_dev->match_driver)
1348 return 0;
1349
1350 pci_drv = to_pci_driver(drv);
1351 found_id = pci_match_device(pci_drv, pci_dev);
1352 if (found_id)
1353 return 1;
1354
1355 return 0;
1356 }
1357
1358 /**
1359 * pci_dev_get - increments the reference count of the pci device structure
1360 * @dev: the device being referenced
1361 *
1362 * Each live reference to a device should be refcounted.
1363 *
1364 * Drivers for PCI devices should normally record such references in
1365 * their probe() methods, when they bind to a device, and release
1366 * them by calling pci_dev_put(), in their disconnect() methods.
1367 *
1368 * A pointer to the device with the incremented reference counter is returned.
1369 */
1370 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1371 {
1372 if (dev)
1373 get_device(&dev->dev);
1374 return dev;
1375 }
1376 EXPORT_SYMBOL(pci_dev_get);
1377
1378 /**
1379 * pci_dev_put - release a use of the pci device structure
1380 * @dev: device that's been disconnected
1381 *
1382 * Must be called when a user of a device is finished with it. When the last
1383 * user of the device calls this function, the memory of the device is freed.
1384 */
1385 void pci_dev_put(struct pci_dev *dev)
1386 {
1387 if (dev)
1388 put_device(&dev->dev);
1389 }
1390 EXPORT_SYMBOL(pci_dev_put);
1391
1392 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1393 {
1394 struct pci_dev *pdev;
1395
1396 if (!dev)
1397 return -ENODEV;
1398
1399 pdev = to_pci_dev(dev);
1400
1401 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1402 return -ENOMEM;
1403
1404 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1405 return -ENOMEM;
1406
1407 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1408 pdev->subsystem_device))
1409 return -ENOMEM;
1410
1411 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1412 return -ENOMEM;
1413
1414 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1415 pdev->vendor, pdev->device,
1416 pdev->subsystem_vendor, pdev->subsystem_device,
1417 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1418 (u8)(pdev->class)))
1419 return -ENOMEM;
1420
1421 return 0;
1422 }
1423
1424 struct bus_type pci_bus_type = {
1425 .name = "pci",
1426 .match = pci_bus_match,
1427 .uevent = pci_uevent,
1428 .probe = pci_device_probe,
1429 .remove = pci_device_remove,
1430 .shutdown = pci_device_shutdown,
1431 .dev_groups = pci_dev_groups,
1432 .bus_groups = pci_bus_groups,
1433 .drv_groups = pci_drv_groups,
1434 .pm = PCI_PM_OPS_PTR,
1435 };
1436 EXPORT_SYMBOL(pci_bus_type);
1437
1438 static int __init pci_driver_init(void)
1439 {
1440 return bus_register(&pci_bus_type);
1441 }
1442 postcore_initcall(pci_driver_init);
This page took 0.061712 seconds and 5 git commands to generate.