sparc64/PCI: drop PCI_CACHE_LINE_BYTES
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
33
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
37
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
43
44 #define DEFAULT_HOTPLUG_IO_SIZE (256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
49
50 /*
51 * The default CLS is used if arch didn't set CLS explicitly and not
52 * all pci devices agree on the same value. Arch can override either
53 * the dfl or actual value as it sees fit. Don't forget this is
54 * measured in 32-bit words, not bytes.
55 */
56 u8 pci_dfl_cache_line_size __initdata = L1_CACHE_BYTES >> 2;
57 u8 pci_cache_line_size;
58
59 /**
60 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
61 * @bus: pointer to PCI bus structure to search
62 *
63 * Given a PCI bus, returns the highest PCI bus number present in the set
64 * including the given PCI bus and its list of child PCI buses.
65 */
66 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
67 {
68 struct list_head *tmp;
69 unsigned char max, n;
70
71 max = bus->subordinate;
72 list_for_each(tmp, &bus->children) {
73 n = pci_bus_max_busnr(pci_bus_b(tmp));
74 if(n > max)
75 max = n;
76 }
77 return max;
78 }
79 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
80
81 #ifdef CONFIG_HAS_IOMEM
82 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
83 {
84 /*
85 * Make sure the BAR is actually a memory resource, not an IO resource
86 */
87 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
88 WARN_ON(1);
89 return NULL;
90 }
91 return ioremap_nocache(pci_resource_start(pdev, bar),
92 pci_resource_len(pdev, bar));
93 }
94 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
95 #endif
96
97 #if 0
98 /**
99 * pci_max_busnr - returns maximum PCI bus number
100 *
101 * Returns the highest PCI bus number present in the system global list of
102 * PCI buses.
103 */
104 unsigned char __devinit
105 pci_max_busnr(void)
106 {
107 struct pci_bus *bus = NULL;
108 unsigned char max, n;
109
110 max = 0;
111 while ((bus = pci_find_next_bus(bus)) != NULL) {
112 n = pci_bus_max_busnr(bus);
113 if(n > max)
114 max = n;
115 }
116 return max;
117 }
118
119 #endif /* 0 */
120
121 #define PCI_FIND_CAP_TTL 48
122
123 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
124 u8 pos, int cap, int *ttl)
125 {
126 u8 id;
127
128 while ((*ttl)--) {
129 pci_bus_read_config_byte(bus, devfn, pos, &pos);
130 if (pos < 0x40)
131 break;
132 pos &= ~3;
133 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
134 &id);
135 if (id == 0xff)
136 break;
137 if (id == cap)
138 return pos;
139 pos += PCI_CAP_LIST_NEXT;
140 }
141 return 0;
142 }
143
144 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
145 u8 pos, int cap)
146 {
147 int ttl = PCI_FIND_CAP_TTL;
148
149 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
150 }
151
152 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
153 {
154 return __pci_find_next_cap(dev->bus, dev->devfn,
155 pos + PCI_CAP_LIST_NEXT, cap);
156 }
157 EXPORT_SYMBOL_GPL(pci_find_next_capability);
158
159 static int __pci_bus_find_cap_start(struct pci_bus *bus,
160 unsigned int devfn, u8 hdr_type)
161 {
162 u16 status;
163
164 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
165 if (!(status & PCI_STATUS_CAP_LIST))
166 return 0;
167
168 switch (hdr_type) {
169 case PCI_HEADER_TYPE_NORMAL:
170 case PCI_HEADER_TYPE_BRIDGE:
171 return PCI_CAPABILITY_LIST;
172 case PCI_HEADER_TYPE_CARDBUS:
173 return PCI_CB_CAPABILITY_LIST;
174 default:
175 return 0;
176 }
177
178 return 0;
179 }
180
181 /**
182 * pci_find_capability - query for devices' capabilities
183 * @dev: PCI device to query
184 * @cap: capability code
185 *
186 * Tell if a device supports a given PCI capability.
187 * Returns the address of the requested capability structure within the
188 * device's PCI configuration space or 0 in case the device does not
189 * support it. Possible values for @cap:
190 *
191 * %PCI_CAP_ID_PM Power Management
192 * %PCI_CAP_ID_AGP Accelerated Graphics Port
193 * %PCI_CAP_ID_VPD Vital Product Data
194 * %PCI_CAP_ID_SLOTID Slot Identification
195 * %PCI_CAP_ID_MSI Message Signalled Interrupts
196 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
197 * %PCI_CAP_ID_PCIX PCI-X
198 * %PCI_CAP_ID_EXP PCI Express
199 */
200 int pci_find_capability(struct pci_dev *dev, int cap)
201 {
202 int pos;
203
204 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
205 if (pos)
206 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
207
208 return pos;
209 }
210
211 /**
212 * pci_bus_find_capability - query for devices' capabilities
213 * @bus: the PCI bus to query
214 * @devfn: PCI device to query
215 * @cap: capability code
216 *
217 * Like pci_find_capability() but works for pci devices that do not have a
218 * pci_dev structure set up yet.
219 *
220 * Returns the address of the requested capability structure within the
221 * device's PCI configuration space or 0 in case the device does not
222 * support it.
223 */
224 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
225 {
226 int pos;
227 u8 hdr_type;
228
229 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
230
231 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
232 if (pos)
233 pos = __pci_find_next_cap(bus, devfn, pos, cap);
234
235 return pos;
236 }
237
238 /**
239 * pci_find_ext_capability - Find an extended capability
240 * @dev: PCI device to query
241 * @cap: capability code
242 *
243 * Returns the address of the requested extended capability structure
244 * within the device's PCI configuration space or 0 if the device does
245 * not support it. Possible values for @cap:
246 *
247 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
248 * %PCI_EXT_CAP_ID_VC Virtual Channel
249 * %PCI_EXT_CAP_ID_DSN Device Serial Number
250 * %PCI_EXT_CAP_ID_PWR Power Budgeting
251 */
252 int pci_find_ext_capability(struct pci_dev *dev, int cap)
253 {
254 u32 header;
255 int ttl;
256 int pos = PCI_CFG_SPACE_SIZE;
257
258 /* minimum 8 bytes per capability */
259 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
260
261 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
262 return 0;
263
264 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
265 return 0;
266
267 /*
268 * If we have no capabilities, this is indicated by cap ID,
269 * cap version and next pointer all being 0.
270 */
271 if (header == 0)
272 return 0;
273
274 while (ttl-- > 0) {
275 if (PCI_EXT_CAP_ID(header) == cap)
276 return pos;
277
278 pos = PCI_EXT_CAP_NEXT(header);
279 if (pos < PCI_CFG_SPACE_SIZE)
280 break;
281
282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 break;
284 }
285
286 return 0;
287 }
288 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
289
290 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
291 {
292 int rc, ttl = PCI_FIND_CAP_TTL;
293 u8 cap, mask;
294
295 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
296 mask = HT_3BIT_CAP_MASK;
297 else
298 mask = HT_5BIT_CAP_MASK;
299
300 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
301 PCI_CAP_ID_HT, &ttl);
302 while (pos) {
303 rc = pci_read_config_byte(dev, pos + 3, &cap);
304 if (rc != PCIBIOS_SUCCESSFUL)
305 return 0;
306
307 if ((cap & mask) == ht_cap)
308 return pos;
309
310 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
311 pos + PCI_CAP_LIST_NEXT,
312 PCI_CAP_ID_HT, &ttl);
313 }
314
315 return 0;
316 }
317 /**
318 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
319 * @dev: PCI device to query
320 * @pos: Position from which to continue searching
321 * @ht_cap: Hypertransport capability code
322 *
323 * To be used in conjunction with pci_find_ht_capability() to search for
324 * all capabilities matching @ht_cap. @pos should always be a value returned
325 * from pci_find_ht_capability().
326 *
327 * NB. To be 100% safe against broken PCI devices, the caller should take
328 * steps to avoid an infinite loop.
329 */
330 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
331 {
332 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
333 }
334 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
335
336 /**
337 * pci_find_ht_capability - query a device's Hypertransport capabilities
338 * @dev: PCI device to query
339 * @ht_cap: Hypertransport capability code
340 *
341 * Tell if a device supports a given Hypertransport capability.
342 * Returns an address within the device's PCI configuration space
343 * or 0 in case the device does not support the request capability.
344 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
345 * which has a Hypertransport capability matching @ht_cap.
346 */
347 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
348 {
349 int pos;
350
351 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
352 if (pos)
353 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
354
355 return pos;
356 }
357 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
358
359 /**
360 * pci_find_parent_resource - return resource region of parent bus of given region
361 * @dev: PCI device structure contains resources to be searched
362 * @res: child resource record for which parent is sought
363 *
364 * For given resource region of given device, return the resource
365 * region of parent bus the given region is contained in or where
366 * it should be allocated from.
367 */
368 struct resource *
369 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
370 {
371 const struct pci_bus *bus = dev->bus;
372 int i;
373 struct resource *best = NULL;
374
375 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
376 struct resource *r = bus->resource[i];
377 if (!r)
378 continue;
379 if (res->start && !(res->start >= r->start && res->end <= r->end))
380 continue; /* Not contained */
381 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
382 continue; /* Wrong type */
383 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
384 return r; /* Exact match */
385 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
386 best = r; /* Approximating prefetchable by non-prefetchable */
387 }
388 return best;
389 }
390
391 /**
392 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
393 * @dev: PCI device to have its BARs restored
394 *
395 * Restore the BAR values for a given device, so as to make it
396 * accessible by its driver.
397 */
398 static void
399 pci_restore_bars(struct pci_dev *dev)
400 {
401 int i;
402
403 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
404 pci_update_resource(dev, i);
405 }
406
407 static struct pci_platform_pm_ops *pci_platform_pm;
408
409 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
410 {
411 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
412 || !ops->sleep_wake || !ops->can_wakeup)
413 return -EINVAL;
414 pci_platform_pm = ops;
415 return 0;
416 }
417
418 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
419 {
420 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
421 }
422
423 static inline int platform_pci_set_power_state(struct pci_dev *dev,
424 pci_power_t t)
425 {
426 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
427 }
428
429 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
430 {
431 return pci_platform_pm ?
432 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
433 }
434
435 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
436 {
437 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
438 }
439
440 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
441 {
442 return pci_platform_pm ?
443 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
444 }
445
446 /**
447 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
448 * given PCI device
449 * @dev: PCI device to handle.
450 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
451 *
452 * RETURN VALUE:
453 * -EINVAL if the requested state is invalid.
454 * -EIO if device does not support PCI PM or its PM capabilities register has a
455 * wrong version, or device doesn't support the requested state.
456 * 0 if device already is in the requested state.
457 * 0 if device's power state has been successfully changed.
458 */
459 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
460 {
461 u16 pmcsr;
462 bool need_restore = false;
463
464 /* Check if we're already there */
465 if (dev->current_state == state)
466 return 0;
467
468 if (!dev->pm_cap)
469 return -EIO;
470
471 if (state < PCI_D0 || state > PCI_D3hot)
472 return -EINVAL;
473
474 /* Validate current state:
475 * Can enter D0 from any state, but if we can only go deeper
476 * to sleep if we're already in a low power state
477 */
478 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
479 && dev->current_state > state) {
480 dev_err(&dev->dev, "invalid power transition "
481 "(from state %d to %d)\n", dev->current_state, state);
482 return -EINVAL;
483 }
484
485 /* check if this device supports the desired state */
486 if ((state == PCI_D1 && !dev->d1_support)
487 || (state == PCI_D2 && !dev->d2_support))
488 return -EIO;
489
490 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
491
492 /* If we're (effectively) in D3, force entire word to 0.
493 * This doesn't affect PME_Status, disables PME_En, and
494 * sets PowerState to 0.
495 */
496 switch (dev->current_state) {
497 case PCI_D0:
498 case PCI_D1:
499 case PCI_D2:
500 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
501 pmcsr |= state;
502 break;
503 case PCI_D3hot:
504 case PCI_D3cold:
505 case PCI_UNKNOWN: /* Boot-up */
506 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
507 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
508 need_restore = true;
509 /* Fall-through: force to D0 */
510 default:
511 pmcsr = 0;
512 break;
513 }
514
515 /* enter specified state */
516 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
517
518 /* Mandatory power management transition delays */
519 /* see PCI PM 1.1 5.6.1 table 18 */
520 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
521 msleep(pci_pm_d3_delay);
522 else if (state == PCI_D2 || dev->current_state == PCI_D2)
523 udelay(PCI_PM_D2_DELAY);
524
525 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
526 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
527 if (dev->current_state != state && printk_ratelimit())
528 dev_info(&dev->dev, "Refused to change power state, "
529 "currently in D%d\n", dev->current_state);
530
531 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
532 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
533 * from D3hot to D0 _may_ perform an internal reset, thereby
534 * going to "D0 Uninitialized" rather than "D0 Initialized".
535 * For example, at least some versions of the 3c905B and the
536 * 3c556B exhibit this behaviour.
537 *
538 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
539 * devices in a D3hot state at boot. Consequently, we need to
540 * restore at least the BARs so that the device will be
541 * accessible to its driver.
542 */
543 if (need_restore)
544 pci_restore_bars(dev);
545
546 if (dev->bus->self)
547 pcie_aspm_pm_state_change(dev->bus->self);
548
549 return 0;
550 }
551
552 /**
553 * pci_update_current_state - Read PCI power state of given device from its
554 * PCI PM registers and cache it
555 * @dev: PCI device to handle.
556 * @state: State to cache in case the device doesn't have the PM capability
557 */
558 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
559 {
560 if (dev->pm_cap) {
561 u16 pmcsr;
562
563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
564 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
565 } else {
566 dev->current_state = state;
567 }
568 }
569
570 /**
571 * pci_platform_power_transition - Use platform to change device power state
572 * @dev: PCI device to handle.
573 * @state: State to put the device into.
574 */
575 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
576 {
577 int error;
578
579 if (platform_pci_power_manageable(dev)) {
580 error = platform_pci_set_power_state(dev, state);
581 if (!error)
582 pci_update_current_state(dev, state);
583 } else {
584 error = -ENODEV;
585 /* Fall back to PCI_D0 if native PM is not supported */
586 if (!dev->pm_cap)
587 dev->current_state = PCI_D0;
588 }
589
590 return error;
591 }
592
593 /**
594 * __pci_start_power_transition - Start power transition of a PCI device
595 * @dev: PCI device to handle.
596 * @state: State to put the device into.
597 */
598 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
599 {
600 if (state == PCI_D0)
601 pci_platform_power_transition(dev, PCI_D0);
602 }
603
604 /**
605 * __pci_complete_power_transition - Complete power transition of a PCI device
606 * @dev: PCI device to handle.
607 * @state: State to put the device into.
608 *
609 * This function should not be called directly by device drivers.
610 */
611 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
612 {
613 return state > PCI_D0 ?
614 pci_platform_power_transition(dev, state) : -EINVAL;
615 }
616 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
617
618 /**
619 * pci_set_power_state - Set the power state of a PCI device
620 * @dev: PCI device to handle.
621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
622 *
623 * Transition a device to a new power state, using the platform firmware and/or
624 * the device's PCI PM registers.
625 *
626 * RETURN VALUE:
627 * -EINVAL if the requested state is invalid.
628 * -EIO if device does not support PCI PM or its PM capabilities register has a
629 * wrong version, or device doesn't support the requested state.
630 * 0 if device already is in the requested state.
631 * 0 if device's power state has been successfully changed.
632 */
633 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
634 {
635 int error;
636
637 /* bound the state we're entering */
638 if (state > PCI_D3hot)
639 state = PCI_D3hot;
640 else if (state < PCI_D0)
641 state = PCI_D0;
642 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
643 /*
644 * If the device or the parent bridge do not support PCI PM,
645 * ignore the request if we're doing anything other than putting
646 * it into D0 (which would only happen on boot).
647 */
648 return 0;
649
650 /* Check if we're already there */
651 if (dev->current_state == state)
652 return 0;
653
654 __pci_start_power_transition(dev, state);
655
656 /* This device is quirked not to be put into D3, so
657 don't put it in D3 */
658 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
659 return 0;
660
661 error = pci_raw_set_power_state(dev, state);
662
663 if (!__pci_complete_power_transition(dev, state))
664 error = 0;
665
666 return error;
667 }
668
669 /**
670 * pci_choose_state - Choose the power state of a PCI device
671 * @dev: PCI device to be suspended
672 * @state: target sleep state for the whole system. This is the value
673 * that is passed to suspend() function.
674 *
675 * Returns PCI power state suitable for given device and given system
676 * message.
677 */
678
679 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
680 {
681 pci_power_t ret;
682
683 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
684 return PCI_D0;
685
686 ret = platform_pci_choose_state(dev);
687 if (ret != PCI_POWER_ERROR)
688 return ret;
689
690 switch (state.event) {
691 case PM_EVENT_ON:
692 return PCI_D0;
693 case PM_EVENT_FREEZE:
694 case PM_EVENT_PRETHAW:
695 /* REVISIT both freeze and pre-thaw "should" use D0 */
696 case PM_EVENT_SUSPEND:
697 case PM_EVENT_HIBERNATE:
698 return PCI_D3hot;
699 default:
700 dev_info(&dev->dev, "unrecognized suspend event %d\n",
701 state.event);
702 BUG();
703 }
704 return PCI_D0;
705 }
706
707 EXPORT_SYMBOL(pci_choose_state);
708
709 #define PCI_EXP_SAVE_REGS 7
710
711 #define pcie_cap_has_devctl(type, flags) 1
712 #define pcie_cap_has_lnkctl(type, flags) \
713 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
714 (type == PCI_EXP_TYPE_ROOT_PORT || \
715 type == PCI_EXP_TYPE_ENDPOINT || \
716 type == PCI_EXP_TYPE_LEG_END))
717 #define pcie_cap_has_sltctl(type, flags) \
718 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
719 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
720 (type == PCI_EXP_TYPE_DOWNSTREAM && \
721 (flags & PCI_EXP_FLAGS_SLOT))))
722 #define pcie_cap_has_rtctl(type, flags) \
723 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
724 (type == PCI_EXP_TYPE_ROOT_PORT || \
725 type == PCI_EXP_TYPE_RC_EC))
726 #define pcie_cap_has_devctl2(type, flags) \
727 ((flags & PCI_EXP_FLAGS_VERS) > 1)
728 #define pcie_cap_has_lnkctl2(type, flags) \
729 ((flags & PCI_EXP_FLAGS_VERS) > 1)
730 #define pcie_cap_has_sltctl2(type, flags) \
731 ((flags & PCI_EXP_FLAGS_VERS) > 1)
732
733 static int pci_save_pcie_state(struct pci_dev *dev)
734 {
735 int pos, i = 0;
736 struct pci_cap_saved_state *save_state;
737 u16 *cap;
738 u16 flags;
739
740 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
741 if (pos <= 0)
742 return 0;
743
744 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
745 if (!save_state) {
746 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
747 return -ENOMEM;
748 }
749 cap = (u16 *)&save_state->data[0];
750
751 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
752
753 if (pcie_cap_has_devctl(dev->pcie_type, flags))
754 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
755 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
756 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
757 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
758 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
759 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
760 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
761 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
762 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
763 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
764 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
765 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
766 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
767
768 return 0;
769 }
770
771 static void pci_restore_pcie_state(struct pci_dev *dev)
772 {
773 int i = 0, pos;
774 struct pci_cap_saved_state *save_state;
775 u16 *cap;
776 u16 flags;
777
778 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
779 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
780 if (!save_state || pos <= 0)
781 return;
782 cap = (u16 *)&save_state->data[0];
783
784 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
785
786 if (pcie_cap_has_devctl(dev->pcie_type, flags))
787 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
788 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
789 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
790 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
791 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
792 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
793 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
794 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
795 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
796 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
797 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
798 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
799 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
800 }
801
802
803 static int pci_save_pcix_state(struct pci_dev *dev)
804 {
805 int pos;
806 struct pci_cap_saved_state *save_state;
807
808 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
809 if (pos <= 0)
810 return 0;
811
812 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
813 if (!save_state) {
814 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
815 return -ENOMEM;
816 }
817
818 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
819
820 return 0;
821 }
822
823 static void pci_restore_pcix_state(struct pci_dev *dev)
824 {
825 int i = 0, pos;
826 struct pci_cap_saved_state *save_state;
827 u16 *cap;
828
829 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
830 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
831 if (!save_state || pos <= 0)
832 return;
833 cap = (u16 *)&save_state->data[0];
834
835 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
836 }
837
838
839 /**
840 * pci_save_state - save the PCI configuration space of a device before suspending
841 * @dev: - PCI device that we're dealing with
842 */
843 int
844 pci_save_state(struct pci_dev *dev)
845 {
846 int i;
847 /* XXX: 100% dword access ok here? */
848 for (i = 0; i < 16; i++)
849 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
850 dev->state_saved = true;
851 if ((i = pci_save_pcie_state(dev)) != 0)
852 return i;
853 if ((i = pci_save_pcix_state(dev)) != 0)
854 return i;
855 return 0;
856 }
857
858 /**
859 * pci_restore_state - Restore the saved state of a PCI device
860 * @dev: - PCI device that we're dealing with
861 */
862 int
863 pci_restore_state(struct pci_dev *dev)
864 {
865 int i;
866 u32 val;
867
868 if (!dev->state_saved)
869 return 0;
870
871 /* PCI Express register must be restored first */
872 pci_restore_pcie_state(dev);
873
874 /*
875 * The Base Address register should be programmed before the command
876 * register(s)
877 */
878 for (i = 15; i >= 0; i--) {
879 pci_read_config_dword(dev, i * 4, &val);
880 if (val != dev->saved_config_space[i]) {
881 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
882 "space at offset %#x (was %#x, writing %#x)\n",
883 i, val, (int)dev->saved_config_space[i]);
884 pci_write_config_dword(dev,i * 4,
885 dev->saved_config_space[i]);
886 }
887 }
888 pci_restore_pcix_state(dev);
889 pci_restore_msi_state(dev);
890 pci_restore_iov_state(dev);
891
892 dev->state_saved = false;
893
894 return 0;
895 }
896
897 static int do_pci_enable_device(struct pci_dev *dev, int bars)
898 {
899 int err;
900
901 err = pci_set_power_state(dev, PCI_D0);
902 if (err < 0 && err != -EIO)
903 return err;
904 err = pcibios_enable_device(dev, bars);
905 if (err < 0)
906 return err;
907 pci_fixup_device(pci_fixup_enable, dev);
908
909 return 0;
910 }
911
912 /**
913 * pci_reenable_device - Resume abandoned device
914 * @dev: PCI device to be resumed
915 *
916 * Note this function is a backend of pci_default_resume and is not supposed
917 * to be called by normal code, write proper resume handler and use it instead.
918 */
919 int pci_reenable_device(struct pci_dev *dev)
920 {
921 if (pci_is_enabled(dev))
922 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
923 return 0;
924 }
925
926 static int __pci_enable_device_flags(struct pci_dev *dev,
927 resource_size_t flags)
928 {
929 int err;
930 int i, bars = 0;
931
932 if (atomic_add_return(1, &dev->enable_cnt) > 1)
933 return 0; /* already enabled */
934
935 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
936 if (dev->resource[i].flags & flags)
937 bars |= (1 << i);
938
939 err = do_pci_enable_device(dev, bars);
940 if (err < 0)
941 atomic_dec(&dev->enable_cnt);
942 return err;
943 }
944
945 /**
946 * pci_enable_device_io - Initialize a device for use with IO space
947 * @dev: PCI device to be initialized
948 *
949 * Initialize device before it's used by a driver. Ask low-level code
950 * to enable I/O resources. Wake up the device if it was suspended.
951 * Beware, this function can fail.
952 */
953 int pci_enable_device_io(struct pci_dev *dev)
954 {
955 return __pci_enable_device_flags(dev, IORESOURCE_IO);
956 }
957
958 /**
959 * pci_enable_device_mem - Initialize a device for use with Memory space
960 * @dev: PCI device to be initialized
961 *
962 * Initialize device before it's used by a driver. Ask low-level code
963 * to enable Memory resources. Wake up the device if it was suspended.
964 * Beware, this function can fail.
965 */
966 int pci_enable_device_mem(struct pci_dev *dev)
967 {
968 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
969 }
970
971 /**
972 * pci_enable_device - Initialize device before it's used by a driver.
973 * @dev: PCI device to be initialized
974 *
975 * Initialize device before it's used by a driver. Ask low-level code
976 * to enable I/O and memory. Wake up the device if it was suspended.
977 * Beware, this function can fail.
978 *
979 * Note we don't actually enable the device many times if we call
980 * this function repeatedly (we just increment the count).
981 */
982 int pci_enable_device(struct pci_dev *dev)
983 {
984 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
985 }
986
987 /*
988 * Managed PCI resources. This manages device on/off, intx/msi/msix
989 * on/off and BAR regions. pci_dev itself records msi/msix status, so
990 * there's no need to track it separately. pci_devres is initialized
991 * when a device is enabled using managed PCI device enable interface.
992 */
993 struct pci_devres {
994 unsigned int enabled:1;
995 unsigned int pinned:1;
996 unsigned int orig_intx:1;
997 unsigned int restore_intx:1;
998 u32 region_mask;
999 };
1000
1001 static void pcim_release(struct device *gendev, void *res)
1002 {
1003 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1004 struct pci_devres *this = res;
1005 int i;
1006
1007 if (dev->msi_enabled)
1008 pci_disable_msi(dev);
1009 if (dev->msix_enabled)
1010 pci_disable_msix(dev);
1011
1012 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1013 if (this->region_mask & (1 << i))
1014 pci_release_region(dev, i);
1015
1016 if (this->restore_intx)
1017 pci_intx(dev, this->orig_intx);
1018
1019 if (this->enabled && !this->pinned)
1020 pci_disable_device(dev);
1021 }
1022
1023 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1024 {
1025 struct pci_devres *dr, *new_dr;
1026
1027 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1028 if (dr)
1029 return dr;
1030
1031 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1032 if (!new_dr)
1033 return NULL;
1034 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1035 }
1036
1037 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1038 {
1039 if (pci_is_managed(pdev))
1040 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1041 return NULL;
1042 }
1043
1044 /**
1045 * pcim_enable_device - Managed pci_enable_device()
1046 * @pdev: PCI device to be initialized
1047 *
1048 * Managed pci_enable_device().
1049 */
1050 int pcim_enable_device(struct pci_dev *pdev)
1051 {
1052 struct pci_devres *dr;
1053 int rc;
1054
1055 dr = get_pci_dr(pdev);
1056 if (unlikely(!dr))
1057 return -ENOMEM;
1058 if (dr->enabled)
1059 return 0;
1060
1061 rc = pci_enable_device(pdev);
1062 if (!rc) {
1063 pdev->is_managed = 1;
1064 dr->enabled = 1;
1065 }
1066 return rc;
1067 }
1068
1069 /**
1070 * pcim_pin_device - Pin managed PCI device
1071 * @pdev: PCI device to pin
1072 *
1073 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1074 * driver detach. @pdev must have been enabled with
1075 * pcim_enable_device().
1076 */
1077 void pcim_pin_device(struct pci_dev *pdev)
1078 {
1079 struct pci_devres *dr;
1080
1081 dr = find_pci_dr(pdev);
1082 WARN_ON(!dr || !dr->enabled);
1083 if (dr)
1084 dr->pinned = 1;
1085 }
1086
1087 /**
1088 * pcibios_disable_device - disable arch specific PCI resources for device dev
1089 * @dev: the PCI device to disable
1090 *
1091 * Disables architecture specific PCI resources for the device. This
1092 * is the default implementation. Architecture implementations can
1093 * override this.
1094 */
1095 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1096
1097 static void do_pci_disable_device(struct pci_dev *dev)
1098 {
1099 u16 pci_command;
1100
1101 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1102 if (pci_command & PCI_COMMAND_MASTER) {
1103 pci_command &= ~PCI_COMMAND_MASTER;
1104 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1105 }
1106
1107 pcibios_disable_device(dev);
1108 }
1109
1110 /**
1111 * pci_disable_enabled_device - Disable device without updating enable_cnt
1112 * @dev: PCI device to disable
1113 *
1114 * NOTE: This function is a backend of PCI power management routines and is
1115 * not supposed to be called drivers.
1116 */
1117 void pci_disable_enabled_device(struct pci_dev *dev)
1118 {
1119 if (pci_is_enabled(dev))
1120 do_pci_disable_device(dev);
1121 }
1122
1123 /**
1124 * pci_disable_device - Disable PCI device after use
1125 * @dev: PCI device to be disabled
1126 *
1127 * Signal to the system that the PCI device is not in use by the system
1128 * anymore. This only involves disabling PCI bus-mastering, if active.
1129 *
1130 * Note we don't actually disable the device until all callers of
1131 * pci_device_enable() have called pci_device_disable().
1132 */
1133 void
1134 pci_disable_device(struct pci_dev *dev)
1135 {
1136 struct pci_devres *dr;
1137
1138 dr = find_pci_dr(dev);
1139 if (dr)
1140 dr->enabled = 0;
1141
1142 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1143 return;
1144
1145 do_pci_disable_device(dev);
1146
1147 dev->is_busmaster = 0;
1148 }
1149
1150 /**
1151 * pcibios_set_pcie_reset_state - set reset state for device dev
1152 * @dev: the PCI-E device reset
1153 * @state: Reset state to enter into
1154 *
1155 *
1156 * Sets the PCI-E reset state for the device. This is the default
1157 * implementation. Architecture implementations can override this.
1158 */
1159 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1160 enum pcie_reset_state state)
1161 {
1162 return -EINVAL;
1163 }
1164
1165 /**
1166 * pci_set_pcie_reset_state - set reset state for device dev
1167 * @dev: the PCI-E device reset
1168 * @state: Reset state to enter into
1169 *
1170 *
1171 * Sets the PCI reset state for the device.
1172 */
1173 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1174 {
1175 return pcibios_set_pcie_reset_state(dev, state);
1176 }
1177
1178 /**
1179 * pci_pme_capable - check the capability of PCI device to generate PME#
1180 * @dev: PCI device to handle.
1181 * @state: PCI state from which device will issue PME#.
1182 */
1183 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1184 {
1185 if (!dev->pm_cap)
1186 return false;
1187
1188 return !!(dev->pme_support & (1 << state));
1189 }
1190
1191 /**
1192 * pci_pme_active - enable or disable PCI device's PME# function
1193 * @dev: PCI device to handle.
1194 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1195 *
1196 * The caller must verify that the device is capable of generating PME# before
1197 * calling this function with @enable equal to 'true'.
1198 */
1199 void pci_pme_active(struct pci_dev *dev, bool enable)
1200 {
1201 u16 pmcsr;
1202
1203 if (!dev->pm_cap)
1204 return;
1205
1206 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1207 /* Clear PME_Status by writing 1 to it and enable PME# */
1208 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1209 if (!enable)
1210 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1211
1212 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1213
1214 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1215 enable ? "enabled" : "disabled");
1216 }
1217
1218 /**
1219 * pci_enable_wake - enable PCI device as wakeup event source
1220 * @dev: PCI device affected
1221 * @state: PCI state from which device will issue wakeup events
1222 * @enable: True to enable event generation; false to disable
1223 *
1224 * This enables the device as a wakeup event source, or disables it.
1225 * When such events involves platform-specific hooks, those hooks are
1226 * called automatically by this routine.
1227 *
1228 * Devices with legacy power management (no standard PCI PM capabilities)
1229 * always require such platform hooks.
1230 *
1231 * RETURN VALUE:
1232 * 0 is returned on success
1233 * -EINVAL is returned if device is not supposed to wake up the system
1234 * Error code depending on the platform is returned if both the platform and
1235 * the native mechanism fail to enable the generation of wake-up events
1236 */
1237 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1238 {
1239 int ret = 0;
1240
1241 if (enable && !device_may_wakeup(&dev->dev))
1242 return -EINVAL;
1243
1244 /* Don't do the same thing twice in a row for one device. */
1245 if (!!enable == !!dev->wakeup_prepared)
1246 return 0;
1247
1248 /*
1249 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1250 * Anderson we should be doing PME# wake enable followed by ACPI wake
1251 * enable. To disable wake-up we call the platform first, for symmetry.
1252 */
1253
1254 if (enable) {
1255 int error;
1256
1257 if (pci_pme_capable(dev, state))
1258 pci_pme_active(dev, true);
1259 else
1260 ret = 1;
1261 error = platform_pci_sleep_wake(dev, true);
1262 if (ret)
1263 ret = error;
1264 if (!ret)
1265 dev->wakeup_prepared = true;
1266 } else {
1267 platform_pci_sleep_wake(dev, false);
1268 pci_pme_active(dev, false);
1269 dev->wakeup_prepared = false;
1270 }
1271
1272 return ret;
1273 }
1274
1275 /**
1276 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1277 * @dev: PCI device to prepare
1278 * @enable: True to enable wake-up event generation; false to disable
1279 *
1280 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1281 * and this function allows them to set that up cleanly - pci_enable_wake()
1282 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1283 * ordering constraints.
1284 *
1285 * This function only returns error code if the device is not capable of
1286 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1287 * enable wake-up power for it.
1288 */
1289 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1290 {
1291 return pci_pme_capable(dev, PCI_D3cold) ?
1292 pci_enable_wake(dev, PCI_D3cold, enable) :
1293 pci_enable_wake(dev, PCI_D3hot, enable);
1294 }
1295
1296 /**
1297 * pci_target_state - find an appropriate low power state for a given PCI dev
1298 * @dev: PCI device
1299 *
1300 * Use underlying platform code to find a supported low power state for @dev.
1301 * If the platform can't manage @dev, return the deepest state from which it
1302 * can generate wake events, based on any available PME info.
1303 */
1304 pci_power_t pci_target_state(struct pci_dev *dev)
1305 {
1306 pci_power_t target_state = PCI_D3hot;
1307
1308 if (platform_pci_power_manageable(dev)) {
1309 /*
1310 * Call the platform to choose the target state of the device
1311 * and enable wake-up from this state if supported.
1312 */
1313 pci_power_t state = platform_pci_choose_state(dev);
1314
1315 switch (state) {
1316 case PCI_POWER_ERROR:
1317 case PCI_UNKNOWN:
1318 break;
1319 case PCI_D1:
1320 case PCI_D2:
1321 if (pci_no_d1d2(dev))
1322 break;
1323 default:
1324 target_state = state;
1325 }
1326 } else if (!dev->pm_cap) {
1327 target_state = PCI_D0;
1328 } else if (device_may_wakeup(&dev->dev)) {
1329 /*
1330 * Find the deepest state from which the device can generate
1331 * wake-up events, make it the target state and enable device
1332 * to generate PME#.
1333 */
1334 if (dev->pme_support) {
1335 while (target_state
1336 && !(dev->pme_support & (1 << target_state)))
1337 target_state--;
1338 }
1339 }
1340
1341 return target_state;
1342 }
1343
1344 /**
1345 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1346 * @dev: Device to handle.
1347 *
1348 * Choose the power state appropriate for the device depending on whether
1349 * it can wake up the system and/or is power manageable by the platform
1350 * (PCI_D3hot is the default) and put the device into that state.
1351 */
1352 int pci_prepare_to_sleep(struct pci_dev *dev)
1353 {
1354 pci_power_t target_state = pci_target_state(dev);
1355 int error;
1356
1357 if (target_state == PCI_POWER_ERROR)
1358 return -EIO;
1359
1360 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1361
1362 error = pci_set_power_state(dev, target_state);
1363
1364 if (error)
1365 pci_enable_wake(dev, target_state, false);
1366
1367 return error;
1368 }
1369
1370 /**
1371 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1372 * @dev: Device to handle.
1373 *
1374 * Disable device's sytem wake-up capability and put it into D0.
1375 */
1376 int pci_back_from_sleep(struct pci_dev *dev)
1377 {
1378 pci_enable_wake(dev, PCI_D0, false);
1379 return pci_set_power_state(dev, PCI_D0);
1380 }
1381
1382 /**
1383 * pci_pm_init - Initialize PM functions of given PCI device
1384 * @dev: PCI device to handle.
1385 */
1386 void pci_pm_init(struct pci_dev *dev)
1387 {
1388 int pm;
1389 u16 pmc;
1390
1391 dev->wakeup_prepared = false;
1392 dev->pm_cap = 0;
1393
1394 /* find PCI PM capability in list */
1395 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1396 if (!pm)
1397 return;
1398 /* Check device's ability to generate PME# */
1399 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1400
1401 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1402 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1403 pmc & PCI_PM_CAP_VER_MASK);
1404 return;
1405 }
1406
1407 dev->pm_cap = pm;
1408
1409 dev->d1_support = false;
1410 dev->d2_support = false;
1411 if (!pci_no_d1d2(dev)) {
1412 if (pmc & PCI_PM_CAP_D1)
1413 dev->d1_support = true;
1414 if (pmc & PCI_PM_CAP_D2)
1415 dev->d2_support = true;
1416
1417 if (dev->d1_support || dev->d2_support)
1418 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1419 dev->d1_support ? " D1" : "",
1420 dev->d2_support ? " D2" : "");
1421 }
1422
1423 pmc &= PCI_PM_CAP_PME_MASK;
1424 if (pmc) {
1425 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1426 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1427 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1428 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1429 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1430 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1431 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1432 /*
1433 * Make device's PM flags reflect the wake-up capability, but
1434 * let the user space enable it to wake up the system as needed.
1435 */
1436 device_set_wakeup_capable(&dev->dev, true);
1437 device_set_wakeup_enable(&dev->dev, false);
1438 /* Disable the PME# generation functionality */
1439 pci_pme_active(dev, false);
1440 } else {
1441 dev->pme_support = 0;
1442 }
1443 }
1444
1445 /**
1446 * platform_pci_wakeup_init - init platform wakeup if present
1447 * @dev: PCI device
1448 *
1449 * Some devices don't have PCI PM caps but can still generate wakeup
1450 * events through platform methods (like ACPI events). If @dev supports
1451 * platform wakeup events, set the device flag to indicate as much. This
1452 * may be redundant if the device also supports PCI PM caps, but double
1453 * initialization should be safe in that case.
1454 */
1455 void platform_pci_wakeup_init(struct pci_dev *dev)
1456 {
1457 if (!platform_pci_can_wakeup(dev))
1458 return;
1459
1460 device_set_wakeup_capable(&dev->dev, true);
1461 device_set_wakeup_enable(&dev->dev, false);
1462 platform_pci_sleep_wake(dev, false);
1463 }
1464
1465 /**
1466 * pci_add_save_buffer - allocate buffer for saving given capability registers
1467 * @dev: the PCI device
1468 * @cap: the capability to allocate the buffer for
1469 * @size: requested size of the buffer
1470 */
1471 static int pci_add_cap_save_buffer(
1472 struct pci_dev *dev, char cap, unsigned int size)
1473 {
1474 int pos;
1475 struct pci_cap_saved_state *save_state;
1476
1477 pos = pci_find_capability(dev, cap);
1478 if (pos <= 0)
1479 return 0;
1480
1481 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1482 if (!save_state)
1483 return -ENOMEM;
1484
1485 save_state->cap_nr = cap;
1486 pci_add_saved_cap(dev, save_state);
1487
1488 return 0;
1489 }
1490
1491 /**
1492 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1493 * @dev: the PCI device
1494 */
1495 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1496 {
1497 int error;
1498
1499 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1500 PCI_EXP_SAVE_REGS * sizeof(u16));
1501 if (error)
1502 dev_err(&dev->dev,
1503 "unable to preallocate PCI Express save buffer\n");
1504
1505 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1506 if (error)
1507 dev_err(&dev->dev,
1508 "unable to preallocate PCI-X save buffer\n");
1509 }
1510
1511 /**
1512 * pci_enable_ari - enable ARI forwarding if hardware support it
1513 * @dev: the PCI device
1514 */
1515 void pci_enable_ari(struct pci_dev *dev)
1516 {
1517 int pos;
1518 u32 cap;
1519 u16 ctrl;
1520 struct pci_dev *bridge;
1521
1522 if (!dev->is_pcie || dev->devfn)
1523 return;
1524
1525 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1526 if (!pos)
1527 return;
1528
1529 bridge = dev->bus->self;
1530 if (!bridge || !bridge->is_pcie)
1531 return;
1532
1533 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1534 if (!pos)
1535 return;
1536
1537 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1538 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1539 return;
1540
1541 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1542 ctrl |= PCI_EXP_DEVCTL2_ARI;
1543 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1544
1545 bridge->ari_enabled = 1;
1546 }
1547
1548 /**
1549 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1550 * @dev: the PCI device
1551 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1552 *
1553 * Perform INTx swizzling for a device behind one level of bridge. This is
1554 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1555 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1556 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1557 * the PCI Express Base Specification, Revision 2.1)
1558 */
1559 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1560 {
1561 int slot;
1562
1563 if (pci_ari_enabled(dev->bus))
1564 slot = 0;
1565 else
1566 slot = PCI_SLOT(dev->devfn);
1567
1568 return (((pin - 1) + slot) % 4) + 1;
1569 }
1570
1571 int
1572 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1573 {
1574 u8 pin;
1575
1576 pin = dev->pin;
1577 if (!pin)
1578 return -1;
1579
1580 while (!pci_is_root_bus(dev->bus)) {
1581 pin = pci_swizzle_interrupt_pin(dev, pin);
1582 dev = dev->bus->self;
1583 }
1584 *bridge = dev;
1585 return pin;
1586 }
1587
1588 /**
1589 * pci_common_swizzle - swizzle INTx all the way to root bridge
1590 * @dev: the PCI device
1591 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1592 *
1593 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1594 * bridges all the way up to a PCI root bus.
1595 */
1596 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1597 {
1598 u8 pin = *pinp;
1599
1600 while (!pci_is_root_bus(dev->bus)) {
1601 pin = pci_swizzle_interrupt_pin(dev, pin);
1602 dev = dev->bus->self;
1603 }
1604 *pinp = pin;
1605 return PCI_SLOT(dev->devfn);
1606 }
1607
1608 /**
1609 * pci_release_region - Release a PCI bar
1610 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1611 * @bar: BAR to release
1612 *
1613 * Releases the PCI I/O and memory resources previously reserved by a
1614 * successful call to pci_request_region. Call this function only
1615 * after all use of the PCI regions has ceased.
1616 */
1617 void pci_release_region(struct pci_dev *pdev, int bar)
1618 {
1619 struct pci_devres *dr;
1620
1621 if (pci_resource_len(pdev, bar) == 0)
1622 return;
1623 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1624 release_region(pci_resource_start(pdev, bar),
1625 pci_resource_len(pdev, bar));
1626 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1627 release_mem_region(pci_resource_start(pdev, bar),
1628 pci_resource_len(pdev, bar));
1629
1630 dr = find_pci_dr(pdev);
1631 if (dr)
1632 dr->region_mask &= ~(1 << bar);
1633 }
1634
1635 /**
1636 * __pci_request_region - Reserved PCI I/O and memory resource
1637 * @pdev: PCI device whose resources are to be reserved
1638 * @bar: BAR to be reserved
1639 * @res_name: Name to be associated with resource.
1640 * @exclusive: whether the region access is exclusive or not
1641 *
1642 * Mark the PCI region associated with PCI device @pdev BR @bar as
1643 * being reserved by owner @res_name. Do not access any
1644 * address inside the PCI regions unless this call returns
1645 * successfully.
1646 *
1647 * If @exclusive is set, then the region is marked so that userspace
1648 * is explicitly not allowed to map the resource via /dev/mem or
1649 * sysfs MMIO access.
1650 *
1651 * Returns 0 on success, or %EBUSY on error. A warning
1652 * message is also printed on failure.
1653 */
1654 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1655 int exclusive)
1656 {
1657 struct pci_devres *dr;
1658
1659 if (pci_resource_len(pdev, bar) == 0)
1660 return 0;
1661
1662 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1663 if (!request_region(pci_resource_start(pdev, bar),
1664 pci_resource_len(pdev, bar), res_name))
1665 goto err_out;
1666 }
1667 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1668 if (!__request_mem_region(pci_resource_start(pdev, bar),
1669 pci_resource_len(pdev, bar), res_name,
1670 exclusive))
1671 goto err_out;
1672 }
1673
1674 dr = find_pci_dr(pdev);
1675 if (dr)
1676 dr->region_mask |= 1 << bar;
1677
1678 return 0;
1679
1680 err_out:
1681 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1682 bar,
1683 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1684 &pdev->resource[bar]);
1685 return -EBUSY;
1686 }
1687
1688 /**
1689 * pci_request_region - Reserve PCI I/O and memory resource
1690 * @pdev: PCI device whose resources are to be reserved
1691 * @bar: BAR to be reserved
1692 * @res_name: Name to be associated with resource
1693 *
1694 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1695 * being reserved by owner @res_name. Do not access any
1696 * address inside the PCI regions unless this call returns
1697 * successfully.
1698 *
1699 * Returns 0 on success, or %EBUSY on error. A warning
1700 * message is also printed on failure.
1701 */
1702 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1703 {
1704 return __pci_request_region(pdev, bar, res_name, 0);
1705 }
1706
1707 /**
1708 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1709 * @pdev: PCI device whose resources are to be reserved
1710 * @bar: BAR to be reserved
1711 * @res_name: Name to be associated with resource.
1712 *
1713 * Mark the PCI region associated with PCI device @pdev BR @bar as
1714 * being reserved by owner @res_name. Do not access any
1715 * address inside the PCI regions unless this call returns
1716 * successfully.
1717 *
1718 * Returns 0 on success, or %EBUSY on error. A warning
1719 * message is also printed on failure.
1720 *
1721 * The key difference that _exclusive makes it that userspace is
1722 * explicitly not allowed to map the resource via /dev/mem or
1723 * sysfs.
1724 */
1725 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1726 {
1727 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1728 }
1729 /**
1730 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1731 * @pdev: PCI device whose resources were previously reserved
1732 * @bars: Bitmask of BARs to be released
1733 *
1734 * Release selected PCI I/O and memory resources previously reserved.
1735 * Call this function only after all use of the PCI regions has ceased.
1736 */
1737 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1738 {
1739 int i;
1740
1741 for (i = 0; i < 6; i++)
1742 if (bars & (1 << i))
1743 pci_release_region(pdev, i);
1744 }
1745
1746 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1747 const char *res_name, int excl)
1748 {
1749 int i;
1750
1751 for (i = 0; i < 6; i++)
1752 if (bars & (1 << i))
1753 if (__pci_request_region(pdev, i, res_name, excl))
1754 goto err_out;
1755 return 0;
1756
1757 err_out:
1758 while(--i >= 0)
1759 if (bars & (1 << i))
1760 pci_release_region(pdev, i);
1761
1762 return -EBUSY;
1763 }
1764
1765
1766 /**
1767 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1768 * @pdev: PCI device whose resources are to be reserved
1769 * @bars: Bitmask of BARs to be requested
1770 * @res_name: Name to be associated with resource
1771 */
1772 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1773 const char *res_name)
1774 {
1775 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1776 }
1777
1778 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1779 int bars, const char *res_name)
1780 {
1781 return __pci_request_selected_regions(pdev, bars, res_name,
1782 IORESOURCE_EXCLUSIVE);
1783 }
1784
1785 /**
1786 * pci_release_regions - Release reserved PCI I/O and memory resources
1787 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1788 *
1789 * Releases all PCI I/O and memory resources previously reserved by a
1790 * successful call to pci_request_regions. Call this function only
1791 * after all use of the PCI regions has ceased.
1792 */
1793
1794 void pci_release_regions(struct pci_dev *pdev)
1795 {
1796 pci_release_selected_regions(pdev, (1 << 6) - 1);
1797 }
1798
1799 /**
1800 * pci_request_regions - Reserved PCI I/O and memory resources
1801 * @pdev: PCI device whose resources are to be reserved
1802 * @res_name: Name to be associated with resource.
1803 *
1804 * Mark all PCI regions associated with PCI device @pdev as
1805 * being reserved by owner @res_name. Do not access any
1806 * address inside the PCI regions unless this call returns
1807 * successfully.
1808 *
1809 * Returns 0 on success, or %EBUSY on error. A warning
1810 * message is also printed on failure.
1811 */
1812 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1813 {
1814 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1815 }
1816
1817 /**
1818 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1819 * @pdev: PCI device whose resources are to be reserved
1820 * @res_name: Name to be associated with resource.
1821 *
1822 * Mark all PCI regions associated with PCI device @pdev as
1823 * being reserved by owner @res_name. Do not access any
1824 * address inside the PCI regions unless this call returns
1825 * successfully.
1826 *
1827 * pci_request_regions_exclusive() will mark the region so that
1828 * /dev/mem and the sysfs MMIO access will not be allowed.
1829 *
1830 * Returns 0 on success, or %EBUSY on error. A warning
1831 * message is also printed on failure.
1832 */
1833 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1834 {
1835 return pci_request_selected_regions_exclusive(pdev,
1836 ((1 << 6) - 1), res_name);
1837 }
1838
1839 static void __pci_set_master(struct pci_dev *dev, bool enable)
1840 {
1841 u16 old_cmd, cmd;
1842
1843 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1844 if (enable)
1845 cmd = old_cmd | PCI_COMMAND_MASTER;
1846 else
1847 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1848 if (cmd != old_cmd) {
1849 dev_dbg(&dev->dev, "%s bus mastering\n",
1850 enable ? "enabling" : "disabling");
1851 pci_write_config_word(dev, PCI_COMMAND, cmd);
1852 }
1853 dev->is_busmaster = enable;
1854 }
1855
1856 /**
1857 * pci_set_master - enables bus-mastering for device dev
1858 * @dev: the PCI device to enable
1859 *
1860 * Enables bus-mastering on the device and calls pcibios_set_master()
1861 * to do the needed arch specific settings.
1862 */
1863 void pci_set_master(struct pci_dev *dev)
1864 {
1865 __pci_set_master(dev, true);
1866 pcibios_set_master(dev);
1867 }
1868
1869 /**
1870 * pci_clear_master - disables bus-mastering for device dev
1871 * @dev: the PCI device to disable
1872 */
1873 void pci_clear_master(struct pci_dev *dev)
1874 {
1875 __pci_set_master(dev, false);
1876 }
1877
1878 #ifdef PCI_DISABLE_MWI
1879 int pci_set_mwi(struct pci_dev *dev)
1880 {
1881 return 0;
1882 }
1883
1884 int pci_try_set_mwi(struct pci_dev *dev)
1885 {
1886 return 0;
1887 }
1888
1889 void pci_clear_mwi(struct pci_dev *dev)
1890 {
1891 }
1892
1893 #else
1894
1895 /**
1896 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1897 * @dev: the PCI device for which MWI is to be enabled
1898 *
1899 * Helper function for pci_set_mwi.
1900 * Originally copied from drivers/net/acenic.c.
1901 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1902 *
1903 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1904 */
1905 static int
1906 pci_set_cacheline_size(struct pci_dev *dev)
1907 {
1908 u8 cacheline_size;
1909
1910 if (!pci_cache_line_size)
1911 return -EINVAL; /* The system doesn't support MWI. */
1912
1913 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1914 equal to or multiple of the right value. */
1915 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1916 if (cacheline_size >= pci_cache_line_size &&
1917 (cacheline_size % pci_cache_line_size) == 0)
1918 return 0;
1919
1920 /* Write the correct value. */
1921 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1922 /* Read it back. */
1923 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1924 if (cacheline_size == pci_cache_line_size)
1925 return 0;
1926
1927 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1928 "supported\n", pci_cache_line_size << 2);
1929
1930 return -EINVAL;
1931 }
1932
1933 /**
1934 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1935 * @dev: the PCI device for which MWI is enabled
1936 *
1937 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1938 *
1939 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1940 */
1941 int
1942 pci_set_mwi(struct pci_dev *dev)
1943 {
1944 int rc;
1945 u16 cmd;
1946
1947 rc = pci_set_cacheline_size(dev);
1948 if (rc)
1949 return rc;
1950
1951 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1952 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1953 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1954 cmd |= PCI_COMMAND_INVALIDATE;
1955 pci_write_config_word(dev, PCI_COMMAND, cmd);
1956 }
1957
1958 return 0;
1959 }
1960
1961 /**
1962 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1963 * @dev: the PCI device for which MWI is enabled
1964 *
1965 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1966 * Callers are not required to check the return value.
1967 *
1968 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1969 */
1970 int pci_try_set_mwi(struct pci_dev *dev)
1971 {
1972 int rc = pci_set_mwi(dev);
1973 return rc;
1974 }
1975
1976 /**
1977 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1978 * @dev: the PCI device to disable
1979 *
1980 * Disables PCI Memory-Write-Invalidate transaction on the device
1981 */
1982 void
1983 pci_clear_mwi(struct pci_dev *dev)
1984 {
1985 u16 cmd;
1986
1987 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1988 if (cmd & PCI_COMMAND_INVALIDATE) {
1989 cmd &= ~PCI_COMMAND_INVALIDATE;
1990 pci_write_config_word(dev, PCI_COMMAND, cmd);
1991 }
1992 }
1993 #endif /* ! PCI_DISABLE_MWI */
1994
1995 /**
1996 * pci_intx - enables/disables PCI INTx for device dev
1997 * @pdev: the PCI device to operate on
1998 * @enable: boolean: whether to enable or disable PCI INTx
1999 *
2000 * Enables/disables PCI INTx for device dev
2001 */
2002 void
2003 pci_intx(struct pci_dev *pdev, int enable)
2004 {
2005 u16 pci_command, new;
2006
2007 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2008
2009 if (enable) {
2010 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2011 } else {
2012 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2013 }
2014
2015 if (new != pci_command) {
2016 struct pci_devres *dr;
2017
2018 pci_write_config_word(pdev, PCI_COMMAND, new);
2019
2020 dr = find_pci_dr(pdev);
2021 if (dr && !dr->restore_intx) {
2022 dr->restore_intx = 1;
2023 dr->orig_intx = !enable;
2024 }
2025 }
2026 }
2027
2028 /**
2029 * pci_msi_off - disables any msi or msix capabilities
2030 * @dev: the PCI device to operate on
2031 *
2032 * If you want to use msi see pci_enable_msi and friends.
2033 * This is a lower level primitive that allows us to disable
2034 * msi operation at the device level.
2035 */
2036 void pci_msi_off(struct pci_dev *dev)
2037 {
2038 int pos;
2039 u16 control;
2040
2041 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2042 if (pos) {
2043 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2044 control &= ~PCI_MSI_FLAGS_ENABLE;
2045 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2046 }
2047 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2048 if (pos) {
2049 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2050 control &= ~PCI_MSIX_FLAGS_ENABLE;
2051 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2052 }
2053 }
2054
2055 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2056 /*
2057 * These can be overridden by arch-specific implementations
2058 */
2059 int
2060 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2061 {
2062 if (!pci_dma_supported(dev, mask))
2063 return -EIO;
2064
2065 dev->dma_mask = mask;
2066
2067 return 0;
2068 }
2069
2070 int
2071 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2072 {
2073 if (!pci_dma_supported(dev, mask))
2074 return -EIO;
2075
2076 dev->dev.coherent_dma_mask = mask;
2077
2078 return 0;
2079 }
2080 #endif
2081
2082 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2083 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2084 {
2085 return dma_set_max_seg_size(&dev->dev, size);
2086 }
2087 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2088 #endif
2089
2090 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2091 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2092 {
2093 return dma_set_seg_boundary(&dev->dev, mask);
2094 }
2095 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2096 #endif
2097
2098 static int pcie_flr(struct pci_dev *dev, int probe)
2099 {
2100 int i;
2101 int pos;
2102 u32 cap;
2103 u16 status;
2104
2105 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2106 if (!pos)
2107 return -ENOTTY;
2108
2109 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2110 if (!(cap & PCI_EXP_DEVCAP_FLR))
2111 return -ENOTTY;
2112
2113 if (probe)
2114 return 0;
2115
2116 /* Wait for Transaction Pending bit clean */
2117 for (i = 0; i < 4; i++) {
2118 if (i)
2119 msleep((1 << (i - 1)) * 100);
2120
2121 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2122 if (!(status & PCI_EXP_DEVSTA_TRPND))
2123 goto clear;
2124 }
2125
2126 dev_err(&dev->dev, "transaction is not cleared; "
2127 "proceeding with reset anyway\n");
2128
2129 clear:
2130 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2131 PCI_EXP_DEVCTL_BCR_FLR);
2132 msleep(100);
2133
2134 return 0;
2135 }
2136
2137 static int pci_af_flr(struct pci_dev *dev, int probe)
2138 {
2139 int i;
2140 int pos;
2141 u8 cap;
2142 u8 status;
2143
2144 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2145 if (!pos)
2146 return -ENOTTY;
2147
2148 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2149 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2150 return -ENOTTY;
2151
2152 if (probe)
2153 return 0;
2154
2155 /* Wait for Transaction Pending bit clean */
2156 for (i = 0; i < 4; i++) {
2157 if (i)
2158 msleep((1 << (i - 1)) * 100);
2159
2160 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2161 if (!(status & PCI_AF_STATUS_TP))
2162 goto clear;
2163 }
2164
2165 dev_err(&dev->dev, "transaction is not cleared; "
2166 "proceeding with reset anyway\n");
2167
2168 clear:
2169 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2170 msleep(100);
2171
2172 return 0;
2173 }
2174
2175 static int pci_pm_reset(struct pci_dev *dev, int probe)
2176 {
2177 u16 csr;
2178
2179 if (!dev->pm_cap)
2180 return -ENOTTY;
2181
2182 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2183 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2184 return -ENOTTY;
2185
2186 if (probe)
2187 return 0;
2188
2189 if (dev->current_state != PCI_D0)
2190 return -EINVAL;
2191
2192 csr &= ~PCI_PM_CTRL_STATE_MASK;
2193 csr |= PCI_D3hot;
2194 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2195 msleep(pci_pm_d3_delay);
2196
2197 csr &= ~PCI_PM_CTRL_STATE_MASK;
2198 csr |= PCI_D0;
2199 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2200 msleep(pci_pm_d3_delay);
2201
2202 return 0;
2203 }
2204
2205 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2206 {
2207 u16 ctrl;
2208 struct pci_dev *pdev;
2209
2210 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2211 return -ENOTTY;
2212
2213 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2214 if (pdev != dev)
2215 return -ENOTTY;
2216
2217 if (probe)
2218 return 0;
2219
2220 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2221 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2222 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2223 msleep(100);
2224
2225 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2226 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2227 msleep(100);
2228
2229 return 0;
2230 }
2231
2232 static int pci_dev_reset(struct pci_dev *dev, int probe)
2233 {
2234 int rc;
2235
2236 might_sleep();
2237
2238 if (!probe) {
2239 pci_block_user_cfg_access(dev);
2240 /* block PM suspend, driver probe, etc. */
2241 down(&dev->dev.sem);
2242 }
2243
2244 rc = pcie_flr(dev, probe);
2245 if (rc != -ENOTTY)
2246 goto done;
2247
2248 rc = pci_af_flr(dev, probe);
2249 if (rc != -ENOTTY)
2250 goto done;
2251
2252 rc = pci_pm_reset(dev, probe);
2253 if (rc != -ENOTTY)
2254 goto done;
2255
2256 rc = pci_parent_bus_reset(dev, probe);
2257 done:
2258 if (!probe) {
2259 up(&dev->dev.sem);
2260 pci_unblock_user_cfg_access(dev);
2261 }
2262
2263 return rc;
2264 }
2265
2266 /**
2267 * __pci_reset_function - reset a PCI device function
2268 * @dev: PCI device to reset
2269 *
2270 * Some devices allow an individual function to be reset without affecting
2271 * other functions in the same device. The PCI device must be responsive
2272 * to PCI config space in order to use this function.
2273 *
2274 * The device function is presumed to be unused when this function is called.
2275 * Resetting the device will make the contents of PCI configuration space
2276 * random, so any caller of this must be prepared to reinitialise the
2277 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2278 * etc.
2279 *
2280 * Returns 0 if the device function was successfully reset or negative if the
2281 * device doesn't support resetting a single function.
2282 */
2283 int __pci_reset_function(struct pci_dev *dev)
2284 {
2285 return pci_dev_reset(dev, 0);
2286 }
2287 EXPORT_SYMBOL_GPL(__pci_reset_function);
2288
2289 /**
2290 * pci_probe_reset_function - check whether the device can be safely reset
2291 * @dev: PCI device to reset
2292 *
2293 * Some devices allow an individual function to be reset without affecting
2294 * other functions in the same device. The PCI device must be responsive
2295 * to PCI config space in order to use this function.
2296 *
2297 * Returns 0 if the device function can be reset or negative if the
2298 * device doesn't support resetting a single function.
2299 */
2300 int pci_probe_reset_function(struct pci_dev *dev)
2301 {
2302 return pci_dev_reset(dev, 1);
2303 }
2304
2305 /**
2306 * pci_reset_function - quiesce and reset a PCI device function
2307 * @dev: PCI device to reset
2308 *
2309 * Some devices allow an individual function to be reset without affecting
2310 * other functions in the same device. The PCI device must be responsive
2311 * to PCI config space in order to use this function.
2312 *
2313 * This function does not just reset the PCI portion of a device, but
2314 * clears all the state associated with the device. This function differs
2315 * from __pci_reset_function in that it saves and restores device state
2316 * over the reset.
2317 *
2318 * Returns 0 if the device function was successfully reset or negative if the
2319 * device doesn't support resetting a single function.
2320 */
2321 int pci_reset_function(struct pci_dev *dev)
2322 {
2323 int rc;
2324
2325 rc = pci_dev_reset(dev, 1);
2326 if (rc)
2327 return rc;
2328
2329 pci_save_state(dev);
2330
2331 /*
2332 * both INTx and MSI are disabled after the Interrupt Disable bit
2333 * is set and the Bus Master bit is cleared.
2334 */
2335 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2336
2337 rc = pci_dev_reset(dev, 0);
2338
2339 pci_restore_state(dev);
2340
2341 return rc;
2342 }
2343 EXPORT_SYMBOL_GPL(pci_reset_function);
2344
2345 /**
2346 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2347 * @dev: PCI device to query
2348 *
2349 * Returns mmrbc: maximum designed memory read count in bytes
2350 * or appropriate error value.
2351 */
2352 int pcix_get_max_mmrbc(struct pci_dev *dev)
2353 {
2354 int err, cap;
2355 u32 stat;
2356
2357 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2358 if (!cap)
2359 return -EINVAL;
2360
2361 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2362 if (err)
2363 return -EINVAL;
2364
2365 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2366 }
2367 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2368
2369 /**
2370 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2371 * @dev: PCI device to query
2372 *
2373 * Returns mmrbc: maximum memory read count in bytes
2374 * or appropriate error value.
2375 */
2376 int pcix_get_mmrbc(struct pci_dev *dev)
2377 {
2378 int ret, cap;
2379 u32 cmd;
2380
2381 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2382 if (!cap)
2383 return -EINVAL;
2384
2385 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2386 if (!ret)
2387 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2388
2389 return ret;
2390 }
2391 EXPORT_SYMBOL(pcix_get_mmrbc);
2392
2393 /**
2394 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2395 * @dev: PCI device to query
2396 * @mmrbc: maximum memory read count in bytes
2397 * valid values are 512, 1024, 2048, 4096
2398 *
2399 * If possible sets maximum memory read byte count, some bridges have erratas
2400 * that prevent this.
2401 */
2402 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2403 {
2404 int cap, err = -EINVAL;
2405 u32 stat, cmd, v, o;
2406
2407 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2408 goto out;
2409
2410 v = ffs(mmrbc) - 10;
2411
2412 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2413 if (!cap)
2414 goto out;
2415
2416 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2417 if (err)
2418 goto out;
2419
2420 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2421 return -E2BIG;
2422
2423 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2424 if (err)
2425 goto out;
2426
2427 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2428 if (o != v) {
2429 if (v > o && dev->bus &&
2430 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2431 return -EIO;
2432
2433 cmd &= ~PCI_X_CMD_MAX_READ;
2434 cmd |= v << 2;
2435 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2436 }
2437 out:
2438 return err;
2439 }
2440 EXPORT_SYMBOL(pcix_set_mmrbc);
2441
2442 /**
2443 * pcie_get_readrq - get PCI Express read request size
2444 * @dev: PCI device to query
2445 *
2446 * Returns maximum memory read request in bytes
2447 * or appropriate error value.
2448 */
2449 int pcie_get_readrq(struct pci_dev *dev)
2450 {
2451 int ret, cap;
2452 u16 ctl;
2453
2454 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2455 if (!cap)
2456 return -EINVAL;
2457
2458 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2459 if (!ret)
2460 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2461
2462 return ret;
2463 }
2464 EXPORT_SYMBOL(pcie_get_readrq);
2465
2466 /**
2467 * pcie_set_readrq - set PCI Express maximum memory read request
2468 * @dev: PCI device to query
2469 * @rq: maximum memory read count in bytes
2470 * valid values are 128, 256, 512, 1024, 2048, 4096
2471 *
2472 * If possible sets maximum read byte count
2473 */
2474 int pcie_set_readrq(struct pci_dev *dev, int rq)
2475 {
2476 int cap, err = -EINVAL;
2477 u16 ctl, v;
2478
2479 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2480 goto out;
2481
2482 v = (ffs(rq) - 8) << 12;
2483
2484 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2485 if (!cap)
2486 goto out;
2487
2488 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2489 if (err)
2490 goto out;
2491
2492 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2493 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2494 ctl |= v;
2495 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2496 }
2497
2498 out:
2499 return err;
2500 }
2501 EXPORT_SYMBOL(pcie_set_readrq);
2502
2503 /**
2504 * pci_select_bars - Make BAR mask from the type of resource
2505 * @dev: the PCI device for which BAR mask is made
2506 * @flags: resource type mask to be selected
2507 *
2508 * This helper routine makes bar mask from the type of resource.
2509 */
2510 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2511 {
2512 int i, bars = 0;
2513 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2514 if (pci_resource_flags(dev, i) & flags)
2515 bars |= (1 << i);
2516 return bars;
2517 }
2518
2519 /**
2520 * pci_resource_bar - get position of the BAR associated with a resource
2521 * @dev: the PCI device
2522 * @resno: the resource number
2523 * @type: the BAR type to be filled in
2524 *
2525 * Returns BAR position in config space, or 0 if the BAR is invalid.
2526 */
2527 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2528 {
2529 int reg;
2530
2531 if (resno < PCI_ROM_RESOURCE) {
2532 *type = pci_bar_unknown;
2533 return PCI_BASE_ADDRESS_0 + 4 * resno;
2534 } else if (resno == PCI_ROM_RESOURCE) {
2535 *type = pci_bar_mem32;
2536 return dev->rom_base_reg;
2537 } else if (resno < PCI_BRIDGE_RESOURCES) {
2538 /* device specific resource */
2539 reg = pci_iov_resource_bar(dev, resno, type);
2540 if (reg)
2541 return reg;
2542 }
2543
2544 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2545 return 0;
2546 }
2547
2548 /**
2549 * pci_set_vga_state - set VGA decode state on device and parents if requested
2550 * @dev: the PCI device
2551 * @decode: true = enable decoding, false = disable decoding
2552 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2553 * @change_bridge: traverse ancestors and change bridges
2554 */
2555 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2556 unsigned int command_bits, bool change_bridge)
2557 {
2558 struct pci_bus *bus;
2559 struct pci_dev *bridge;
2560 u16 cmd;
2561
2562 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2563
2564 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2565 if (decode == true)
2566 cmd |= command_bits;
2567 else
2568 cmd &= ~command_bits;
2569 pci_write_config_word(dev, PCI_COMMAND, cmd);
2570
2571 if (change_bridge == false)
2572 return 0;
2573
2574 bus = dev->bus;
2575 while (bus) {
2576 bridge = bus->self;
2577 if (bridge) {
2578 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2579 &cmd);
2580 if (decode == true)
2581 cmd |= PCI_BRIDGE_CTL_VGA;
2582 else
2583 cmd &= ~PCI_BRIDGE_CTL_VGA;
2584 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2585 cmd);
2586 }
2587 bus = bus->parent;
2588 }
2589 return 0;
2590 }
2591
2592 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2593 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2594 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2595
2596 /**
2597 * pci_specified_resource_alignment - get resource alignment specified by user.
2598 * @dev: the PCI device to get
2599 *
2600 * RETURNS: Resource alignment if it is specified.
2601 * Zero if it is not specified.
2602 */
2603 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2604 {
2605 int seg, bus, slot, func, align_order, count;
2606 resource_size_t align = 0;
2607 char *p;
2608
2609 spin_lock(&resource_alignment_lock);
2610 p = resource_alignment_param;
2611 while (*p) {
2612 count = 0;
2613 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2614 p[count] == '@') {
2615 p += count + 1;
2616 } else {
2617 align_order = -1;
2618 }
2619 if (sscanf(p, "%x:%x:%x.%x%n",
2620 &seg, &bus, &slot, &func, &count) != 4) {
2621 seg = 0;
2622 if (sscanf(p, "%x:%x.%x%n",
2623 &bus, &slot, &func, &count) != 3) {
2624 /* Invalid format */
2625 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2626 p);
2627 break;
2628 }
2629 }
2630 p += count;
2631 if (seg == pci_domain_nr(dev->bus) &&
2632 bus == dev->bus->number &&
2633 slot == PCI_SLOT(dev->devfn) &&
2634 func == PCI_FUNC(dev->devfn)) {
2635 if (align_order == -1) {
2636 align = PAGE_SIZE;
2637 } else {
2638 align = 1 << align_order;
2639 }
2640 /* Found */
2641 break;
2642 }
2643 if (*p != ';' && *p != ',') {
2644 /* End of param or invalid format */
2645 break;
2646 }
2647 p++;
2648 }
2649 spin_unlock(&resource_alignment_lock);
2650 return align;
2651 }
2652
2653 /**
2654 * pci_is_reassigndev - check if specified PCI is target device to reassign
2655 * @dev: the PCI device to check
2656 *
2657 * RETURNS: non-zero for PCI device is a target device to reassign,
2658 * or zero is not.
2659 */
2660 int pci_is_reassigndev(struct pci_dev *dev)
2661 {
2662 return (pci_specified_resource_alignment(dev) != 0);
2663 }
2664
2665 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2666 {
2667 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2668 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2669 spin_lock(&resource_alignment_lock);
2670 strncpy(resource_alignment_param, buf, count);
2671 resource_alignment_param[count] = '\0';
2672 spin_unlock(&resource_alignment_lock);
2673 return count;
2674 }
2675
2676 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2677 {
2678 size_t count;
2679 spin_lock(&resource_alignment_lock);
2680 count = snprintf(buf, size, "%s", resource_alignment_param);
2681 spin_unlock(&resource_alignment_lock);
2682 return count;
2683 }
2684
2685 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2686 {
2687 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2688 }
2689
2690 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2691 const char *buf, size_t count)
2692 {
2693 return pci_set_resource_alignment_param(buf, count);
2694 }
2695
2696 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2697 pci_resource_alignment_store);
2698
2699 static int __init pci_resource_alignment_sysfs_init(void)
2700 {
2701 return bus_create_file(&pci_bus_type,
2702 &bus_attr_resource_alignment);
2703 }
2704
2705 late_initcall(pci_resource_alignment_sysfs_init);
2706
2707 static void __devinit pci_no_domains(void)
2708 {
2709 #ifdef CONFIG_PCI_DOMAINS
2710 pci_domains_supported = 0;
2711 #endif
2712 }
2713
2714 /**
2715 * pci_ext_cfg_enabled - can we access extended PCI config space?
2716 * @dev: The PCI device of the root bridge.
2717 *
2718 * Returns 1 if we can access PCI extended config space (offsets
2719 * greater than 0xff). This is the default implementation. Architecture
2720 * implementations can override this.
2721 */
2722 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2723 {
2724 return 1;
2725 }
2726
2727 static int __init pci_setup(char *str)
2728 {
2729 while (str) {
2730 char *k = strchr(str, ',');
2731 if (k)
2732 *k++ = 0;
2733 if (*str && (str = pcibios_setup(str)) && *str) {
2734 if (!strcmp(str, "nomsi")) {
2735 pci_no_msi();
2736 } else if (!strcmp(str, "noaer")) {
2737 pci_no_aer();
2738 } else if (!strcmp(str, "nodomains")) {
2739 pci_no_domains();
2740 } else if (!strncmp(str, "cbiosize=", 9)) {
2741 pci_cardbus_io_size = memparse(str + 9, &str);
2742 } else if (!strncmp(str, "cbmemsize=", 10)) {
2743 pci_cardbus_mem_size = memparse(str + 10, &str);
2744 } else if (!strncmp(str, "resource_alignment=", 19)) {
2745 pci_set_resource_alignment_param(str + 19,
2746 strlen(str + 19));
2747 } else if (!strncmp(str, "ecrc=", 5)) {
2748 pcie_ecrc_get_policy(str + 5);
2749 } else if (!strncmp(str, "hpiosize=", 9)) {
2750 pci_hotplug_io_size = memparse(str + 9, &str);
2751 } else if (!strncmp(str, "hpmemsize=", 10)) {
2752 pci_hotplug_mem_size = memparse(str + 10, &str);
2753 } else {
2754 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2755 str);
2756 }
2757 }
2758 str = k;
2759 }
2760 return 0;
2761 }
2762 early_param("pci", pci_setup);
2763
2764 EXPORT_SYMBOL(pci_reenable_device);
2765 EXPORT_SYMBOL(pci_enable_device_io);
2766 EXPORT_SYMBOL(pci_enable_device_mem);
2767 EXPORT_SYMBOL(pci_enable_device);
2768 EXPORT_SYMBOL(pcim_enable_device);
2769 EXPORT_SYMBOL(pcim_pin_device);
2770 EXPORT_SYMBOL(pci_disable_device);
2771 EXPORT_SYMBOL(pci_find_capability);
2772 EXPORT_SYMBOL(pci_bus_find_capability);
2773 EXPORT_SYMBOL(pci_release_regions);
2774 EXPORT_SYMBOL(pci_request_regions);
2775 EXPORT_SYMBOL(pci_request_regions_exclusive);
2776 EXPORT_SYMBOL(pci_release_region);
2777 EXPORT_SYMBOL(pci_request_region);
2778 EXPORT_SYMBOL(pci_request_region_exclusive);
2779 EXPORT_SYMBOL(pci_release_selected_regions);
2780 EXPORT_SYMBOL(pci_request_selected_regions);
2781 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2782 EXPORT_SYMBOL(pci_set_master);
2783 EXPORT_SYMBOL(pci_clear_master);
2784 EXPORT_SYMBOL(pci_set_mwi);
2785 EXPORT_SYMBOL(pci_try_set_mwi);
2786 EXPORT_SYMBOL(pci_clear_mwi);
2787 EXPORT_SYMBOL_GPL(pci_intx);
2788 EXPORT_SYMBOL(pci_set_dma_mask);
2789 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2790 EXPORT_SYMBOL(pci_assign_resource);
2791 EXPORT_SYMBOL(pci_find_parent_resource);
2792 EXPORT_SYMBOL(pci_select_bars);
2793
2794 EXPORT_SYMBOL(pci_set_power_state);
2795 EXPORT_SYMBOL(pci_save_state);
2796 EXPORT_SYMBOL(pci_restore_state);
2797 EXPORT_SYMBOL(pci_pme_capable);
2798 EXPORT_SYMBOL(pci_pme_active);
2799 EXPORT_SYMBOL(pci_enable_wake);
2800 EXPORT_SYMBOL(pci_wake_from_d3);
2801 EXPORT_SYMBOL(pci_target_state);
2802 EXPORT_SYMBOL(pci_prepare_to_sleep);
2803 EXPORT_SYMBOL(pci_back_from_sleep);
2804 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2805
This page took 0.0939 seconds and 5 git commands to generate.