Merge branches 'pci/host-exynos', 'pci/host-iproc', 'pci/host-keystone', 'pci/host...
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include "pci.h"
31
32 const char *pci_power_names[] = {
33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42
43 unsigned int pci_pm_d3_delay;
44
45 static void pci_pme_list_scan(struct work_struct *work);
46
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50
51 struct pci_pme_device {
52 struct list_head list;
53 struct pci_dev *dev;
54 };
55
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57
58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 unsigned int delay = dev->d3_delay;
61
62 if (delay < pci_pm_d3_delay)
63 delay = pci_pm_d3_delay;
64
65 msleep(delay);
66 }
67
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71
72 #define DEFAULT_CARDBUS_IO_SIZE (256)
73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77
78 #define DEFAULT_HOTPLUG_IO_SIZE (256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85
86 /*
87 * The default CLS is used if arch didn't set CLS explicitly and not
88 * all pci devices agree on the same value. Arch can override either
89 * the dfl or actual value as it sees fit. Don't forget this is
90 * measured in 32-bit words, not bytes.
91 */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94
95 /*
96 * If we set up a device for bus mastering, we need to check the latency
97 * timer as certain BIOSes forget to set it properly.
98 */
99 unsigned int pcibios_max_latency = 255;
100
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103
104 /**
105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106 * @bus: pointer to PCI bus structure to search
107 *
108 * Given a PCI bus, returns the highest PCI bus number present in the set
109 * including the given PCI bus and its list of child PCI buses.
110 */
111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 struct pci_bus *tmp;
114 unsigned char max, n;
115
116 max = bus->busn_res.end;
117 list_for_each_entry(tmp, &bus->children, node) {
118 n = pci_bus_max_busnr(tmp);
119 if (n > max)
120 max = n;
121 }
122 return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 struct resource *res = &pdev->resource[bar];
130
131 /*
132 * Make sure the BAR is actually a memory resource, not an IO resource
133 */
134 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
135 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
136 return NULL;
137 }
138 return ioremap_nocache(res->start, resource_size(res));
139 }
140 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
141 #endif
142
143 #define PCI_FIND_CAP_TTL 48
144
145 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
146 u8 pos, int cap, int *ttl)
147 {
148 u8 id;
149
150 while ((*ttl)--) {
151 pci_bus_read_config_byte(bus, devfn, pos, &pos);
152 if (pos < 0x40)
153 break;
154 pos &= ~3;
155 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
156 &id);
157 if (id == 0xff)
158 break;
159 if (id == cap)
160 return pos;
161 pos += PCI_CAP_LIST_NEXT;
162 }
163 return 0;
164 }
165
166 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
167 u8 pos, int cap)
168 {
169 int ttl = PCI_FIND_CAP_TTL;
170
171 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
172 }
173
174 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
175 {
176 return __pci_find_next_cap(dev->bus, dev->devfn,
177 pos + PCI_CAP_LIST_NEXT, cap);
178 }
179 EXPORT_SYMBOL_GPL(pci_find_next_capability);
180
181 static int __pci_bus_find_cap_start(struct pci_bus *bus,
182 unsigned int devfn, u8 hdr_type)
183 {
184 u16 status;
185
186 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
187 if (!(status & PCI_STATUS_CAP_LIST))
188 return 0;
189
190 switch (hdr_type) {
191 case PCI_HEADER_TYPE_NORMAL:
192 case PCI_HEADER_TYPE_BRIDGE:
193 return PCI_CAPABILITY_LIST;
194 case PCI_HEADER_TYPE_CARDBUS:
195 return PCI_CB_CAPABILITY_LIST;
196 default:
197 return 0;
198 }
199
200 return 0;
201 }
202
203 /**
204 * pci_find_capability - query for devices' capabilities
205 * @dev: PCI device to query
206 * @cap: capability code
207 *
208 * Tell if a device supports a given PCI capability.
209 * Returns the address of the requested capability structure within the
210 * device's PCI configuration space or 0 in case the device does not
211 * support it. Possible values for @cap:
212 *
213 * %PCI_CAP_ID_PM Power Management
214 * %PCI_CAP_ID_AGP Accelerated Graphics Port
215 * %PCI_CAP_ID_VPD Vital Product Data
216 * %PCI_CAP_ID_SLOTID Slot Identification
217 * %PCI_CAP_ID_MSI Message Signalled Interrupts
218 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
219 * %PCI_CAP_ID_PCIX PCI-X
220 * %PCI_CAP_ID_EXP PCI Express
221 */
222 int pci_find_capability(struct pci_dev *dev, int cap)
223 {
224 int pos;
225
226 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
227 if (pos)
228 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
229
230 return pos;
231 }
232 EXPORT_SYMBOL(pci_find_capability);
233
234 /**
235 * pci_bus_find_capability - query for devices' capabilities
236 * @bus: the PCI bus to query
237 * @devfn: PCI device to query
238 * @cap: capability code
239 *
240 * Like pci_find_capability() but works for pci devices that do not have a
241 * pci_dev structure set up yet.
242 *
243 * Returns the address of the requested capability structure within the
244 * device's PCI configuration space or 0 in case the device does not
245 * support it.
246 */
247 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
248 {
249 int pos;
250 u8 hdr_type;
251
252 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
253
254 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
255 if (pos)
256 pos = __pci_find_next_cap(bus, devfn, pos, cap);
257
258 return pos;
259 }
260 EXPORT_SYMBOL(pci_bus_find_capability);
261
262 /**
263 * pci_find_next_ext_capability - Find an extended capability
264 * @dev: PCI device to query
265 * @start: address at which to start looking (0 to start at beginning of list)
266 * @cap: capability code
267 *
268 * Returns the address of the next matching extended capability structure
269 * within the device's PCI configuration space or 0 if the device does
270 * not support it. Some capabilities can occur several times, e.g., the
271 * vendor-specific capability, and this provides a way to find them all.
272 */
273 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
274 {
275 u32 header;
276 int ttl;
277 int pos = PCI_CFG_SPACE_SIZE;
278
279 /* minimum 8 bytes per capability */
280 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
281
282 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
283 return 0;
284
285 if (start)
286 pos = start;
287
288 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
289 return 0;
290
291 /*
292 * If we have no capabilities, this is indicated by cap ID,
293 * cap version and next pointer all being 0.
294 */
295 if (header == 0)
296 return 0;
297
298 while (ttl-- > 0) {
299 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
300 return pos;
301
302 pos = PCI_EXT_CAP_NEXT(header);
303 if (pos < PCI_CFG_SPACE_SIZE)
304 break;
305
306 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
307 break;
308 }
309
310 return 0;
311 }
312 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
313
314 /**
315 * pci_find_ext_capability - Find an extended capability
316 * @dev: PCI device to query
317 * @cap: capability code
318 *
319 * Returns the address of the requested extended capability structure
320 * within the device's PCI configuration space or 0 if the device does
321 * not support it. Possible values for @cap:
322 *
323 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
324 * %PCI_EXT_CAP_ID_VC Virtual Channel
325 * %PCI_EXT_CAP_ID_DSN Device Serial Number
326 * %PCI_EXT_CAP_ID_PWR Power Budgeting
327 */
328 int pci_find_ext_capability(struct pci_dev *dev, int cap)
329 {
330 return pci_find_next_ext_capability(dev, 0, cap);
331 }
332 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
333
334 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
335 {
336 int rc, ttl = PCI_FIND_CAP_TTL;
337 u8 cap, mask;
338
339 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
340 mask = HT_3BIT_CAP_MASK;
341 else
342 mask = HT_5BIT_CAP_MASK;
343
344 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
345 PCI_CAP_ID_HT, &ttl);
346 while (pos) {
347 rc = pci_read_config_byte(dev, pos + 3, &cap);
348 if (rc != PCIBIOS_SUCCESSFUL)
349 return 0;
350
351 if ((cap & mask) == ht_cap)
352 return pos;
353
354 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
355 pos + PCI_CAP_LIST_NEXT,
356 PCI_CAP_ID_HT, &ttl);
357 }
358
359 return 0;
360 }
361 /**
362 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
363 * @dev: PCI device to query
364 * @pos: Position from which to continue searching
365 * @ht_cap: Hypertransport capability code
366 *
367 * To be used in conjunction with pci_find_ht_capability() to search for
368 * all capabilities matching @ht_cap. @pos should always be a value returned
369 * from pci_find_ht_capability().
370 *
371 * NB. To be 100% safe against broken PCI devices, the caller should take
372 * steps to avoid an infinite loop.
373 */
374 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
375 {
376 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
377 }
378 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
379
380 /**
381 * pci_find_ht_capability - query a device's Hypertransport capabilities
382 * @dev: PCI device to query
383 * @ht_cap: Hypertransport capability code
384 *
385 * Tell if a device supports a given Hypertransport capability.
386 * Returns an address within the device's PCI configuration space
387 * or 0 in case the device does not support the request capability.
388 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
389 * which has a Hypertransport capability matching @ht_cap.
390 */
391 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
392 {
393 int pos;
394
395 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
396 if (pos)
397 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
398
399 return pos;
400 }
401 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
402
403 /**
404 * pci_find_parent_resource - return resource region of parent bus of given region
405 * @dev: PCI device structure contains resources to be searched
406 * @res: child resource record for which parent is sought
407 *
408 * For given resource region of given device, return the resource
409 * region of parent bus the given region is contained in.
410 */
411 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
412 struct resource *res)
413 {
414 const struct pci_bus *bus = dev->bus;
415 struct resource *r;
416 int i;
417
418 pci_bus_for_each_resource(bus, r, i) {
419 if (!r)
420 continue;
421 if (res->start && resource_contains(r, res)) {
422
423 /*
424 * If the window is prefetchable but the BAR is
425 * not, the allocator made a mistake.
426 */
427 if (r->flags & IORESOURCE_PREFETCH &&
428 !(res->flags & IORESOURCE_PREFETCH))
429 return NULL;
430
431 /*
432 * If we're below a transparent bridge, there may
433 * be both a positively-decoded aperture and a
434 * subtractively-decoded region that contain the BAR.
435 * We want the positively-decoded one, so this depends
436 * on pci_bus_for_each_resource() giving us those
437 * first.
438 */
439 return r;
440 }
441 }
442 return NULL;
443 }
444 EXPORT_SYMBOL(pci_find_parent_resource);
445
446 /**
447 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
448 * @dev: the PCI device to operate on
449 * @pos: config space offset of status word
450 * @mask: mask of bit(s) to care about in status word
451 *
452 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
453 */
454 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
455 {
456 int i;
457
458 /* Wait for Transaction Pending bit clean */
459 for (i = 0; i < 4; i++) {
460 u16 status;
461 if (i)
462 msleep((1 << (i - 1)) * 100);
463
464 pci_read_config_word(dev, pos, &status);
465 if (!(status & mask))
466 return 1;
467 }
468
469 return 0;
470 }
471
472 /**
473 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
474 * @dev: PCI device to have its BARs restored
475 *
476 * Restore the BAR values for a given device, so as to make it
477 * accessible by its driver.
478 */
479 static void pci_restore_bars(struct pci_dev *dev)
480 {
481 int i;
482
483 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
484 pci_update_resource(dev, i);
485 }
486
487 static struct pci_platform_pm_ops *pci_platform_pm;
488
489 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
490 {
491 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
492 || !ops->sleep_wake)
493 return -EINVAL;
494 pci_platform_pm = ops;
495 return 0;
496 }
497
498 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
499 {
500 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
501 }
502
503 static inline int platform_pci_set_power_state(struct pci_dev *dev,
504 pci_power_t t)
505 {
506 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
507 }
508
509 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
510 {
511 return pci_platform_pm ?
512 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
513 }
514
515 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
516 {
517 return pci_platform_pm ?
518 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
519 }
520
521 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
522 {
523 return pci_platform_pm ?
524 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
525 }
526
527 static inline bool platform_pci_need_resume(struct pci_dev *dev)
528 {
529 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
530 }
531
532 /**
533 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
534 * given PCI device
535 * @dev: PCI device to handle.
536 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
537 *
538 * RETURN VALUE:
539 * -EINVAL if the requested state is invalid.
540 * -EIO if device does not support PCI PM or its PM capabilities register has a
541 * wrong version, or device doesn't support the requested state.
542 * 0 if device already is in the requested state.
543 * 0 if device's power state has been successfully changed.
544 */
545 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
546 {
547 u16 pmcsr;
548 bool need_restore = false;
549
550 /* Check if we're already there */
551 if (dev->current_state == state)
552 return 0;
553
554 if (!dev->pm_cap)
555 return -EIO;
556
557 if (state < PCI_D0 || state > PCI_D3hot)
558 return -EINVAL;
559
560 /* Validate current state:
561 * Can enter D0 from any state, but if we can only go deeper
562 * to sleep if we're already in a low power state
563 */
564 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
565 && dev->current_state > state) {
566 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
567 dev->current_state, state);
568 return -EINVAL;
569 }
570
571 /* check if this device supports the desired state */
572 if ((state == PCI_D1 && !dev->d1_support)
573 || (state == PCI_D2 && !dev->d2_support))
574 return -EIO;
575
576 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
577
578 /* If we're (effectively) in D3, force entire word to 0.
579 * This doesn't affect PME_Status, disables PME_En, and
580 * sets PowerState to 0.
581 */
582 switch (dev->current_state) {
583 case PCI_D0:
584 case PCI_D1:
585 case PCI_D2:
586 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
587 pmcsr |= state;
588 break;
589 case PCI_D3hot:
590 case PCI_D3cold:
591 case PCI_UNKNOWN: /* Boot-up */
592 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
593 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
594 need_restore = true;
595 /* Fall-through: force to D0 */
596 default:
597 pmcsr = 0;
598 break;
599 }
600
601 /* enter specified state */
602 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
603
604 /* Mandatory power management transition delays */
605 /* see PCI PM 1.1 5.6.1 table 18 */
606 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
607 pci_dev_d3_sleep(dev);
608 else if (state == PCI_D2 || dev->current_state == PCI_D2)
609 udelay(PCI_PM_D2_DELAY);
610
611 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
612 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
613 if (dev->current_state != state && printk_ratelimit())
614 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
615 dev->current_state);
616
617 /*
618 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
619 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
620 * from D3hot to D0 _may_ perform an internal reset, thereby
621 * going to "D0 Uninitialized" rather than "D0 Initialized".
622 * For example, at least some versions of the 3c905B and the
623 * 3c556B exhibit this behaviour.
624 *
625 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
626 * devices in a D3hot state at boot. Consequently, we need to
627 * restore at least the BARs so that the device will be
628 * accessible to its driver.
629 */
630 if (need_restore)
631 pci_restore_bars(dev);
632
633 if (dev->bus->self)
634 pcie_aspm_pm_state_change(dev->bus->self);
635
636 return 0;
637 }
638
639 /**
640 * pci_update_current_state - Read PCI power state of given device from its
641 * PCI PM registers and cache it
642 * @dev: PCI device to handle.
643 * @state: State to cache in case the device doesn't have the PM capability
644 */
645 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
646 {
647 if (dev->pm_cap) {
648 u16 pmcsr;
649
650 /*
651 * Configuration space is not accessible for device in
652 * D3cold, so just keep or set D3cold for safety
653 */
654 if (dev->current_state == PCI_D3cold)
655 return;
656 if (state == PCI_D3cold) {
657 dev->current_state = PCI_D3cold;
658 return;
659 }
660 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
661 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
662 } else {
663 dev->current_state = state;
664 }
665 }
666
667 /**
668 * pci_power_up - Put the given device into D0 forcibly
669 * @dev: PCI device to power up
670 */
671 void pci_power_up(struct pci_dev *dev)
672 {
673 if (platform_pci_power_manageable(dev))
674 platform_pci_set_power_state(dev, PCI_D0);
675
676 pci_raw_set_power_state(dev, PCI_D0);
677 pci_update_current_state(dev, PCI_D0);
678 }
679
680 /**
681 * pci_platform_power_transition - Use platform to change device power state
682 * @dev: PCI device to handle.
683 * @state: State to put the device into.
684 */
685 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
686 {
687 int error;
688
689 if (platform_pci_power_manageable(dev)) {
690 error = platform_pci_set_power_state(dev, state);
691 if (!error)
692 pci_update_current_state(dev, state);
693 } else
694 error = -ENODEV;
695
696 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
697 dev->current_state = PCI_D0;
698
699 return error;
700 }
701
702 /**
703 * pci_wakeup - Wake up a PCI device
704 * @pci_dev: Device to handle.
705 * @ign: ignored parameter
706 */
707 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
708 {
709 pci_wakeup_event(pci_dev);
710 pm_request_resume(&pci_dev->dev);
711 return 0;
712 }
713
714 /**
715 * pci_wakeup_bus - Walk given bus and wake up devices on it
716 * @bus: Top bus of the subtree to walk.
717 */
718 static void pci_wakeup_bus(struct pci_bus *bus)
719 {
720 if (bus)
721 pci_walk_bus(bus, pci_wakeup, NULL);
722 }
723
724 /**
725 * __pci_start_power_transition - Start power transition of a PCI device
726 * @dev: PCI device to handle.
727 * @state: State to put the device into.
728 */
729 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
730 {
731 if (state == PCI_D0) {
732 pci_platform_power_transition(dev, PCI_D0);
733 /*
734 * Mandatory power management transition delays, see
735 * PCI Express Base Specification Revision 2.0 Section
736 * 6.6.1: Conventional Reset. Do not delay for
737 * devices powered on/off by corresponding bridge,
738 * because have already delayed for the bridge.
739 */
740 if (dev->runtime_d3cold) {
741 msleep(dev->d3cold_delay);
742 /*
743 * When powering on a bridge from D3cold, the
744 * whole hierarchy may be powered on into
745 * D0uninitialized state, resume them to give
746 * them a chance to suspend again
747 */
748 pci_wakeup_bus(dev->subordinate);
749 }
750 }
751 }
752
753 /**
754 * __pci_dev_set_current_state - Set current state of a PCI device
755 * @dev: Device to handle
756 * @data: pointer to state to be set
757 */
758 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
759 {
760 pci_power_t state = *(pci_power_t *)data;
761
762 dev->current_state = state;
763 return 0;
764 }
765
766 /**
767 * __pci_bus_set_current_state - Walk given bus and set current state of devices
768 * @bus: Top bus of the subtree to walk.
769 * @state: state to be set
770 */
771 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
772 {
773 if (bus)
774 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
775 }
776
777 /**
778 * __pci_complete_power_transition - Complete power transition of a PCI device
779 * @dev: PCI device to handle.
780 * @state: State to put the device into.
781 *
782 * This function should not be called directly by device drivers.
783 */
784 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
785 {
786 int ret;
787
788 if (state <= PCI_D0)
789 return -EINVAL;
790 ret = pci_platform_power_transition(dev, state);
791 /* Power off the bridge may power off the whole hierarchy */
792 if (!ret && state == PCI_D3cold)
793 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
794 return ret;
795 }
796 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
797
798 /**
799 * pci_set_power_state - Set the power state of a PCI device
800 * @dev: PCI device to handle.
801 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
802 *
803 * Transition a device to a new power state, using the platform firmware and/or
804 * the device's PCI PM registers.
805 *
806 * RETURN VALUE:
807 * -EINVAL if the requested state is invalid.
808 * -EIO if device does not support PCI PM or its PM capabilities register has a
809 * wrong version, or device doesn't support the requested state.
810 * 0 if device already is in the requested state.
811 * 0 if device's power state has been successfully changed.
812 */
813 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
814 {
815 int error;
816
817 /* bound the state we're entering */
818 if (state > PCI_D3cold)
819 state = PCI_D3cold;
820 else if (state < PCI_D0)
821 state = PCI_D0;
822 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
823 /*
824 * If the device or the parent bridge do not support PCI PM,
825 * ignore the request if we're doing anything other than putting
826 * it into D0 (which would only happen on boot).
827 */
828 return 0;
829
830 /* Check if we're already there */
831 if (dev->current_state == state)
832 return 0;
833
834 __pci_start_power_transition(dev, state);
835
836 /* This device is quirked not to be put into D3, so
837 don't put it in D3 */
838 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
839 return 0;
840
841 /*
842 * To put device in D3cold, we put device into D3hot in native
843 * way, then put device into D3cold with platform ops
844 */
845 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
846 PCI_D3hot : state);
847
848 if (!__pci_complete_power_transition(dev, state))
849 error = 0;
850
851 return error;
852 }
853 EXPORT_SYMBOL(pci_set_power_state);
854
855 /**
856 * pci_choose_state - Choose the power state of a PCI device
857 * @dev: PCI device to be suspended
858 * @state: target sleep state for the whole system. This is the value
859 * that is passed to suspend() function.
860 *
861 * Returns PCI power state suitable for given device and given system
862 * message.
863 */
864
865 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
866 {
867 pci_power_t ret;
868
869 if (!dev->pm_cap)
870 return PCI_D0;
871
872 ret = platform_pci_choose_state(dev);
873 if (ret != PCI_POWER_ERROR)
874 return ret;
875
876 switch (state.event) {
877 case PM_EVENT_ON:
878 return PCI_D0;
879 case PM_EVENT_FREEZE:
880 case PM_EVENT_PRETHAW:
881 /* REVISIT both freeze and pre-thaw "should" use D0 */
882 case PM_EVENT_SUSPEND:
883 case PM_EVENT_HIBERNATE:
884 return PCI_D3hot;
885 default:
886 dev_info(&dev->dev, "unrecognized suspend event %d\n",
887 state.event);
888 BUG();
889 }
890 return PCI_D0;
891 }
892 EXPORT_SYMBOL(pci_choose_state);
893
894 #define PCI_EXP_SAVE_REGS 7
895
896 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
897 u16 cap, bool extended)
898 {
899 struct pci_cap_saved_state *tmp;
900
901 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
902 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
903 return tmp;
904 }
905 return NULL;
906 }
907
908 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
909 {
910 return _pci_find_saved_cap(dev, cap, false);
911 }
912
913 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
914 {
915 return _pci_find_saved_cap(dev, cap, true);
916 }
917
918 static int pci_save_pcie_state(struct pci_dev *dev)
919 {
920 int i = 0;
921 struct pci_cap_saved_state *save_state;
922 u16 *cap;
923
924 if (!pci_is_pcie(dev))
925 return 0;
926
927 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
928 if (!save_state) {
929 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
930 return -ENOMEM;
931 }
932
933 cap = (u16 *)&save_state->cap.data[0];
934 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
938 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
939 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
940 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
941
942 return 0;
943 }
944
945 static void pci_restore_pcie_state(struct pci_dev *dev)
946 {
947 int i = 0;
948 struct pci_cap_saved_state *save_state;
949 u16 *cap;
950
951 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
952 if (!save_state)
953 return;
954
955 cap = (u16 *)&save_state->cap.data[0];
956 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
960 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
961 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
962 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
963 }
964
965
966 static int pci_save_pcix_state(struct pci_dev *dev)
967 {
968 int pos;
969 struct pci_cap_saved_state *save_state;
970
971 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
972 if (pos <= 0)
973 return 0;
974
975 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
976 if (!save_state) {
977 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
978 return -ENOMEM;
979 }
980
981 pci_read_config_word(dev, pos + PCI_X_CMD,
982 (u16 *)save_state->cap.data);
983
984 return 0;
985 }
986
987 static void pci_restore_pcix_state(struct pci_dev *dev)
988 {
989 int i = 0, pos;
990 struct pci_cap_saved_state *save_state;
991 u16 *cap;
992
993 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
994 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
995 if (!save_state || pos <= 0)
996 return;
997 cap = (u16 *)&save_state->cap.data[0];
998
999 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1000 }
1001
1002
1003 /**
1004 * pci_save_state - save the PCI configuration space of a device before suspending
1005 * @dev: - PCI device that we're dealing with
1006 */
1007 int pci_save_state(struct pci_dev *dev)
1008 {
1009 int i;
1010 /* XXX: 100% dword access ok here? */
1011 for (i = 0; i < 16; i++)
1012 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1013 dev->state_saved = true;
1014
1015 i = pci_save_pcie_state(dev);
1016 if (i != 0)
1017 return i;
1018
1019 i = pci_save_pcix_state(dev);
1020 if (i != 0)
1021 return i;
1022
1023 return pci_save_vc_state(dev);
1024 }
1025 EXPORT_SYMBOL(pci_save_state);
1026
1027 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1028 u32 saved_val, int retry)
1029 {
1030 u32 val;
1031
1032 pci_read_config_dword(pdev, offset, &val);
1033 if (val == saved_val)
1034 return;
1035
1036 for (;;) {
1037 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1038 offset, val, saved_val);
1039 pci_write_config_dword(pdev, offset, saved_val);
1040 if (retry-- <= 0)
1041 return;
1042
1043 pci_read_config_dword(pdev, offset, &val);
1044 if (val == saved_val)
1045 return;
1046
1047 mdelay(1);
1048 }
1049 }
1050
1051 static void pci_restore_config_space_range(struct pci_dev *pdev,
1052 int start, int end, int retry)
1053 {
1054 int index;
1055
1056 for (index = end; index >= start; index--)
1057 pci_restore_config_dword(pdev, 4 * index,
1058 pdev->saved_config_space[index],
1059 retry);
1060 }
1061
1062 static void pci_restore_config_space(struct pci_dev *pdev)
1063 {
1064 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1065 pci_restore_config_space_range(pdev, 10, 15, 0);
1066 /* Restore BARs before the command register. */
1067 pci_restore_config_space_range(pdev, 4, 9, 10);
1068 pci_restore_config_space_range(pdev, 0, 3, 0);
1069 } else {
1070 pci_restore_config_space_range(pdev, 0, 15, 0);
1071 }
1072 }
1073
1074 /**
1075 * pci_restore_state - Restore the saved state of a PCI device
1076 * @dev: - PCI device that we're dealing with
1077 */
1078 void pci_restore_state(struct pci_dev *dev)
1079 {
1080 if (!dev->state_saved)
1081 return;
1082
1083 /* PCI Express register must be restored first */
1084 pci_restore_pcie_state(dev);
1085 pci_restore_ats_state(dev);
1086 pci_restore_vc_state(dev);
1087
1088 pci_restore_config_space(dev);
1089
1090 pci_restore_pcix_state(dev);
1091 pci_restore_msi_state(dev);
1092 pci_restore_iov_state(dev);
1093
1094 dev->state_saved = false;
1095 }
1096 EXPORT_SYMBOL(pci_restore_state);
1097
1098 struct pci_saved_state {
1099 u32 config_space[16];
1100 struct pci_cap_saved_data cap[0];
1101 };
1102
1103 /**
1104 * pci_store_saved_state - Allocate and return an opaque struct containing
1105 * the device saved state.
1106 * @dev: PCI device that we're dealing with
1107 *
1108 * Return NULL if no state or error.
1109 */
1110 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1111 {
1112 struct pci_saved_state *state;
1113 struct pci_cap_saved_state *tmp;
1114 struct pci_cap_saved_data *cap;
1115 size_t size;
1116
1117 if (!dev->state_saved)
1118 return NULL;
1119
1120 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1121
1122 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1123 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1124
1125 state = kzalloc(size, GFP_KERNEL);
1126 if (!state)
1127 return NULL;
1128
1129 memcpy(state->config_space, dev->saved_config_space,
1130 sizeof(state->config_space));
1131
1132 cap = state->cap;
1133 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1134 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1135 memcpy(cap, &tmp->cap, len);
1136 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1137 }
1138 /* Empty cap_save terminates list */
1139
1140 return state;
1141 }
1142 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1143
1144 /**
1145 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1146 * @dev: PCI device that we're dealing with
1147 * @state: Saved state returned from pci_store_saved_state()
1148 */
1149 int pci_load_saved_state(struct pci_dev *dev,
1150 struct pci_saved_state *state)
1151 {
1152 struct pci_cap_saved_data *cap;
1153
1154 dev->state_saved = false;
1155
1156 if (!state)
1157 return 0;
1158
1159 memcpy(dev->saved_config_space, state->config_space,
1160 sizeof(state->config_space));
1161
1162 cap = state->cap;
1163 while (cap->size) {
1164 struct pci_cap_saved_state *tmp;
1165
1166 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1167 if (!tmp || tmp->cap.size != cap->size)
1168 return -EINVAL;
1169
1170 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1171 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1172 sizeof(struct pci_cap_saved_data) + cap->size);
1173 }
1174
1175 dev->state_saved = true;
1176 return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1179
1180 /**
1181 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1182 * and free the memory allocated for it.
1183 * @dev: PCI device that we're dealing with
1184 * @state: Pointer to saved state returned from pci_store_saved_state()
1185 */
1186 int pci_load_and_free_saved_state(struct pci_dev *dev,
1187 struct pci_saved_state **state)
1188 {
1189 int ret = pci_load_saved_state(dev, *state);
1190 kfree(*state);
1191 *state = NULL;
1192 return ret;
1193 }
1194 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1195
1196 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1197 {
1198 return pci_enable_resources(dev, bars);
1199 }
1200
1201 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1202 {
1203 int err;
1204 struct pci_dev *bridge;
1205 u16 cmd;
1206 u8 pin;
1207
1208 err = pci_set_power_state(dev, PCI_D0);
1209 if (err < 0 && err != -EIO)
1210 return err;
1211
1212 bridge = pci_upstream_bridge(dev);
1213 if (bridge)
1214 pcie_aspm_powersave_config_link(bridge);
1215
1216 err = pcibios_enable_device(dev, bars);
1217 if (err < 0)
1218 return err;
1219 pci_fixup_device(pci_fixup_enable, dev);
1220
1221 if (dev->msi_enabled || dev->msix_enabled)
1222 return 0;
1223
1224 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1225 if (pin) {
1226 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1227 if (cmd & PCI_COMMAND_INTX_DISABLE)
1228 pci_write_config_word(dev, PCI_COMMAND,
1229 cmd & ~PCI_COMMAND_INTX_DISABLE);
1230 }
1231
1232 return 0;
1233 }
1234
1235 /**
1236 * pci_reenable_device - Resume abandoned device
1237 * @dev: PCI device to be resumed
1238 *
1239 * Note this function is a backend of pci_default_resume and is not supposed
1240 * to be called by normal code, write proper resume handler and use it instead.
1241 */
1242 int pci_reenable_device(struct pci_dev *dev)
1243 {
1244 if (pci_is_enabled(dev))
1245 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1246 return 0;
1247 }
1248 EXPORT_SYMBOL(pci_reenable_device);
1249
1250 static void pci_enable_bridge(struct pci_dev *dev)
1251 {
1252 struct pci_dev *bridge;
1253 int retval;
1254
1255 bridge = pci_upstream_bridge(dev);
1256 if (bridge)
1257 pci_enable_bridge(bridge);
1258
1259 if (pci_is_enabled(dev)) {
1260 if (!dev->is_busmaster)
1261 pci_set_master(dev);
1262 return;
1263 }
1264
1265 retval = pci_enable_device(dev);
1266 if (retval)
1267 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1268 retval);
1269 pci_set_master(dev);
1270 }
1271
1272 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1273 {
1274 struct pci_dev *bridge;
1275 int err;
1276 int i, bars = 0;
1277
1278 /*
1279 * Power state could be unknown at this point, either due to a fresh
1280 * boot or a device removal call. So get the current power state
1281 * so that things like MSI message writing will behave as expected
1282 * (e.g. if the device really is in D0 at enable time).
1283 */
1284 if (dev->pm_cap) {
1285 u16 pmcsr;
1286 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1287 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1288 }
1289
1290 if (atomic_inc_return(&dev->enable_cnt) > 1)
1291 return 0; /* already enabled */
1292
1293 bridge = pci_upstream_bridge(dev);
1294 if (bridge)
1295 pci_enable_bridge(bridge);
1296
1297 /* only skip sriov related */
1298 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1299 if (dev->resource[i].flags & flags)
1300 bars |= (1 << i);
1301 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1302 if (dev->resource[i].flags & flags)
1303 bars |= (1 << i);
1304
1305 err = do_pci_enable_device(dev, bars);
1306 if (err < 0)
1307 atomic_dec(&dev->enable_cnt);
1308 return err;
1309 }
1310
1311 /**
1312 * pci_enable_device_io - Initialize a device for use with IO space
1313 * @dev: PCI device to be initialized
1314 *
1315 * Initialize device before it's used by a driver. Ask low-level code
1316 * to enable I/O resources. Wake up the device if it was suspended.
1317 * Beware, this function can fail.
1318 */
1319 int pci_enable_device_io(struct pci_dev *dev)
1320 {
1321 return pci_enable_device_flags(dev, IORESOURCE_IO);
1322 }
1323 EXPORT_SYMBOL(pci_enable_device_io);
1324
1325 /**
1326 * pci_enable_device_mem - Initialize a device for use with Memory space
1327 * @dev: PCI device to be initialized
1328 *
1329 * Initialize device before it's used by a driver. Ask low-level code
1330 * to enable Memory resources. Wake up the device if it was suspended.
1331 * Beware, this function can fail.
1332 */
1333 int pci_enable_device_mem(struct pci_dev *dev)
1334 {
1335 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1336 }
1337 EXPORT_SYMBOL(pci_enable_device_mem);
1338
1339 /**
1340 * pci_enable_device - Initialize device before it's used by a driver.
1341 * @dev: PCI device to be initialized
1342 *
1343 * Initialize device before it's used by a driver. Ask low-level code
1344 * to enable I/O and memory. Wake up the device if it was suspended.
1345 * Beware, this function can fail.
1346 *
1347 * Note we don't actually enable the device many times if we call
1348 * this function repeatedly (we just increment the count).
1349 */
1350 int pci_enable_device(struct pci_dev *dev)
1351 {
1352 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1353 }
1354 EXPORT_SYMBOL(pci_enable_device);
1355
1356 /*
1357 * Managed PCI resources. This manages device on/off, intx/msi/msix
1358 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1359 * there's no need to track it separately. pci_devres is initialized
1360 * when a device is enabled using managed PCI device enable interface.
1361 */
1362 struct pci_devres {
1363 unsigned int enabled:1;
1364 unsigned int pinned:1;
1365 unsigned int orig_intx:1;
1366 unsigned int restore_intx:1;
1367 u32 region_mask;
1368 };
1369
1370 static void pcim_release(struct device *gendev, void *res)
1371 {
1372 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1373 struct pci_devres *this = res;
1374 int i;
1375
1376 if (dev->msi_enabled)
1377 pci_disable_msi(dev);
1378 if (dev->msix_enabled)
1379 pci_disable_msix(dev);
1380
1381 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1382 if (this->region_mask & (1 << i))
1383 pci_release_region(dev, i);
1384
1385 if (this->restore_intx)
1386 pci_intx(dev, this->orig_intx);
1387
1388 if (this->enabled && !this->pinned)
1389 pci_disable_device(dev);
1390 }
1391
1392 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1393 {
1394 struct pci_devres *dr, *new_dr;
1395
1396 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1397 if (dr)
1398 return dr;
1399
1400 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1401 if (!new_dr)
1402 return NULL;
1403 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1404 }
1405
1406 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1407 {
1408 if (pci_is_managed(pdev))
1409 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1410 return NULL;
1411 }
1412
1413 /**
1414 * pcim_enable_device - Managed pci_enable_device()
1415 * @pdev: PCI device to be initialized
1416 *
1417 * Managed pci_enable_device().
1418 */
1419 int pcim_enable_device(struct pci_dev *pdev)
1420 {
1421 struct pci_devres *dr;
1422 int rc;
1423
1424 dr = get_pci_dr(pdev);
1425 if (unlikely(!dr))
1426 return -ENOMEM;
1427 if (dr->enabled)
1428 return 0;
1429
1430 rc = pci_enable_device(pdev);
1431 if (!rc) {
1432 pdev->is_managed = 1;
1433 dr->enabled = 1;
1434 }
1435 return rc;
1436 }
1437 EXPORT_SYMBOL(pcim_enable_device);
1438
1439 /**
1440 * pcim_pin_device - Pin managed PCI device
1441 * @pdev: PCI device to pin
1442 *
1443 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1444 * driver detach. @pdev must have been enabled with
1445 * pcim_enable_device().
1446 */
1447 void pcim_pin_device(struct pci_dev *pdev)
1448 {
1449 struct pci_devres *dr;
1450
1451 dr = find_pci_dr(pdev);
1452 WARN_ON(!dr || !dr->enabled);
1453 if (dr)
1454 dr->pinned = 1;
1455 }
1456 EXPORT_SYMBOL(pcim_pin_device);
1457
1458 /*
1459 * pcibios_add_device - provide arch specific hooks when adding device dev
1460 * @dev: the PCI device being added
1461 *
1462 * Permits the platform to provide architecture specific functionality when
1463 * devices are added. This is the default implementation. Architecture
1464 * implementations can override this.
1465 */
1466 int __weak pcibios_add_device(struct pci_dev *dev)
1467 {
1468 return 0;
1469 }
1470
1471 /**
1472 * pcibios_release_device - provide arch specific hooks when releasing device dev
1473 * @dev: the PCI device being released
1474 *
1475 * Permits the platform to provide architecture specific functionality when
1476 * devices are released. This is the default implementation. Architecture
1477 * implementations can override this.
1478 */
1479 void __weak pcibios_release_device(struct pci_dev *dev) {}
1480
1481 /**
1482 * pcibios_disable_device - disable arch specific PCI resources for device dev
1483 * @dev: the PCI device to disable
1484 *
1485 * Disables architecture specific PCI resources for the device. This
1486 * is the default implementation. Architecture implementations can
1487 * override this.
1488 */
1489 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1490
1491 /**
1492 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1493 * @irq: ISA IRQ to penalize
1494 * @active: IRQ active or not
1495 *
1496 * Permits the platform to provide architecture-specific functionality when
1497 * penalizing ISA IRQs. This is the default implementation. Architecture
1498 * implementations can override this.
1499 */
1500 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1501
1502 static void do_pci_disable_device(struct pci_dev *dev)
1503 {
1504 u16 pci_command;
1505
1506 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1507 if (pci_command & PCI_COMMAND_MASTER) {
1508 pci_command &= ~PCI_COMMAND_MASTER;
1509 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1510 }
1511
1512 pcibios_disable_device(dev);
1513 }
1514
1515 /**
1516 * pci_disable_enabled_device - Disable device without updating enable_cnt
1517 * @dev: PCI device to disable
1518 *
1519 * NOTE: This function is a backend of PCI power management routines and is
1520 * not supposed to be called drivers.
1521 */
1522 void pci_disable_enabled_device(struct pci_dev *dev)
1523 {
1524 if (pci_is_enabled(dev))
1525 do_pci_disable_device(dev);
1526 }
1527
1528 /**
1529 * pci_disable_device - Disable PCI device after use
1530 * @dev: PCI device to be disabled
1531 *
1532 * Signal to the system that the PCI device is not in use by the system
1533 * anymore. This only involves disabling PCI bus-mastering, if active.
1534 *
1535 * Note we don't actually disable the device until all callers of
1536 * pci_enable_device() have called pci_disable_device().
1537 */
1538 void pci_disable_device(struct pci_dev *dev)
1539 {
1540 struct pci_devres *dr;
1541
1542 dr = find_pci_dr(dev);
1543 if (dr)
1544 dr->enabled = 0;
1545
1546 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1547 "disabling already-disabled device");
1548
1549 if (atomic_dec_return(&dev->enable_cnt) != 0)
1550 return;
1551
1552 do_pci_disable_device(dev);
1553
1554 dev->is_busmaster = 0;
1555 }
1556 EXPORT_SYMBOL(pci_disable_device);
1557
1558 /**
1559 * pcibios_set_pcie_reset_state - set reset state for device dev
1560 * @dev: the PCIe device reset
1561 * @state: Reset state to enter into
1562 *
1563 *
1564 * Sets the PCIe reset state for the device. This is the default
1565 * implementation. Architecture implementations can override this.
1566 */
1567 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1568 enum pcie_reset_state state)
1569 {
1570 return -EINVAL;
1571 }
1572
1573 /**
1574 * pci_set_pcie_reset_state - set reset state for device dev
1575 * @dev: the PCIe device reset
1576 * @state: Reset state to enter into
1577 *
1578 *
1579 * Sets the PCI reset state for the device.
1580 */
1581 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1582 {
1583 return pcibios_set_pcie_reset_state(dev, state);
1584 }
1585 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1586
1587 /**
1588 * pci_check_pme_status - Check if given device has generated PME.
1589 * @dev: Device to check.
1590 *
1591 * Check the PME status of the device and if set, clear it and clear PME enable
1592 * (if set). Return 'true' if PME status and PME enable were both set or
1593 * 'false' otherwise.
1594 */
1595 bool pci_check_pme_status(struct pci_dev *dev)
1596 {
1597 int pmcsr_pos;
1598 u16 pmcsr;
1599 bool ret = false;
1600
1601 if (!dev->pm_cap)
1602 return false;
1603
1604 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1605 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1606 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1607 return false;
1608
1609 /* Clear PME status. */
1610 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1611 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1612 /* Disable PME to avoid interrupt flood. */
1613 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1614 ret = true;
1615 }
1616
1617 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1618
1619 return ret;
1620 }
1621
1622 /**
1623 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1624 * @dev: Device to handle.
1625 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1626 *
1627 * Check if @dev has generated PME and queue a resume request for it in that
1628 * case.
1629 */
1630 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1631 {
1632 if (pme_poll_reset && dev->pme_poll)
1633 dev->pme_poll = false;
1634
1635 if (pci_check_pme_status(dev)) {
1636 pci_wakeup_event(dev);
1637 pm_request_resume(&dev->dev);
1638 }
1639 return 0;
1640 }
1641
1642 /**
1643 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1644 * @bus: Top bus of the subtree to walk.
1645 */
1646 void pci_pme_wakeup_bus(struct pci_bus *bus)
1647 {
1648 if (bus)
1649 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1650 }
1651
1652
1653 /**
1654 * pci_pme_capable - check the capability of PCI device to generate PME#
1655 * @dev: PCI device to handle.
1656 * @state: PCI state from which device will issue PME#.
1657 */
1658 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1659 {
1660 if (!dev->pm_cap)
1661 return false;
1662
1663 return !!(dev->pme_support & (1 << state));
1664 }
1665 EXPORT_SYMBOL(pci_pme_capable);
1666
1667 static void pci_pme_list_scan(struct work_struct *work)
1668 {
1669 struct pci_pme_device *pme_dev, *n;
1670
1671 mutex_lock(&pci_pme_list_mutex);
1672 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1673 if (pme_dev->dev->pme_poll) {
1674 struct pci_dev *bridge;
1675
1676 bridge = pme_dev->dev->bus->self;
1677 /*
1678 * If bridge is in low power state, the
1679 * configuration space of subordinate devices
1680 * may be not accessible
1681 */
1682 if (bridge && bridge->current_state != PCI_D0)
1683 continue;
1684 pci_pme_wakeup(pme_dev->dev, NULL);
1685 } else {
1686 list_del(&pme_dev->list);
1687 kfree(pme_dev);
1688 }
1689 }
1690 if (!list_empty(&pci_pme_list))
1691 schedule_delayed_work(&pci_pme_work,
1692 msecs_to_jiffies(PME_TIMEOUT));
1693 mutex_unlock(&pci_pme_list_mutex);
1694 }
1695
1696 /**
1697 * pci_pme_active - enable or disable PCI device's PME# function
1698 * @dev: PCI device to handle.
1699 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1700 *
1701 * The caller must verify that the device is capable of generating PME# before
1702 * calling this function with @enable equal to 'true'.
1703 */
1704 void pci_pme_active(struct pci_dev *dev, bool enable)
1705 {
1706 u16 pmcsr;
1707
1708 if (!dev->pme_support)
1709 return;
1710
1711 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1712 /* Clear PME_Status by writing 1 to it and enable PME# */
1713 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1714 if (!enable)
1715 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1716
1717 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1718
1719 /*
1720 * PCI (as opposed to PCIe) PME requires that the device have
1721 * its PME# line hooked up correctly. Not all hardware vendors
1722 * do this, so the PME never gets delivered and the device
1723 * remains asleep. The easiest way around this is to
1724 * periodically walk the list of suspended devices and check
1725 * whether any have their PME flag set. The assumption is that
1726 * we'll wake up often enough anyway that this won't be a huge
1727 * hit, and the power savings from the devices will still be a
1728 * win.
1729 *
1730 * Although PCIe uses in-band PME message instead of PME# line
1731 * to report PME, PME does not work for some PCIe devices in
1732 * reality. For example, there are devices that set their PME
1733 * status bits, but don't really bother to send a PME message;
1734 * there are PCI Express Root Ports that don't bother to
1735 * trigger interrupts when they receive PME messages from the
1736 * devices below. So PME poll is used for PCIe devices too.
1737 */
1738
1739 if (dev->pme_poll) {
1740 struct pci_pme_device *pme_dev;
1741 if (enable) {
1742 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1743 GFP_KERNEL);
1744 if (!pme_dev) {
1745 dev_warn(&dev->dev, "can't enable PME#\n");
1746 return;
1747 }
1748 pme_dev->dev = dev;
1749 mutex_lock(&pci_pme_list_mutex);
1750 list_add(&pme_dev->list, &pci_pme_list);
1751 if (list_is_singular(&pci_pme_list))
1752 schedule_delayed_work(&pci_pme_work,
1753 msecs_to_jiffies(PME_TIMEOUT));
1754 mutex_unlock(&pci_pme_list_mutex);
1755 } else {
1756 mutex_lock(&pci_pme_list_mutex);
1757 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1758 if (pme_dev->dev == dev) {
1759 list_del(&pme_dev->list);
1760 kfree(pme_dev);
1761 break;
1762 }
1763 }
1764 mutex_unlock(&pci_pme_list_mutex);
1765 }
1766 }
1767
1768 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1769 }
1770 EXPORT_SYMBOL(pci_pme_active);
1771
1772 /**
1773 * __pci_enable_wake - enable PCI device as wakeup event source
1774 * @dev: PCI device affected
1775 * @state: PCI state from which device will issue wakeup events
1776 * @runtime: True if the events are to be generated at run time
1777 * @enable: True to enable event generation; false to disable
1778 *
1779 * This enables the device as a wakeup event source, or disables it.
1780 * When such events involves platform-specific hooks, those hooks are
1781 * called automatically by this routine.
1782 *
1783 * Devices with legacy power management (no standard PCI PM capabilities)
1784 * always require such platform hooks.
1785 *
1786 * RETURN VALUE:
1787 * 0 is returned on success
1788 * -EINVAL is returned if device is not supposed to wake up the system
1789 * Error code depending on the platform is returned if both the platform and
1790 * the native mechanism fail to enable the generation of wake-up events
1791 */
1792 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1793 bool runtime, bool enable)
1794 {
1795 int ret = 0;
1796
1797 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1798 return -EINVAL;
1799
1800 /* Don't do the same thing twice in a row for one device. */
1801 if (!!enable == !!dev->wakeup_prepared)
1802 return 0;
1803
1804 /*
1805 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1806 * Anderson we should be doing PME# wake enable followed by ACPI wake
1807 * enable. To disable wake-up we call the platform first, for symmetry.
1808 */
1809
1810 if (enable) {
1811 int error;
1812
1813 if (pci_pme_capable(dev, state))
1814 pci_pme_active(dev, true);
1815 else
1816 ret = 1;
1817 error = runtime ? platform_pci_run_wake(dev, true) :
1818 platform_pci_sleep_wake(dev, true);
1819 if (ret)
1820 ret = error;
1821 if (!ret)
1822 dev->wakeup_prepared = true;
1823 } else {
1824 if (runtime)
1825 platform_pci_run_wake(dev, false);
1826 else
1827 platform_pci_sleep_wake(dev, false);
1828 pci_pme_active(dev, false);
1829 dev->wakeup_prepared = false;
1830 }
1831
1832 return ret;
1833 }
1834 EXPORT_SYMBOL(__pci_enable_wake);
1835
1836 /**
1837 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1838 * @dev: PCI device to prepare
1839 * @enable: True to enable wake-up event generation; false to disable
1840 *
1841 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1842 * and this function allows them to set that up cleanly - pci_enable_wake()
1843 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1844 * ordering constraints.
1845 *
1846 * This function only returns error code if the device is not capable of
1847 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1848 * enable wake-up power for it.
1849 */
1850 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1851 {
1852 return pci_pme_capable(dev, PCI_D3cold) ?
1853 pci_enable_wake(dev, PCI_D3cold, enable) :
1854 pci_enable_wake(dev, PCI_D3hot, enable);
1855 }
1856 EXPORT_SYMBOL(pci_wake_from_d3);
1857
1858 /**
1859 * pci_target_state - find an appropriate low power state for a given PCI dev
1860 * @dev: PCI device
1861 *
1862 * Use underlying platform code to find a supported low power state for @dev.
1863 * If the platform can't manage @dev, return the deepest state from which it
1864 * can generate wake events, based on any available PME info.
1865 */
1866 static pci_power_t pci_target_state(struct pci_dev *dev)
1867 {
1868 pci_power_t target_state = PCI_D3hot;
1869
1870 if (platform_pci_power_manageable(dev)) {
1871 /*
1872 * Call the platform to choose the target state of the device
1873 * and enable wake-up from this state if supported.
1874 */
1875 pci_power_t state = platform_pci_choose_state(dev);
1876
1877 switch (state) {
1878 case PCI_POWER_ERROR:
1879 case PCI_UNKNOWN:
1880 break;
1881 case PCI_D1:
1882 case PCI_D2:
1883 if (pci_no_d1d2(dev))
1884 break;
1885 default:
1886 target_state = state;
1887 }
1888 } else if (!dev->pm_cap) {
1889 target_state = PCI_D0;
1890 } else if (device_may_wakeup(&dev->dev)) {
1891 /*
1892 * Find the deepest state from which the device can generate
1893 * wake-up events, make it the target state and enable device
1894 * to generate PME#.
1895 */
1896 if (dev->pme_support) {
1897 while (target_state
1898 && !(dev->pme_support & (1 << target_state)))
1899 target_state--;
1900 }
1901 }
1902
1903 return target_state;
1904 }
1905
1906 /**
1907 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1908 * @dev: Device to handle.
1909 *
1910 * Choose the power state appropriate for the device depending on whether
1911 * it can wake up the system and/or is power manageable by the platform
1912 * (PCI_D3hot is the default) and put the device into that state.
1913 */
1914 int pci_prepare_to_sleep(struct pci_dev *dev)
1915 {
1916 pci_power_t target_state = pci_target_state(dev);
1917 int error;
1918
1919 if (target_state == PCI_POWER_ERROR)
1920 return -EIO;
1921
1922 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1923
1924 error = pci_set_power_state(dev, target_state);
1925
1926 if (error)
1927 pci_enable_wake(dev, target_state, false);
1928
1929 return error;
1930 }
1931 EXPORT_SYMBOL(pci_prepare_to_sleep);
1932
1933 /**
1934 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1935 * @dev: Device to handle.
1936 *
1937 * Disable device's system wake-up capability and put it into D0.
1938 */
1939 int pci_back_from_sleep(struct pci_dev *dev)
1940 {
1941 pci_enable_wake(dev, PCI_D0, false);
1942 return pci_set_power_state(dev, PCI_D0);
1943 }
1944 EXPORT_SYMBOL(pci_back_from_sleep);
1945
1946 /**
1947 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1948 * @dev: PCI device being suspended.
1949 *
1950 * Prepare @dev to generate wake-up events at run time and put it into a low
1951 * power state.
1952 */
1953 int pci_finish_runtime_suspend(struct pci_dev *dev)
1954 {
1955 pci_power_t target_state = pci_target_state(dev);
1956 int error;
1957
1958 if (target_state == PCI_POWER_ERROR)
1959 return -EIO;
1960
1961 dev->runtime_d3cold = target_state == PCI_D3cold;
1962
1963 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1964
1965 error = pci_set_power_state(dev, target_state);
1966
1967 if (error) {
1968 __pci_enable_wake(dev, target_state, true, false);
1969 dev->runtime_d3cold = false;
1970 }
1971
1972 return error;
1973 }
1974
1975 /**
1976 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1977 * @dev: Device to check.
1978 *
1979 * Return true if the device itself is capable of generating wake-up events
1980 * (through the platform or using the native PCIe PME) or if the device supports
1981 * PME and one of its upstream bridges can generate wake-up events.
1982 */
1983 bool pci_dev_run_wake(struct pci_dev *dev)
1984 {
1985 struct pci_bus *bus = dev->bus;
1986
1987 if (device_run_wake(&dev->dev))
1988 return true;
1989
1990 if (!dev->pme_support)
1991 return false;
1992
1993 while (bus->parent) {
1994 struct pci_dev *bridge = bus->self;
1995
1996 if (device_run_wake(&bridge->dev))
1997 return true;
1998
1999 bus = bus->parent;
2000 }
2001
2002 /* We have reached the root bus. */
2003 if (bus->bridge)
2004 return device_run_wake(bus->bridge);
2005
2006 return false;
2007 }
2008 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2009
2010 /**
2011 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2012 * @pci_dev: Device to check.
2013 *
2014 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2015 * reconfigured due to wakeup settings difference between system and runtime
2016 * suspend and the current power state of it is suitable for the upcoming
2017 * (system) transition.
2018 */
2019 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2020 {
2021 struct device *dev = &pci_dev->dev;
2022
2023 if (!pm_runtime_suspended(dev)
2024 || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2025 || platform_pci_need_resume(pci_dev))
2026 return false;
2027
2028 return pci_target_state(pci_dev) == pci_dev->current_state;
2029 }
2030
2031 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2032 {
2033 struct device *dev = &pdev->dev;
2034 struct device *parent = dev->parent;
2035
2036 if (parent)
2037 pm_runtime_get_sync(parent);
2038 pm_runtime_get_noresume(dev);
2039 /*
2040 * pdev->current_state is set to PCI_D3cold during suspending,
2041 * so wait until suspending completes
2042 */
2043 pm_runtime_barrier(dev);
2044 /*
2045 * Only need to resume devices in D3cold, because config
2046 * registers are still accessible for devices suspended but
2047 * not in D3cold.
2048 */
2049 if (pdev->current_state == PCI_D3cold)
2050 pm_runtime_resume(dev);
2051 }
2052
2053 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2054 {
2055 struct device *dev = &pdev->dev;
2056 struct device *parent = dev->parent;
2057
2058 pm_runtime_put(dev);
2059 if (parent)
2060 pm_runtime_put_sync(parent);
2061 }
2062
2063 /**
2064 * pci_pm_init - Initialize PM functions of given PCI device
2065 * @dev: PCI device to handle.
2066 */
2067 void pci_pm_init(struct pci_dev *dev)
2068 {
2069 int pm;
2070 u16 pmc;
2071
2072 pm_runtime_forbid(&dev->dev);
2073 pm_runtime_set_active(&dev->dev);
2074 pm_runtime_enable(&dev->dev);
2075 device_enable_async_suspend(&dev->dev);
2076 dev->wakeup_prepared = false;
2077
2078 dev->pm_cap = 0;
2079 dev->pme_support = 0;
2080
2081 /* find PCI PM capability in list */
2082 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2083 if (!pm)
2084 return;
2085 /* Check device's ability to generate PME# */
2086 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2087
2088 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2089 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2090 pmc & PCI_PM_CAP_VER_MASK);
2091 return;
2092 }
2093
2094 dev->pm_cap = pm;
2095 dev->d3_delay = PCI_PM_D3_WAIT;
2096 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2097 dev->d3cold_allowed = true;
2098
2099 dev->d1_support = false;
2100 dev->d2_support = false;
2101 if (!pci_no_d1d2(dev)) {
2102 if (pmc & PCI_PM_CAP_D1)
2103 dev->d1_support = true;
2104 if (pmc & PCI_PM_CAP_D2)
2105 dev->d2_support = true;
2106
2107 if (dev->d1_support || dev->d2_support)
2108 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2109 dev->d1_support ? " D1" : "",
2110 dev->d2_support ? " D2" : "");
2111 }
2112
2113 pmc &= PCI_PM_CAP_PME_MASK;
2114 if (pmc) {
2115 dev_printk(KERN_DEBUG, &dev->dev,
2116 "PME# supported from%s%s%s%s%s\n",
2117 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2118 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2119 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2120 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2121 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2122 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2123 dev->pme_poll = true;
2124 /*
2125 * Make device's PM flags reflect the wake-up capability, but
2126 * let the user space enable it to wake up the system as needed.
2127 */
2128 device_set_wakeup_capable(&dev->dev, true);
2129 /* Disable the PME# generation functionality */
2130 pci_pme_active(dev, false);
2131 }
2132 }
2133
2134 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2135 struct pci_cap_saved_state *new_cap)
2136 {
2137 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2138 }
2139
2140 /**
2141 * _pci_add_cap_save_buffer - allocate buffer for saving given
2142 * capability registers
2143 * @dev: the PCI device
2144 * @cap: the capability to allocate the buffer for
2145 * @extended: Standard or Extended capability ID
2146 * @size: requested size of the buffer
2147 */
2148 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2149 bool extended, unsigned int size)
2150 {
2151 int pos;
2152 struct pci_cap_saved_state *save_state;
2153
2154 if (extended)
2155 pos = pci_find_ext_capability(dev, cap);
2156 else
2157 pos = pci_find_capability(dev, cap);
2158
2159 if (pos <= 0)
2160 return 0;
2161
2162 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2163 if (!save_state)
2164 return -ENOMEM;
2165
2166 save_state->cap.cap_nr = cap;
2167 save_state->cap.cap_extended = extended;
2168 save_state->cap.size = size;
2169 pci_add_saved_cap(dev, save_state);
2170
2171 return 0;
2172 }
2173
2174 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2175 {
2176 return _pci_add_cap_save_buffer(dev, cap, false, size);
2177 }
2178
2179 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2180 {
2181 return _pci_add_cap_save_buffer(dev, cap, true, size);
2182 }
2183
2184 /**
2185 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2186 * @dev: the PCI device
2187 */
2188 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2189 {
2190 int error;
2191
2192 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2193 PCI_EXP_SAVE_REGS * sizeof(u16));
2194 if (error)
2195 dev_err(&dev->dev,
2196 "unable to preallocate PCI Express save buffer\n");
2197
2198 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2199 if (error)
2200 dev_err(&dev->dev,
2201 "unable to preallocate PCI-X save buffer\n");
2202
2203 pci_allocate_vc_save_buffers(dev);
2204 }
2205
2206 void pci_free_cap_save_buffers(struct pci_dev *dev)
2207 {
2208 struct pci_cap_saved_state *tmp;
2209 struct hlist_node *n;
2210
2211 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2212 kfree(tmp);
2213 }
2214
2215 /**
2216 * pci_configure_ari - enable or disable ARI forwarding
2217 * @dev: the PCI device
2218 *
2219 * If @dev and its upstream bridge both support ARI, enable ARI in the
2220 * bridge. Otherwise, disable ARI in the bridge.
2221 */
2222 void pci_configure_ari(struct pci_dev *dev)
2223 {
2224 u32 cap;
2225 struct pci_dev *bridge;
2226
2227 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2228 return;
2229
2230 bridge = dev->bus->self;
2231 if (!bridge)
2232 return;
2233
2234 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2235 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2236 return;
2237
2238 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2239 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2240 PCI_EXP_DEVCTL2_ARI);
2241 bridge->ari_enabled = 1;
2242 } else {
2243 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2244 PCI_EXP_DEVCTL2_ARI);
2245 bridge->ari_enabled = 0;
2246 }
2247 }
2248
2249 static int pci_acs_enable;
2250
2251 /**
2252 * pci_request_acs - ask for ACS to be enabled if supported
2253 */
2254 void pci_request_acs(void)
2255 {
2256 pci_acs_enable = 1;
2257 }
2258
2259 /**
2260 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2261 * @dev: the PCI device
2262 */
2263 static int pci_std_enable_acs(struct pci_dev *dev)
2264 {
2265 int pos;
2266 u16 cap;
2267 u16 ctrl;
2268
2269 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2270 if (!pos)
2271 return -ENODEV;
2272
2273 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2274 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2275
2276 /* Source Validation */
2277 ctrl |= (cap & PCI_ACS_SV);
2278
2279 /* P2P Request Redirect */
2280 ctrl |= (cap & PCI_ACS_RR);
2281
2282 /* P2P Completion Redirect */
2283 ctrl |= (cap & PCI_ACS_CR);
2284
2285 /* Upstream Forwarding */
2286 ctrl |= (cap & PCI_ACS_UF);
2287
2288 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2289
2290 return 0;
2291 }
2292
2293 /**
2294 * pci_enable_acs - enable ACS if hardware support it
2295 * @dev: the PCI device
2296 */
2297 void pci_enable_acs(struct pci_dev *dev)
2298 {
2299 if (!pci_acs_enable)
2300 return;
2301
2302 if (!pci_std_enable_acs(dev))
2303 return;
2304
2305 pci_dev_specific_enable_acs(dev);
2306 }
2307
2308 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2309 {
2310 int pos;
2311 u16 cap, ctrl;
2312
2313 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2314 if (!pos)
2315 return false;
2316
2317 /*
2318 * Except for egress control, capabilities are either required
2319 * or only required if controllable. Features missing from the
2320 * capability field can therefore be assumed as hard-wired enabled.
2321 */
2322 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2323 acs_flags &= (cap | PCI_ACS_EC);
2324
2325 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2326 return (ctrl & acs_flags) == acs_flags;
2327 }
2328
2329 /**
2330 * pci_acs_enabled - test ACS against required flags for a given device
2331 * @pdev: device to test
2332 * @acs_flags: required PCI ACS flags
2333 *
2334 * Return true if the device supports the provided flags. Automatically
2335 * filters out flags that are not implemented on multifunction devices.
2336 *
2337 * Note that this interface checks the effective ACS capabilities of the
2338 * device rather than the actual capabilities. For instance, most single
2339 * function endpoints are not required to support ACS because they have no
2340 * opportunity for peer-to-peer access. We therefore return 'true'
2341 * regardless of whether the device exposes an ACS capability. This makes
2342 * it much easier for callers of this function to ignore the actual type
2343 * or topology of the device when testing ACS support.
2344 */
2345 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2346 {
2347 int ret;
2348
2349 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2350 if (ret >= 0)
2351 return ret > 0;
2352
2353 /*
2354 * Conventional PCI and PCI-X devices never support ACS, either
2355 * effectively or actually. The shared bus topology implies that
2356 * any device on the bus can receive or snoop DMA.
2357 */
2358 if (!pci_is_pcie(pdev))
2359 return false;
2360
2361 switch (pci_pcie_type(pdev)) {
2362 /*
2363 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2364 * but since their primary interface is PCI/X, we conservatively
2365 * handle them as we would a non-PCIe device.
2366 */
2367 case PCI_EXP_TYPE_PCIE_BRIDGE:
2368 /*
2369 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2370 * applicable... must never implement an ACS Extended Capability...".
2371 * This seems arbitrary, but we take a conservative interpretation
2372 * of this statement.
2373 */
2374 case PCI_EXP_TYPE_PCI_BRIDGE:
2375 case PCI_EXP_TYPE_RC_EC:
2376 return false;
2377 /*
2378 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2379 * implement ACS in order to indicate their peer-to-peer capabilities,
2380 * regardless of whether they are single- or multi-function devices.
2381 */
2382 case PCI_EXP_TYPE_DOWNSTREAM:
2383 case PCI_EXP_TYPE_ROOT_PORT:
2384 return pci_acs_flags_enabled(pdev, acs_flags);
2385 /*
2386 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2387 * implemented by the remaining PCIe types to indicate peer-to-peer
2388 * capabilities, but only when they are part of a multifunction
2389 * device. The footnote for section 6.12 indicates the specific
2390 * PCIe types included here.
2391 */
2392 case PCI_EXP_TYPE_ENDPOINT:
2393 case PCI_EXP_TYPE_UPSTREAM:
2394 case PCI_EXP_TYPE_LEG_END:
2395 case PCI_EXP_TYPE_RC_END:
2396 if (!pdev->multifunction)
2397 break;
2398
2399 return pci_acs_flags_enabled(pdev, acs_flags);
2400 }
2401
2402 /*
2403 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2404 * to single function devices with the exception of downstream ports.
2405 */
2406 return true;
2407 }
2408
2409 /**
2410 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2411 * @start: starting downstream device
2412 * @end: ending upstream device or NULL to search to the root bus
2413 * @acs_flags: required flags
2414 *
2415 * Walk up a device tree from start to end testing PCI ACS support. If
2416 * any step along the way does not support the required flags, return false.
2417 */
2418 bool pci_acs_path_enabled(struct pci_dev *start,
2419 struct pci_dev *end, u16 acs_flags)
2420 {
2421 struct pci_dev *pdev, *parent = start;
2422
2423 do {
2424 pdev = parent;
2425
2426 if (!pci_acs_enabled(pdev, acs_flags))
2427 return false;
2428
2429 if (pci_is_root_bus(pdev->bus))
2430 return (end == NULL);
2431
2432 parent = pdev->bus->self;
2433 } while (pdev != end);
2434
2435 return true;
2436 }
2437
2438 /**
2439 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2440 * @dev: the PCI device
2441 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2442 *
2443 * Perform INTx swizzling for a device behind one level of bridge. This is
2444 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2445 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2446 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2447 * the PCI Express Base Specification, Revision 2.1)
2448 */
2449 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2450 {
2451 int slot;
2452
2453 if (pci_ari_enabled(dev->bus))
2454 slot = 0;
2455 else
2456 slot = PCI_SLOT(dev->devfn);
2457
2458 return (((pin - 1) + slot) % 4) + 1;
2459 }
2460
2461 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2462 {
2463 u8 pin;
2464
2465 pin = dev->pin;
2466 if (!pin)
2467 return -1;
2468
2469 while (!pci_is_root_bus(dev->bus)) {
2470 pin = pci_swizzle_interrupt_pin(dev, pin);
2471 dev = dev->bus->self;
2472 }
2473 *bridge = dev;
2474 return pin;
2475 }
2476
2477 /**
2478 * pci_common_swizzle - swizzle INTx all the way to root bridge
2479 * @dev: the PCI device
2480 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2481 *
2482 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2483 * bridges all the way up to a PCI root bus.
2484 */
2485 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2486 {
2487 u8 pin = *pinp;
2488
2489 while (!pci_is_root_bus(dev->bus)) {
2490 pin = pci_swizzle_interrupt_pin(dev, pin);
2491 dev = dev->bus->self;
2492 }
2493 *pinp = pin;
2494 return PCI_SLOT(dev->devfn);
2495 }
2496 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2497
2498 /**
2499 * pci_release_region - Release a PCI bar
2500 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2501 * @bar: BAR to release
2502 *
2503 * Releases the PCI I/O and memory resources previously reserved by a
2504 * successful call to pci_request_region. Call this function only
2505 * after all use of the PCI regions has ceased.
2506 */
2507 void pci_release_region(struct pci_dev *pdev, int bar)
2508 {
2509 struct pci_devres *dr;
2510
2511 if (pci_resource_len(pdev, bar) == 0)
2512 return;
2513 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2514 release_region(pci_resource_start(pdev, bar),
2515 pci_resource_len(pdev, bar));
2516 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2517 release_mem_region(pci_resource_start(pdev, bar),
2518 pci_resource_len(pdev, bar));
2519
2520 dr = find_pci_dr(pdev);
2521 if (dr)
2522 dr->region_mask &= ~(1 << bar);
2523 }
2524 EXPORT_SYMBOL(pci_release_region);
2525
2526 /**
2527 * __pci_request_region - Reserved PCI I/O and memory resource
2528 * @pdev: PCI device whose resources are to be reserved
2529 * @bar: BAR to be reserved
2530 * @res_name: Name to be associated with resource.
2531 * @exclusive: whether the region access is exclusive or not
2532 *
2533 * Mark the PCI region associated with PCI device @pdev BR @bar as
2534 * being reserved by owner @res_name. Do not access any
2535 * address inside the PCI regions unless this call returns
2536 * successfully.
2537 *
2538 * If @exclusive is set, then the region is marked so that userspace
2539 * is explicitly not allowed to map the resource via /dev/mem or
2540 * sysfs MMIO access.
2541 *
2542 * Returns 0 on success, or %EBUSY on error. A warning
2543 * message is also printed on failure.
2544 */
2545 static int __pci_request_region(struct pci_dev *pdev, int bar,
2546 const char *res_name, int exclusive)
2547 {
2548 struct pci_devres *dr;
2549
2550 if (pci_resource_len(pdev, bar) == 0)
2551 return 0;
2552
2553 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2554 if (!request_region(pci_resource_start(pdev, bar),
2555 pci_resource_len(pdev, bar), res_name))
2556 goto err_out;
2557 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2558 if (!__request_mem_region(pci_resource_start(pdev, bar),
2559 pci_resource_len(pdev, bar), res_name,
2560 exclusive))
2561 goto err_out;
2562 }
2563
2564 dr = find_pci_dr(pdev);
2565 if (dr)
2566 dr->region_mask |= 1 << bar;
2567
2568 return 0;
2569
2570 err_out:
2571 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2572 &pdev->resource[bar]);
2573 return -EBUSY;
2574 }
2575
2576 /**
2577 * pci_request_region - Reserve PCI I/O and memory resource
2578 * @pdev: PCI device whose resources are to be reserved
2579 * @bar: BAR to be reserved
2580 * @res_name: Name to be associated with resource
2581 *
2582 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2583 * being reserved by owner @res_name. Do not access any
2584 * address inside the PCI regions unless this call returns
2585 * successfully.
2586 *
2587 * Returns 0 on success, or %EBUSY on error. A warning
2588 * message is also printed on failure.
2589 */
2590 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2591 {
2592 return __pci_request_region(pdev, bar, res_name, 0);
2593 }
2594 EXPORT_SYMBOL(pci_request_region);
2595
2596 /**
2597 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2598 * @pdev: PCI device whose resources are to be reserved
2599 * @bar: BAR to be reserved
2600 * @res_name: Name to be associated with resource.
2601 *
2602 * Mark the PCI region associated with PCI device @pdev BR @bar as
2603 * being reserved by owner @res_name. Do not access any
2604 * address inside the PCI regions unless this call returns
2605 * successfully.
2606 *
2607 * Returns 0 on success, or %EBUSY on error. A warning
2608 * message is also printed on failure.
2609 *
2610 * The key difference that _exclusive makes it that userspace is
2611 * explicitly not allowed to map the resource via /dev/mem or
2612 * sysfs.
2613 */
2614 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2615 const char *res_name)
2616 {
2617 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2618 }
2619 EXPORT_SYMBOL(pci_request_region_exclusive);
2620
2621 /**
2622 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2623 * @pdev: PCI device whose resources were previously reserved
2624 * @bars: Bitmask of BARs to be released
2625 *
2626 * Release selected PCI I/O and memory resources previously reserved.
2627 * Call this function only after all use of the PCI regions has ceased.
2628 */
2629 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2630 {
2631 int i;
2632
2633 for (i = 0; i < 6; i++)
2634 if (bars & (1 << i))
2635 pci_release_region(pdev, i);
2636 }
2637 EXPORT_SYMBOL(pci_release_selected_regions);
2638
2639 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2640 const char *res_name, int excl)
2641 {
2642 int i;
2643
2644 for (i = 0; i < 6; i++)
2645 if (bars & (1 << i))
2646 if (__pci_request_region(pdev, i, res_name, excl))
2647 goto err_out;
2648 return 0;
2649
2650 err_out:
2651 while (--i >= 0)
2652 if (bars & (1 << i))
2653 pci_release_region(pdev, i);
2654
2655 return -EBUSY;
2656 }
2657
2658
2659 /**
2660 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2661 * @pdev: PCI device whose resources are to be reserved
2662 * @bars: Bitmask of BARs to be requested
2663 * @res_name: Name to be associated with resource
2664 */
2665 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2666 const char *res_name)
2667 {
2668 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2669 }
2670 EXPORT_SYMBOL(pci_request_selected_regions);
2671
2672 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2673 const char *res_name)
2674 {
2675 return __pci_request_selected_regions(pdev, bars, res_name,
2676 IORESOURCE_EXCLUSIVE);
2677 }
2678 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2679
2680 /**
2681 * pci_release_regions - Release reserved PCI I/O and memory resources
2682 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2683 *
2684 * Releases all PCI I/O and memory resources previously reserved by a
2685 * successful call to pci_request_regions. Call this function only
2686 * after all use of the PCI regions has ceased.
2687 */
2688
2689 void pci_release_regions(struct pci_dev *pdev)
2690 {
2691 pci_release_selected_regions(pdev, (1 << 6) - 1);
2692 }
2693 EXPORT_SYMBOL(pci_release_regions);
2694
2695 /**
2696 * pci_request_regions - Reserved PCI I/O and memory resources
2697 * @pdev: PCI device whose resources are to be reserved
2698 * @res_name: Name to be associated with resource.
2699 *
2700 * Mark all PCI regions associated with PCI device @pdev as
2701 * being reserved by owner @res_name. Do not access any
2702 * address inside the PCI regions unless this call returns
2703 * successfully.
2704 *
2705 * Returns 0 on success, or %EBUSY on error. A warning
2706 * message is also printed on failure.
2707 */
2708 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2709 {
2710 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2711 }
2712 EXPORT_SYMBOL(pci_request_regions);
2713
2714 /**
2715 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2716 * @pdev: PCI device whose resources are to be reserved
2717 * @res_name: Name to be associated with resource.
2718 *
2719 * Mark all PCI regions associated with PCI device @pdev as
2720 * being reserved by owner @res_name. Do not access any
2721 * address inside the PCI regions unless this call returns
2722 * successfully.
2723 *
2724 * pci_request_regions_exclusive() will mark the region so that
2725 * /dev/mem and the sysfs MMIO access will not be allowed.
2726 *
2727 * Returns 0 on success, or %EBUSY on error. A warning
2728 * message is also printed on failure.
2729 */
2730 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2731 {
2732 return pci_request_selected_regions_exclusive(pdev,
2733 ((1 << 6) - 1), res_name);
2734 }
2735 EXPORT_SYMBOL(pci_request_regions_exclusive);
2736
2737 /**
2738 * pci_remap_iospace - Remap the memory mapped I/O space
2739 * @res: Resource describing the I/O space
2740 * @phys_addr: physical address of range to be mapped
2741 *
2742 * Remap the memory mapped I/O space described by the @res
2743 * and the CPU physical address @phys_addr into virtual address space.
2744 * Only architectures that have memory mapped IO functions defined
2745 * (and the PCI_IOBASE value defined) should call this function.
2746 */
2747 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2748 {
2749 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2750 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2751
2752 if (!(res->flags & IORESOURCE_IO))
2753 return -EINVAL;
2754
2755 if (res->end > IO_SPACE_LIMIT)
2756 return -EINVAL;
2757
2758 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2759 pgprot_device(PAGE_KERNEL));
2760 #else
2761 /* this architecture does not have memory mapped I/O space,
2762 so this function should never be called */
2763 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2764 return -ENODEV;
2765 #endif
2766 }
2767
2768 static void __pci_set_master(struct pci_dev *dev, bool enable)
2769 {
2770 u16 old_cmd, cmd;
2771
2772 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2773 if (enable)
2774 cmd = old_cmd | PCI_COMMAND_MASTER;
2775 else
2776 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2777 if (cmd != old_cmd) {
2778 dev_dbg(&dev->dev, "%s bus mastering\n",
2779 enable ? "enabling" : "disabling");
2780 pci_write_config_word(dev, PCI_COMMAND, cmd);
2781 }
2782 dev->is_busmaster = enable;
2783 }
2784
2785 /**
2786 * pcibios_setup - process "pci=" kernel boot arguments
2787 * @str: string used to pass in "pci=" kernel boot arguments
2788 *
2789 * Process kernel boot arguments. This is the default implementation.
2790 * Architecture specific implementations can override this as necessary.
2791 */
2792 char * __weak __init pcibios_setup(char *str)
2793 {
2794 return str;
2795 }
2796
2797 /**
2798 * pcibios_set_master - enable PCI bus-mastering for device dev
2799 * @dev: the PCI device to enable
2800 *
2801 * Enables PCI bus-mastering for the device. This is the default
2802 * implementation. Architecture specific implementations can override
2803 * this if necessary.
2804 */
2805 void __weak pcibios_set_master(struct pci_dev *dev)
2806 {
2807 u8 lat;
2808
2809 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2810 if (pci_is_pcie(dev))
2811 return;
2812
2813 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2814 if (lat < 16)
2815 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2816 else if (lat > pcibios_max_latency)
2817 lat = pcibios_max_latency;
2818 else
2819 return;
2820
2821 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2822 }
2823
2824 /**
2825 * pci_set_master - enables bus-mastering for device dev
2826 * @dev: the PCI device to enable
2827 *
2828 * Enables bus-mastering on the device and calls pcibios_set_master()
2829 * to do the needed arch specific settings.
2830 */
2831 void pci_set_master(struct pci_dev *dev)
2832 {
2833 __pci_set_master(dev, true);
2834 pcibios_set_master(dev);
2835 }
2836 EXPORT_SYMBOL(pci_set_master);
2837
2838 /**
2839 * pci_clear_master - disables bus-mastering for device dev
2840 * @dev: the PCI device to disable
2841 */
2842 void pci_clear_master(struct pci_dev *dev)
2843 {
2844 __pci_set_master(dev, false);
2845 }
2846 EXPORT_SYMBOL(pci_clear_master);
2847
2848 /**
2849 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2850 * @dev: the PCI device for which MWI is to be enabled
2851 *
2852 * Helper function for pci_set_mwi.
2853 * Originally copied from drivers/net/acenic.c.
2854 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2855 *
2856 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2857 */
2858 int pci_set_cacheline_size(struct pci_dev *dev)
2859 {
2860 u8 cacheline_size;
2861
2862 if (!pci_cache_line_size)
2863 return -EINVAL;
2864
2865 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2866 equal to or multiple of the right value. */
2867 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2868 if (cacheline_size >= pci_cache_line_size &&
2869 (cacheline_size % pci_cache_line_size) == 0)
2870 return 0;
2871
2872 /* Write the correct value. */
2873 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2874 /* Read it back. */
2875 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2876 if (cacheline_size == pci_cache_line_size)
2877 return 0;
2878
2879 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2880 pci_cache_line_size << 2);
2881
2882 return -EINVAL;
2883 }
2884 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2885
2886 /**
2887 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2888 * @dev: the PCI device for which MWI is enabled
2889 *
2890 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2891 *
2892 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2893 */
2894 int pci_set_mwi(struct pci_dev *dev)
2895 {
2896 #ifdef PCI_DISABLE_MWI
2897 return 0;
2898 #else
2899 int rc;
2900 u16 cmd;
2901
2902 rc = pci_set_cacheline_size(dev);
2903 if (rc)
2904 return rc;
2905
2906 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2907 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2908 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2909 cmd |= PCI_COMMAND_INVALIDATE;
2910 pci_write_config_word(dev, PCI_COMMAND, cmd);
2911 }
2912 return 0;
2913 #endif
2914 }
2915 EXPORT_SYMBOL(pci_set_mwi);
2916
2917 /**
2918 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2919 * @dev: the PCI device for which MWI is enabled
2920 *
2921 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2922 * Callers are not required to check the return value.
2923 *
2924 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2925 */
2926 int pci_try_set_mwi(struct pci_dev *dev)
2927 {
2928 #ifdef PCI_DISABLE_MWI
2929 return 0;
2930 #else
2931 return pci_set_mwi(dev);
2932 #endif
2933 }
2934 EXPORT_SYMBOL(pci_try_set_mwi);
2935
2936 /**
2937 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2938 * @dev: the PCI device to disable
2939 *
2940 * Disables PCI Memory-Write-Invalidate transaction on the device
2941 */
2942 void pci_clear_mwi(struct pci_dev *dev)
2943 {
2944 #ifndef PCI_DISABLE_MWI
2945 u16 cmd;
2946
2947 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2948 if (cmd & PCI_COMMAND_INVALIDATE) {
2949 cmd &= ~PCI_COMMAND_INVALIDATE;
2950 pci_write_config_word(dev, PCI_COMMAND, cmd);
2951 }
2952 #endif
2953 }
2954 EXPORT_SYMBOL(pci_clear_mwi);
2955
2956 /**
2957 * pci_intx - enables/disables PCI INTx for device dev
2958 * @pdev: the PCI device to operate on
2959 * @enable: boolean: whether to enable or disable PCI INTx
2960 *
2961 * Enables/disables PCI INTx for device dev
2962 */
2963 void pci_intx(struct pci_dev *pdev, int enable)
2964 {
2965 u16 pci_command, new;
2966
2967 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2968
2969 if (enable)
2970 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2971 else
2972 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2973
2974 if (new != pci_command) {
2975 struct pci_devres *dr;
2976
2977 pci_write_config_word(pdev, PCI_COMMAND, new);
2978
2979 dr = find_pci_dr(pdev);
2980 if (dr && !dr->restore_intx) {
2981 dr->restore_intx = 1;
2982 dr->orig_intx = !enable;
2983 }
2984 }
2985 }
2986 EXPORT_SYMBOL_GPL(pci_intx);
2987
2988 /**
2989 * pci_intx_mask_supported - probe for INTx masking support
2990 * @dev: the PCI device to operate on
2991 *
2992 * Check if the device dev support INTx masking via the config space
2993 * command word.
2994 */
2995 bool pci_intx_mask_supported(struct pci_dev *dev)
2996 {
2997 bool mask_supported = false;
2998 u16 orig, new;
2999
3000 if (dev->broken_intx_masking)
3001 return false;
3002
3003 pci_cfg_access_lock(dev);
3004
3005 pci_read_config_word(dev, PCI_COMMAND, &orig);
3006 pci_write_config_word(dev, PCI_COMMAND,
3007 orig ^ PCI_COMMAND_INTX_DISABLE);
3008 pci_read_config_word(dev, PCI_COMMAND, &new);
3009
3010 /*
3011 * There's no way to protect against hardware bugs or detect them
3012 * reliably, but as long as we know what the value should be, let's
3013 * go ahead and check it.
3014 */
3015 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3016 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3017 orig, new);
3018 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3019 mask_supported = true;
3020 pci_write_config_word(dev, PCI_COMMAND, orig);
3021 }
3022
3023 pci_cfg_access_unlock(dev);
3024 return mask_supported;
3025 }
3026 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3027
3028 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3029 {
3030 struct pci_bus *bus = dev->bus;
3031 bool mask_updated = true;
3032 u32 cmd_status_dword;
3033 u16 origcmd, newcmd;
3034 unsigned long flags;
3035 bool irq_pending;
3036
3037 /*
3038 * We do a single dword read to retrieve both command and status.
3039 * Document assumptions that make this possible.
3040 */
3041 BUILD_BUG_ON(PCI_COMMAND % 4);
3042 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3043
3044 raw_spin_lock_irqsave(&pci_lock, flags);
3045
3046 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3047
3048 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3049
3050 /*
3051 * Check interrupt status register to see whether our device
3052 * triggered the interrupt (when masking) or the next IRQ is
3053 * already pending (when unmasking).
3054 */
3055 if (mask != irq_pending) {
3056 mask_updated = false;
3057 goto done;
3058 }
3059
3060 origcmd = cmd_status_dword;
3061 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3062 if (mask)
3063 newcmd |= PCI_COMMAND_INTX_DISABLE;
3064 if (newcmd != origcmd)
3065 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3066
3067 done:
3068 raw_spin_unlock_irqrestore(&pci_lock, flags);
3069
3070 return mask_updated;
3071 }
3072
3073 /**
3074 * pci_check_and_mask_intx - mask INTx on pending interrupt
3075 * @dev: the PCI device to operate on
3076 *
3077 * Check if the device dev has its INTx line asserted, mask it and
3078 * return true in that case. False is returned if not interrupt was
3079 * pending.
3080 */
3081 bool pci_check_and_mask_intx(struct pci_dev *dev)
3082 {
3083 return pci_check_and_set_intx_mask(dev, true);
3084 }
3085 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3086
3087 /**
3088 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3089 * @dev: the PCI device to operate on
3090 *
3091 * Check if the device dev has its INTx line asserted, unmask it if not
3092 * and return true. False is returned and the mask remains active if
3093 * there was still an interrupt pending.
3094 */
3095 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3096 {
3097 return pci_check_and_set_intx_mask(dev, false);
3098 }
3099 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3100
3101 /**
3102 * pci_msi_off - disables any MSI or MSI-X capabilities
3103 * @dev: the PCI device to operate on
3104 *
3105 * If you want to use MSI, see pci_enable_msi() and friends.
3106 * This is a lower-level primitive that allows us to disable
3107 * MSI operation at the device level.
3108 */
3109 void pci_msi_off(struct pci_dev *dev)
3110 {
3111 int pos;
3112 u16 control;
3113
3114 /*
3115 * This looks like it could go in msi.c, but we need it even when
3116 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3117 * dev->msi_cap or dev->msix_cap here.
3118 */
3119 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3120 if (pos) {
3121 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3122 control &= ~PCI_MSI_FLAGS_ENABLE;
3123 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3124 }
3125 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3126 if (pos) {
3127 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3128 control &= ~PCI_MSIX_FLAGS_ENABLE;
3129 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3130 }
3131 }
3132 EXPORT_SYMBOL_GPL(pci_msi_off);
3133
3134 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3135 {
3136 return dma_set_max_seg_size(&dev->dev, size);
3137 }
3138 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3139
3140 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3141 {
3142 return dma_set_seg_boundary(&dev->dev, mask);
3143 }
3144 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3145
3146 /**
3147 * pci_wait_for_pending_transaction - waits for pending transaction
3148 * @dev: the PCI device to operate on
3149 *
3150 * Return 0 if transaction is pending 1 otherwise.
3151 */
3152 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3153 {
3154 if (!pci_is_pcie(dev))
3155 return 1;
3156
3157 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3158 PCI_EXP_DEVSTA_TRPND);
3159 }
3160 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3161
3162 static int pcie_flr(struct pci_dev *dev, int probe)
3163 {
3164 u32 cap;
3165
3166 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3167 if (!(cap & PCI_EXP_DEVCAP_FLR))
3168 return -ENOTTY;
3169
3170 if (probe)
3171 return 0;
3172
3173 if (!pci_wait_for_pending_transaction(dev))
3174 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3175
3176 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3177 msleep(100);
3178 return 0;
3179 }
3180
3181 static int pci_af_flr(struct pci_dev *dev, int probe)
3182 {
3183 int pos;
3184 u8 cap;
3185
3186 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3187 if (!pos)
3188 return -ENOTTY;
3189
3190 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3191 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3192 return -ENOTTY;
3193
3194 if (probe)
3195 return 0;
3196
3197 /*
3198 * Wait for Transaction Pending bit to clear. A word-aligned test
3199 * is used, so we use the conrol offset rather than status and shift
3200 * the test bit to match.
3201 */
3202 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3203 PCI_AF_STATUS_TP << 8))
3204 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3205
3206 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3207 msleep(100);
3208 return 0;
3209 }
3210
3211 /**
3212 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3213 * @dev: Device to reset.
3214 * @probe: If set, only check if the device can be reset this way.
3215 *
3216 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3217 * unset, it will be reinitialized internally when going from PCI_D3hot to
3218 * PCI_D0. If that's the case and the device is not in a low-power state
3219 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3220 *
3221 * NOTE: This causes the caller to sleep for twice the device power transition
3222 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3223 * by default (i.e. unless the @dev's d3_delay field has a different value).
3224 * Moreover, only devices in D0 can be reset by this function.
3225 */
3226 static int pci_pm_reset(struct pci_dev *dev, int probe)
3227 {
3228 u16 csr;
3229
3230 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3231 return -ENOTTY;
3232
3233 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3234 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3235 return -ENOTTY;
3236
3237 if (probe)
3238 return 0;
3239
3240 if (dev->current_state != PCI_D0)
3241 return -EINVAL;
3242
3243 csr &= ~PCI_PM_CTRL_STATE_MASK;
3244 csr |= PCI_D3hot;
3245 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3246 pci_dev_d3_sleep(dev);
3247
3248 csr &= ~PCI_PM_CTRL_STATE_MASK;
3249 csr |= PCI_D0;
3250 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3251 pci_dev_d3_sleep(dev);
3252
3253 return 0;
3254 }
3255
3256 void pci_reset_secondary_bus(struct pci_dev *dev)
3257 {
3258 u16 ctrl;
3259
3260 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3261 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3262 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3263 /*
3264 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3265 * this to 2ms to ensure that we meet the minimum requirement.
3266 */
3267 msleep(2);
3268
3269 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3270 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3271
3272 /*
3273 * Trhfa for conventional PCI is 2^25 clock cycles.
3274 * Assuming a minimum 33MHz clock this results in a 1s
3275 * delay before we can consider subordinate devices to
3276 * be re-initialized. PCIe has some ways to shorten this,
3277 * but we don't make use of them yet.
3278 */
3279 ssleep(1);
3280 }
3281
3282 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3283 {
3284 pci_reset_secondary_bus(dev);
3285 }
3286
3287 /**
3288 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3289 * @dev: Bridge device
3290 *
3291 * Use the bridge control register to assert reset on the secondary bus.
3292 * Devices on the secondary bus are left in power-on state.
3293 */
3294 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3295 {
3296 pcibios_reset_secondary_bus(dev);
3297 }
3298 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3299
3300 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3301 {
3302 struct pci_dev *pdev;
3303
3304 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3305 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3306 return -ENOTTY;
3307
3308 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3309 if (pdev != dev)
3310 return -ENOTTY;
3311
3312 if (probe)
3313 return 0;
3314
3315 pci_reset_bridge_secondary_bus(dev->bus->self);
3316
3317 return 0;
3318 }
3319
3320 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3321 {
3322 int rc = -ENOTTY;
3323
3324 if (!hotplug || !try_module_get(hotplug->ops->owner))
3325 return rc;
3326
3327 if (hotplug->ops->reset_slot)
3328 rc = hotplug->ops->reset_slot(hotplug, probe);
3329
3330 module_put(hotplug->ops->owner);
3331
3332 return rc;
3333 }
3334
3335 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3336 {
3337 struct pci_dev *pdev;
3338
3339 if (dev->subordinate || !dev->slot ||
3340 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3341 return -ENOTTY;
3342
3343 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3344 if (pdev != dev && pdev->slot == dev->slot)
3345 return -ENOTTY;
3346
3347 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3348 }
3349
3350 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3351 {
3352 int rc;
3353
3354 might_sleep();
3355
3356 rc = pci_dev_specific_reset(dev, probe);
3357 if (rc != -ENOTTY)
3358 goto done;
3359
3360 rc = pcie_flr(dev, probe);
3361 if (rc != -ENOTTY)
3362 goto done;
3363
3364 rc = pci_af_flr(dev, probe);
3365 if (rc != -ENOTTY)
3366 goto done;
3367
3368 rc = pci_pm_reset(dev, probe);
3369 if (rc != -ENOTTY)
3370 goto done;
3371
3372 rc = pci_dev_reset_slot_function(dev, probe);
3373 if (rc != -ENOTTY)
3374 goto done;
3375
3376 rc = pci_parent_bus_reset(dev, probe);
3377 done:
3378 return rc;
3379 }
3380
3381 static void pci_dev_lock(struct pci_dev *dev)
3382 {
3383 pci_cfg_access_lock(dev);
3384 /* block PM suspend, driver probe, etc. */
3385 device_lock(&dev->dev);
3386 }
3387
3388 /* Return 1 on successful lock, 0 on contention */
3389 static int pci_dev_trylock(struct pci_dev *dev)
3390 {
3391 if (pci_cfg_access_trylock(dev)) {
3392 if (device_trylock(&dev->dev))
3393 return 1;
3394 pci_cfg_access_unlock(dev);
3395 }
3396
3397 return 0;
3398 }
3399
3400 static void pci_dev_unlock(struct pci_dev *dev)
3401 {
3402 device_unlock(&dev->dev);
3403 pci_cfg_access_unlock(dev);
3404 }
3405
3406 /**
3407 * pci_reset_notify - notify device driver of reset
3408 * @dev: device to be notified of reset
3409 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3410 * completed
3411 *
3412 * Must be called prior to device access being disabled and after device
3413 * access is restored.
3414 */
3415 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3416 {
3417 const struct pci_error_handlers *err_handler =
3418 dev->driver ? dev->driver->err_handler : NULL;
3419 if (err_handler && err_handler->reset_notify)
3420 err_handler->reset_notify(dev, prepare);
3421 }
3422
3423 static void pci_dev_save_and_disable(struct pci_dev *dev)
3424 {
3425 pci_reset_notify(dev, true);
3426
3427 /*
3428 * Wake-up device prior to save. PM registers default to D0 after
3429 * reset and a simple register restore doesn't reliably return
3430 * to a non-D0 state anyway.
3431 */
3432 pci_set_power_state(dev, PCI_D0);
3433
3434 pci_save_state(dev);
3435 /*
3436 * Disable the device by clearing the Command register, except for
3437 * INTx-disable which is set. This not only disables MMIO and I/O port
3438 * BARs, but also prevents the device from being Bus Master, preventing
3439 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3440 * compliant devices, INTx-disable prevents legacy interrupts.
3441 */
3442 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3443 }
3444
3445 static void pci_dev_restore(struct pci_dev *dev)
3446 {
3447 pci_restore_state(dev);
3448 pci_reset_notify(dev, false);
3449 }
3450
3451 static int pci_dev_reset(struct pci_dev *dev, int probe)
3452 {
3453 int rc;
3454
3455 if (!probe)
3456 pci_dev_lock(dev);
3457
3458 rc = __pci_dev_reset(dev, probe);
3459
3460 if (!probe)
3461 pci_dev_unlock(dev);
3462
3463 return rc;
3464 }
3465
3466 /**
3467 * __pci_reset_function - reset a PCI device function
3468 * @dev: PCI device to reset
3469 *
3470 * Some devices allow an individual function to be reset without affecting
3471 * other functions in the same device. The PCI device must be responsive
3472 * to PCI config space in order to use this function.
3473 *
3474 * The device function is presumed to be unused when this function is called.
3475 * Resetting the device will make the contents of PCI configuration space
3476 * random, so any caller of this must be prepared to reinitialise the
3477 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3478 * etc.
3479 *
3480 * Returns 0 if the device function was successfully reset or negative if the
3481 * device doesn't support resetting a single function.
3482 */
3483 int __pci_reset_function(struct pci_dev *dev)
3484 {
3485 return pci_dev_reset(dev, 0);
3486 }
3487 EXPORT_SYMBOL_GPL(__pci_reset_function);
3488
3489 /**
3490 * __pci_reset_function_locked - reset a PCI device function while holding
3491 * the @dev mutex lock.
3492 * @dev: PCI device to reset
3493 *
3494 * Some devices allow an individual function to be reset without affecting
3495 * other functions in the same device. The PCI device must be responsive
3496 * to PCI config space in order to use this function.
3497 *
3498 * The device function is presumed to be unused and the caller is holding
3499 * the device mutex lock when this function is called.
3500 * Resetting the device will make the contents of PCI configuration space
3501 * random, so any caller of this must be prepared to reinitialise the
3502 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3503 * etc.
3504 *
3505 * Returns 0 if the device function was successfully reset or negative if the
3506 * device doesn't support resetting a single function.
3507 */
3508 int __pci_reset_function_locked(struct pci_dev *dev)
3509 {
3510 return __pci_dev_reset(dev, 0);
3511 }
3512 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3513
3514 /**
3515 * pci_probe_reset_function - check whether the device can be safely reset
3516 * @dev: PCI device to reset
3517 *
3518 * Some devices allow an individual function to be reset without affecting
3519 * other functions in the same device. The PCI device must be responsive
3520 * to PCI config space in order to use this function.
3521 *
3522 * Returns 0 if the device function can be reset or negative if the
3523 * device doesn't support resetting a single function.
3524 */
3525 int pci_probe_reset_function(struct pci_dev *dev)
3526 {
3527 return pci_dev_reset(dev, 1);
3528 }
3529
3530 /**
3531 * pci_reset_function - quiesce and reset a PCI device function
3532 * @dev: PCI device to reset
3533 *
3534 * Some devices allow an individual function to be reset without affecting
3535 * other functions in the same device. The PCI device must be responsive
3536 * to PCI config space in order to use this function.
3537 *
3538 * This function does not just reset the PCI portion of a device, but
3539 * clears all the state associated with the device. This function differs
3540 * from __pci_reset_function in that it saves and restores device state
3541 * over the reset.
3542 *
3543 * Returns 0 if the device function was successfully reset or negative if the
3544 * device doesn't support resetting a single function.
3545 */
3546 int pci_reset_function(struct pci_dev *dev)
3547 {
3548 int rc;
3549
3550 rc = pci_dev_reset(dev, 1);
3551 if (rc)
3552 return rc;
3553
3554 pci_dev_save_and_disable(dev);
3555
3556 rc = pci_dev_reset(dev, 0);
3557
3558 pci_dev_restore(dev);
3559
3560 return rc;
3561 }
3562 EXPORT_SYMBOL_GPL(pci_reset_function);
3563
3564 /**
3565 * pci_try_reset_function - quiesce and reset a PCI device function
3566 * @dev: PCI device to reset
3567 *
3568 * Same as above, except return -EAGAIN if unable to lock device.
3569 */
3570 int pci_try_reset_function(struct pci_dev *dev)
3571 {
3572 int rc;
3573
3574 rc = pci_dev_reset(dev, 1);
3575 if (rc)
3576 return rc;
3577
3578 pci_dev_save_and_disable(dev);
3579
3580 if (pci_dev_trylock(dev)) {
3581 rc = __pci_dev_reset(dev, 0);
3582 pci_dev_unlock(dev);
3583 } else
3584 rc = -EAGAIN;
3585
3586 pci_dev_restore(dev);
3587
3588 return rc;
3589 }
3590 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3591
3592 /* Do any devices on or below this bus prevent a bus reset? */
3593 static bool pci_bus_resetable(struct pci_bus *bus)
3594 {
3595 struct pci_dev *dev;
3596
3597 list_for_each_entry(dev, &bus->devices, bus_list) {
3598 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3599 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3600 return false;
3601 }
3602
3603 return true;
3604 }
3605
3606 /* Lock devices from the top of the tree down */
3607 static void pci_bus_lock(struct pci_bus *bus)
3608 {
3609 struct pci_dev *dev;
3610
3611 list_for_each_entry(dev, &bus->devices, bus_list) {
3612 pci_dev_lock(dev);
3613 if (dev->subordinate)
3614 pci_bus_lock(dev->subordinate);
3615 }
3616 }
3617
3618 /* Unlock devices from the bottom of the tree up */
3619 static void pci_bus_unlock(struct pci_bus *bus)
3620 {
3621 struct pci_dev *dev;
3622
3623 list_for_each_entry(dev, &bus->devices, bus_list) {
3624 if (dev->subordinate)
3625 pci_bus_unlock(dev->subordinate);
3626 pci_dev_unlock(dev);
3627 }
3628 }
3629
3630 /* Return 1 on successful lock, 0 on contention */
3631 static int pci_bus_trylock(struct pci_bus *bus)
3632 {
3633 struct pci_dev *dev;
3634
3635 list_for_each_entry(dev, &bus->devices, bus_list) {
3636 if (!pci_dev_trylock(dev))
3637 goto unlock;
3638 if (dev->subordinate) {
3639 if (!pci_bus_trylock(dev->subordinate)) {
3640 pci_dev_unlock(dev);
3641 goto unlock;
3642 }
3643 }
3644 }
3645 return 1;
3646
3647 unlock:
3648 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3649 if (dev->subordinate)
3650 pci_bus_unlock(dev->subordinate);
3651 pci_dev_unlock(dev);
3652 }
3653 return 0;
3654 }
3655
3656 /* Do any devices on or below this slot prevent a bus reset? */
3657 static bool pci_slot_resetable(struct pci_slot *slot)
3658 {
3659 struct pci_dev *dev;
3660
3661 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3662 if (!dev->slot || dev->slot != slot)
3663 continue;
3664 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3665 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3666 return false;
3667 }
3668
3669 return true;
3670 }
3671
3672 /* Lock devices from the top of the tree down */
3673 static void pci_slot_lock(struct pci_slot *slot)
3674 {
3675 struct pci_dev *dev;
3676
3677 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3678 if (!dev->slot || dev->slot != slot)
3679 continue;
3680 pci_dev_lock(dev);
3681 if (dev->subordinate)
3682 pci_bus_lock(dev->subordinate);
3683 }
3684 }
3685
3686 /* Unlock devices from the bottom of the tree up */
3687 static void pci_slot_unlock(struct pci_slot *slot)
3688 {
3689 struct pci_dev *dev;
3690
3691 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3692 if (!dev->slot || dev->slot != slot)
3693 continue;
3694 if (dev->subordinate)
3695 pci_bus_unlock(dev->subordinate);
3696 pci_dev_unlock(dev);
3697 }
3698 }
3699
3700 /* Return 1 on successful lock, 0 on contention */
3701 static int pci_slot_trylock(struct pci_slot *slot)
3702 {
3703 struct pci_dev *dev;
3704
3705 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3706 if (!dev->slot || dev->slot != slot)
3707 continue;
3708 if (!pci_dev_trylock(dev))
3709 goto unlock;
3710 if (dev->subordinate) {
3711 if (!pci_bus_trylock(dev->subordinate)) {
3712 pci_dev_unlock(dev);
3713 goto unlock;
3714 }
3715 }
3716 }
3717 return 1;
3718
3719 unlock:
3720 list_for_each_entry_continue_reverse(dev,
3721 &slot->bus->devices, bus_list) {
3722 if (!dev->slot || dev->slot != slot)
3723 continue;
3724 if (dev->subordinate)
3725 pci_bus_unlock(dev->subordinate);
3726 pci_dev_unlock(dev);
3727 }
3728 return 0;
3729 }
3730
3731 /* Save and disable devices from the top of the tree down */
3732 static void pci_bus_save_and_disable(struct pci_bus *bus)
3733 {
3734 struct pci_dev *dev;
3735
3736 list_for_each_entry(dev, &bus->devices, bus_list) {
3737 pci_dev_save_and_disable(dev);
3738 if (dev->subordinate)
3739 pci_bus_save_and_disable(dev->subordinate);
3740 }
3741 }
3742
3743 /*
3744 * Restore devices from top of the tree down - parent bridges need to be
3745 * restored before we can get to subordinate devices.
3746 */
3747 static void pci_bus_restore(struct pci_bus *bus)
3748 {
3749 struct pci_dev *dev;
3750
3751 list_for_each_entry(dev, &bus->devices, bus_list) {
3752 pci_dev_restore(dev);
3753 if (dev->subordinate)
3754 pci_bus_restore(dev->subordinate);
3755 }
3756 }
3757
3758 /* Save and disable devices from the top of the tree down */
3759 static void pci_slot_save_and_disable(struct pci_slot *slot)
3760 {
3761 struct pci_dev *dev;
3762
3763 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3764 if (!dev->slot || dev->slot != slot)
3765 continue;
3766 pci_dev_save_and_disable(dev);
3767 if (dev->subordinate)
3768 pci_bus_save_and_disable(dev->subordinate);
3769 }
3770 }
3771
3772 /*
3773 * Restore devices from top of the tree down - parent bridges need to be
3774 * restored before we can get to subordinate devices.
3775 */
3776 static void pci_slot_restore(struct pci_slot *slot)
3777 {
3778 struct pci_dev *dev;
3779
3780 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3781 if (!dev->slot || dev->slot != slot)
3782 continue;
3783 pci_dev_restore(dev);
3784 if (dev->subordinate)
3785 pci_bus_restore(dev->subordinate);
3786 }
3787 }
3788
3789 static int pci_slot_reset(struct pci_slot *slot, int probe)
3790 {
3791 int rc;
3792
3793 if (!slot || !pci_slot_resetable(slot))
3794 return -ENOTTY;
3795
3796 if (!probe)
3797 pci_slot_lock(slot);
3798
3799 might_sleep();
3800
3801 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3802
3803 if (!probe)
3804 pci_slot_unlock(slot);
3805
3806 return rc;
3807 }
3808
3809 /**
3810 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3811 * @slot: PCI slot to probe
3812 *
3813 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3814 */
3815 int pci_probe_reset_slot(struct pci_slot *slot)
3816 {
3817 return pci_slot_reset(slot, 1);
3818 }
3819 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3820
3821 /**
3822 * pci_reset_slot - reset a PCI slot
3823 * @slot: PCI slot to reset
3824 *
3825 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3826 * independent of other slots. For instance, some slots may support slot power
3827 * control. In the case of a 1:1 bus to slot architecture, this function may
3828 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3829 * Generally a slot reset should be attempted before a bus reset. All of the
3830 * function of the slot and any subordinate buses behind the slot are reset
3831 * through this function. PCI config space of all devices in the slot and
3832 * behind the slot is saved before and restored after reset.
3833 *
3834 * Return 0 on success, non-zero on error.
3835 */
3836 int pci_reset_slot(struct pci_slot *slot)
3837 {
3838 int rc;
3839
3840 rc = pci_slot_reset(slot, 1);
3841 if (rc)
3842 return rc;
3843
3844 pci_slot_save_and_disable(slot);
3845
3846 rc = pci_slot_reset(slot, 0);
3847
3848 pci_slot_restore(slot);
3849
3850 return rc;
3851 }
3852 EXPORT_SYMBOL_GPL(pci_reset_slot);
3853
3854 /**
3855 * pci_try_reset_slot - Try to reset a PCI slot
3856 * @slot: PCI slot to reset
3857 *
3858 * Same as above except return -EAGAIN if the slot cannot be locked
3859 */
3860 int pci_try_reset_slot(struct pci_slot *slot)
3861 {
3862 int rc;
3863
3864 rc = pci_slot_reset(slot, 1);
3865 if (rc)
3866 return rc;
3867
3868 pci_slot_save_and_disable(slot);
3869
3870 if (pci_slot_trylock(slot)) {
3871 might_sleep();
3872 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3873 pci_slot_unlock(slot);
3874 } else
3875 rc = -EAGAIN;
3876
3877 pci_slot_restore(slot);
3878
3879 return rc;
3880 }
3881 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3882
3883 static int pci_bus_reset(struct pci_bus *bus, int probe)
3884 {
3885 if (!bus->self || !pci_bus_resetable(bus))
3886 return -ENOTTY;
3887
3888 if (probe)
3889 return 0;
3890
3891 pci_bus_lock(bus);
3892
3893 might_sleep();
3894
3895 pci_reset_bridge_secondary_bus(bus->self);
3896
3897 pci_bus_unlock(bus);
3898
3899 return 0;
3900 }
3901
3902 /**
3903 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3904 * @bus: PCI bus to probe
3905 *
3906 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3907 */
3908 int pci_probe_reset_bus(struct pci_bus *bus)
3909 {
3910 return pci_bus_reset(bus, 1);
3911 }
3912 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3913
3914 /**
3915 * pci_reset_bus - reset a PCI bus
3916 * @bus: top level PCI bus to reset
3917 *
3918 * Do a bus reset on the given bus and any subordinate buses, saving
3919 * and restoring state of all devices.
3920 *
3921 * Return 0 on success, non-zero on error.
3922 */
3923 int pci_reset_bus(struct pci_bus *bus)
3924 {
3925 int rc;
3926
3927 rc = pci_bus_reset(bus, 1);
3928 if (rc)
3929 return rc;
3930
3931 pci_bus_save_and_disable(bus);
3932
3933 rc = pci_bus_reset(bus, 0);
3934
3935 pci_bus_restore(bus);
3936
3937 return rc;
3938 }
3939 EXPORT_SYMBOL_GPL(pci_reset_bus);
3940
3941 /**
3942 * pci_try_reset_bus - Try to reset a PCI bus
3943 * @bus: top level PCI bus to reset
3944 *
3945 * Same as above except return -EAGAIN if the bus cannot be locked
3946 */
3947 int pci_try_reset_bus(struct pci_bus *bus)
3948 {
3949 int rc;
3950
3951 rc = pci_bus_reset(bus, 1);
3952 if (rc)
3953 return rc;
3954
3955 pci_bus_save_and_disable(bus);
3956
3957 if (pci_bus_trylock(bus)) {
3958 might_sleep();
3959 pci_reset_bridge_secondary_bus(bus->self);
3960 pci_bus_unlock(bus);
3961 } else
3962 rc = -EAGAIN;
3963
3964 pci_bus_restore(bus);
3965
3966 return rc;
3967 }
3968 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3969
3970 /**
3971 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3972 * @dev: PCI device to query
3973 *
3974 * Returns mmrbc: maximum designed memory read count in bytes
3975 * or appropriate error value.
3976 */
3977 int pcix_get_max_mmrbc(struct pci_dev *dev)
3978 {
3979 int cap;
3980 u32 stat;
3981
3982 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3983 if (!cap)
3984 return -EINVAL;
3985
3986 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3987 return -EINVAL;
3988
3989 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3990 }
3991 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3992
3993 /**
3994 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3995 * @dev: PCI device to query
3996 *
3997 * Returns mmrbc: maximum memory read count in bytes
3998 * or appropriate error value.
3999 */
4000 int pcix_get_mmrbc(struct pci_dev *dev)
4001 {
4002 int cap;
4003 u16 cmd;
4004
4005 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4006 if (!cap)
4007 return -EINVAL;
4008
4009 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4010 return -EINVAL;
4011
4012 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4013 }
4014 EXPORT_SYMBOL(pcix_get_mmrbc);
4015
4016 /**
4017 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4018 * @dev: PCI device to query
4019 * @mmrbc: maximum memory read count in bytes
4020 * valid values are 512, 1024, 2048, 4096
4021 *
4022 * If possible sets maximum memory read byte count, some bridges have erratas
4023 * that prevent this.
4024 */
4025 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4026 {
4027 int cap;
4028 u32 stat, v, o;
4029 u16 cmd;
4030
4031 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4032 return -EINVAL;
4033
4034 v = ffs(mmrbc) - 10;
4035
4036 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4037 if (!cap)
4038 return -EINVAL;
4039
4040 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4041 return -EINVAL;
4042
4043 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4044 return -E2BIG;
4045
4046 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4047 return -EINVAL;
4048
4049 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4050 if (o != v) {
4051 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4052 return -EIO;
4053
4054 cmd &= ~PCI_X_CMD_MAX_READ;
4055 cmd |= v << 2;
4056 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4057 return -EIO;
4058 }
4059 return 0;
4060 }
4061 EXPORT_SYMBOL(pcix_set_mmrbc);
4062
4063 /**
4064 * pcie_get_readrq - get PCI Express read request size
4065 * @dev: PCI device to query
4066 *
4067 * Returns maximum memory read request in bytes
4068 * or appropriate error value.
4069 */
4070 int pcie_get_readrq(struct pci_dev *dev)
4071 {
4072 u16 ctl;
4073
4074 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4075
4076 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4077 }
4078 EXPORT_SYMBOL(pcie_get_readrq);
4079
4080 /**
4081 * pcie_set_readrq - set PCI Express maximum memory read request
4082 * @dev: PCI device to query
4083 * @rq: maximum memory read count in bytes
4084 * valid values are 128, 256, 512, 1024, 2048, 4096
4085 *
4086 * If possible sets maximum memory read request in bytes
4087 */
4088 int pcie_set_readrq(struct pci_dev *dev, int rq)
4089 {
4090 u16 v;
4091
4092 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4093 return -EINVAL;
4094
4095 /*
4096 * If using the "performance" PCIe config, we clamp the
4097 * read rq size to the max packet size to prevent the
4098 * host bridge generating requests larger than we can
4099 * cope with
4100 */
4101 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4102 int mps = pcie_get_mps(dev);
4103
4104 if (mps < rq)
4105 rq = mps;
4106 }
4107
4108 v = (ffs(rq) - 8) << 12;
4109
4110 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4111 PCI_EXP_DEVCTL_READRQ, v);
4112 }
4113 EXPORT_SYMBOL(pcie_set_readrq);
4114
4115 /**
4116 * pcie_get_mps - get PCI Express maximum payload size
4117 * @dev: PCI device to query
4118 *
4119 * Returns maximum payload size in bytes
4120 */
4121 int pcie_get_mps(struct pci_dev *dev)
4122 {
4123 u16 ctl;
4124
4125 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4126
4127 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4128 }
4129 EXPORT_SYMBOL(pcie_get_mps);
4130
4131 /**
4132 * pcie_set_mps - set PCI Express maximum payload size
4133 * @dev: PCI device to query
4134 * @mps: maximum payload size in bytes
4135 * valid values are 128, 256, 512, 1024, 2048, 4096
4136 *
4137 * If possible sets maximum payload size
4138 */
4139 int pcie_set_mps(struct pci_dev *dev, int mps)
4140 {
4141 u16 v;
4142
4143 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4144 return -EINVAL;
4145
4146 v = ffs(mps) - 8;
4147 if (v > dev->pcie_mpss)
4148 return -EINVAL;
4149 v <<= 5;
4150
4151 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4152 PCI_EXP_DEVCTL_PAYLOAD, v);
4153 }
4154 EXPORT_SYMBOL(pcie_set_mps);
4155
4156 /**
4157 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4158 * @dev: PCI device to query
4159 * @speed: storage for minimum speed
4160 * @width: storage for minimum width
4161 *
4162 * This function will walk up the PCI device chain and determine the minimum
4163 * link width and speed of the device.
4164 */
4165 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4166 enum pcie_link_width *width)
4167 {
4168 int ret;
4169
4170 *speed = PCI_SPEED_UNKNOWN;
4171 *width = PCIE_LNK_WIDTH_UNKNOWN;
4172
4173 while (dev) {
4174 u16 lnksta;
4175 enum pci_bus_speed next_speed;
4176 enum pcie_link_width next_width;
4177
4178 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4179 if (ret)
4180 return ret;
4181
4182 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4183 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4184 PCI_EXP_LNKSTA_NLW_SHIFT;
4185
4186 if (next_speed < *speed)
4187 *speed = next_speed;
4188
4189 if (next_width < *width)
4190 *width = next_width;
4191
4192 dev = dev->bus->self;
4193 }
4194
4195 return 0;
4196 }
4197 EXPORT_SYMBOL(pcie_get_minimum_link);
4198
4199 /**
4200 * pci_select_bars - Make BAR mask from the type of resource
4201 * @dev: the PCI device for which BAR mask is made
4202 * @flags: resource type mask to be selected
4203 *
4204 * This helper routine makes bar mask from the type of resource.
4205 */
4206 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4207 {
4208 int i, bars = 0;
4209 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4210 if (pci_resource_flags(dev, i) & flags)
4211 bars |= (1 << i);
4212 return bars;
4213 }
4214 EXPORT_SYMBOL(pci_select_bars);
4215
4216 /**
4217 * pci_resource_bar - get position of the BAR associated with a resource
4218 * @dev: the PCI device
4219 * @resno: the resource number
4220 * @type: the BAR type to be filled in
4221 *
4222 * Returns BAR position in config space, or 0 if the BAR is invalid.
4223 */
4224 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4225 {
4226 int reg;
4227
4228 if (resno < PCI_ROM_RESOURCE) {
4229 *type = pci_bar_unknown;
4230 return PCI_BASE_ADDRESS_0 + 4 * resno;
4231 } else if (resno == PCI_ROM_RESOURCE) {
4232 *type = pci_bar_mem32;
4233 return dev->rom_base_reg;
4234 } else if (resno < PCI_BRIDGE_RESOURCES) {
4235 /* device specific resource */
4236 *type = pci_bar_unknown;
4237 reg = pci_iov_resource_bar(dev, resno);
4238 if (reg)
4239 return reg;
4240 }
4241
4242 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4243 return 0;
4244 }
4245
4246 /* Some architectures require additional programming to enable VGA */
4247 static arch_set_vga_state_t arch_set_vga_state;
4248
4249 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4250 {
4251 arch_set_vga_state = func; /* NULL disables */
4252 }
4253
4254 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4255 unsigned int command_bits, u32 flags)
4256 {
4257 if (arch_set_vga_state)
4258 return arch_set_vga_state(dev, decode, command_bits,
4259 flags);
4260 return 0;
4261 }
4262
4263 /**
4264 * pci_set_vga_state - set VGA decode state on device and parents if requested
4265 * @dev: the PCI device
4266 * @decode: true = enable decoding, false = disable decoding
4267 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4268 * @flags: traverse ancestors and change bridges
4269 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4270 */
4271 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4272 unsigned int command_bits, u32 flags)
4273 {
4274 struct pci_bus *bus;
4275 struct pci_dev *bridge;
4276 u16 cmd;
4277 int rc;
4278
4279 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4280
4281 /* ARCH specific VGA enables */
4282 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4283 if (rc)
4284 return rc;
4285
4286 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4287 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4288 if (decode == true)
4289 cmd |= command_bits;
4290 else
4291 cmd &= ~command_bits;
4292 pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 }
4294
4295 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4296 return 0;
4297
4298 bus = dev->bus;
4299 while (bus) {
4300 bridge = bus->self;
4301 if (bridge) {
4302 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4303 &cmd);
4304 if (decode == true)
4305 cmd |= PCI_BRIDGE_CTL_VGA;
4306 else
4307 cmd &= ~PCI_BRIDGE_CTL_VGA;
4308 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4309 cmd);
4310 }
4311 bus = bus->parent;
4312 }
4313 return 0;
4314 }
4315
4316 bool pci_device_is_present(struct pci_dev *pdev)
4317 {
4318 u32 v;
4319
4320 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4321 }
4322 EXPORT_SYMBOL_GPL(pci_device_is_present);
4323
4324 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4325 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4326 static DEFINE_SPINLOCK(resource_alignment_lock);
4327
4328 /**
4329 * pci_specified_resource_alignment - get resource alignment specified by user.
4330 * @dev: the PCI device to get
4331 *
4332 * RETURNS: Resource alignment if it is specified.
4333 * Zero if it is not specified.
4334 */
4335 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4336 {
4337 int seg, bus, slot, func, align_order, count;
4338 resource_size_t align = 0;
4339 char *p;
4340
4341 spin_lock(&resource_alignment_lock);
4342 p = resource_alignment_param;
4343 while (*p) {
4344 count = 0;
4345 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4346 p[count] == '@') {
4347 p += count + 1;
4348 } else {
4349 align_order = -1;
4350 }
4351 if (sscanf(p, "%x:%x:%x.%x%n",
4352 &seg, &bus, &slot, &func, &count) != 4) {
4353 seg = 0;
4354 if (sscanf(p, "%x:%x.%x%n",
4355 &bus, &slot, &func, &count) != 3) {
4356 /* Invalid format */
4357 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4358 p);
4359 break;
4360 }
4361 }
4362 p += count;
4363 if (seg == pci_domain_nr(dev->bus) &&
4364 bus == dev->bus->number &&
4365 slot == PCI_SLOT(dev->devfn) &&
4366 func == PCI_FUNC(dev->devfn)) {
4367 if (align_order == -1)
4368 align = PAGE_SIZE;
4369 else
4370 align = 1 << align_order;
4371 /* Found */
4372 break;
4373 }
4374 if (*p != ';' && *p != ',') {
4375 /* End of param or invalid format */
4376 break;
4377 }
4378 p++;
4379 }
4380 spin_unlock(&resource_alignment_lock);
4381 return align;
4382 }
4383
4384 /*
4385 * This function disables memory decoding and releases memory resources
4386 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4387 * It also rounds up size to specified alignment.
4388 * Later on, the kernel will assign page-aligned memory resource back
4389 * to the device.
4390 */
4391 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4392 {
4393 int i;
4394 struct resource *r;
4395 resource_size_t align, size;
4396 u16 command;
4397
4398 /* check if specified PCI is target device to reassign */
4399 align = pci_specified_resource_alignment(dev);
4400 if (!align)
4401 return;
4402
4403 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4404 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4405 dev_warn(&dev->dev,
4406 "Can't reassign resources to host bridge.\n");
4407 return;
4408 }
4409
4410 dev_info(&dev->dev,
4411 "Disabling memory decoding and releasing memory resources.\n");
4412 pci_read_config_word(dev, PCI_COMMAND, &command);
4413 command &= ~PCI_COMMAND_MEMORY;
4414 pci_write_config_word(dev, PCI_COMMAND, command);
4415
4416 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4417 r = &dev->resource[i];
4418 if (!(r->flags & IORESOURCE_MEM))
4419 continue;
4420 size = resource_size(r);
4421 if (size < align) {
4422 size = align;
4423 dev_info(&dev->dev,
4424 "Rounding up size of resource #%d to %#llx.\n",
4425 i, (unsigned long long)size);
4426 }
4427 r->flags |= IORESOURCE_UNSET;
4428 r->end = size - 1;
4429 r->start = 0;
4430 }
4431 /* Need to disable bridge's resource window,
4432 * to enable the kernel to reassign new resource
4433 * window later on.
4434 */
4435 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4436 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4437 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4438 r = &dev->resource[i];
4439 if (!(r->flags & IORESOURCE_MEM))
4440 continue;
4441 r->flags |= IORESOURCE_UNSET;
4442 r->end = resource_size(r) - 1;
4443 r->start = 0;
4444 }
4445 pci_disable_bridge_window(dev);
4446 }
4447 }
4448
4449 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4450 {
4451 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4452 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4453 spin_lock(&resource_alignment_lock);
4454 strncpy(resource_alignment_param, buf, count);
4455 resource_alignment_param[count] = '\0';
4456 spin_unlock(&resource_alignment_lock);
4457 return count;
4458 }
4459
4460 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4461 {
4462 size_t count;
4463 spin_lock(&resource_alignment_lock);
4464 count = snprintf(buf, size, "%s", resource_alignment_param);
4465 spin_unlock(&resource_alignment_lock);
4466 return count;
4467 }
4468
4469 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4470 {
4471 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4472 }
4473
4474 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4475 const char *buf, size_t count)
4476 {
4477 return pci_set_resource_alignment_param(buf, count);
4478 }
4479
4480 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4481 pci_resource_alignment_store);
4482
4483 static int __init pci_resource_alignment_sysfs_init(void)
4484 {
4485 return bus_create_file(&pci_bus_type,
4486 &bus_attr_resource_alignment);
4487 }
4488 late_initcall(pci_resource_alignment_sysfs_init);
4489
4490 static void pci_no_domains(void)
4491 {
4492 #ifdef CONFIG_PCI_DOMAINS
4493 pci_domains_supported = 0;
4494 #endif
4495 }
4496
4497 #ifdef CONFIG_PCI_DOMAINS
4498 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4499
4500 int pci_get_new_domain_nr(void)
4501 {
4502 return atomic_inc_return(&__domain_nr);
4503 }
4504
4505 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4506 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4507 {
4508 static int use_dt_domains = -1;
4509 int domain = of_get_pci_domain_nr(parent->of_node);
4510
4511 /*
4512 * Check DT domain and use_dt_domains values.
4513 *
4514 * If DT domain property is valid (domain >= 0) and
4515 * use_dt_domains != 0, the DT assignment is valid since this means
4516 * we have not previously allocated a domain number by using
4517 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4518 * 1, to indicate that we have just assigned a domain number from
4519 * DT.
4520 *
4521 * If DT domain property value is not valid (ie domain < 0), and we
4522 * have not previously assigned a domain number from DT
4523 * (use_dt_domains != 1) we should assign a domain number by
4524 * using the:
4525 *
4526 * pci_get_new_domain_nr()
4527 *
4528 * API and update the use_dt_domains value to keep track of method we
4529 * are using to assign domain numbers (use_dt_domains = 0).
4530 *
4531 * All other combinations imply we have a platform that is trying
4532 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4533 * which is a recipe for domain mishandling and it is prevented by
4534 * invalidating the domain value (domain = -1) and printing a
4535 * corresponding error.
4536 */
4537 if (domain >= 0 && use_dt_domains) {
4538 use_dt_domains = 1;
4539 } else if (domain < 0 && use_dt_domains != 1) {
4540 use_dt_domains = 0;
4541 domain = pci_get_new_domain_nr();
4542 } else {
4543 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4544 parent->of_node->full_name);
4545 domain = -1;
4546 }
4547
4548 bus->domain_nr = domain;
4549 }
4550 #endif
4551 #endif
4552
4553 /**
4554 * pci_ext_cfg_avail - can we access extended PCI config space?
4555 *
4556 * Returns 1 if we can access PCI extended config space (offsets
4557 * greater than 0xff). This is the default implementation. Architecture
4558 * implementations can override this.
4559 */
4560 int __weak pci_ext_cfg_avail(void)
4561 {
4562 return 1;
4563 }
4564
4565 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4566 {
4567 }
4568 EXPORT_SYMBOL(pci_fixup_cardbus);
4569
4570 static int __init pci_setup(char *str)
4571 {
4572 while (str) {
4573 char *k = strchr(str, ',');
4574 if (k)
4575 *k++ = 0;
4576 if (*str && (str = pcibios_setup(str)) && *str) {
4577 if (!strcmp(str, "nomsi")) {
4578 pci_no_msi();
4579 } else if (!strcmp(str, "noaer")) {
4580 pci_no_aer();
4581 } else if (!strncmp(str, "realloc=", 8)) {
4582 pci_realloc_get_opt(str + 8);
4583 } else if (!strncmp(str, "realloc", 7)) {
4584 pci_realloc_get_opt("on");
4585 } else if (!strcmp(str, "nodomains")) {
4586 pci_no_domains();
4587 } else if (!strncmp(str, "noari", 5)) {
4588 pcie_ari_disabled = true;
4589 } else if (!strncmp(str, "cbiosize=", 9)) {
4590 pci_cardbus_io_size = memparse(str + 9, &str);
4591 } else if (!strncmp(str, "cbmemsize=", 10)) {
4592 pci_cardbus_mem_size = memparse(str + 10, &str);
4593 } else if (!strncmp(str, "resource_alignment=", 19)) {
4594 pci_set_resource_alignment_param(str + 19,
4595 strlen(str + 19));
4596 } else if (!strncmp(str, "ecrc=", 5)) {
4597 pcie_ecrc_get_policy(str + 5);
4598 } else if (!strncmp(str, "hpiosize=", 9)) {
4599 pci_hotplug_io_size = memparse(str + 9, &str);
4600 } else if (!strncmp(str, "hpmemsize=", 10)) {
4601 pci_hotplug_mem_size = memparse(str + 10, &str);
4602 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4603 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4604 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4605 pcie_bus_config = PCIE_BUS_SAFE;
4606 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4607 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4608 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4609 pcie_bus_config = PCIE_BUS_PEER2PEER;
4610 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4611 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4612 } else {
4613 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4614 str);
4615 }
4616 }
4617 str = k;
4618 }
4619 return 0;
4620 }
4621 early_param("pci", pci_setup);
This page took 0.136993 seconds and 5 git commands to generate.