315fea47e7843956772514a25a64afae736cd38e
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 unsigned int pci_pm_d3_delay;
33
34 static void pci_dev_d3_sleep(struct pci_dev *dev)
35 {
36 unsigned int delay = dev->d3_delay;
37
38 if (delay < pci_pm_d3_delay)
39 delay = pci_pm_d3_delay;
40
41 msleep(delay);
42 }
43
44 #ifdef CONFIG_PCI_DOMAINS
45 int pci_domains_supported = 1;
46 #endif
47
48 #define DEFAULT_CARDBUS_IO_SIZE (256)
49 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
50 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
51 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
52 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
53
54 #define DEFAULT_HOTPLUG_IO_SIZE (256)
55 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
56 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
57 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
58 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
59
60 /*
61 * The default CLS is used if arch didn't set CLS explicitly and not
62 * all pci devices agree on the same value. Arch can override either
63 * the dfl or actual value as it sees fit. Don't forget this is
64 * measured in 32-bit words, not bytes.
65 */
66 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
67 u8 pci_cache_line_size;
68
69 /**
70 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
71 * @bus: pointer to PCI bus structure to search
72 *
73 * Given a PCI bus, returns the highest PCI bus number present in the set
74 * including the given PCI bus and its list of child PCI buses.
75 */
76 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
77 {
78 struct list_head *tmp;
79 unsigned char max, n;
80
81 max = bus->subordinate;
82 list_for_each(tmp, &bus->children) {
83 n = pci_bus_max_busnr(pci_bus_b(tmp));
84 if(n > max)
85 max = n;
86 }
87 return max;
88 }
89 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
90
91 #ifdef CONFIG_HAS_IOMEM
92 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
93 {
94 /*
95 * Make sure the BAR is actually a memory resource, not an IO resource
96 */
97 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
98 WARN_ON(1);
99 return NULL;
100 }
101 return ioremap_nocache(pci_resource_start(pdev, bar),
102 pci_resource_len(pdev, bar));
103 }
104 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
105 #endif
106
107 #if 0
108 /**
109 * pci_max_busnr - returns maximum PCI bus number
110 *
111 * Returns the highest PCI bus number present in the system global list of
112 * PCI buses.
113 */
114 unsigned char __devinit
115 pci_max_busnr(void)
116 {
117 struct pci_bus *bus = NULL;
118 unsigned char max, n;
119
120 max = 0;
121 while ((bus = pci_find_next_bus(bus)) != NULL) {
122 n = pci_bus_max_busnr(bus);
123 if(n > max)
124 max = n;
125 }
126 return max;
127 }
128
129 #endif /* 0 */
130
131 #define PCI_FIND_CAP_TTL 48
132
133 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
134 u8 pos, int cap, int *ttl)
135 {
136 u8 id;
137
138 while ((*ttl)--) {
139 pci_bus_read_config_byte(bus, devfn, pos, &pos);
140 if (pos < 0x40)
141 break;
142 pos &= ~3;
143 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
144 &id);
145 if (id == 0xff)
146 break;
147 if (id == cap)
148 return pos;
149 pos += PCI_CAP_LIST_NEXT;
150 }
151 return 0;
152 }
153
154 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
155 u8 pos, int cap)
156 {
157 int ttl = PCI_FIND_CAP_TTL;
158
159 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
160 }
161
162 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
163 {
164 return __pci_find_next_cap(dev->bus, dev->devfn,
165 pos + PCI_CAP_LIST_NEXT, cap);
166 }
167 EXPORT_SYMBOL_GPL(pci_find_next_capability);
168
169 static int __pci_bus_find_cap_start(struct pci_bus *bus,
170 unsigned int devfn, u8 hdr_type)
171 {
172 u16 status;
173
174 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
175 if (!(status & PCI_STATUS_CAP_LIST))
176 return 0;
177
178 switch (hdr_type) {
179 case PCI_HEADER_TYPE_NORMAL:
180 case PCI_HEADER_TYPE_BRIDGE:
181 return PCI_CAPABILITY_LIST;
182 case PCI_HEADER_TYPE_CARDBUS:
183 return PCI_CB_CAPABILITY_LIST;
184 default:
185 return 0;
186 }
187
188 return 0;
189 }
190
191 /**
192 * pci_find_capability - query for devices' capabilities
193 * @dev: PCI device to query
194 * @cap: capability code
195 *
196 * Tell if a device supports a given PCI capability.
197 * Returns the address of the requested capability structure within the
198 * device's PCI configuration space or 0 in case the device does not
199 * support it. Possible values for @cap:
200 *
201 * %PCI_CAP_ID_PM Power Management
202 * %PCI_CAP_ID_AGP Accelerated Graphics Port
203 * %PCI_CAP_ID_VPD Vital Product Data
204 * %PCI_CAP_ID_SLOTID Slot Identification
205 * %PCI_CAP_ID_MSI Message Signalled Interrupts
206 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
207 * %PCI_CAP_ID_PCIX PCI-X
208 * %PCI_CAP_ID_EXP PCI Express
209 */
210 int pci_find_capability(struct pci_dev *dev, int cap)
211 {
212 int pos;
213
214 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
215 if (pos)
216 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
217
218 return pos;
219 }
220
221 /**
222 * pci_bus_find_capability - query for devices' capabilities
223 * @bus: the PCI bus to query
224 * @devfn: PCI device to query
225 * @cap: capability code
226 *
227 * Like pci_find_capability() but works for pci devices that do not have a
228 * pci_dev structure set up yet.
229 *
230 * Returns the address of the requested capability structure within the
231 * device's PCI configuration space or 0 in case the device does not
232 * support it.
233 */
234 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
235 {
236 int pos;
237 u8 hdr_type;
238
239 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
240
241 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
242 if (pos)
243 pos = __pci_find_next_cap(bus, devfn, pos, cap);
244
245 return pos;
246 }
247
248 /**
249 * pci_find_ext_capability - Find an extended capability
250 * @dev: PCI device to query
251 * @cap: capability code
252 *
253 * Returns the address of the requested extended capability structure
254 * within the device's PCI configuration space or 0 if the device does
255 * not support it. Possible values for @cap:
256 *
257 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
258 * %PCI_EXT_CAP_ID_VC Virtual Channel
259 * %PCI_EXT_CAP_ID_DSN Device Serial Number
260 * %PCI_EXT_CAP_ID_PWR Power Budgeting
261 */
262 int pci_find_ext_capability(struct pci_dev *dev, int cap)
263 {
264 u32 header;
265 int ttl;
266 int pos = PCI_CFG_SPACE_SIZE;
267
268 /* minimum 8 bytes per capability */
269 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
270
271 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
272 return 0;
273
274 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
275 return 0;
276
277 /*
278 * If we have no capabilities, this is indicated by cap ID,
279 * cap version and next pointer all being 0.
280 */
281 if (header == 0)
282 return 0;
283
284 while (ttl-- > 0) {
285 if (PCI_EXT_CAP_ID(header) == cap)
286 return pos;
287
288 pos = PCI_EXT_CAP_NEXT(header);
289 if (pos < PCI_CFG_SPACE_SIZE)
290 break;
291
292 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
293 break;
294 }
295
296 return 0;
297 }
298 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
299
300 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
301 {
302 int rc, ttl = PCI_FIND_CAP_TTL;
303 u8 cap, mask;
304
305 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
306 mask = HT_3BIT_CAP_MASK;
307 else
308 mask = HT_5BIT_CAP_MASK;
309
310 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
311 PCI_CAP_ID_HT, &ttl);
312 while (pos) {
313 rc = pci_read_config_byte(dev, pos + 3, &cap);
314 if (rc != PCIBIOS_SUCCESSFUL)
315 return 0;
316
317 if ((cap & mask) == ht_cap)
318 return pos;
319
320 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
321 pos + PCI_CAP_LIST_NEXT,
322 PCI_CAP_ID_HT, &ttl);
323 }
324
325 return 0;
326 }
327 /**
328 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
329 * @dev: PCI device to query
330 * @pos: Position from which to continue searching
331 * @ht_cap: Hypertransport capability code
332 *
333 * To be used in conjunction with pci_find_ht_capability() to search for
334 * all capabilities matching @ht_cap. @pos should always be a value returned
335 * from pci_find_ht_capability().
336 *
337 * NB. To be 100% safe against broken PCI devices, the caller should take
338 * steps to avoid an infinite loop.
339 */
340 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
341 {
342 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
343 }
344 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
345
346 /**
347 * pci_find_ht_capability - query a device's Hypertransport capabilities
348 * @dev: PCI device to query
349 * @ht_cap: Hypertransport capability code
350 *
351 * Tell if a device supports a given Hypertransport capability.
352 * Returns an address within the device's PCI configuration space
353 * or 0 in case the device does not support the request capability.
354 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
355 * which has a Hypertransport capability matching @ht_cap.
356 */
357 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
358 {
359 int pos;
360
361 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
362 if (pos)
363 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
364
365 return pos;
366 }
367 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
368
369 /**
370 * pci_find_parent_resource - return resource region of parent bus of given region
371 * @dev: PCI device structure contains resources to be searched
372 * @res: child resource record for which parent is sought
373 *
374 * For given resource region of given device, return the resource
375 * region of parent bus the given region is contained in or where
376 * it should be allocated from.
377 */
378 struct resource *
379 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
380 {
381 const struct pci_bus *bus = dev->bus;
382 int i;
383 struct resource *best = NULL;
384
385 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
386 struct resource *r = bus->resource[i];
387 if (!r)
388 continue;
389 if (res->start && !(res->start >= r->start && res->end <= r->end))
390 continue; /* Not contained */
391 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
392 continue; /* Wrong type */
393 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
394 return r; /* Exact match */
395 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
396 if (r->flags & IORESOURCE_PREFETCH)
397 continue;
398 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
399 if (!best)
400 best = r;
401 }
402 return best;
403 }
404
405 /**
406 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
407 * @dev: PCI device to have its BARs restored
408 *
409 * Restore the BAR values for a given device, so as to make it
410 * accessible by its driver.
411 */
412 static void
413 pci_restore_bars(struct pci_dev *dev)
414 {
415 int i;
416
417 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
418 pci_update_resource(dev, i);
419 }
420
421 static struct pci_platform_pm_ops *pci_platform_pm;
422
423 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
424 {
425 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
426 || !ops->sleep_wake || !ops->can_wakeup)
427 return -EINVAL;
428 pci_platform_pm = ops;
429 return 0;
430 }
431
432 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
433 {
434 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
435 }
436
437 static inline int platform_pci_set_power_state(struct pci_dev *dev,
438 pci_power_t t)
439 {
440 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
441 }
442
443 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
444 {
445 return pci_platform_pm ?
446 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
447 }
448
449 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
450 {
451 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
452 }
453
454 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
455 {
456 return pci_platform_pm ?
457 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
458 }
459
460 /**
461 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
462 * given PCI device
463 * @dev: PCI device to handle.
464 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
465 *
466 * RETURN VALUE:
467 * -EINVAL if the requested state is invalid.
468 * -EIO if device does not support PCI PM or its PM capabilities register has a
469 * wrong version, or device doesn't support the requested state.
470 * 0 if device already is in the requested state.
471 * 0 if device's power state has been successfully changed.
472 */
473 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
474 {
475 u16 pmcsr;
476 bool need_restore = false;
477
478 /* Check if we're already there */
479 if (dev->current_state == state)
480 return 0;
481
482 if (!dev->pm_cap)
483 return -EIO;
484
485 if (state < PCI_D0 || state > PCI_D3hot)
486 return -EINVAL;
487
488 /* Validate current state:
489 * Can enter D0 from any state, but if we can only go deeper
490 * to sleep if we're already in a low power state
491 */
492 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
493 && dev->current_state > state) {
494 dev_err(&dev->dev, "invalid power transition "
495 "(from state %d to %d)\n", dev->current_state, state);
496 return -EINVAL;
497 }
498
499 /* check if this device supports the desired state */
500 if ((state == PCI_D1 && !dev->d1_support)
501 || (state == PCI_D2 && !dev->d2_support))
502 return -EIO;
503
504 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
505
506 /* If we're (effectively) in D3, force entire word to 0.
507 * This doesn't affect PME_Status, disables PME_En, and
508 * sets PowerState to 0.
509 */
510 switch (dev->current_state) {
511 case PCI_D0:
512 case PCI_D1:
513 case PCI_D2:
514 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
515 pmcsr |= state;
516 break;
517 case PCI_D3hot:
518 case PCI_D3cold:
519 case PCI_UNKNOWN: /* Boot-up */
520 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
521 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
522 need_restore = true;
523 /* Fall-through: force to D0 */
524 default:
525 pmcsr = 0;
526 break;
527 }
528
529 /* enter specified state */
530 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
531
532 /* Mandatory power management transition delays */
533 /* see PCI PM 1.1 5.6.1 table 18 */
534 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
535 pci_dev_d3_sleep(dev);
536 else if (state == PCI_D2 || dev->current_state == PCI_D2)
537 udelay(PCI_PM_D2_DELAY);
538
539 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
540 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
541 if (dev->current_state != state && printk_ratelimit())
542 dev_info(&dev->dev, "Refused to change power state, "
543 "currently in D%d\n", dev->current_state);
544
545 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
546 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
547 * from D3hot to D0 _may_ perform an internal reset, thereby
548 * going to "D0 Uninitialized" rather than "D0 Initialized".
549 * For example, at least some versions of the 3c905B and the
550 * 3c556B exhibit this behaviour.
551 *
552 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
553 * devices in a D3hot state at boot. Consequently, we need to
554 * restore at least the BARs so that the device will be
555 * accessible to its driver.
556 */
557 if (need_restore)
558 pci_restore_bars(dev);
559
560 if (dev->bus->self)
561 pcie_aspm_pm_state_change(dev->bus->self);
562
563 return 0;
564 }
565
566 /**
567 * pci_update_current_state - Read PCI power state of given device from its
568 * PCI PM registers and cache it
569 * @dev: PCI device to handle.
570 * @state: State to cache in case the device doesn't have the PM capability
571 */
572 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
573 {
574 if (dev->pm_cap) {
575 u16 pmcsr;
576
577 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
578 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
579 } else {
580 dev->current_state = state;
581 }
582 }
583
584 /**
585 * pci_platform_power_transition - Use platform to change device power state
586 * @dev: PCI device to handle.
587 * @state: State to put the device into.
588 */
589 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
590 {
591 int error;
592
593 if (platform_pci_power_manageable(dev)) {
594 error = platform_pci_set_power_state(dev, state);
595 if (!error)
596 pci_update_current_state(dev, state);
597 } else {
598 error = -ENODEV;
599 /* Fall back to PCI_D0 if native PM is not supported */
600 if (!dev->pm_cap)
601 dev->current_state = PCI_D0;
602 }
603
604 return error;
605 }
606
607 /**
608 * __pci_start_power_transition - Start power transition of a PCI device
609 * @dev: PCI device to handle.
610 * @state: State to put the device into.
611 */
612 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
613 {
614 if (state == PCI_D0)
615 pci_platform_power_transition(dev, PCI_D0);
616 }
617
618 /**
619 * __pci_complete_power_transition - Complete power transition of a PCI device
620 * @dev: PCI device to handle.
621 * @state: State to put the device into.
622 *
623 * This function should not be called directly by device drivers.
624 */
625 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
626 {
627 return state > PCI_D0 ?
628 pci_platform_power_transition(dev, state) : -EINVAL;
629 }
630 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
631
632 /**
633 * pci_set_power_state - Set the power state of a PCI device
634 * @dev: PCI device to handle.
635 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
636 *
637 * Transition a device to a new power state, using the platform firmware and/or
638 * the device's PCI PM registers.
639 *
640 * RETURN VALUE:
641 * -EINVAL if the requested state is invalid.
642 * -EIO if device does not support PCI PM or its PM capabilities register has a
643 * wrong version, or device doesn't support the requested state.
644 * 0 if device already is in the requested state.
645 * 0 if device's power state has been successfully changed.
646 */
647 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
648 {
649 int error;
650
651 /* bound the state we're entering */
652 if (state > PCI_D3hot)
653 state = PCI_D3hot;
654 else if (state < PCI_D0)
655 state = PCI_D0;
656 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
657 /*
658 * If the device or the parent bridge do not support PCI PM,
659 * ignore the request if we're doing anything other than putting
660 * it into D0 (which would only happen on boot).
661 */
662 return 0;
663
664 /* Check if we're already there */
665 if (dev->current_state == state)
666 return 0;
667
668 __pci_start_power_transition(dev, state);
669
670 /* This device is quirked not to be put into D3, so
671 don't put it in D3 */
672 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
673 return 0;
674
675 error = pci_raw_set_power_state(dev, state);
676
677 if (!__pci_complete_power_transition(dev, state))
678 error = 0;
679
680 return error;
681 }
682
683 /**
684 * pci_choose_state - Choose the power state of a PCI device
685 * @dev: PCI device to be suspended
686 * @state: target sleep state for the whole system. This is the value
687 * that is passed to suspend() function.
688 *
689 * Returns PCI power state suitable for given device and given system
690 * message.
691 */
692
693 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
694 {
695 pci_power_t ret;
696
697 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
698 return PCI_D0;
699
700 ret = platform_pci_choose_state(dev);
701 if (ret != PCI_POWER_ERROR)
702 return ret;
703
704 switch (state.event) {
705 case PM_EVENT_ON:
706 return PCI_D0;
707 case PM_EVENT_FREEZE:
708 case PM_EVENT_PRETHAW:
709 /* REVISIT both freeze and pre-thaw "should" use D0 */
710 case PM_EVENT_SUSPEND:
711 case PM_EVENT_HIBERNATE:
712 return PCI_D3hot;
713 default:
714 dev_info(&dev->dev, "unrecognized suspend event %d\n",
715 state.event);
716 BUG();
717 }
718 return PCI_D0;
719 }
720
721 EXPORT_SYMBOL(pci_choose_state);
722
723 #define PCI_EXP_SAVE_REGS 7
724
725 #define pcie_cap_has_devctl(type, flags) 1
726 #define pcie_cap_has_lnkctl(type, flags) \
727 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
728 (type == PCI_EXP_TYPE_ROOT_PORT || \
729 type == PCI_EXP_TYPE_ENDPOINT || \
730 type == PCI_EXP_TYPE_LEG_END))
731 #define pcie_cap_has_sltctl(type, flags) \
732 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
733 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
734 (type == PCI_EXP_TYPE_DOWNSTREAM && \
735 (flags & PCI_EXP_FLAGS_SLOT))))
736 #define pcie_cap_has_rtctl(type, flags) \
737 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
738 (type == PCI_EXP_TYPE_ROOT_PORT || \
739 type == PCI_EXP_TYPE_RC_EC))
740 #define pcie_cap_has_devctl2(type, flags) \
741 ((flags & PCI_EXP_FLAGS_VERS) > 1)
742 #define pcie_cap_has_lnkctl2(type, flags) \
743 ((flags & PCI_EXP_FLAGS_VERS) > 1)
744 #define pcie_cap_has_sltctl2(type, flags) \
745 ((flags & PCI_EXP_FLAGS_VERS) > 1)
746
747 static int pci_save_pcie_state(struct pci_dev *dev)
748 {
749 int pos, i = 0;
750 struct pci_cap_saved_state *save_state;
751 u16 *cap;
752 u16 flags;
753
754 pos = pci_pcie_cap(dev);
755 if (!pos)
756 return 0;
757
758 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
759 if (!save_state) {
760 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
761 return -ENOMEM;
762 }
763 cap = (u16 *)&save_state->data[0];
764
765 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
766
767 if (pcie_cap_has_devctl(dev->pcie_type, flags))
768 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
769 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
770 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
771 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
772 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
773 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
774 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
775 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
776 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
777 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
778 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
779 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
780 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
781
782 return 0;
783 }
784
785 static void pci_restore_pcie_state(struct pci_dev *dev)
786 {
787 int i = 0, pos;
788 struct pci_cap_saved_state *save_state;
789 u16 *cap;
790 u16 flags;
791
792 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
793 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
794 if (!save_state || pos <= 0)
795 return;
796 cap = (u16 *)&save_state->data[0];
797
798 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
799
800 if (pcie_cap_has_devctl(dev->pcie_type, flags))
801 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
802 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
803 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
804 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
805 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
806 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
807 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
808 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
809 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
810 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
811 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
812 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
813 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
814 }
815
816
817 static int pci_save_pcix_state(struct pci_dev *dev)
818 {
819 int pos;
820 struct pci_cap_saved_state *save_state;
821
822 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
823 if (pos <= 0)
824 return 0;
825
826 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
827 if (!save_state) {
828 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
829 return -ENOMEM;
830 }
831
832 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
833
834 return 0;
835 }
836
837 static void pci_restore_pcix_state(struct pci_dev *dev)
838 {
839 int i = 0, pos;
840 struct pci_cap_saved_state *save_state;
841 u16 *cap;
842
843 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
844 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
845 if (!save_state || pos <= 0)
846 return;
847 cap = (u16 *)&save_state->data[0];
848
849 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
850 }
851
852
853 /**
854 * pci_save_state - save the PCI configuration space of a device before suspending
855 * @dev: - PCI device that we're dealing with
856 */
857 int
858 pci_save_state(struct pci_dev *dev)
859 {
860 int i;
861 /* XXX: 100% dword access ok here? */
862 for (i = 0; i < 16; i++)
863 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
864 dev->state_saved = true;
865 if ((i = pci_save_pcie_state(dev)) != 0)
866 return i;
867 if ((i = pci_save_pcix_state(dev)) != 0)
868 return i;
869 return 0;
870 }
871
872 /**
873 * pci_restore_state - Restore the saved state of a PCI device
874 * @dev: - PCI device that we're dealing with
875 */
876 int
877 pci_restore_state(struct pci_dev *dev)
878 {
879 int i;
880 u32 val;
881
882 if (!dev->state_saved)
883 return 0;
884
885 /* PCI Express register must be restored first */
886 pci_restore_pcie_state(dev);
887
888 /*
889 * The Base Address register should be programmed before the command
890 * register(s)
891 */
892 for (i = 15; i >= 0; i--) {
893 pci_read_config_dword(dev, i * 4, &val);
894 if (val != dev->saved_config_space[i]) {
895 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
896 "space at offset %#x (was %#x, writing %#x)\n",
897 i, val, (int)dev->saved_config_space[i]);
898 pci_write_config_dword(dev,i * 4,
899 dev->saved_config_space[i]);
900 }
901 }
902 pci_restore_pcix_state(dev);
903 pci_restore_msi_state(dev);
904 pci_restore_iov_state(dev);
905
906 dev->state_saved = false;
907
908 return 0;
909 }
910
911 static int do_pci_enable_device(struct pci_dev *dev, int bars)
912 {
913 int err;
914
915 err = pci_set_power_state(dev, PCI_D0);
916 if (err < 0 && err != -EIO)
917 return err;
918 err = pcibios_enable_device(dev, bars);
919 if (err < 0)
920 return err;
921 pci_fixup_device(pci_fixup_enable, dev);
922
923 return 0;
924 }
925
926 /**
927 * pci_reenable_device - Resume abandoned device
928 * @dev: PCI device to be resumed
929 *
930 * Note this function is a backend of pci_default_resume and is not supposed
931 * to be called by normal code, write proper resume handler and use it instead.
932 */
933 int pci_reenable_device(struct pci_dev *dev)
934 {
935 if (pci_is_enabled(dev))
936 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
937 return 0;
938 }
939
940 static int __pci_enable_device_flags(struct pci_dev *dev,
941 resource_size_t flags)
942 {
943 int err;
944 int i, bars = 0;
945
946 if (atomic_add_return(1, &dev->enable_cnt) > 1)
947 return 0; /* already enabled */
948
949 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
950 if (dev->resource[i].flags & flags)
951 bars |= (1 << i);
952
953 err = do_pci_enable_device(dev, bars);
954 if (err < 0)
955 atomic_dec(&dev->enable_cnt);
956 return err;
957 }
958
959 /**
960 * pci_enable_device_io - Initialize a device for use with IO space
961 * @dev: PCI device to be initialized
962 *
963 * Initialize device before it's used by a driver. Ask low-level code
964 * to enable I/O resources. Wake up the device if it was suspended.
965 * Beware, this function can fail.
966 */
967 int pci_enable_device_io(struct pci_dev *dev)
968 {
969 return __pci_enable_device_flags(dev, IORESOURCE_IO);
970 }
971
972 /**
973 * pci_enable_device_mem - Initialize a device for use with Memory space
974 * @dev: PCI device to be initialized
975 *
976 * Initialize device before it's used by a driver. Ask low-level code
977 * to enable Memory resources. Wake up the device if it was suspended.
978 * Beware, this function can fail.
979 */
980 int pci_enable_device_mem(struct pci_dev *dev)
981 {
982 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
983 }
984
985 /**
986 * pci_enable_device - Initialize device before it's used by a driver.
987 * @dev: PCI device to be initialized
988 *
989 * Initialize device before it's used by a driver. Ask low-level code
990 * to enable I/O and memory. Wake up the device if it was suspended.
991 * Beware, this function can fail.
992 *
993 * Note we don't actually enable the device many times if we call
994 * this function repeatedly (we just increment the count).
995 */
996 int pci_enable_device(struct pci_dev *dev)
997 {
998 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
999 }
1000
1001 /*
1002 * Managed PCI resources. This manages device on/off, intx/msi/msix
1003 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1004 * there's no need to track it separately. pci_devres is initialized
1005 * when a device is enabled using managed PCI device enable interface.
1006 */
1007 struct pci_devres {
1008 unsigned int enabled:1;
1009 unsigned int pinned:1;
1010 unsigned int orig_intx:1;
1011 unsigned int restore_intx:1;
1012 u32 region_mask;
1013 };
1014
1015 static void pcim_release(struct device *gendev, void *res)
1016 {
1017 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1018 struct pci_devres *this = res;
1019 int i;
1020
1021 if (dev->msi_enabled)
1022 pci_disable_msi(dev);
1023 if (dev->msix_enabled)
1024 pci_disable_msix(dev);
1025
1026 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1027 if (this->region_mask & (1 << i))
1028 pci_release_region(dev, i);
1029
1030 if (this->restore_intx)
1031 pci_intx(dev, this->orig_intx);
1032
1033 if (this->enabled && !this->pinned)
1034 pci_disable_device(dev);
1035 }
1036
1037 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1038 {
1039 struct pci_devres *dr, *new_dr;
1040
1041 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1042 if (dr)
1043 return dr;
1044
1045 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1046 if (!new_dr)
1047 return NULL;
1048 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1049 }
1050
1051 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1052 {
1053 if (pci_is_managed(pdev))
1054 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1055 return NULL;
1056 }
1057
1058 /**
1059 * pcim_enable_device - Managed pci_enable_device()
1060 * @pdev: PCI device to be initialized
1061 *
1062 * Managed pci_enable_device().
1063 */
1064 int pcim_enable_device(struct pci_dev *pdev)
1065 {
1066 struct pci_devres *dr;
1067 int rc;
1068
1069 dr = get_pci_dr(pdev);
1070 if (unlikely(!dr))
1071 return -ENOMEM;
1072 if (dr->enabled)
1073 return 0;
1074
1075 rc = pci_enable_device(pdev);
1076 if (!rc) {
1077 pdev->is_managed = 1;
1078 dr->enabled = 1;
1079 }
1080 return rc;
1081 }
1082
1083 /**
1084 * pcim_pin_device - Pin managed PCI device
1085 * @pdev: PCI device to pin
1086 *
1087 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1088 * driver detach. @pdev must have been enabled with
1089 * pcim_enable_device().
1090 */
1091 void pcim_pin_device(struct pci_dev *pdev)
1092 {
1093 struct pci_devres *dr;
1094
1095 dr = find_pci_dr(pdev);
1096 WARN_ON(!dr || !dr->enabled);
1097 if (dr)
1098 dr->pinned = 1;
1099 }
1100
1101 /**
1102 * pcibios_disable_device - disable arch specific PCI resources for device dev
1103 * @dev: the PCI device to disable
1104 *
1105 * Disables architecture specific PCI resources for the device. This
1106 * is the default implementation. Architecture implementations can
1107 * override this.
1108 */
1109 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1110
1111 static void do_pci_disable_device(struct pci_dev *dev)
1112 {
1113 u16 pci_command;
1114
1115 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1116 if (pci_command & PCI_COMMAND_MASTER) {
1117 pci_command &= ~PCI_COMMAND_MASTER;
1118 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1119 }
1120
1121 pcibios_disable_device(dev);
1122 }
1123
1124 /**
1125 * pci_disable_enabled_device - Disable device without updating enable_cnt
1126 * @dev: PCI device to disable
1127 *
1128 * NOTE: This function is a backend of PCI power management routines and is
1129 * not supposed to be called drivers.
1130 */
1131 void pci_disable_enabled_device(struct pci_dev *dev)
1132 {
1133 if (pci_is_enabled(dev))
1134 do_pci_disable_device(dev);
1135 }
1136
1137 /**
1138 * pci_disable_device - Disable PCI device after use
1139 * @dev: PCI device to be disabled
1140 *
1141 * Signal to the system that the PCI device is not in use by the system
1142 * anymore. This only involves disabling PCI bus-mastering, if active.
1143 *
1144 * Note we don't actually disable the device until all callers of
1145 * pci_device_enable() have called pci_device_disable().
1146 */
1147 void
1148 pci_disable_device(struct pci_dev *dev)
1149 {
1150 struct pci_devres *dr;
1151
1152 dr = find_pci_dr(dev);
1153 if (dr)
1154 dr->enabled = 0;
1155
1156 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1157 return;
1158
1159 do_pci_disable_device(dev);
1160
1161 dev->is_busmaster = 0;
1162 }
1163
1164 /**
1165 * pcibios_set_pcie_reset_state - set reset state for device dev
1166 * @dev: the PCIe device reset
1167 * @state: Reset state to enter into
1168 *
1169 *
1170 * Sets the PCIe reset state for the device. This is the default
1171 * implementation. Architecture implementations can override this.
1172 */
1173 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1174 enum pcie_reset_state state)
1175 {
1176 return -EINVAL;
1177 }
1178
1179 /**
1180 * pci_set_pcie_reset_state - set reset state for device dev
1181 * @dev: the PCIe device reset
1182 * @state: Reset state to enter into
1183 *
1184 *
1185 * Sets the PCI reset state for the device.
1186 */
1187 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1188 {
1189 return pcibios_set_pcie_reset_state(dev, state);
1190 }
1191
1192 /**
1193 * pci_pme_capable - check the capability of PCI device to generate PME#
1194 * @dev: PCI device to handle.
1195 * @state: PCI state from which device will issue PME#.
1196 */
1197 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1198 {
1199 if (!dev->pm_cap)
1200 return false;
1201
1202 return !!(dev->pme_support & (1 << state));
1203 }
1204
1205 /**
1206 * pci_pme_active - enable or disable PCI device's PME# function
1207 * @dev: PCI device to handle.
1208 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1209 *
1210 * The caller must verify that the device is capable of generating PME# before
1211 * calling this function with @enable equal to 'true'.
1212 */
1213 void pci_pme_active(struct pci_dev *dev, bool enable)
1214 {
1215 u16 pmcsr;
1216
1217 if (!dev->pm_cap)
1218 return;
1219
1220 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1221 /* Clear PME_Status by writing 1 to it and enable PME# */
1222 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1223 if (!enable)
1224 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1225
1226 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1227
1228 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1229 enable ? "enabled" : "disabled");
1230 }
1231
1232 /**
1233 * pci_enable_wake - enable PCI device as wakeup event source
1234 * @dev: PCI device affected
1235 * @state: PCI state from which device will issue wakeup events
1236 * @enable: True to enable event generation; false to disable
1237 *
1238 * This enables the device as a wakeup event source, or disables it.
1239 * When such events involves platform-specific hooks, those hooks are
1240 * called automatically by this routine.
1241 *
1242 * Devices with legacy power management (no standard PCI PM capabilities)
1243 * always require such platform hooks.
1244 *
1245 * RETURN VALUE:
1246 * 0 is returned on success
1247 * -EINVAL is returned if device is not supposed to wake up the system
1248 * Error code depending on the platform is returned if both the platform and
1249 * the native mechanism fail to enable the generation of wake-up events
1250 */
1251 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1252 {
1253 int ret = 0;
1254
1255 if (enable && !device_may_wakeup(&dev->dev))
1256 return -EINVAL;
1257
1258 /* Don't do the same thing twice in a row for one device. */
1259 if (!!enable == !!dev->wakeup_prepared)
1260 return 0;
1261
1262 /*
1263 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1264 * Anderson we should be doing PME# wake enable followed by ACPI wake
1265 * enable. To disable wake-up we call the platform first, for symmetry.
1266 */
1267
1268 if (enable) {
1269 int error;
1270
1271 if (pci_pme_capable(dev, state))
1272 pci_pme_active(dev, true);
1273 else
1274 ret = 1;
1275 error = platform_pci_sleep_wake(dev, true);
1276 if (ret)
1277 ret = error;
1278 if (!ret)
1279 dev->wakeup_prepared = true;
1280 } else {
1281 platform_pci_sleep_wake(dev, false);
1282 pci_pme_active(dev, false);
1283 dev->wakeup_prepared = false;
1284 }
1285
1286 return ret;
1287 }
1288
1289 /**
1290 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1291 * @dev: PCI device to prepare
1292 * @enable: True to enable wake-up event generation; false to disable
1293 *
1294 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1295 * and this function allows them to set that up cleanly - pci_enable_wake()
1296 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1297 * ordering constraints.
1298 *
1299 * This function only returns error code if the device is not capable of
1300 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1301 * enable wake-up power for it.
1302 */
1303 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1304 {
1305 return pci_pme_capable(dev, PCI_D3cold) ?
1306 pci_enable_wake(dev, PCI_D3cold, enable) :
1307 pci_enable_wake(dev, PCI_D3hot, enable);
1308 }
1309
1310 /**
1311 * pci_target_state - find an appropriate low power state for a given PCI dev
1312 * @dev: PCI device
1313 *
1314 * Use underlying platform code to find a supported low power state for @dev.
1315 * If the platform can't manage @dev, return the deepest state from which it
1316 * can generate wake events, based on any available PME info.
1317 */
1318 pci_power_t pci_target_state(struct pci_dev *dev)
1319 {
1320 pci_power_t target_state = PCI_D3hot;
1321
1322 if (platform_pci_power_manageable(dev)) {
1323 /*
1324 * Call the platform to choose the target state of the device
1325 * and enable wake-up from this state if supported.
1326 */
1327 pci_power_t state = platform_pci_choose_state(dev);
1328
1329 switch (state) {
1330 case PCI_POWER_ERROR:
1331 case PCI_UNKNOWN:
1332 break;
1333 case PCI_D1:
1334 case PCI_D2:
1335 if (pci_no_d1d2(dev))
1336 break;
1337 default:
1338 target_state = state;
1339 }
1340 } else if (!dev->pm_cap) {
1341 target_state = PCI_D0;
1342 } else if (device_may_wakeup(&dev->dev)) {
1343 /*
1344 * Find the deepest state from which the device can generate
1345 * wake-up events, make it the target state and enable device
1346 * to generate PME#.
1347 */
1348 if (dev->pme_support) {
1349 while (target_state
1350 && !(dev->pme_support & (1 << target_state)))
1351 target_state--;
1352 }
1353 }
1354
1355 return target_state;
1356 }
1357
1358 /**
1359 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1360 * @dev: Device to handle.
1361 *
1362 * Choose the power state appropriate for the device depending on whether
1363 * it can wake up the system and/or is power manageable by the platform
1364 * (PCI_D3hot is the default) and put the device into that state.
1365 */
1366 int pci_prepare_to_sleep(struct pci_dev *dev)
1367 {
1368 pci_power_t target_state = pci_target_state(dev);
1369 int error;
1370
1371 if (target_state == PCI_POWER_ERROR)
1372 return -EIO;
1373
1374 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1375
1376 error = pci_set_power_state(dev, target_state);
1377
1378 if (error)
1379 pci_enable_wake(dev, target_state, false);
1380
1381 return error;
1382 }
1383
1384 /**
1385 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1386 * @dev: Device to handle.
1387 *
1388 * Disable device's sytem wake-up capability and put it into D0.
1389 */
1390 int pci_back_from_sleep(struct pci_dev *dev)
1391 {
1392 pci_enable_wake(dev, PCI_D0, false);
1393 return pci_set_power_state(dev, PCI_D0);
1394 }
1395
1396 /**
1397 * pci_pm_init - Initialize PM functions of given PCI device
1398 * @dev: PCI device to handle.
1399 */
1400 void pci_pm_init(struct pci_dev *dev)
1401 {
1402 int pm;
1403 u16 pmc;
1404
1405 dev->wakeup_prepared = false;
1406 dev->pm_cap = 0;
1407
1408 /* find PCI PM capability in list */
1409 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1410 if (!pm)
1411 return;
1412 /* Check device's ability to generate PME# */
1413 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1414
1415 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1416 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1417 pmc & PCI_PM_CAP_VER_MASK);
1418 return;
1419 }
1420
1421 dev->pm_cap = pm;
1422 dev->d3_delay = PCI_PM_D3_WAIT;
1423
1424 dev->d1_support = false;
1425 dev->d2_support = false;
1426 if (!pci_no_d1d2(dev)) {
1427 if (pmc & PCI_PM_CAP_D1)
1428 dev->d1_support = true;
1429 if (pmc & PCI_PM_CAP_D2)
1430 dev->d2_support = true;
1431
1432 if (dev->d1_support || dev->d2_support)
1433 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1434 dev->d1_support ? " D1" : "",
1435 dev->d2_support ? " D2" : "");
1436 }
1437
1438 pmc &= PCI_PM_CAP_PME_MASK;
1439 if (pmc) {
1440 dev_printk(KERN_DEBUG, &dev->dev,
1441 "PME# supported from%s%s%s%s%s\n",
1442 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1443 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1444 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1445 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1446 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1447 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1448 /*
1449 * Make device's PM flags reflect the wake-up capability, but
1450 * let the user space enable it to wake up the system as needed.
1451 */
1452 device_set_wakeup_capable(&dev->dev, true);
1453 device_set_wakeup_enable(&dev->dev, false);
1454 /* Disable the PME# generation functionality */
1455 pci_pme_active(dev, false);
1456 } else {
1457 dev->pme_support = 0;
1458 }
1459 }
1460
1461 /**
1462 * platform_pci_wakeup_init - init platform wakeup if present
1463 * @dev: PCI device
1464 *
1465 * Some devices don't have PCI PM caps but can still generate wakeup
1466 * events through platform methods (like ACPI events). If @dev supports
1467 * platform wakeup events, set the device flag to indicate as much. This
1468 * may be redundant if the device also supports PCI PM caps, but double
1469 * initialization should be safe in that case.
1470 */
1471 void platform_pci_wakeup_init(struct pci_dev *dev)
1472 {
1473 if (!platform_pci_can_wakeup(dev))
1474 return;
1475
1476 device_set_wakeup_capable(&dev->dev, true);
1477 device_set_wakeup_enable(&dev->dev, false);
1478 platform_pci_sleep_wake(dev, false);
1479 }
1480
1481 /**
1482 * pci_add_save_buffer - allocate buffer for saving given capability registers
1483 * @dev: the PCI device
1484 * @cap: the capability to allocate the buffer for
1485 * @size: requested size of the buffer
1486 */
1487 static int pci_add_cap_save_buffer(
1488 struct pci_dev *dev, char cap, unsigned int size)
1489 {
1490 int pos;
1491 struct pci_cap_saved_state *save_state;
1492
1493 pos = pci_find_capability(dev, cap);
1494 if (pos <= 0)
1495 return 0;
1496
1497 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1498 if (!save_state)
1499 return -ENOMEM;
1500
1501 save_state->cap_nr = cap;
1502 pci_add_saved_cap(dev, save_state);
1503
1504 return 0;
1505 }
1506
1507 /**
1508 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1509 * @dev: the PCI device
1510 */
1511 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1512 {
1513 int error;
1514
1515 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1516 PCI_EXP_SAVE_REGS * sizeof(u16));
1517 if (error)
1518 dev_err(&dev->dev,
1519 "unable to preallocate PCI Express save buffer\n");
1520
1521 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1522 if (error)
1523 dev_err(&dev->dev,
1524 "unable to preallocate PCI-X save buffer\n");
1525 }
1526
1527 /**
1528 * pci_enable_ari - enable ARI forwarding if hardware support it
1529 * @dev: the PCI device
1530 */
1531 void pci_enable_ari(struct pci_dev *dev)
1532 {
1533 int pos;
1534 u32 cap;
1535 u16 ctrl;
1536 struct pci_dev *bridge;
1537
1538 if (!pci_is_pcie(dev) || dev->devfn)
1539 return;
1540
1541 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1542 if (!pos)
1543 return;
1544
1545 bridge = dev->bus->self;
1546 if (!bridge || !pci_is_pcie(bridge))
1547 return;
1548
1549 pos = pci_pcie_cap(bridge);
1550 if (!pos)
1551 return;
1552
1553 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1554 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1555 return;
1556
1557 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1558 ctrl |= PCI_EXP_DEVCTL2_ARI;
1559 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1560
1561 bridge->ari_enabled = 1;
1562 }
1563
1564 static int pci_acs_enable;
1565
1566 /**
1567 * pci_request_acs - ask for ACS to be enabled if supported
1568 */
1569 void pci_request_acs(void)
1570 {
1571 pci_acs_enable = 1;
1572 }
1573
1574 /**
1575 * pci_enable_acs - enable ACS if hardware support it
1576 * @dev: the PCI device
1577 */
1578 void pci_enable_acs(struct pci_dev *dev)
1579 {
1580 int pos;
1581 u16 cap;
1582 u16 ctrl;
1583
1584 if (!pci_acs_enable)
1585 return;
1586
1587 if (!pci_is_pcie(dev))
1588 return;
1589
1590 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1591 if (!pos)
1592 return;
1593
1594 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1595 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1596
1597 /* Source Validation */
1598 ctrl |= (cap & PCI_ACS_SV);
1599
1600 /* P2P Request Redirect */
1601 ctrl |= (cap & PCI_ACS_RR);
1602
1603 /* P2P Completion Redirect */
1604 ctrl |= (cap & PCI_ACS_CR);
1605
1606 /* Upstream Forwarding */
1607 ctrl |= (cap & PCI_ACS_UF);
1608
1609 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1610 }
1611
1612 /**
1613 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1614 * @dev: the PCI device
1615 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1616 *
1617 * Perform INTx swizzling for a device behind one level of bridge. This is
1618 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1619 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1620 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1621 * the PCI Express Base Specification, Revision 2.1)
1622 */
1623 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1624 {
1625 int slot;
1626
1627 if (pci_ari_enabled(dev->bus))
1628 slot = 0;
1629 else
1630 slot = PCI_SLOT(dev->devfn);
1631
1632 return (((pin - 1) + slot) % 4) + 1;
1633 }
1634
1635 int
1636 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1637 {
1638 u8 pin;
1639
1640 pin = dev->pin;
1641 if (!pin)
1642 return -1;
1643
1644 while (!pci_is_root_bus(dev->bus)) {
1645 pin = pci_swizzle_interrupt_pin(dev, pin);
1646 dev = dev->bus->self;
1647 }
1648 *bridge = dev;
1649 return pin;
1650 }
1651
1652 /**
1653 * pci_common_swizzle - swizzle INTx all the way to root bridge
1654 * @dev: the PCI device
1655 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1656 *
1657 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1658 * bridges all the way up to a PCI root bus.
1659 */
1660 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1661 {
1662 u8 pin = *pinp;
1663
1664 while (!pci_is_root_bus(dev->bus)) {
1665 pin = pci_swizzle_interrupt_pin(dev, pin);
1666 dev = dev->bus->self;
1667 }
1668 *pinp = pin;
1669 return PCI_SLOT(dev->devfn);
1670 }
1671
1672 /**
1673 * pci_release_region - Release a PCI bar
1674 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1675 * @bar: BAR to release
1676 *
1677 * Releases the PCI I/O and memory resources previously reserved by a
1678 * successful call to pci_request_region. Call this function only
1679 * after all use of the PCI regions has ceased.
1680 */
1681 void pci_release_region(struct pci_dev *pdev, int bar)
1682 {
1683 struct pci_devres *dr;
1684
1685 if (pci_resource_len(pdev, bar) == 0)
1686 return;
1687 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1688 release_region(pci_resource_start(pdev, bar),
1689 pci_resource_len(pdev, bar));
1690 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1691 release_mem_region(pci_resource_start(pdev, bar),
1692 pci_resource_len(pdev, bar));
1693
1694 dr = find_pci_dr(pdev);
1695 if (dr)
1696 dr->region_mask &= ~(1 << bar);
1697 }
1698
1699 /**
1700 * __pci_request_region - Reserved PCI I/O and memory resource
1701 * @pdev: PCI device whose resources are to be reserved
1702 * @bar: BAR to be reserved
1703 * @res_name: Name to be associated with resource.
1704 * @exclusive: whether the region access is exclusive or not
1705 *
1706 * Mark the PCI region associated with PCI device @pdev BR @bar as
1707 * being reserved by owner @res_name. Do not access any
1708 * address inside the PCI regions unless this call returns
1709 * successfully.
1710 *
1711 * If @exclusive is set, then the region is marked so that userspace
1712 * is explicitly not allowed to map the resource via /dev/mem or
1713 * sysfs MMIO access.
1714 *
1715 * Returns 0 on success, or %EBUSY on error. A warning
1716 * message is also printed on failure.
1717 */
1718 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1719 int exclusive)
1720 {
1721 struct pci_devres *dr;
1722
1723 if (pci_resource_len(pdev, bar) == 0)
1724 return 0;
1725
1726 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1727 if (!request_region(pci_resource_start(pdev, bar),
1728 pci_resource_len(pdev, bar), res_name))
1729 goto err_out;
1730 }
1731 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1732 if (!__request_mem_region(pci_resource_start(pdev, bar),
1733 pci_resource_len(pdev, bar), res_name,
1734 exclusive))
1735 goto err_out;
1736 }
1737
1738 dr = find_pci_dr(pdev);
1739 if (dr)
1740 dr->region_mask |= 1 << bar;
1741
1742 return 0;
1743
1744 err_out:
1745 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
1746 &pdev->resource[bar]);
1747 return -EBUSY;
1748 }
1749
1750 /**
1751 * pci_request_region - Reserve PCI I/O and memory resource
1752 * @pdev: PCI device whose resources are to be reserved
1753 * @bar: BAR to be reserved
1754 * @res_name: Name to be associated with resource
1755 *
1756 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1757 * being reserved by owner @res_name. Do not access any
1758 * address inside the PCI regions unless this call returns
1759 * successfully.
1760 *
1761 * Returns 0 on success, or %EBUSY on error. A warning
1762 * message is also printed on failure.
1763 */
1764 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1765 {
1766 return __pci_request_region(pdev, bar, res_name, 0);
1767 }
1768
1769 /**
1770 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1771 * @pdev: PCI device whose resources are to be reserved
1772 * @bar: BAR to be reserved
1773 * @res_name: Name to be associated with resource.
1774 *
1775 * Mark the PCI region associated with PCI device @pdev BR @bar as
1776 * being reserved by owner @res_name. Do not access any
1777 * address inside the PCI regions unless this call returns
1778 * successfully.
1779 *
1780 * Returns 0 on success, or %EBUSY on error. A warning
1781 * message is also printed on failure.
1782 *
1783 * The key difference that _exclusive makes it that userspace is
1784 * explicitly not allowed to map the resource via /dev/mem or
1785 * sysfs.
1786 */
1787 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1788 {
1789 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1790 }
1791 /**
1792 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1793 * @pdev: PCI device whose resources were previously reserved
1794 * @bars: Bitmask of BARs to be released
1795 *
1796 * Release selected PCI I/O and memory resources previously reserved.
1797 * Call this function only after all use of the PCI regions has ceased.
1798 */
1799 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1800 {
1801 int i;
1802
1803 for (i = 0; i < 6; i++)
1804 if (bars & (1 << i))
1805 pci_release_region(pdev, i);
1806 }
1807
1808 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1809 const char *res_name, int excl)
1810 {
1811 int i;
1812
1813 for (i = 0; i < 6; i++)
1814 if (bars & (1 << i))
1815 if (__pci_request_region(pdev, i, res_name, excl))
1816 goto err_out;
1817 return 0;
1818
1819 err_out:
1820 while(--i >= 0)
1821 if (bars & (1 << i))
1822 pci_release_region(pdev, i);
1823
1824 return -EBUSY;
1825 }
1826
1827
1828 /**
1829 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1830 * @pdev: PCI device whose resources are to be reserved
1831 * @bars: Bitmask of BARs to be requested
1832 * @res_name: Name to be associated with resource
1833 */
1834 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1835 const char *res_name)
1836 {
1837 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1838 }
1839
1840 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1841 int bars, const char *res_name)
1842 {
1843 return __pci_request_selected_regions(pdev, bars, res_name,
1844 IORESOURCE_EXCLUSIVE);
1845 }
1846
1847 /**
1848 * pci_release_regions - Release reserved PCI I/O and memory resources
1849 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1850 *
1851 * Releases all PCI I/O and memory resources previously reserved by a
1852 * successful call to pci_request_regions. Call this function only
1853 * after all use of the PCI regions has ceased.
1854 */
1855
1856 void pci_release_regions(struct pci_dev *pdev)
1857 {
1858 pci_release_selected_regions(pdev, (1 << 6) - 1);
1859 }
1860
1861 /**
1862 * pci_request_regions - Reserved PCI I/O and memory resources
1863 * @pdev: PCI device whose resources are to be reserved
1864 * @res_name: Name to be associated with resource.
1865 *
1866 * Mark all PCI regions associated with PCI device @pdev as
1867 * being reserved by owner @res_name. Do not access any
1868 * address inside the PCI regions unless this call returns
1869 * successfully.
1870 *
1871 * Returns 0 on success, or %EBUSY on error. A warning
1872 * message is also printed on failure.
1873 */
1874 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1875 {
1876 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1877 }
1878
1879 /**
1880 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1881 * @pdev: PCI device whose resources are to be reserved
1882 * @res_name: Name to be associated with resource.
1883 *
1884 * Mark all PCI regions associated with PCI device @pdev as
1885 * being reserved by owner @res_name. Do not access any
1886 * address inside the PCI regions unless this call returns
1887 * successfully.
1888 *
1889 * pci_request_regions_exclusive() will mark the region so that
1890 * /dev/mem and the sysfs MMIO access will not be allowed.
1891 *
1892 * Returns 0 on success, or %EBUSY on error. A warning
1893 * message is also printed on failure.
1894 */
1895 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1896 {
1897 return pci_request_selected_regions_exclusive(pdev,
1898 ((1 << 6) - 1), res_name);
1899 }
1900
1901 static void __pci_set_master(struct pci_dev *dev, bool enable)
1902 {
1903 u16 old_cmd, cmd;
1904
1905 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1906 if (enable)
1907 cmd = old_cmd | PCI_COMMAND_MASTER;
1908 else
1909 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1910 if (cmd != old_cmd) {
1911 dev_dbg(&dev->dev, "%s bus mastering\n",
1912 enable ? "enabling" : "disabling");
1913 pci_write_config_word(dev, PCI_COMMAND, cmd);
1914 }
1915 dev->is_busmaster = enable;
1916 }
1917
1918 /**
1919 * pci_set_master - enables bus-mastering for device dev
1920 * @dev: the PCI device to enable
1921 *
1922 * Enables bus-mastering on the device and calls pcibios_set_master()
1923 * to do the needed arch specific settings.
1924 */
1925 void pci_set_master(struct pci_dev *dev)
1926 {
1927 __pci_set_master(dev, true);
1928 pcibios_set_master(dev);
1929 }
1930
1931 /**
1932 * pci_clear_master - disables bus-mastering for device dev
1933 * @dev: the PCI device to disable
1934 */
1935 void pci_clear_master(struct pci_dev *dev)
1936 {
1937 __pci_set_master(dev, false);
1938 }
1939
1940 /**
1941 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1942 * @dev: the PCI device for which MWI is to be enabled
1943 *
1944 * Helper function for pci_set_mwi.
1945 * Originally copied from drivers/net/acenic.c.
1946 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1947 *
1948 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1949 */
1950 int pci_set_cacheline_size(struct pci_dev *dev)
1951 {
1952 u8 cacheline_size;
1953
1954 if (!pci_cache_line_size)
1955 return -EINVAL;
1956
1957 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1958 equal to or multiple of the right value. */
1959 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1960 if (cacheline_size >= pci_cache_line_size &&
1961 (cacheline_size % pci_cache_line_size) == 0)
1962 return 0;
1963
1964 /* Write the correct value. */
1965 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1966 /* Read it back. */
1967 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1968 if (cacheline_size == pci_cache_line_size)
1969 return 0;
1970
1971 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1972 "supported\n", pci_cache_line_size << 2);
1973
1974 return -EINVAL;
1975 }
1976 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
1977
1978 #ifdef PCI_DISABLE_MWI
1979 int pci_set_mwi(struct pci_dev *dev)
1980 {
1981 return 0;
1982 }
1983
1984 int pci_try_set_mwi(struct pci_dev *dev)
1985 {
1986 return 0;
1987 }
1988
1989 void pci_clear_mwi(struct pci_dev *dev)
1990 {
1991 }
1992
1993 #else
1994
1995 /**
1996 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1997 * @dev: the PCI device for which MWI is enabled
1998 *
1999 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2000 *
2001 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2002 */
2003 int
2004 pci_set_mwi(struct pci_dev *dev)
2005 {
2006 int rc;
2007 u16 cmd;
2008
2009 rc = pci_set_cacheline_size(dev);
2010 if (rc)
2011 return rc;
2012
2013 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2014 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2015 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2016 cmd |= PCI_COMMAND_INVALIDATE;
2017 pci_write_config_word(dev, PCI_COMMAND, cmd);
2018 }
2019
2020 return 0;
2021 }
2022
2023 /**
2024 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2025 * @dev: the PCI device for which MWI is enabled
2026 *
2027 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2028 * Callers are not required to check the return value.
2029 *
2030 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2031 */
2032 int pci_try_set_mwi(struct pci_dev *dev)
2033 {
2034 int rc = pci_set_mwi(dev);
2035 return rc;
2036 }
2037
2038 /**
2039 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2040 * @dev: the PCI device to disable
2041 *
2042 * Disables PCI Memory-Write-Invalidate transaction on the device
2043 */
2044 void
2045 pci_clear_mwi(struct pci_dev *dev)
2046 {
2047 u16 cmd;
2048
2049 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2050 if (cmd & PCI_COMMAND_INVALIDATE) {
2051 cmd &= ~PCI_COMMAND_INVALIDATE;
2052 pci_write_config_word(dev, PCI_COMMAND, cmd);
2053 }
2054 }
2055 #endif /* ! PCI_DISABLE_MWI */
2056
2057 /**
2058 * pci_intx - enables/disables PCI INTx for device dev
2059 * @pdev: the PCI device to operate on
2060 * @enable: boolean: whether to enable or disable PCI INTx
2061 *
2062 * Enables/disables PCI INTx for device dev
2063 */
2064 void
2065 pci_intx(struct pci_dev *pdev, int enable)
2066 {
2067 u16 pci_command, new;
2068
2069 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2070
2071 if (enable) {
2072 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2073 } else {
2074 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2075 }
2076
2077 if (new != pci_command) {
2078 struct pci_devres *dr;
2079
2080 pci_write_config_word(pdev, PCI_COMMAND, new);
2081
2082 dr = find_pci_dr(pdev);
2083 if (dr && !dr->restore_intx) {
2084 dr->restore_intx = 1;
2085 dr->orig_intx = !enable;
2086 }
2087 }
2088 }
2089
2090 /**
2091 * pci_msi_off - disables any msi or msix capabilities
2092 * @dev: the PCI device to operate on
2093 *
2094 * If you want to use msi see pci_enable_msi and friends.
2095 * This is a lower level primitive that allows us to disable
2096 * msi operation at the device level.
2097 */
2098 void pci_msi_off(struct pci_dev *dev)
2099 {
2100 int pos;
2101 u16 control;
2102
2103 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2104 if (pos) {
2105 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2106 control &= ~PCI_MSI_FLAGS_ENABLE;
2107 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2108 }
2109 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2110 if (pos) {
2111 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2112 control &= ~PCI_MSIX_FLAGS_ENABLE;
2113 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2114 }
2115 }
2116
2117 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2118 /*
2119 * These can be overridden by arch-specific implementations
2120 */
2121 int
2122 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2123 {
2124 if (!pci_dma_supported(dev, mask))
2125 return -EIO;
2126
2127 dev->dma_mask = mask;
2128 dev_dbg(&dev->dev, "using %dbit DMA mask\n", fls64(mask));
2129
2130 return 0;
2131 }
2132
2133 int
2134 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2135 {
2136 if (!pci_dma_supported(dev, mask))
2137 return -EIO;
2138
2139 dev->dev.coherent_dma_mask = mask;
2140 dev_dbg(&dev->dev, "using %dbit consistent DMA mask\n", fls64(mask));
2141
2142 return 0;
2143 }
2144 #endif
2145
2146 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2147 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2148 {
2149 return dma_set_max_seg_size(&dev->dev, size);
2150 }
2151 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2152 #endif
2153
2154 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2155 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2156 {
2157 return dma_set_seg_boundary(&dev->dev, mask);
2158 }
2159 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2160 #endif
2161
2162 static int pcie_flr(struct pci_dev *dev, int probe)
2163 {
2164 int i;
2165 int pos;
2166 u32 cap;
2167 u16 status, control;
2168
2169 pos = pci_pcie_cap(dev);
2170 if (!pos)
2171 return -ENOTTY;
2172
2173 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2174 if (!(cap & PCI_EXP_DEVCAP_FLR))
2175 return -ENOTTY;
2176
2177 if (probe)
2178 return 0;
2179
2180 /* Wait for Transaction Pending bit clean */
2181 for (i = 0; i < 4; i++) {
2182 if (i)
2183 msleep((1 << (i - 1)) * 100);
2184
2185 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2186 if (!(status & PCI_EXP_DEVSTA_TRPND))
2187 goto clear;
2188 }
2189
2190 dev_err(&dev->dev, "transaction is not cleared; "
2191 "proceeding with reset anyway\n");
2192
2193 clear:
2194 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2195 control |= PCI_EXP_DEVCTL_BCR_FLR;
2196 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2197
2198 msleep(100);
2199
2200 return 0;
2201 }
2202
2203 static int pci_af_flr(struct pci_dev *dev, int probe)
2204 {
2205 int i;
2206 int pos;
2207 u8 cap;
2208 u8 status;
2209
2210 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2211 if (!pos)
2212 return -ENOTTY;
2213
2214 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2215 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2216 return -ENOTTY;
2217
2218 if (probe)
2219 return 0;
2220
2221 /* Wait for Transaction Pending bit clean */
2222 for (i = 0; i < 4; i++) {
2223 if (i)
2224 msleep((1 << (i - 1)) * 100);
2225
2226 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2227 if (!(status & PCI_AF_STATUS_TP))
2228 goto clear;
2229 }
2230
2231 dev_err(&dev->dev, "transaction is not cleared; "
2232 "proceeding with reset anyway\n");
2233
2234 clear:
2235 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2236 msleep(100);
2237
2238 return 0;
2239 }
2240
2241 static int pci_pm_reset(struct pci_dev *dev, int probe)
2242 {
2243 u16 csr;
2244
2245 if (!dev->pm_cap)
2246 return -ENOTTY;
2247
2248 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2249 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2250 return -ENOTTY;
2251
2252 if (probe)
2253 return 0;
2254
2255 if (dev->current_state != PCI_D0)
2256 return -EINVAL;
2257
2258 csr &= ~PCI_PM_CTRL_STATE_MASK;
2259 csr |= PCI_D3hot;
2260 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2261 pci_dev_d3_sleep(dev);
2262
2263 csr &= ~PCI_PM_CTRL_STATE_MASK;
2264 csr |= PCI_D0;
2265 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2266 pci_dev_d3_sleep(dev);
2267
2268 return 0;
2269 }
2270
2271 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2272 {
2273 u16 ctrl;
2274 struct pci_dev *pdev;
2275
2276 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2277 return -ENOTTY;
2278
2279 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2280 if (pdev != dev)
2281 return -ENOTTY;
2282
2283 if (probe)
2284 return 0;
2285
2286 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2287 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2288 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2289 msleep(100);
2290
2291 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2292 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2293 msleep(100);
2294
2295 return 0;
2296 }
2297
2298 static int pci_dev_reset(struct pci_dev *dev, int probe)
2299 {
2300 int rc;
2301
2302 might_sleep();
2303
2304 if (!probe) {
2305 pci_block_user_cfg_access(dev);
2306 /* block PM suspend, driver probe, etc. */
2307 down(&dev->dev.sem);
2308 }
2309
2310 rc = pci_dev_specific_reset(dev, probe);
2311 if (rc != -ENOTTY)
2312 goto done;
2313
2314 rc = pcie_flr(dev, probe);
2315 if (rc != -ENOTTY)
2316 goto done;
2317
2318 rc = pci_af_flr(dev, probe);
2319 if (rc != -ENOTTY)
2320 goto done;
2321
2322 rc = pci_pm_reset(dev, probe);
2323 if (rc != -ENOTTY)
2324 goto done;
2325
2326 rc = pci_parent_bus_reset(dev, probe);
2327 done:
2328 if (!probe) {
2329 up(&dev->dev.sem);
2330 pci_unblock_user_cfg_access(dev);
2331 }
2332
2333 return rc;
2334 }
2335
2336 /**
2337 * __pci_reset_function - reset a PCI device function
2338 * @dev: PCI device to reset
2339 *
2340 * Some devices allow an individual function to be reset without affecting
2341 * other functions in the same device. The PCI device must be responsive
2342 * to PCI config space in order to use this function.
2343 *
2344 * The device function is presumed to be unused when this function is called.
2345 * Resetting the device will make the contents of PCI configuration space
2346 * random, so any caller of this must be prepared to reinitialise the
2347 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2348 * etc.
2349 *
2350 * Returns 0 if the device function was successfully reset or negative if the
2351 * device doesn't support resetting a single function.
2352 */
2353 int __pci_reset_function(struct pci_dev *dev)
2354 {
2355 return pci_dev_reset(dev, 0);
2356 }
2357 EXPORT_SYMBOL_GPL(__pci_reset_function);
2358
2359 /**
2360 * pci_probe_reset_function - check whether the device can be safely reset
2361 * @dev: PCI device to reset
2362 *
2363 * Some devices allow an individual function to be reset without affecting
2364 * other functions in the same device. The PCI device must be responsive
2365 * to PCI config space in order to use this function.
2366 *
2367 * Returns 0 if the device function can be reset or negative if the
2368 * device doesn't support resetting a single function.
2369 */
2370 int pci_probe_reset_function(struct pci_dev *dev)
2371 {
2372 return pci_dev_reset(dev, 1);
2373 }
2374
2375 /**
2376 * pci_reset_function - quiesce and reset a PCI device function
2377 * @dev: PCI device to reset
2378 *
2379 * Some devices allow an individual function to be reset without affecting
2380 * other functions in the same device. The PCI device must be responsive
2381 * to PCI config space in order to use this function.
2382 *
2383 * This function does not just reset the PCI portion of a device, but
2384 * clears all the state associated with the device. This function differs
2385 * from __pci_reset_function in that it saves and restores device state
2386 * over the reset.
2387 *
2388 * Returns 0 if the device function was successfully reset or negative if the
2389 * device doesn't support resetting a single function.
2390 */
2391 int pci_reset_function(struct pci_dev *dev)
2392 {
2393 int rc;
2394
2395 rc = pci_dev_reset(dev, 1);
2396 if (rc)
2397 return rc;
2398
2399 pci_save_state(dev);
2400
2401 /*
2402 * both INTx and MSI are disabled after the Interrupt Disable bit
2403 * is set and the Bus Master bit is cleared.
2404 */
2405 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2406
2407 rc = pci_dev_reset(dev, 0);
2408
2409 pci_restore_state(dev);
2410
2411 return rc;
2412 }
2413 EXPORT_SYMBOL_GPL(pci_reset_function);
2414
2415 /**
2416 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2417 * @dev: PCI device to query
2418 *
2419 * Returns mmrbc: maximum designed memory read count in bytes
2420 * or appropriate error value.
2421 */
2422 int pcix_get_max_mmrbc(struct pci_dev *dev)
2423 {
2424 int err, cap;
2425 u32 stat;
2426
2427 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2428 if (!cap)
2429 return -EINVAL;
2430
2431 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2432 if (err)
2433 return -EINVAL;
2434
2435 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2436 }
2437 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2438
2439 /**
2440 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2441 * @dev: PCI device to query
2442 *
2443 * Returns mmrbc: maximum memory read count in bytes
2444 * or appropriate error value.
2445 */
2446 int pcix_get_mmrbc(struct pci_dev *dev)
2447 {
2448 int ret, cap;
2449 u32 cmd;
2450
2451 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2452 if (!cap)
2453 return -EINVAL;
2454
2455 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2456 if (!ret)
2457 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2458
2459 return ret;
2460 }
2461 EXPORT_SYMBOL(pcix_get_mmrbc);
2462
2463 /**
2464 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2465 * @dev: PCI device to query
2466 * @mmrbc: maximum memory read count in bytes
2467 * valid values are 512, 1024, 2048, 4096
2468 *
2469 * If possible sets maximum memory read byte count, some bridges have erratas
2470 * that prevent this.
2471 */
2472 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2473 {
2474 int cap, err = -EINVAL;
2475 u32 stat, cmd, v, o;
2476
2477 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2478 goto out;
2479
2480 v = ffs(mmrbc) - 10;
2481
2482 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2483 if (!cap)
2484 goto out;
2485
2486 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2487 if (err)
2488 goto out;
2489
2490 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2491 return -E2BIG;
2492
2493 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2494 if (err)
2495 goto out;
2496
2497 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2498 if (o != v) {
2499 if (v > o && dev->bus &&
2500 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2501 return -EIO;
2502
2503 cmd &= ~PCI_X_CMD_MAX_READ;
2504 cmd |= v << 2;
2505 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2506 }
2507 out:
2508 return err;
2509 }
2510 EXPORT_SYMBOL(pcix_set_mmrbc);
2511
2512 /**
2513 * pcie_get_readrq - get PCI Express read request size
2514 * @dev: PCI device to query
2515 *
2516 * Returns maximum memory read request in bytes
2517 * or appropriate error value.
2518 */
2519 int pcie_get_readrq(struct pci_dev *dev)
2520 {
2521 int ret, cap;
2522 u16 ctl;
2523
2524 cap = pci_pcie_cap(dev);
2525 if (!cap)
2526 return -EINVAL;
2527
2528 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2529 if (!ret)
2530 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2531
2532 return ret;
2533 }
2534 EXPORT_SYMBOL(pcie_get_readrq);
2535
2536 /**
2537 * pcie_set_readrq - set PCI Express maximum memory read request
2538 * @dev: PCI device to query
2539 * @rq: maximum memory read count in bytes
2540 * valid values are 128, 256, 512, 1024, 2048, 4096
2541 *
2542 * If possible sets maximum read byte count
2543 */
2544 int pcie_set_readrq(struct pci_dev *dev, int rq)
2545 {
2546 int cap, err = -EINVAL;
2547 u16 ctl, v;
2548
2549 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2550 goto out;
2551
2552 v = (ffs(rq) - 8) << 12;
2553
2554 cap = pci_pcie_cap(dev);
2555 if (!cap)
2556 goto out;
2557
2558 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2559 if (err)
2560 goto out;
2561
2562 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2563 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2564 ctl |= v;
2565 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2566 }
2567
2568 out:
2569 return err;
2570 }
2571 EXPORT_SYMBOL(pcie_set_readrq);
2572
2573 /**
2574 * pci_select_bars - Make BAR mask from the type of resource
2575 * @dev: the PCI device for which BAR mask is made
2576 * @flags: resource type mask to be selected
2577 *
2578 * This helper routine makes bar mask from the type of resource.
2579 */
2580 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2581 {
2582 int i, bars = 0;
2583 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2584 if (pci_resource_flags(dev, i) & flags)
2585 bars |= (1 << i);
2586 return bars;
2587 }
2588
2589 /**
2590 * pci_resource_bar - get position of the BAR associated with a resource
2591 * @dev: the PCI device
2592 * @resno: the resource number
2593 * @type: the BAR type to be filled in
2594 *
2595 * Returns BAR position in config space, or 0 if the BAR is invalid.
2596 */
2597 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2598 {
2599 int reg;
2600
2601 if (resno < PCI_ROM_RESOURCE) {
2602 *type = pci_bar_unknown;
2603 return PCI_BASE_ADDRESS_0 + 4 * resno;
2604 } else if (resno == PCI_ROM_RESOURCE) {
2605 *type = pci_bar_mem32;
2606 return dev->rom_base_reg;
2607 } else if (resno < PCI_BRIDGE_RESOURCES) {
2608 /* device specific resource */
2609 reg = pci_iov_resource_bar(dev, resno, type);
2610 if (reg)
2611 return reg;
2612 }
2613
2614 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2615 return 0;
2616 }
2617
2618 /**
2619 * pci_set_vga_state - set VGA decode state on device and parents if requested
2620 * @dev: the PCI device
2621 * @decode: true = enable decoding, false = disable decoding
2622 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2623 * @change_bridge: traverse ancestors and change bridges
2624 */
2625 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2626 unsigned int command_bits, bool change_bridge)
2627 {
2628 struct pci_bus *bus;
2629 struct pci_dev *bridge;
2630 u16 cmd;
2631
2632 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2633
2634 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2635 if (decode == true)
2636 cmd |= command_bits;
2637 else
2638 cmd &= ~command_bits;
2639 pci_write_config_word(dev, PCI_COMMAND, cmd);
2640
2641 if (change_bridge == false)
2642 return 0;
2643
2644 bus = dev->bus;
2645 while (bus) {
2646 bridge = bus->self;
2647 if (bridge) {
2648 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2649 &cmd);
2650 if (decode == true)
2651 cmd |= PCI_BRIDGE_CTL_VGA;
2652 else
2653 cmd &= ~PCI_BRIDGE_CTL_VGA;
2654 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2655 cmd);
2656 }
2657 bus = bus->parent;
2658 }
2659 return 0;
2660 }
2661
2662 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2663 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2664 static DEFINE_SPINLOCK(resource_alignment_lock);
2665
2666 /**
2667 * pci_specified_resource_alignment - get resource alignment specified by user.
2668 * @dev: the PCI device to get
2669 *
2670 * RETURNS: Resource alignment if it is specified.
2671 * Zero if it is not specified.
2672 */
2673 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2674 {
2675 int seg, bus, slot, func, align_order, count;
2676 resource_size_t align = 0;
2677 char *p;
2678
2679 spin_lock(&resource_alignment_lock);
2680 p = resource_alignment_param;
2681 while (*p) {
2682 count = 0;
2683 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2684 p[count] == '@') {
2685 p += count + 1;
2686 } else {
2687 align_order = -1;
2688 }
2689 if (sscanf(p, "%x:%x:%x.%x%n",
2690 &seg, &bus, &slot, &func, &count) != 4) {
2691 seg = 0;
2692 if (sscanf(p, "%x:%x.%x%n",
2693 &bus, &slot, &func, &count) != 3) {
2694 /* Invalid format */
2695 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2696 p);
2697 break;
2698 }
2699 }
2700 p += count;
2701 if (seg == pci_domain_nr(dev->bus) &&
2702 bus == dev->bus->number &&
2703 slot == PCI_SLOT(dev->devfn) &&
2704 func == PCI_FUNC(dev->devfn)) {
2705 if (align_order == -1) {
2706 align = PAGE_SIZE;
2707 } else {
2708 align = 1 << align_order;
2709 }
2710 /* Found */
2711 break;
2712 }
2713 if (*p != ';' && *p != ',') {
2714 /* End of param or invalid format */
2715 break;
2716 }
2717 p++;
2718 }
2719 spin_unlock(&resource_alignment_lock);
2720 return align;
2721 }
2722
2723 /**
2724 * pci_is_reassigndev - check if specified PCI is target device to reassign
2725 * @dev: the PCI device to check
2726 *
2727 * RETURNS: non-zero for PCI device is a target device to reassign,
2728 * or zero is not.
2729 */
2730 int pci_is_reassigndev(struct pci_dev *dev)
2731 {
2732 return (pci_specified_resource_alignment(dev) != 0);
2733 }
2734
2735 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2736 {
2737 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2738 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2739 spin_lock(&resource_alignment_lock);
2740 strncpy(resource_alignment_param, buf, count);
2741 resource_alignment_param[count] = '\0';
2742 spin_unlock(&resource_alignment_lock);
2743 return count;
2744 }
2745
2746 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2747 {
2748 size_t count;
2749 spin_lock(&resource_alignment_lock);
2750 count = snprintf(buf, size, "%s", resource_alignment_param);
2751 spin_unlock(&resource_alignment_lock);
2752 return count;
2753 }
2754
2755 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2756 {
2757 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2758 }
2759
2760 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2761 const char *buf, size_t count)
2762 {
2763 return pci_set_resource_alignment_param(buf, count);
2764 }
2765
2766 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2767 pci_resource_alignment_store);
2768
2769 static int __init pci_resource_alignment_sysfs_init(void)
2770 {
2771 return bus_create_file(&pci_bus_type,
2772 &bus_attr_resource_alignment);
2773 }
2774
2775 late_initcall(pci_resource_alignment_sysfs_init);
2776
2777 static void __devinit pci_no_domains(void)
2778 {
2779 #ifdef CONFIG_PCI_DOMAINS
2780 pci_domains_supported = 0;
2781 #endif
2782 }
2783
2784 /**
2785 * pci_ext_cfg_enabled - can we access extended PCI config space?
2786 * @dev: The PCI device of the root bridge.
2787 *
2788 * Returns 1 if we can access PCI extended config space (offsets
2789 * greater than 0xff). This is the default implementation. Architecture
2790 * implementations can override this.
2791 */
2792 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2793 {
2794 return 1;
2795 }
2796
2797 void __weak pci_fixup_cardbus(struct pci_bus *bus)
2798 {
2799 }
2800 EXPORT_SYMBOL(pci_fixup_cardbus);
2801
2802 static int __init pci_setup(char *str)
2803 {
2804 while (str) {
2805 char *k = strchr(str, ',');
2806 if (k)
2807 *k++ = 0;
2808 if (*str && (str = pcibios_setup(str)) && *str) {
2809 if (!strcmp(str, "nomsi")) {
2810 pci_no_msi();
2811 } else if (!strcmp(str, "noaer")) {
2812 pci_no_aer();
2813 } else if (!strcmp(str, "nodomains")) {
2814 pci_no_domains();
2815 } else if (!strncmp(str, "cbiosize=", 9)) {
2816 pci_cardbus_io_size = memparse(str + 9, &str);
2817 } else if (!strncmp(str, "cbmemsize=", 10)) {
2818 pci_cardbus_mem_size = memparse(str + 10, &str);
2819 } else if (!strncmp(str, "resource_alignment=", 19)) {
2820 pci_set_resource_alignment_param(str + 19,
2821 strlen(str + 19));
2822 } else if (!strncmp(str, "ecrc=", 5)) {
2823 pcie_ecrc_get_policy(str + 5);
2824 } else if (!strncmp(str, "hpiosize=", 9)) {
2825 pci_hotplug_io_size = memparse(str + 9, &str);
2826 } else if (!strncmp(str, "hpmemsize=", 10)) {
2827 pci_hotplug_mem_size = memparse(str + 10, &str);
2828 } else {
2829 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2830 str);
2831 }
2832 }
2833 str = k;
2834 }
2835 return 0;
2836 }
2837 early_param("pci", pci_setup);
2838
2839 EXPORT_SYMBOL(pci_reenable_device);
2840 EXPORT_SYMBOL(pci_enable_device_io);
2841 EXPORT_SYMBOL(pci_enable_device_mem);
2842 EXPORT_SYMBOL(pci_enable_device);
2843 EXPORT_SYMBOL(pcim_enable_device);
2844 EXPORT_SYMBOL(pcim_pin_device);
2845 EXPORT_SYMBOL(pci_disable_device);
2846 EXPORT_SYMBOL(pci_find_capability);
2847 EXPORT_SYMBOL(pci_bus_find_capability);
2848 EXPORT_SYMBOL(pci_release_regions);
2849 EXPORT_SYMBOL(pci_request_regions);
2850 EXPORT_SYMBOL(pci_request_regions_exclusive);
2851 EXPORT_SYMBOL(pci_release_region);
2852 EXPORT_SYMBOL(pci_request_region);
2853 EXPORT_SYMBOL(pci_request_region_exclusive);
2854 EXPORT_SYMBOL(pci_release_selected_regions);
2855 EXPORT_SYMBOL(pci_request_selected_regions);
2856 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2857 EXPORT_SYMBOL(pci_set_master);
2858 EXPORT_SYMBOL(pci_clear_master);
2859 EXPORT_SYMBOL(pci_set_mwi);
2860 EXPORT_SYMBOL(pci_try_set_mwi);
2861 EXPORT_SYMBOL(pci_clear_mwi);
2862 EXPORT_SYMBOL_GPL(pci_intx);
2863 EXPORT_SYMBOL(pci_set_dma_mask);
2864 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2865 EXPORT_SYMBOL(pci_assign_resource);
2866 EXPORT_SYMBOL(pci_find_parent_resource);
2867 EXPORT_SYMBOL(pci_select_bars);
2868
2869 EXPORT_SYMBOL(pci_set_power_state);
2870 EXPORT_SYMBOL(pci_save_state);
2871 EXPORT_SYMBOL(pci_restore_state);
2872 EXPORT_SYMBOL(pci_pme_capable);
2873 EXPORT_SYMBOL(pci_pme_active);
2874 EXPORT_SYMBOL(pci_enable_wake);
2875 EXPORT_SYMBOL(pci_wake_from_d3);
2876 EXPORT_SYMBOL(pci_target_state);
2877 EXPORT_SYMBOL(pci_prepare_to_sleep);
2878 EXPORT_SYMBOL(pci_back_from_sleep);
2879 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2880
This page took 0.08482 seconds and 4 git commands to generate.