1f9a7a03847b9f21e19db7c44f62bcc12fd64731
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
33
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
37
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
43
44 #define DEFAULT_HOTPLUG_IO_SIZE (256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
49
50 #ifndef PCI_CACHE_LINE_BYTES
51 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
52 #endif
53
54 /*
55 * The default CLS is used if arch didn't set CLS explicitly and not
56 * all pci devices agree on the same value. Arch can override either
57 * the dfl or actual value as it sees fit. Don't forget this is
58 * measured in 32-bit words, not bytes.
59 */
60 u8 pci_dfl_cache_line_size __initdata = PCI_CACHE_LINE_BYTES >> 2;
61 u8 pci_cache_line_size;
62
63 /**
64 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
65 * @bus: pointer to PCI bus structure to search
66 *
67 * Given a PCI bus, returns the highest PCI bus number present in the set
68 * including the given PCI bus and its list of child PCI buses.
69 */
70 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
71 {
72 struct list_head *tmp;
73 unsigned char max, n;
74
75 max = bus->subordinate;
76 list_for_each(tmp, &bus->children) {
77 n = pci_bus_max_busnr(pci_bus_b(tmp));
78 if(n > max)
79 max = n;
80 }
81 return max;
82 }
83 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
84
85 #ifdef CONFIG_HAS_IOMEM
86 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
87 {
88 /*
89 * Make sure the BAR is actually a memory resource, not an IO resource
90 */
91 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
92 WARN_ON(1);
93 return NULL;
94 }
95 return ioremap_nocache(pci_resource_start(pdev, bar),
96 pci_resource_len(pdev, bar));
97 }
98 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
99 #endif
100
101 #if 0
102 /**
103 * pci_max_busnr - returns maximum PCI bus number
104 *
105 * Returns the highest PCI bus number present in the system global list of
106 * PCI buses.
107 */
108 unsigned char __devinit
109 pci_max_busnr(void)
110 {
111 struct pci_bus *bus = NULL;
112 unsigned char max, n;
113
114 max = 0;
115 while ((bus = pci_find_next_bus(bus)) != NULL) {
116 n = pci_bus_max_busnr(bus);
117 if(n > max)
118 max = n;
119 }
120 return max;
121 }
122
123 #endif /* 0 */
124
125 #define PCI_FIND_CAP_TTL 48
126
127 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
128 u8 pos, int cap, int *ttl)
129 {
130 u8 id;
131
132 while ((*ttl)--) {
133 pci_bus_read_config_byte(bus, devfn, pos, &pos);
134 if (pos < 0x40)
135 break;
136 pos &= ~3;
137 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
138 &id);
139 if (id == 0xff)
140 break;
141 if (id == cap)
142 return pos;
143 pos += PCI_CAP_LIST_NEXT;
144 }
145 return 0;
146 }
147
148 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
149 u8 pos, int cap)
150 {
151 int ttl = PCI_FIND_CAP_TTL;
152
153 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
154 }
155
156 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
157 {
158 return __pci_find_next_cap(dev->bus, dev->devfn,
159 pos + PCI_CAP_LIST_NEXT, cap);
160 }
161 EXPORT_SYMBOL_GPL(pci_find_next_capability);
162
163 static int __pci_bus_find_cap_start(struct pci_bus *bus,
164 unsigned int devfn, u8 hdr_type)
165 {
166 u16 status;
167
168 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
169 if (!(status & PCI_STATUS_CAP_LIST))
170 return 0;
171
172 switch (hdr_type) {
173 case PCI_HEADER_TYPE_NORMAL:
174 case PCI_HEADER_TYPE_BRIDGE:
175 return PCI_CAPABILITY_LIST;
176 case PCI_HEADER_TYPE_CARDBUS:
177 return PCI_CB_CAPABILITY_LIST;
178 default:
179 return 0;
180 }
181
182 return 0;
183 }
184
185 /**
186 * pci_find_capability - query for devices' capabilities
187 * @dev: PCI device to query
188 * @cap: capability code
189 *
190 * Tell if a device supports a given PCI capability.
191 * Returns the address of the requested capability structure within the
192 * device's PCI configuration space or 0 in case the device does not
193 * support it. Possible values for @cap:
194 *
195 * %PCI_CAP_ID_PM Power Management
196 * %PCI_CAP_ID_AGP Accelerated Graphics Port
197 * %PCI_CAP_ID_VPD Vital Product Data
198 * %PCI_CAP_ID_SLOTID Slot Identification
199 * %PCI_CAP_ID_MSI Message Signalled Interrupts
200 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
201 * %PCI_CAP_ID_PCIX PCI-X
202 * %PCI_CAP_ID_EXP PCI Express
203 */
204 int pci_find_capability(struct pci_dev *dev, int cap)
205 {
206 int pos;
207
208 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
209 if (pos)
210 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
211
212 return pos;
213 }
214
215 /**
216 * pci_bus_find_capability - query for devices' capabilities
217 * @bus: the PCI bus to query
218 * @devfn: PCI device to query
219 * @cap: capability code
220 *
221 * Like pci_find_capability() but works for pci devices that do not have a
222 * pci_dev structure set up yet.
223 *
224 * Returns the address of the requested capability structure within the
225 * device's PCI configuration space or 0 in case the device does not
226 * support it.
227 */
228 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
229 {
230 int pos;
231 u8 hdr_type;
232
233 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
234
235 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
236 if (pos)
237 pos = __pci_find_next_cap(bus, devfn, pos, cap);
238
239 return pos;
240 }
241
242 /**
243 * pci_find_ext_capability - Find an extended capability
244 * @dev: PCI device to query
245 * @cap: capability code
246 *
247 * Returns the address of the requested extended capability structure
248 * within the device's PCI configuration space or 0 if the device does
249 * not support it. Possible values for @cap:
250 *
251 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
252 * %PCI_EXT_CAP_ID_VC Virtual Channel
253 * %PCI_EXT_CAP_ID_DSN Device Serial Number
254 * %PCI_EXT_CAP_ID_PWR Power Budgeting
255 */
256 int pci_find_ext_capability(struct pci_dev *dev, int cap)
257 {
258 u32 header;
259 int ttl;
260 int pos = PCI_CFG_SPACE_SIZE;
261
262 /* minimum 8 bytes per capability */
263 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
264
265 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
266 return 0;
267
268 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
269 return 0;
270
271 /*
272 * If we have no capabilities, this is indicated by cap ID,
273 * cap version and next pointer all being 0.
274 */
275 if (header == 0)
276 return 0;
277
278 while (ttl-- > 0) {
279 if (PCI_EXT_CAP_ID(header) == cap)
280 return pos;
281
282 pos = PCI_EXT_CAP_NEXT(header);
283 if (pos < PCI_CFG_SPACE_SIZE)
284 break;
285
286 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
287 break;
288 }
289
290 return 0;
291 }
292 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
293
294 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
295 {
296 int rc, ttl = PCI_FIND_CAP_TTL;
297 u8 cap, mask;
298
299 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
300 mask = HT_3BIT_CAP_MASK;
301 else
302 mask = HT_5BIT_CAP_MASK;
303
304 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
305 PCI_CAP_ID_HT, &ttl);
306 while (pos) {
307 rc = pci_read_config_byte(dev, pos + 3, &cap);
308 if (rc != PCIBIOS_SUCCESSFUL)
309 return 0;
310
311 if ((cap & mask) == ht_cap)
312 return pos;
313
314 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
315 pos + PCI_CAP_LIST_NEXT,
316 PCI_CAP_ID_HT, &ttl);
317 }
318
319 return 0;
320 }
321 /**
322 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
323 * @dev: PCI device to query
324 * @pos: Position from which to continue searching
325 * @ht_cap: Hypertransport capability code
326 *
327 * To be used in conjunction with pci_find_ht_capability() to search for
328 * all capabilities matching @ht_cap. @pos should always be a value returned
329 * from pci_find_ht_capability().
330 *
331 * NB. To be 100% safe against broken PCI devices, the caller should take
332 * steps to avoid an infinite loop.
333 */
334 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
335 {
336 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
337 }
338 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
339
340 /**
341 * pci_find_ht_capability - query a device's Hypertransport capabilities
342 * @dev: PCI device to query
343 * @ht_cap: Hypertransport capability code
344 *
345 * Tell if a device supports a given Hypertransport capability.
346 * Returns an address within the device's PCI configuration space
347 * or 0 in case the device does not support the request capability.
348 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
349 * which has a Hypertransport capability matching @ht_cap.
350 */
351 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
352 {
353 int pos;
354
355 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
356 if (pos)
357 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
358
359 return pos;
360 }
361 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
362
363 /**
364 * pci_find_parent_resource - return resource region of parent bus of given region
365 * @dev: PCI device structure contains resources to be searched
366 * @res: child resource record for which parent is sought
367 *
368 * For given resource region of given device, return the resource
369 * region of parent bus the given region is contained in or where
370 * it should be allocated from.
371 */
372 struct resource *
373 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
374 {
375 const struct pci_bus *bus = dev->bus;
376 int i;
377 struct resource *best = NULL;
378
379 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
380 struct resource *r = bus->resource[i];
381 if (!r)
382 continue;
383 if (res->start && !(res->start >= r->start && res->end <= r->end))
384 continue; /* Not contained */
385 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
386 continue; /* Wrong type */
387 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
388 return r; /* Exact match */
389 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
390 best = r; /* Approximating prefetchable by non-prefetchable */
391 }
392 return best;
393 }
394
395 /**
396 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
397 * @dev: PCI device to have its BARs restored
398 *
399 * Restore the BAR values for a given device, so as to make it
400 * accessible by its driver.
401 */
402 static void
403 pci_restore_bars(struct pci_dev *dev)
404 {
405 int i;
406
407 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
408 pci_update_resource(dev, i);
409 }
410
411 static struct pci_platform_pm_ops *pci_platform_pm;
412
413 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
414 {
415 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
416 || !ops->sleep_wake || !ops->can_wakeup)
417 return -EINVAL;
418 pci_platform_pm = ops;
419 return 0;
420 }
421
422 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
423 {
424 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
425 }
426
427 static inline int platform_pci_set_power_state(struct pci_dev *dev,
428 pci_power_t t)
429 {
430 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
431 }
432
433 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
434 {
435 return pci_platform_pm ?
436 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
437 }
438
439 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
440 {
441 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
442 }
443
444 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
445 {
446 return pci_platform_pm ?
447 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
448 }
449
450 /**
451 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
452 * given PCI device
453 * @dev: PCI device to handle.
454 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
455 *
456 * RETURN VALUE:
457 * -EINVAL if the requested state is invalid.
458 * -EIO if device does not support PCI PM or its PM capabilities register has a
459 * wrong version, or device doesn't support the requested state.
460 * 0 if device already is in the requested state.
461 * 0 if device's power state has been successfully changed.
462 */
463 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
464 {
465 u16 pmcsr;
466 bool need_restore = false;
467
468 /* Check if we're already there */
469 if (dev->current_state == state)
470 return 0;
471
472 if (!dev->pm_cap)
473 return -EIO;
474
475 if (state < PCI_D0 || state > PCI_D3hot)
476 return -EINVAL;
477
478 /* Validate current state:
479 * Can enter D0 from any state, but if we can only go deeper
480 * to sleep if we're already in a low power state
481 */
482 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
483 && dev->current_state > state) {
484 dev_err(&dev->dev, "invalid power transition "
485 "(from state %d to %d)\n", dev->current_state, state);
486 return -EINVAL;
487 }
488
489 /* check if this device supports the desired state */
490 if ((state == PCI_D1 && !dev->d1_support)
491 || (state == PCI_D2 && !dev->d2_support))
492 return -EIO;
493
494 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
495
496 /* If we're (effectively) in D3, force entire word to 0.
497 * This doesn't affect PME_Status, disables PME_En, and
498 * sets PowerState to 0.
499 */
500 switch (dev->current_state) {
501 case PCI_D0:
502 case PCI_D1:
503 case PCI_D2:
504 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
505 pmcsr |= state;
506 break;
507 case PCI_D3hot:
508 case PCI_D3cold:
509 case PCI_UNKNOWN: /* Boot-up */
510 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
511 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
512 need_restore = true;
513 /* Fall-through: force to D0 */
514 default:
515 pmcsr = 0;
516 break;
517 }
518
519 /* enter specified state */
520 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
521
522 /* Mandatory power management transition delays */
523 /* see PCI PM 1.1 5.6.1 table 18 */
524 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
525 msleep(pci_pm_d3_delay);
526 else if (state == PCI_D2 || dev->current_state == PCI_D2)
527 udelay(PCI_PM_D2_DELAY);
528
529 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
530 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
531 if (dev->current_state != state && printk_ratelimit())
532 dev_info(&dev->dev, "Refused to change power state, "
533 "currently in D%d\n", dev->current_state);
534
535 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
536 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
537 * from D3hot to D0 _may_ perform an internal reset, thereby
538 * going to "D0 Uninitialized" rather than "D0 Initialized".
539 * For example, at least some versions of the 3c905B and the
540 * 3c556B exhibit this behaviour.
541 *
542 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
543 * devices in a D3hot state at boot. Consequently, we need to
544 * restore at least the BARs so that the device will be
545 * accessible to its driver.
546 */
547 if (need_restore)
548 pci_restore_bars(dev);
549
550 if (dev->bus->self)
551 pcie_aspm_pm_state_change(dev->bus->self);
552
553 return 0;
554 }
555
556 /**
557 * pci_update_current_state - Read PCI power state of given device from its
558 * PCI PM registers and cache it
559 * @dev: PCI device to handle.
560 * @state: State to cache in case the device doesn't have the PM capability
561 */
562 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
563 {
564 if (dev->pm_cap) {
565 u16 pmcsr;
566
567 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 } else {
570 dev->current_state = state;
571 }
572 }
573
574 /**
575 * pci_platform_power_transition - Use platform to change device power state
576 * @dev: PCI device to handle.
577 * @state: State to put the device into.
578 */
579 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
580 {
581 int error;
582
583 if (platform_pci_power_manageable(dev)) {
584 error = platform_pci_set_power_state(dev, state);
585 if (!error)
586 pci_update_current_state(dev, state);
587 } else {
588 error = -ENODEV;
589 /* Fall back to PCI_D0 if native PM is not supported */
590 if (!dev->pm_cap)
591 dev->current_state = PCI_D0;
592 }
593
594 return error;
595 }
596
597 /**
598 * __pci_start_power_transition - Start power transition of a PCI device
599 * @dev: PCI device to handle.
600 * @state: State to put the device into.
601 */
602 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
603 {
604 if (state == PCI_D0)
605 pci_platform_power_transition(dev, PCI_D0);
606 }
607
608 /**
609 * __pci_complete_power_transition - Complete power transition of a PCI device
610 * @dev: PCI device to handle.
611 * @state: State to put the device into.
612 *
613 * This function should not be called directly by device drivers.
614 */
615 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
616 {
617 return state > PCI_D0 ?
618 pci_platform_power_transition(dev, state) : -EINVAL;
619 }
620 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
621
622 /**
623 * pci_set_power_state - Set the power state of a PCI device
624 * @dev: PCI device to handle.
625 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
626 *
627 * Transition a device to a new power state, using the platform firmware and/or
628 * the device's PCI PM registers.
629 *
630 * RETURN VALUE:
631 * -EINVAL if the requested state is invalid.
632 * -EIO if device does not support PCI PM or its PM capabilities register has a
633 * wrong version, or device doesn't support the requested state.
634 * 0 if device already is in the requested state.
635 * 0 if device's power state has been successfully changed.
636 */
637 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
638 {
639 int error;
640
641 /* bound the state we're entering */
642 if (state > PCI_D3hot)
643 state = PCI_D3hot;
644 else if (state < PCI_D0)
645 state = PCI_D0;
646 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
647 /*
648 * If the device or the parent bridge do not support PCI PM,
649 * ignore the request if we're doing anything other than putting
650 * it into D0 (which would only happen on boot).
651 */
652 return 0;
653
654 /* Check if we're already there */
655 if (dev->current_state == state)
656 return 0;
657
658 __pci_start_power_transition(dev, state);
659
660 /* This device is quirked not to be put into D3, so
661 don't put it in D3 */
662 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
663 return 0;
664
665 error = pci_raw_set_power_state(dev, state);
666
667 if (!__pci_complete_power_transition(dev, state))
668 error = 0;
669
670 return error;
671 }
672
673 /**
674 * pci_choose_state - Choose the power state of a PCI device
675 * @dev: PCI device to be suspended
676 * @state: target sleep state for the whole system. This is the value
677 * that is passed to suspend() function.
678 *
679 * Returns PCI power state suitable for given device and given system
680 * message.
681 */
682
683 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
684 {
685 pci_power_t ret;
686
687 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
688 return PCI_D0;
689
690 ret = platform_pci_choose_state(dev);
691 if (ret != PCI_POWER_ERROR)
692 return ret;
693
694 switch (state.event) {
695 case PM_EVENT_ON:
696 return PCI_D0;
697 case PM_EVENT_FREEZE:
698 case PM_EVENT_PRETHAW:
699 /* REVISIT both freeze and pre-thaw "should" use D0 */
700 case PM_EVENT_SUSPEND:
701 case PM_EVENT_HIBERNATE:
702 return PCI_D3hot;
703 default:
704 dev_info(&dev->dev, "unrecognized suspend event %d\n",
705 state.event);
706 BUG();
707 }
708 return PCI_D0;
709 }
710
711 EXPORT_SYMBOL(pci_choose_state);
712
713 #define PCI_EXP_SAVE_REGS 7
714
715 #define pcie_cap_has_devctl(type, flags) 1
716 #define pcie_cap_has_lnkctl(type, flags) \
717 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
718 (type == PCI_EXP_TYPE_ROOT_PORT || \
719 type == PCI_EXP_TYPE_ENDPOINT || \
720 type == PCI_EXP_TYPE_LEG_END))
721 #define pcie_cap_has_sltctl(type, flags) \
722 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
723 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
724 (type == PCI_EXP_TYPE_DOWNSTREAM && \
725 (flags & PCI_EXP_FLAGS_SLOT))))
726 #define pcie_cap_has_rtctl(type, flags) \
727 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
728 (type == PCI_EXP_TYPE_ROOT_PORT || \
729 type == PCI_EXP_TYPE_RC_EC))
730 #define pcie_cap_has_devctl2(type, flags) \
731 ((flags & PCI_EXP_FLAGS_VERS) > 1)
732 #define pcie_cap_has_lnkctl2(type, flags) \
733 ((flags & PCI_EXP_FLAGS_VERS) > 1)
734 #define pcie_cap_has_sltctl2(type, flags) \
735 ((flags & PCI_EXP_FLAGS_VERS) > 1)
736
737 static int pci_save_pcie_state(struct pci_dev *dev)
738 {
739 int pos, i = 0;
740 struct pci_cap_saved_state *save_state;
741 u16 *cap;
742 u16 flags;
743
744 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
745 if (pos <= 0)
746 return 0;
747
748 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
749 if (!save_state) {
750 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
751 return -ENOMEM;
752 }
753 cap = (u16 *)&save_state->data[0];
754
755 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
756
757 if (pcie_cap_has_devctl(dev->pcie_type, flags))
758 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
759 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
760 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
761 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
762 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
763 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
764 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
765 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
766 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
767 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
768 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
769 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
770 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
771
772 return 0;
773 }
774
775 static void pci_restore_pcie_state(struct pci_dev *dev)
776 {
777 int i = 0, pos;
778 struct pci_cap_saved_state *save_state;
779 u16 *cap;
780 u16 flags;
781
782 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
783 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
784 if (!save_state || pos <= 0)
785 return;
786 cap = (u16 *)&save_state->data[0];
787
788 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
789
790 if (pcie_cap_has_devctl(dev->pcie_type, flags))
791 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
792 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
793 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
794 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
795 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
796 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
797 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
798 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
799 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
800 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
801 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
802 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
803 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
804 }
805
806
807 static int pci_save_pcix_state(struct pci_dev *dev)
808 {
809 int pos;
810 struct pci_cap_saved_state *save_state;
811
812 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
813 if (pos <= 0)
814 return 0;
815
816 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
817 if (!save_state) {
818 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
819 return -ENOMEM;
820 }
821
822 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
823
824 return 0;
825 }
826
827 static void pci_restore_pcix_state(struct pci_dev *dev)
828 {
829 int i = 0, pos;
830 struct pci_cap_saved_state *save_state;
831 u16 *cap;
832
833 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
834 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
835 if (!save_state || pos <= 0)
836 return;
837 cap = (u16 *)&save_state->data[0];
838
839 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
840 }
841
842
843 /**
844 * pci_save_state - save the PCI configuration space of a device before suspending
845 * @dev: - PCI device that we're dealing with
846 */
847 int
848 pci_save_state(struct pci_dev *dev)
849 {
850 int i;
851 /* XXX: 100% dword access ok here? */
852 for (i = 0; i < 16; i++)
853 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
854 dev->state_saved = true;
855 if ((i = pci_save_pcie_state(dev)) != 0)
856 return i;
857 if ((i = pci_save_pcix_state(dev)) != 0)
858 return i;
859 return 0;
860 }
861
862 /**
863 * pci_restore_state - Restore the saved state of a PCI device
864 * @dev: - PCI device that we're dealing with
865 */
866 int
867 pci_restore_state(struct pci_dev *dev)
868 {
869 int i;
870 u32 val;
871
872 if (!dev->state_saved)
873 return 0;
874
875 /* PCI Express register must be restored first */
876 pci_restore_pcie_state(dev);
877
878 /*
879 * The Base Address register should be programmed before the command
880 * register(s)
881 */
882 for (i = 15; i >= 0; i--) {
883 pci_read_config_dword(dev, i * 4, &val);
884 if (val != dev->saved_config_space[i]) {
885 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
886 "space at offset %#x (was %#x, writing %#x)\n",
887 i, val, (int)dev->saved_config_space[i]);
888 pci_write_config_dword(dev,i * 4,
889 dev->saved_config_space[i]);
890 }
891 }
892 pci_restore_pcix_state(dev);
893 pci_restore_msi_state(dev);
894 pci_restore_iov_state(dev);
895
896 dev->state_saved = false;
897
898 return 0;
899 }
900
901 static int do_pci_enable_device(struct pci_dev *dev, int bars)
902 {
903 int err;
904
905 err = pci_set_power_state(dev, PCI_D0);
906 if (err < 0 && err != -EIO)
907 return err;
908 err = pcibios_enable_device(dev, bars);
909 if (err < 0)
910 return err;
911 pci_fixup_device(pci_fixup_enable, dev);
912
913 return 0;
914 }
915
916 /**
917 * pci_reenable_device - Resume abandoned device
918 * @dev: PCI device to be resumed
919 *
920 * Note this function is a backend of pci_default_resume and is not supposed
921 * to be called by normal code, write proper resume handler and use it instead.
922 */
923 int pci_reenable_device(struct pci_dev *dev)
924 {
925 if (pci_is_enabled(dev))
926 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
927 return 0;
928 }
929
930 static int __pci_enable_device_flags(struct pci_dev *dev,
931 resource_size_t flags)
932 {
933 int err;
934 int i, bars = 0;
935
936 if (atomic_add_return(1, &dev->enable_cnt) > 1)
937 return 0; /* already enabled */
938
939 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
940 if (dev->resource[i].flags & flags)
941 bars |= (1 << i);
942
943 err = do_pci_enable_device(dev, bars);
944 if (err < 0)
945 atomic_dec(&dev->enable_cnt);
946 return err;
947 }
948
949 /**
950 * pci_enable_device_io - Initialize a device for use with IO space
951 * @dev: PCI device to be initialized
952 *
953 * Initialize device before it's used by a driver. Ask low-level code
954 * to enable I/O resources. Wake up the device if it was suspended.
955 * Beware, this function can fail.
956 */
957 int pci_enable_device_io(struct pci_dev *dev)
958 {
959 return __pci_enable_device_flags(dev, IORESOURCE_IO);
960 }
961
962 /**
963 * pci_enable_device_mem - Initialize a device for use with Memory space
964 * @dev: PCI device to be initialized
965 *
966 * Initialize device before it's used by a driver. Ask low-level code
967 * to enable Memory resources. Wake up the device if it was suspended.
968 * Beware, this function can fail.
969 */
970 int pci_enable_device_mem(struct pci_dev *dev)
971 {
972 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
973 }
974
975 /**
976 * pci_enable_device - Initialize device before it's used by a driver.
977 * @dev: PCI device to be initialized
978 *
979 * Initialize device before it's used by a driver. Ask low-level code
980 * to enable I/O and memory. Wake up the device if it was suspended.
981 * Beware, this function can fail.
982 *
983 * Note we don't actually enable the device many times if we call
984 * this function repeatedly (we just increment the count).
985 */
986 int pci_enable_device(struct pci_dev *dev)
987 {
988 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
989 }
990
991 /*
992 * Managed PCI resources. This manages device on/off, intx/msi/msix
993 * on/off and BAR regions. pci_dev itself records msi/msix status, so
994 * there's no need to track it separately. pci_devres is initialized
995 * when a device is enabled using managed PCI device enable interface.
996 */
997 struct pci_devres {
998 unsigned int enabled:1;
999 unsigned int pinned:1;
1000 unsigned int orig_intx:1;
1001 unsigned int restore_intx:1;
1002 u32 region_mask;
1003 };
1004
1005 static void pcim_release(struct device *gendev, void *res)
1006 {
1007 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1008 struct pci_devres *this = res;
1009 int i;
1010
1011 if (dev->msi_enabled)
1012 pci_disable_msi(dev);
1013 if (dev->msix_enabled)
1014 pci_disable_msix(dev);
1015
1016 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1017 if (this->region_mask & (1 << i))
1018 pci_release_region(dev, i);
1019
1020 if (this->restore_intx)
1021 pci_intx(dev, this->orig_intx);
1022
1023 if (this->enabled && !this->pinned)
1024 pci_disable_device(dev);
1025 }
1026
1027 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1028 {
1029 struct pci_devres *dr, *new_dr;
1030
1031 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1032 if (dr)
1033 return dr;
1034
1035 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1036 if (!new_dr)
1037 return NULL;
1038 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1039 }
1040
1041 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1042 {
1043 if (pci_is_managed(pdev))
1044 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1045 return NULL;
1046 }
1047
1048 /**
1049 * pcim_enable_device - Managed pci_enable_device()
1050 * @pdev: PCI device to be initialized
1051 *
1052 * Managed pci_enable_device().
1053 */
1054 int pcim_enable_device(struct pci_dev *pdev)
1055 {
1056 struct pci_devres *dr;
1057 int rc;
1058
1059 dr = get_pci_dr(pdev);
1060 if (unlikely(!dr))
1061 return -ENOMEM;
1062 if (dr->enabled)
1063 return 0;
1064
1065 rc = pci_enable_device(pdev);
1066 if (!rc) {
1067 pdev->is_managed = 1;
1068 dr->enabled = 1;
1069 }
1070 return rc;
1071 }
1072
1073 /**
1074 * pcim_pin_device - Pin managed PCI device
1075 * @pdev: PCI device to pin
1076 *
1077 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1078 * driver detach. @pdev must have been enabled with
1079 * pcim_enable_device().
1080 */
1081 void pcim_pin_device(struct pci_dev *pdev)
1082 {
1083 struct pci_devres *dr;
1084
1085 dr = find_pci_dr(pdev);
1086 WARN_ON(!dr || !dr->enabled);
1087 if (dr)
1088 dr->pinned = 1;
1089 }
1090
1091 /**
1092 * pcibios_disable_device - disable arch specific PCI resources for device dev
1093 * @dev: the PCI device to disable
1094 *
1095 * Disables architecture specific PCI resources for the device. This
1096 * is the default implementation. Architecture implementations can
1097 * override this.
1098 */
1099 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1100
1101 static void do_pci_disable_device(struct pci_dev *dev)
1102 {
1103 u16 pci_command;
1104
1105 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1106 if (pci_command & PCI_COMMAND_MASTER) {
1107 pci_command &= ~PCI_COMMAND_MASTER;
1108 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1109 }
1110
1111 pcibios_disable_device(dev);
1112 }
1113
1114 /**
1115 * pci_disable_enabled_device - Disable device without updating enable_cnt
1116 * @dev: PCI device to disable
1117 *
1118 * NOTE: This function is a backend of PCI power management routines and is
1119 * not supposed to be called drivers.
1120 */
1121 void pci_disable_enabled_device(struct pci_dev *dev)
1122 {
1123 if (pci_is_enabled(dev))
1124 do_pci_disable_device(dev);
1125 }
1126
1127 /**
1128 * pci_disable_device - Disable PCI device after use
1129 * @dev: PCI device to be disabled
1130 *
1131 * Signal to the system that the PCI device is not in use by the system
1132 * anymore. This only involves disabling PCI bus-mastering, if active.
1133 *
1134 * Note we don't actually disable the device until all callers of
1135 * pci_device_enable() have called pci_device_disable().
1136 */
1137 void
1138 pci_disable_device(struct pci_dev *dev)
1139 {
1140 struct pci_devres *dr;
1141
1142 dr = find_pci_dr(dev);
1143 if (dr)
1144 dr->enabled = 0;
1145
1146 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1147 return;
1148
1149 do_pci_disable_device(dev);
1150
1151 dev->is_busmaster = 0;
1152 }
1153
1154 /**
1155 * pcibios_set_pcie_reset_state - set reset state for device dev
1156 * @dev: the PCI-E device reset
1157 * @state: Reset state to enter into
1158 *
1159 *
1160 * Sets the PCI-E reset state for the device. This is the default
1161 * implementation. Architecture implementations can override this.
1162 */
1163 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1164 enum pcie_reset_state state)
1165 {
1166 return -EINVAL;
1167 }
1168
1169 /**
1170 * pci_set_pcie_reset_state - set reset state for device dev
1171 * @dev: the PCI-E device reset
1172 * @state: Reset state to enter into
1173 *
1174 *
1175 * Sets the PCI reset state for the device.
1176 */
1177 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1178 {
1179 return pcibios_set_pcie_reset_state(dev, state);
1180 }
1181
1182 /**
1183 * pci_pme_capable - check the capability of PCI device to generate PME#
1184 * @dev: PCI device to handle.
1185 * @state: PCI state from which device will issue PME#.
1186 */
1187 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1188 {
1189 if (!dev->pm_cap)
1190 return false;
1191
1192 return !!(dev->pme_support & (1 << state));
1193 }
1194
1195 /**
1196 * pci_pme_active - enable or disable PCI device's PME# function
1197 * @dev: PCI device to handle.
1198 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1199 *
1200 * The caller must verify that the device is capable of generating PME# before
1201 * calling this function with @enable equal to 'true'.
1202 */
1203 void pci_pme_active(struct pci_dev *dev, bool enable)
1204 {
1205 u16 pmcsr;
1206
1207 if (!dev->pm_cap)
1208 return;
1209
1210 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1211 /* Clear PME_Status by writing 1 to it and enable PME# */
1212 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1213 if (!enable)
1214 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1215
1216 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1217
1218 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1219 enable ? "enabled" : "disabled");
1220 }
1221
1222 /**
1223 * pci_enable_wake - enable PCI device as wakeup event source
1224 * @dev: PCI device affected
1225 * @state: PCI state from which device will issue wakeup events
1226 * @enable: True to enable event generation; false to disable
1227 *
1228 * This enables the device as a wakeup event source, or disables it.
1229 * When such events involves platform-specific hooks, those hooks are
1230 * called automatically by this routine.
1231 *
1232 * Devices with legacy power management (no standard PCI PM capabilities)
1233 * always require such platform hooks.
1234 *
1235 * RETURN VALUE:
1236 * 0 is returned on success
1237 * -EINVAL is returned if device is not supposed to wake up the system
1238 * Error code depending on the platform is returned if both the platform and
1239 * the native mechanism fail to enable the generation of wake-up events
1240 */
1241 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1242 {
1243 int ret = 0;
1244
1245 if (enable && !device_may_wakeup(&dev->dev))
1246 return -EINVAL;
1247
1248 /* Don't do the same thing twice in a row for one device. */
1249 if (!!enable == !!dev->wakeup_prepared)
1250 return 0;
1251
1252 /*
1253 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1254 * Anderson we should be doing PME# wake enable followed by ACPI wake
1255 * enable. To disable wake-up we call the platform first, for symmetry.
1256 */
1257
1258 if (enable) {
1259 int error;
1260
1261 if (pci_pme_capable(dev, state))
1262 pci_pme_active(dev, true);
1263 else
1264 ret = 1;
1265 error = platform_pci_sleep_wake(dev, true);
1266 if (ret)
1267 ret = error;
1268 if (!ret)
1269 dev->wakeup_prepared = true;
1270 } else {
1271 platform_pci_sleep_wake(dev, false);
1272 pci_pme_active(dev, false);
1273 dev->wakeup_prepared = false;
1274 }
1275
1276 return ret;
1277 }
1278
1279 /**
1280 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1281 * @dev: PCI device to prepare
1282 * @enable: True to enable wake-up event generation; false to disable
1283 *
1284 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1285 * and this function allows them to set that up cleanly - pci_enable_wake()
1286 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1287 * ordering constraints.
1288 *
1289 * This function only returns error code if the device is not capable of
1290 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1291 * enable wake-up power for it.
1292 */
1293 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1294 {
1295 return pci_pme_capable(dev, PCI_D3cold) ?
1296 pci_enable_wake(dev, PCI_D3cold, enable) :
1297 pci_enable_wake(dev, PCI_D3hot, enable);
1298 }
1299
1300 /**
1301 * pci_target_state - find an appropriate low power state for a given PCI dev
1302 * @dev: PCI device
1303 *
1304 * Use underlying platform code to find a supported low power state for @dev.
1305 * If the platform can't manage @dev, return the deepest state from which it
1306 * can generate wake events, based on any available PME info.
1307 */
1308 pci_power_t pci_target_state(struct pci_dev *dev)
1309 {
1310 pci_power_t target_state = PCI_D3hot;
1311
1312 if (platform_pci_power_manageable(dev)) {
1313 /*
1314 * Call the platform to choose the target state of the device
1315 * and enable wake-up from this state if supported.
1316 */
1317 pci_power_t state = platform_pci_choose_state(dev);
1318
1319 switch (state) {
1320 case PCI_POWER_ERROR:
1321 case PCI_UNKNOWN:
1322 break;
1323 case PCI_D1:
1324 case PCI_D2:
1325 if (pci_no_d1d2(dev))
1326 break;
1327 default:
1328 target_state = state;
1329 }
1330 } else if (!dev->pm_cap) {
1331 target_state = PCI_D0;
1332 } else if (device_may_wakeup(&dev->dev)) {
1333 /*
1334 * Find the deepest state from which the device can generate
1335 * wake-up events, make it the target state and enable device
1336 * to generate PME#.
1337 */
1338 if (dev->pme_support) {
1339 while (target_state
1340 && !(dev->pme_support & (1 << target_state)))
1341 target_state--;
1342 }
1343 }
1344
1345 return target_state;
1346 }
1347
1348 /**
1349 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1350 * @dev: Device to handle.
1351 *
1352 * Choose the power state appropriate for the device depending on whether
1353 * it can wake up the system and/or is power manageable by the platform
1354 * (PCI_D3hot is the default) and put the device into that state.
1355 */
1356 int pci_prepare_to_sleep(struct pci_dev *dev)
1357 {
1358 pci_power_t target_state = pci_target_state(dev);
1359 int error;
1360
1361 if (target_state == PCI_POWER_ERROR)
1362 return -EIO;
1363
1364 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1365
1366 error = pci_set_power_state(dev, target_state);
1367
1368 if (error)
1369 pci_enable_wake(dev, target_state, false);
1370
1371 return error;
1372 }
1373
1374 /**
1375 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1376 * @dev: Device to handle.
1377 *
1378 * Disable device's sytem wake-up capability and put it into D0.
1379 */
1380 int pci_back_from_sleep(struct pci_dev *dev)
1381 {
1382 pci_enable_wake(dev, PCI_D0, false);
1383 return pci_set_power_state(dev, PCI_D0);
1384 }
1385
1386 /**
1387 * pci_pm_init - Initialize PM functions of given PCI device
1388 * @dev: PCI device to handle.
1389 */
1390 void pci_pm_init(struct pci_dev *dev)
1391 {
1392 int pm;
1393 u16 pmc;
1394
1395 dev->wakeup_prepared = false;
1396 dev->pm_cap = 0;
1397
1398 /* find PCI PM capability in list */
1399 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1400 if (!pm)
1401 return;
1402 /* Check device's ability to generate PME# */
1403 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1404
1405 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1406 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1407 pmc & PCI_PM_CAP_VER_MASK);
1408 return;
1409 }
1410
1411 dev->pm_cap = pm;
1412
1413 dev->d1_support = false;
1414 dev->d2_support = false;
1415 if (!pci_no_d1d2(dev)) {
1416 if (pmc & PCI_PM_CAP_D1)
1417 dev->d1_support = true;
1418 if (pmc & PCI_PM_CAP_D2)
1419 dev->d2_support = true;
1420
1421 if (dev->d1_support || dev->d2_support)
1422 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1423 dev->d1_support ? " D1" : "",
1424 dev->d2_support ? " D2" : "");
1425 }
1426
1427 pmc &= PCI_PM_CAP_PME_MASK;
1428 if (pmc) {
1429 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1430 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1431 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1432 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1433 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1434 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1435 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1436 /*
1437 * Make device's PM flags reflect the wake-up capability, but
1438 * let the user space enable it to wake up the system as needed.
1439 */
1440 device_set_wakeup_capable(&dev->dev, true);
1441 device_set_wakeup_enable(&dev->dev, false);
1442 /* Disable the PME# generation functionality */
1443 pci_pme_active(dev, false);
1444 } else {
1445 dev->pme_support = 0;
1446 }
1447 }
1448
1449 /**
1450 * platform_pci_wakeup_init - init platform wakeup if present
1451 * @dev: PCI device
1452 *
1453 * Some devices don't have PCI PM caps but can still generate wakeup
1454 * events through platform methods (like ACPI events). If @dev supports
1455 * platform wakeup events, set the device flag to indicate as much. This
1456 * may be redundant if the device also supports PCI PM caps, but double
1457 * initialization should be safe in that case.
1458 */
1459 void platform_pci_wakeup_init(struct pci_dev *dev)
1460 {
1461 if (!platform_pci_can_wakeup(dev))
1462 return;
1463
1464 device_set_wakeup_capable(&dev->dev, true);
1465 device_set_wakeup_enable(&dev->dev, false);
1466 platform_pci_sleep_wake(dev, false);
1467 }
1468
1469 /**
1470 * pci_add_save_buffer - allocate buffer for saving given capability registers
1471 * @dev: the PCI device
1472 * @cap: the capability to allocate the buffer for
1473 * @size: requested size of the buffer
1474 */
1475 static int pci_add_cap_save_buffer(
1476 struct pci_dev *dev, char cap, unsigned int size)
1477 {
1478 int pos;
1479 struct pci_cap_saved_state *save_state;
1480
1481 pos = pci_find_capability(dev, cap);
1482 if (pos <= 0)
1483 return 0;
1484
1485 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1486 if (!save_state)
1487 return -ENOMEM;
1488
1489 save_state->cap_nr = cap;
1490 pci_add_saved_cap(dev, save_state);
1491
1492 return 0;
1493 }
1494
1495 /**
1496 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1497 * @dev: the PCI device
1498 */
1499 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1500 {
1501 int error;
1502
1503 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1504 PCI_EXP_SAVE_REGS * sizeof(u16));
1505 if (error)
1506 dev_err(&dev->dev,
1507 "unable to preallocate PCI Express save buffer\n");
1508
1509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1510 if (error)
1511 dev_err(&dev->dev,
1512 "unable to preallocate PCI-X save buffer\n");
1513 }
1514
1515 /**
1516 * pci_enable_ari - enable ARI forwarding if hardware support it
1517 * @dev: the PCI device
1518 */
1519 void pci_enable_ari(struct pci_dev *dev)
1520 {
1521 int pos;
1522 u32 cap;
1523 u16 ctrl;
1524 struct pci_dev *bridge;
1525
1526 if (!dev->is_pcie || dev->devfn)
1527 return;
1528
1529 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1530 if (!pos)
1531 return;
1532
1533 bridge = dev->bus->self;
1534 if (!bridge || !bridge->is_pcie)
1535 return;
1536
1537 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1538 if (!pos)
1539 return;
1540
1541 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1542 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1543 return;
1544
1545 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1546 ctrl |= PCI_EXP_DEVCTL2_ARI;
1547 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1548
1549 bridge->ari_enabled = 1;
1550 }
1551
1552 /**
1553 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1554 * @dev: the PCI device
1555 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1556 *
1557 * Perform INTx swizzling for a device behind one level of bridge. This is
1558 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1559 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1560 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1561 * the PCI Express Base Specification, Revision 2.1)
1562 */
1563 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1564 {
1565 int slot;
1566
1567 if (pci_ari_enabled(dev->bus))
1568 slot = 0;
1569 else
1570 slot = PCI_SLOT(dev->devfn);
1571
1572 return (((pin - 1) + slot) % 4) + 1;
1573 }
1574
1575 int
1576 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1577 {
1578 u8 pin;
1579
1580 pin = dev->pin;
1581 if (!pin)
1582 return -1;
1583
1584 while (!pci_is_root_bus(dev->bus)) {
1585 pin = pci_swizzle_interrupt_pin(dev, pin);
1586 dev = dev->bus->self;
1587 }
1588 *bridge = dev;
1589 return pin;
1590 }
1591
1592 /**
1593 * pci_common_swizzle - swizzle INTx all the way to root bridge
1594 * @dev: the PCI device
1595 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1596 *
1597 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1598 * bridges all the way up to a PCI root bus.
1599 */
1600 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1601 {
1602 u8 pin = *pinp;
1603
1604 while (!pci_is_root_bus(dev->bus)) {
1605 pin = pci_swizzle_interrupt_pin(dev, pin);
1606 dev = dev->bus->self;
1607 }
1608 *pinp = pin;
1609 return PCI_SLOT(dev->devfn);
1610 }
1611
1612 /**
1613 * pci_release_region - Release a PCI bar
1614 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1615 * @bar: BAR to release
1616 *
1617 * Releases the PCI I/O and memory resources previously reserved by a
1618 * successful call to pci_request_region. Call this function only
1619 * after all use of the PCI regions has ceased.
1620 */
1621 void pci_release_region(struct pci_dev *pdev, int bar)
1622 {
1623 struct pci_devres *dr;
1624
1625 if (pci_resource_len(pdev, bar) == 0)
1626 return;
1627 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1628 release_region(pci_resource_start(pdev, bar),
1629 pci_resource_len(pdev, bar));
1630 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1631 release_mem_region(pci_resource_start(pdev, bar),
1632 pci_resource_len(pdev, bar));
1633
1634 dr = find_pci_dr(pdev);
1635 if (dr)
1636 dr->region_mask &= ~(1 << bar);
1637 }
1638
1639 /**
1640 * __pci_request_region - Reserved PCI I/O and memory resource
1641 * @pdev: PCI device whose resources are to be reserved
1642 * @bar: BAR to be reserved
1643 * @res_name: Name to be associated with resource.
1644 * @exclusive: whether the region access is exclusive or not
1645 *
1646 * Mark the PCI region associated with PCI device @pdev BR @bar as
1647 * being reserved by owner @res_name. Do not access any
1648 * address inside the PCI regions unless this call returns
1649 * successfully.
1650 *
1651 * If @exclusive is set, then the region is marked so that userspace
1652 * is explicitly not allowed to map the resource via /dev/mem or
1653 * sysfs MMIO access.
1654 *
1655 * Returns 0 on success, or %EBUSY on error. A warning
1656 * message is also printed on failure.
1657 */
1658 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1659 int exclusive)
1660 {
1661 struct pci_devres *dr;
1662
1663 if (pci_resource_len(pdev, bar) == 0)
1664 return 0;
1665
1666 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1667 if (!request_region(pci_resource_start(pdev, bar),
1668 pci_resource_len(pdev, bar), res_name))
1669 goto err_out;
1670 }
1671 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1672 if (!__request_mem_region(pci_resource_start(pdev, bar),
1673 pci_resource_len(pdev, bar), res_name,
1674 exclusive))
1675 goto err_out;
1676 }
1677
1678 dr = find_pci_dr(pdev);
1679 if (dr)
1680 dr->region_mask |= 1 << bar;
1681
1682 return 0;
1683
1684 err_out:
1685 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1686 bar,
1687 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1688 &pdev->resource[bar]);
1689 return -EBUSY;
1690 }
1691
1692 /**
1693 * pci_request_region - Reserve PCI I/O and memory resource
1694 * @pdev: PCI device whose resources are to be reserved
1695 * @bar: BAR to be reserved
1696 * @res_name: Name to be associated with resource
1697 *
1698 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1699 * being reserved by owner @res_name. Do not access any
1700 * address inside the PCI regions unless this call returns
1701 * successfully.
1702 *
1703 * Returns 0 on success, or %EBUSY on error. A warning
1704 * message is also printed on failure.
1705 */
1706 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1707 {
1708 return __pci_request_region(pdev, bar, res_name, 0);
1709 }
1710
1711 /**
1712 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1713 * @pdev: PCI device whose resources are to be reserved
1714 * @bar: BAR to be reserved
1715 * @res_name: Name to be associated with resource.
1716 *
1717 * Mark the PCI region associated with PCI device @pdev BR @bar as
1718 * being reserved by owner @res_name. Do not access any
1719 * address inside the PCI regions unless this call returns
1720 * successfully.
1721 *
1722 * Returns 0 on success, or %EBUSY on error. A warning
1723 * message is also printed on failure.
1724 *
1725 * The key difference that _exclusive makes it that userspace is
1726 * explicitly not allowed to map the resource via /dev/mem or
1727 * sysfs.
1728 */
1729 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1730 {
1731 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1732 }
1733 /**
1734 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1735 * @pdev: PCI device whose resources were previously reserved
1736 * @bars: Bitmask of BARs to be released
1737 *
1738 * Release selected PCI I/O and memory resources previously reserved.
1739 * Call this function only after all use of the PCI regions has ceased.
1740 */
1741 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1742 {
1743 int i;
1744
1745 for (i = 0; i < 6; i++)
1746 if (bars & (1 << i))
1747 pci_release_region(pdev, i);
1748 }
1749
1750 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1751 const char *res_name, int excl)
1752 {
1753 int i;
1754
1755 for (i = 0; i < 6; i++)
1756 if (bars & (1 << i))
1757 if (__pci_request_region(pdev, i, res_name, excl))
1758 goto err_out;
1759 return 0;
1760
1761 err_out:
1762 while(--i >= 0)
1763 if (bars & (1 << i))
1764 pci_release_region(pdev, i);
1765
1766 return -EBUSY;
1767 }
1768
1769
1770 /**
1771 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1772 * @pdev: PCI device whose resources are to be reserved
1773 * @bars: Bitmask of BARs to be requested
1774 * @res_name: Name to be associated with resource
1775 */
1776 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1777 const char *res_name)
1778 {
1779 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1780 }
1781
1782 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1783 int bars, const char *res_name)
1784 {
1785 return __pci_request_selected_regions(pdev, bars, res_name,
1786 IORESOURCE_EXCLUSIVE);
1787 }
1788
1789 /**
1790 * pci_release_regions - Release reserved PCI I/O and memory resources
1791 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1792 *
1793 * Releases all PCI I/O and memory resources previously reserved by a
1794 * successful call to pci_request_regions. Call this function only
1795 * after all use of the PCI regions has ceased.
1796 */
1797
1798 void pci_release_regions(struct pci_dev *pdev)
1799 {
1800 pci_release_selected_regions(pdev, (1 << 6) - 1);
1801 }
1802
1803 /**
1804 * pci_request_regions - Reserved PCI I/O and memory resources
1805 * @pdev: PCI device whose resources are to be reserved
1806 * @res_name: Name to be associated with resource.
1807 *
1808 * Mark all PCI regions associated with PCI device @pdev as
1809 * being reserved by owner @res_name. Do not access any
1810 * address inside the PCI regions unless this call returns
1811 * successfully.
1812 *
1813 * Returns 0 on success, or %EBUSY on error. A warning
1814 * message is also printed on failure.
1815 */
1816 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1817 {
1818 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1819 }
1820
1821 /**
1822 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1823 * @pdev: PCI device whose resources are to be reserved
1824 * @res_name: Name to be associated with resource.
1825 *
1826 * Mark all PCI regions associated with PCI device @pdev as
1827 * being reserved by owner @res_name. Do not access any
1828 * address inside the PCI regions unless this call returns
1829 * successfully.
1830 *
1831 * pci_request_regions_exclusive() will mark the region so that
1832 * /dev/mem and the sysfs MMIO access will not be allowed.
1833 *
1834 * Returns 0 on success, or %EBUSY on error. A warning
1835 * message is also printed on failure.
1836 */
1837 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1838 {
1839 return pci_request_selected_regions_exclusive(pdev,
1840 ((1 << 6) - 1), res_name);
1841 }
1842
1843 static void __pci_set_master(struct pci_dev *dev, bool enable)
1844 {
1845 u16 old_cmd, cmd;
1846
1847 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1848 if (enable)
1849 cmd = old_cmd | PCI_COMMAND_MASTER;
1850 else
1851 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1852 if (cmd != old_cmd) {
1853 dev_dbg(&dev->dev, "%s bus mastering\n",
1854 enable ? "enabling" : "disabling");
1855 pci_write_config_word(dev, PCI_COMMAND, cmd);
1856 }
1857 dev->is_busmaster = enable;
1858 }
1859
1860 /**
1861 * pci_set_master - enables bus-mastering for device dev
1862 * @dev: the PCI device to enable
1863 *
1864 * Enables bus-mastering on the device and calls pcibios_set_master()
1865 * to do the needed arch specific settings.
1866 */
1867 void pci_set_master(struct pci_dev *dev)
1868 {
1869 __pci_set_master(dev, true);
1870 pcibios_set_master(dev);
1871 }
1872
1873 /**
1874 * pci_clear_master - disables bus-mastering for device dev
1875 * @dev: the PCI device to disable
1876 */
1877 void pci_clear_master(struct pci_dev *dev)
1878 {
1879 __pci_set_master(dev, false);
1880 }
1881
1882 #ifdef PCI_DISABLE_MWI
1883 int pci_set_mwi(struct pci_dev *dev)
1884 {
1885 return 0;
1886 }
1887
1888 int pci_try_set_mwi(struct pci_dev *dev)
1889 {
1890 return 0;
1891 }
1892
1893 void pci_clear_mwi(struct pci_dev *dev)
1894 {
1895 }
1896
1897 #else
1898
1899 /**
1900 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1901 * @dev: the PCI device for which MWI is to be enabled
1902 *
1903 * Helper function for pci_set_mwi.
1904 * Originally copied from drivers/net/acenic.c.
1905 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1906 *
1907 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1908 */
1909 static int
1910 pci_set_cacheline_size(struct pci_dev *dev)
1911 {
1912 u8 cacheline_size;
1913
1914 if (!pci_cache_line_size)
1915 return -EINVAL; /* The system doesn't support MWI. */
1916
1917 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1918 equal to or multiple of the right value. */
1919 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1920 if (cacheline_size >= pci_cache_line_size &&
1921 (cacheline_size % pci_cache_line_size) == 0)
1922 return 0;
1923
1924 /* Write the correct value. */
1925 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1926 /* Read it back. */
1927 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1928 if (cacheline_size == pci_cache_line_size)
1929 return 0;
1930
1931 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1932 "supported\n", pci_cache_line_size << 2);
1933
1934 return -EINVAL;
1935 }
1936
1937 /**
1938 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1939 * @dev: the PCI device for which MWI is enabled
1940 *
1941 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1942 *
1943 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1944 */
1945 int
1946 pci_set_mwi(struct pci_dev *dev)
1947 {
1948 int rc;
1949 u16 cmd;
1950
1951 rc = pci_set_cacheline_size(dev);
1952 if (rc)
1953 return rc;
1954
1955 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1956 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1957 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1958 cmd |= PCI_COMMAND_INVALIDATE;
1959 pci_write_config_word(dev, PCI_COMMAND, cmd);
1960 }
1961
1962 return 0;
1963 }
1964
1965 /**
1966 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1967 * @dev: the PCI device for which MWI is enabled
1968 *
1969 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1970 * Callers are not required to check the return value.
1971 *
1972 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1973 */
1974 int pci_try_set_mwi(struct pci_dev *dev)
1975 {
1976 int rc = pci_set_mwi(dev);
1977 return rc;
1978 }
1979
1980 /**
1981 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1982 * @dev: the PCI device to disable
1983 *
1984 * Disables PCI Memory-Write-Invalidate transaction on the device
1985 */
1986 void
1987 pci_clear_mwi(struct pci_dev *dev)
1988 {
1989 u16 cmd;
1990
1991 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1992 if (cmd & PCI_COMMAND_INVALIDATE) {
1993 cmd &= ~PCI_COMMAND_INVALIDATE;
1994 pci_write_config_word(dev, PCI_COMMAND, cmd);
1995 }
1996 }
1997 #endif /* ! PCI_DISABLE_MWI */
1998
1999 /**
2000 * pci_intx - enables/disables PCI INTx for device dev
2001 * @pdev: the PCI device to operate on
2002 * @enable: boolean: whether to enable or disable PCI INTx
2003 *
2004 * Enables/disables PCI INTx for device dev
2005 */
2006 void
2007 pci_intx(struct pci_dev *pdev, int enable)
2008 {
2009 u16 pci_command, new;
2010
2011 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2012
2013 if (enable) {
2014 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2015 } else {
2016 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2017 }
2018
2019 if (new != pci_command) {
2020 struct pci_devres *dr;
2021
2022 pci_write_config_word(pdev, PCI_COMMAND, new);
2023
2024 dr = find_pci_dr(pdev);
2025 if (dr && !dr->restore_intx) {
2026 dr->restore_intx = 1;
2027 dr->orig_intx = !enable;
2028 }
2029 }
2030 }
2031
2032 /**
2033 * pci_msi_off - disables any msi or msix capabilities
2034 * @dev: the PCI device to operate on
2035 *
2036 * If you want to use msi see pci_enable_msi and friends.
2037 * This is a lower level primitive that allows us to disable
2038 * msi operation at the device level.
2039 */
2040 void pci_msi_off(struct pci_dev *dev)
2041 {
2042 int pos;
2043 u16 control;
2044
2045 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2046 if (pos) {
2047 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2048 control &= ~PCI_MSI_FLAGS_ENABLE;
2049 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2050 }
2051 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2052 if (pos) {
2053 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2054 control &= ~PCI_MSIX_FLAGS_ENABLE;
2055 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2056 }
2057 }
2058
2059 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2060 /*
2061 * These can be overridden by arch-specific implementations
2062 */
2063 int
2064 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2065 {
2066 if (!pci_dma_supported(dev, mask))
2067 return -EIO;
2068
2069 dev->dma_mask = mask;
2070
2071 return 0;
2072 }
2073
2074 int
2075 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2076 {
2077 if (!pci_dma_supported(dev, mask))
2078 return -EIO;
2079
2080 dev->dev.coherent_dma_mask = mask;
2081
2082 return 0;
2083 }
2084 #endif
2085
2086 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2087 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2088 {
2089 return dma_set_max_seg_size(&dev->dev, size);
2090 }
2091 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2092 #endif
2093
2094 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2095 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2096 {
2097 return dma_set_seg_boundary(&dev->dev, mask);
2098 }
2099 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2100 #endif
2101
2102 static int pcie_flr(struct pci_dev *dev, int probe)
2103 {
2104 int i;
2105 int pos;
2106 u32 cap;
2107 u16 status;
2108
2109 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2110 if (!pos)
2111 return -ENOTTY;
2112
2113 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2114 if (!(cap & PCI_EXP_DEVCAP_FLR))
2115 return -ENOTTY;
2116
2117 if (probe)
2118 return 0;
2119
2120 /* Wait for Transaction Pending bit clean */
2121 for (i = 0; i < 4; i++) {
2122 if (i)
2123 msleep((1 << (i - 1)) * 100);
2124
2125 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2126 if (!(status & PCI_EXP_DEVSTA_TRPND))
2127 goto clear;
2128 }
2129
2130 dev_err(&dev->dev, "transaction is not cleared; "
2131 "proceeding with reset anyway\n");
2132
2133 clear:
2134 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2135 PCI_EXP_DEVCTL_BCR_FLR);
2136 msleep(100);
2137
2138 return 0;
2139 }
2140
2141 static int pci_af_flr(struct pci_dev *dev, int probe)
2142 {
2143 int i;
2144 int pos;
2145 u8 cap;
2146 u8 status;
2147
2148 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2149 if (!pos)
2150 return -ENOTTY;
2151
2152 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2153 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2154 return -ENOTTY;
2155
2156 if (probe)
2157 return 0;
2158
2159 /* Wait for Transaction Pending bit clean */
2160 for (i = 0; i < 4; i++) {
2161 if (i)
2162 msleep((1 << (i - 1)) * 100);
2163
2164 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2165 if (!(status & PCI_AF_STATUS_TP))
2166 goto clear;
2167 }
2168
2169 dev_err(&dev->dev, "transaction is not cleared; "
2170 "proceeding with reset anyway\n");
2171
2172 clear:
2173 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2174 msleep(100);
2175
2176 return 0;
2177 }
2178
2179 static int pci_pm_reset(struct pci_dev *dev, int probe)
2180 {
2181 u16 csr;
2182
2183 if (!dev->pm_cap)
2184 return -ENOTTY;
2185
2186 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2187 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2188 return -ENOTTY;
2189
2190 if (probe)
2191 return 0;
2192
2193 if (dev->current_state != PCI_D0)
2194 return -EINVAL;
2195
2196 csr &= ~PCI_PM_CTRL_STATE_MASK;
2197 csr |= PCI_D3hot;
2198 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2199 msleep(pci_pm_d3_delay);
2200
2201 csr &= ~PCI_PM_CTRL_STATE_MASK;
2202 csr |= PCI_D0;
2203 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2204 msleep(pci_pm_d3_delay);
2205
2206 return 0;
2207 }
2208
2209 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2210 {
2211 u16 ctrl;
2212 struct pci_dev *pdev;
2213
2214 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2215 return -ENOTTY;
2216
2217 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2218 if (pdev != dev)
2219 return -ENOTTY;
2220
2221 if (probe)
2222 return 0;
2223
2224 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2225 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2226 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2227 msleep(100);
2228
2229 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2230 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2231 msleep(100);
2232
2233 return 0;
2234 }
2235
2236 static int pci_dev_reset(struct pci_dev *dev, int probe)
2237 {
2238 int rc;
2239
2240 might_sleep();
2241
2242 if (!probe) {
2243 pci_block_user_cfg_access(dev);
2244 /* block PM suspend, driver probe, etc. */
2245 down(&dev->dev.sem);
2246 }
2247
2248 rc = pcie_flr(dev, probe);
2249 if (rc != -ENOTTY)
2250 goto done;
2251
2252 rc = pci_af_flr(dev, probe);
2253 if (rc != -ENOTTY)
2254 goto done;
2255
2256 rc = pci_pm_reset(dev, probe);
2257 if (rc != -ENOTTY)
2258 goto done;
2259
2260 rc = pci_parent_bus_reset(dev, probe);
2261 done:
2262 if (!probe) {
2263 up(&dev->dev.sem);
2264 pci_unblock_user_cfg_access(dev);
2265 }
2266
2267 return rc;
2268 }
2269
2270 /**
2271 * __pci_reset_function - reset a PCI device function
2272 * @dev: PCI device to reset
2273 *
2274 * Some devices allow an individual function to be reset without affecting
2275 * other functions in the same device. The PCI device must be responsive
2276 * to PCI config space in order to use this function.
2277 *
2278 * The device function is presumed to be unused when this function is called.
2279 * Resetting the device will make the contents of PCI configuration space
2280 * random, so any caller of this must be prepared to reinitialise the
2281 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2282 * etc.
2283 *
2284 * Returns 0 if the device function was successfully reset or negative if the
2285 * device doesn't support resetting a single function.
2286 */
2287 int __pci_reset_function(struct pci_dev *dev)
2288 {
2289 return pci_dev_reset(dev, 0);
2290 }
2291 EXPORT_SYMBOL_GPL(__pci_reset_function);
2292
2293 /**
2294 * pci_probe_reset_function - check whether the device can be safely reset
2295 * @dev: PCI device to reset
2296 *
2297 * Some devices allow an individual function to be reset without affecting
2298 * other functions in the same device. The PCI device must be responsive
2299 * to PCI config space in order to use this function.
2300 *
2301 * Returns 0 if the device function can be reset or negative if the
2302 * device doesn't support resetting a single function.
2303 */
2304 int pci_probe_reset_function(struct pci_dev *dev)
2305 {
2306 return pci_dev_reset(dev, 1);
2307 }
2308
2309 /**
2310 * pci_reset_function - quiesce and reset a PCI device function
2311 * @dev: PCI device to reset
2312 *
2313 * Some devices allow an individual function to be reset without affecting
2314 * other functions in the same device. The PCI device must be responsive
2315 * to PCI config space in order to use this function.
2316 *
2317 * This function does not just reset the PCI portion of a device, but
2318 * clears all the state associated with the device. This function differs
2319 * from __pci_reset_function in that it saves and restores device state
2320 * over the reset.
2321 *
2322 * Returns 0 if the device function was successfully reset or negative if the
2323 * device doesn't support resetting a single function.
2324 */
2325 int pci_reset_function(struct pci_dev *dev)
2326 {
2327 int rc;
2328
2329 rc = pci_dev_reset(dev, 1);
2330 if (rc)
2331 return rc;
2332
2333 pci_save_state(dev);
2334
2335 /*
2336 * both INTx and MSI are disabled after the Interrupt Disable bit
2337 * is set and the Bus Master bit is cleared.
2338 */
2339 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2340
2341 rc = pci_dev_reset(dev, 0);
2342
2343 pci_restore_state(dev);
2344
2345 return rc;
2346 }
2347 EXPORT_SYMBOL_GPL(pci_reset_function);
2348
2349 /**
2350 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2351 * @dev: PCI device to query
2352 *
2353 * Returns mmrbc: maximum designed memory read count in bytes
2354 * or appropriate error value.
2355 */
2356 int pcix_get_max_mmrbc(struct pci_dev *dev)
2357 {
2358 int err, cap;
2359 u32 stat;
2360
2361 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2362 if (!cap)
2363 return -EINVAL;
2364
2365 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2366 if (err)
2367 return -EINVAL;
2368
2369 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2370 }
2371 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2372
2373 /**
2374 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2375 * @dev: PCI device to query
2376 *
2377 * Returns mmrbc: maximum memory read count in bytes
2378 * or appropriate error value.
2379 */
2380 int pcix_get_mmrbc(struct pci_dev *dev)
2381 {
2382 int ret, cap;
2383 u32 cmd;
2384
2385 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2386 if (!cap)
2387 return -EINVAL;
2388
2389 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2390 if (!ret)
2391 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2392
2393 return ret;
2394 }
2395 EXPORT_SYMBOL(pcix_get_mmrbc);
2396
2397 /**
2398 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2399 * @dev: PCI device to query
2400 * @mmrbc: maximum memory read count in bytes
2401 * valid values are 512, 1024, 2048, 4096
2402 *
2403 * If possible sets maximum memory read byte count, some bridges have erratas
2404 * that prevent this.
2405 */
2406 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2407 {
2408 int cap, err = -EINVAL;
2409 u32 stat, cmd, v, o;
2410
2411 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2412 goto out;
2413
2414 v = ffs(mmrbc) - 10;
2415
2416 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2417 if (!cap)
2418 goto out;
2419
2420 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2421 if (err)
2422 goto out;
2423
2424 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2425 return -E2BIG;
2426
2427 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2428 if (err)
2429 goto out;
2430
2431 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2432 if (o != v) {
2433 if (v > o && dev->bus &&
2434 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2435 return -EIO;
2436
2437 cmd &= ~PCI_X_CMD_MAX_READ;
2438 cmd |= v << 2;
2439 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2440 }
2441 out:
2442 return err;
2443 }
2444 EXPORT_SYMBOL(pcix_set_mmrbc);
2445
2446 /**
2447 * pcie_get_readrq - get PCI Express read request size
2448 * @dev: PCI device to query
2449 *
2450 * Returns maximum memory read request in bytes
2451 * or appropriate error value.
2452 */
2453 int pcie_get_readrq(struct pci_dev *dev)
2454 {
2455 int ret, cap;
2456 u16 ctl;
2457
2458 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2459 if (!cap)
2460 return -EINVAL;
2461
2462 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2463 if (!ret)
2464 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2465
2466 return ret;
2467 }
2468 EXPORT_SYMBOL(pcie_get_readrq);
2469
2470 /**
2471 * pcie_set_readrq - set PCI Express maximum memory read request
2472 * @dev: PCI device to query
2473 * @rq: maximum memory read count in bytes
2474 * valid values are 128, 256, 512, 1024, 2048, 4096
2475 *
2476 * If possible sets maximum read byte count
2477 */
2478 int pcie_set_readrq(struct pci_dev *dev, int rq)
2479 {
2480 int cap, err = -EINVAL;
2481 u16 ctl, v;
2482
2483 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2484 goto out;
2485
2486 v = (ffs(rq) - 8) << 12;
2487
2488 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2489 if (!cap)
2490 goto out;
2491
2492 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2493 if (err)
2494 goto out;
2495
2496 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2497 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2498 ctl |= v;
2499 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2500 }
2501
2502 out:
2503 return err;
2504 }
2505 EXPORT_SYMBOL(pcie_set_readrq);
2506
2507 /**
2508 * pci_select_bars - Make BAR mask from the type of resource
2509 * @dev: the PCI device for which BAR mask is made
2510 * @flags: resource type mask to be selected
2511 *
2512 * This helper routine makes bar mask from the type of resource.
2513 */
2514 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2515 {
2516 int i, bars = 0;
2517 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2518 if (pci_resource_flags(dev, i) & flags)
2519 bars |= (1 << i);
2520 return bars;
2521 }
2522
2523 /**
2524 * pci_resource_bar - get position of the BAR associated with a resource
2525 * @dev: the PCI device
2526 * @resno: the resource number
2527 * @type: the BAR type to be filled in
2528 *
2529 * Returns BAR position in config space, or 0 if the BAR is invalid.
2530 */
2531 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2532 {
2533 int reg;
2534
2535 if (resno < PCI_ROM_RESOURCE) {
2536 *type = pci_bar_unknown;
2537 return PCI_BASE_ADDRESS_0 + 4 * resno;
2538 } else if (resno == PCI_ROM_RESOURCE) {
2539 *type = pci_bar_mem32;
2540 return dev->rom_base_reg;
2541 } else if (resno < PCI_BRIDGE_RESOURCES) {
2542 /* device specific resource */
2543 reg = pci_iov_resource_bar(dev, resno, type);
2544 if (reg)
2545 return reg;
2546 }
2547
2548 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2549 return 0;
2550 }
2551
2552 /**
2553 * pci_set_vga_state - set VGA decode state on device and parents if requested
2554 * @dev: the PCI device
2555 * @decode: true = enable decoding, false = disable decoding
2556 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2557 * @change_bridge: traverse ancestors and change bridges
2558 */
2559 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2560 unsigned int command_bits, bool change_bridge)
2561 {
2562 struct pci_bus *bus;
2563 struct pci_dev *bridge;
2564 u16 cmd;
2565
2566 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2567
2568 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2569 if (decode == true)
2570 cmd |= command_bits;
2571 else
2572 cmd &= ~command_bits;
2573 pci_write_config_word(dev, PCI_COMMAND, cmd);
2574
2575 if (change_bridge == false)
2576 return 0;
2577
2578 bus = dev->bus;
2579 while (bus) {
2580 bridge = bus->self;
2581 if (bridge) {
2582 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2583 &cmd);
2584 if (decode == true)
2585 cmd |= PCI_BRIDGE_CTL_VGA;
2586 else
2587 cmd &= ~PCI_BRIDGE_CTL_VGA;
2588 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2589 cmd);
2590 }
2591 bus = bus->parent;
2592 }
2593 return 0;
2594 }
2595
2596 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2597 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2598 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2599
2600 /**
2601 * pci_specified_resource_alignment - get resource alignment specified by user.
2602 * @dev: the PCI device to get
2603 *
2604 * RETURNS: Resource alignment if it is specified.
2605 * Zero if it is not specified.
2606 */
2607 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2608 {
2609 int seg, bus, slot, func, align_order, count;
2610 resource_size_t align = 0;
2611 char *p;
2612
2613 spin_lock(&resource_alignment_lock);
2614 p = resource_alignment_param;
2615 while (*p) {
2616 count = 0;
2617 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2618 p[count] == '@') {
2619 p += count + 1;
2620 } else {
2621 align_order = -1;
2622 }
2623 if (sscanf(p, "%x:%x:%x.%x%n",
2624 &seg, &bus, &slot, &func, &count) != 4) {
2625 seg = 0;
2626 if (sscanf(p, "%x:%x.%x%n",
2627 &bus, &slot, &func, &count) != 3) {
2628 /* Invalid format */
2629 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2630 p);
2631 break;
2632 }
2633 }
2634 p += count;
2635 if (seg == pci_domain_nr(dev->bus) &&
2636 bus == dev->bus->number &&
2637 slot == PCI_SLOT(dev->devfn) &&
2638 func == PCI_FUNC(dev->devfn)) {
2639 if (align_order == -1) {
2640 align = PAGE_SIZE;
2641 } else {
2642 align = 1 << align_order;
2643 }
2644 /* Found */
2645 break;
2646 }
2647 if (*p != ';' && *p != ',') {
2648 /* End of param or invalid format */
2649 break;
2650 }
2651 p++;
2652 }
2653 spin_unlock(&resource_alignment_lock);
2654 return align;
2655 }
2656
2657 /**
2658 * pci_is_reassigndev - check if specified PCI is target device to reassign
2659 * @dev: the PCI device to check
2660 *
2661 * RETURNS: non-zero for PCI device is a target device to reassign,
2662 * or zero is not.
2663 */
2664 int pci_is_reassigndev(struct pci_dev *dev)
2665 {
2666 return (pci_specified_resource_alignment(dev) != 0);
2667 }
2668
2669 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2670 {
2671 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2672 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2673 spin_lock(&resource_alignment_lock);
2674 strncpy(resource_alignment_param, buf, count);
2675 resource_alignment_param[count] = '\0';
2676 spin_unlock(&resource_alignment_lock);
2677 return count;
2678 }
2679
2680 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2681 {
2682 size_t count;
2683 spin_lock(&resource_alignment_lock);
2684 count = snprintf(buf, size, "%s", resource_alignment_param);
2685 spin_unlock(&resource_alignment_lock);
2686 return count;
2687 }
2688
2689 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2690 {
2691 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2692 }
2693
2694 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2695 const char *buf, size_t count)
2696 {
2697 return pci_set_resource_alignment_param(buf, count);
2698 }
2699
2700 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2701 pci_resource_alignment_store);
2702
2703 static int __init pci_resource_alignment_sysfs_init(void)
2704 {
2705 return bus_create_file(&pci_bus_type,
2706 &bus_attr_resource_alignment);
2707 }
2708
2709 late_initcall(pci_resource_alignment_sysfs_init);
2710
2711 static void __devinit pci_no_domains(void)
2712 {
2713 #ifdef CONFIG_PCI_DOMAINS
2714 pci_domains_supported = 0;
2715 #endif
2716 }
2717
2718 /**
2719 * pci_ext_cfg_enabled - can we access extended PCI config space?
2720 * @dev: The PCI device of the root bridge.
2721 *
2722 * Returns 1 if we can access PCI extended config space (offsets
2723 * greater than 0xff). This is the default implementation. Architecture
2724 * implementations can override this.
2725 */
2726 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2727 {
2728 return 1;
2729 }
2730
2731 static int __init pci_setup(char *str)
2732 {
2733 while (str) {
2734 char *k = strchr(str, ',');
2735 if (k)
2736 *k++ = 0;
2737 if (*str && (str = pcibios_setup(str)) && *str) {
2738 if (!strcmp(str, "nomsi")) {
2739 pci_no_msi();
2740 } else if (!strcmp(str, "noaer")) {
2741 pci_no_aer();
2742 } else if (!strcmp(str, "nodomains")) {
2743 pci_no_domains();
2744 } else if (!strncmp(str, "cbiosize=", 9)) {
2745 pci_cardbus_io_size = memparse(str + 9, &str);
2746 } else if (!strncmp(str, "cbmemsize=", 10)) {
2747 pci_cardbus_mem_size = memparse(str + 10, &str);
2748 } else if (!strncmp(str, "resource_alignment=", 19)) {
2749 pci_set_resource_alignment_param(str + 19,
2750 strlen(str + 19));
2751 } else if (!strncmp(str, "ecrc=", 5)) {
2752 pcie_ecrc_get_policy(str + 5);
2753 } else if (!strncmp(str, "hpiosize=", 9)) {
2754 pci_hotplug_io_size = memparse(str + 9, &str);
2755 } else if (!strncmp(str, "hpmemsize=", 10)) {
2756 pci_hotplug_mem_size = memparse(str + 10, &str);
2757 } else {
2758 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2759 str);
2760 }
2761 }
2762 str = k;
2763 }
2764 return 0;
2765 }
2766 early_param("pci", pci_setup);
2767
2768 EXPORT_SYMBOL(pci_reenable_device);
2769 EXPORT_SYMBOL(pci_enable_device_io);
2770 EXPORT_SYMBOL(pci_enable_device_mem);
2771 EXPORT_SYMBOL(pci_enable_device);
2772 EXPORT_SYMBOL(pcim_enable_device);
2773 EXPORT_SYMBOL(pcim_pin_device);
2774 EXPORT_SYMBOL(pci_disable_device);
2775 EXPORT_SYMBOL(pci_find_capability);
2776 EXPORT_SYMBOL(pci_bus_find_capability);
2777 EXPORT_SYMBOL(pci_release_regions);
2778 EXPORT_SYMBOL(pci_request_regions);
2779 EXPORT_SYMBOL(pci_request_regions_exclusive);
2780 EXPORT_SYMBOL(pci_release_region);
2781 EXPORT_SYMBOL(pci_request_region);
2782 EXPORT_SYMBOL(pci_request_region_exclusive);
2783 EXPORT_SYMBOL(pci_release_selected_regions);
2784 EXPORT_SYMBOL(pci_request_selected_regions);
2785 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2786 EXPORT_SYMBOL(pci_set_master);
2787 EXPORT_SYMBOL(pci_clear_master);
2788 EXPORT_SYMBOL(pci_set_mwi);
2789 EXPORT_SYMBOL(pci_try_set_mwi);
2790 EXPORT_SYMBOL(pci_clear_mwi);
2791 EXPORT_SYMBOL_GPL(pci_intx);
2792 EXPORT_SYMBOL(pci_set_dma_mask);
2793 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2794 EXPORT_SYMBOL(pci_assign_resource);
2795 EXPORT_SYMBOL(pci_find_parent_resource);
2796 EXPORT_SYMBOL(pci_select_bars);
2797
2798 EXPORT_SYMBOL(pci_set_power_state);
2799 EXPORT_SYMBOL(pci_save_state);
2800 EXPORT_SYMBOL(pci_restore_state);
2801 EXPORT_SYMBOL(pci_pme_capable);
2802 EXPORT_SYMBOL(pci_pme_active);
2803 EXPORT_SYMBOL(pci_enable_wake);
2804 EXPORT_SYMBOL(pci_wake_from_d3);
2805 EXPORT_SYMBOL(pci_target_state);
2806 EXPORT_SYMBOL(pci_prepare_to_sleep);
2807 EXPORT_SYMBOL(pci_back_from_sleep);
2808 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2809
This page took 0.171194 seconds and 4 git commands to generate.