resource: allow MMIO exclusivity for device drivers
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include "pci.h"
24
25 unsigned int pci_pm_d3_delay = 10;
26
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30
31 #define DEFAULT_CARDBUS_IO_SIZE (256)
32 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36
37 /**
38 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39 * @bus: pointer to PCI bus structure to search
40 *
41 * Given a PCI bus, returns the highest PCI bus number present in the set
42 * including the given PCI bus and its list of child PCI buses.
43 */
44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 struct list_head *tmp;
47 unsigned char max, n;
48
49 max = bus->subordinate;
50 list_for_each(tmp, &bus->children) {
51 n = pci_bus_max_busnr(pci_bus_b(tmp));
52 if(n > max)
53 max = n;
54 }
55 return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58
59 #if 0
60 /**
61 * pci_max_busnr - returns maximum PCI bus number
62 *
63 * Returns the highest PCI bus number present in the system global list of
64 * PCI buses.
65 */
66 unsigned char __devinit
67 pci_max_busnr(void)
68 {
69 struct pci_bus *bus = NULL;
70 unsigned char max, n;
71
72 max = 0;
73 while ((bus = pci_find_next_bus(bus)) != NULL) {
74 n = pci_bus_max_busnr(bus);
75 if(n > max)
76 max = n;
77 }
78 return max;
79 }
80
81 #endif /* 0 */
82
83 #define PCI_FIND_CAP_TTL 48
84
85 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
86 u8 pos, int cap, int *ttl)
87 {
88 u8 id;
89
90 while ((*ttl)--) {
91 pci_bus_read_config_byte(bus, devfn, pos, &pos);
92 if (pos < 0x40)
93 break;
94 pos &= ~3;
95 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
96 &id);
97 if (id == 0xff)
98 break;
99 if (id == cap)
100 return pos;
101 pos += PCI_CAP_LIST_NEXT;
102 }
103 return 0;
104 }
105
106 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
107 u8 pos, int cap)
108 {
109 int ttl = PCI_FIND_CAP_TTL;
110
111 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
112 }
113
114 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
115 {
116 return __pci_find_next_cap(dev->bus, dev->devfn,
117 pos + PCI_CAP_LIST_NEXT, cap);
118 }
119 EXPORT_SYMBOL_GPL(pci_find_next_capability);
120
121 static int __pci_bus_find_cap_start(struct pci_bus *bus,
122 unsigned int devfn, u8 hdr_type)
123 {
124 u16 status;
125
126 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
127 if (!(status & PCI_STATUS_CAP_LIST))
128 return 0;
129
130 switch (hdr_type) {
131 case PCI_HEADER_TYPE_NORMAL:
132 case PCI_HEADER_TYPE_BRIDGE:
133 return PCI_CAPABILITY_LIST;
134 case PCI_HEADER_TYPE_CARDBUS:
135 return PCI_CB_CAPABILITY_LIST;
136 default:
137 return 0;
138 }
139
140 return 0;
141 }
142
143 /**
144 * pci_find_capability - query for devices' capabilities
145 * @dev: PCI device to query
146 * @cap: capability code
147 *
148 * Tell if a device supports a given PCI capability.
149 * Returns the address of the requested capability structure within the
150 * device's PCI configuration space or 0 in case the device does not
151 * support it. Possible values for @cap:
152 *
153 * %PCI_CAP_ID_PM Power Management
154 * %PCI_CAP_ID_AGP Accelerated Graphics Port
155 * %PCI_CAP_ID_VPD Vital Product Data
156 * %PCI_CAP_ID_SLOTID Slot Identification
157 * %PCI_CAP_ID_MSI Message Signalled Interrupts
158 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
159 * %PCI_CAP_ID_PCIX PCI-X
160 * %PCI_CAP_ID_EXP PCI Express
161 */
162 int pci_find_capability(struct pci_dev *dev, int cap)
163 {
164 int pos;
165
166 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
167 if (pos)
168 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
169
170 return pos;
171 }
172
173 /**
174 * pci_bus_find_capability - query for devices' capabilities
175 * @bus: the PCI bus to query
176 * @devfn: PCI device to query
177 * @cap: capability code
178 *
179 * Like pci_find_capability() but works for pci devices that do not have a
180 * pci_dev structure set up yet.
181 *
182 * Returns the address of the requested capability structure within the
183 * device's PCI configuration space or 0 in case the device does not
184 * support it.
185 */
186 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
187 {
188 int pos;
189 u8 hdr_type;
190
191 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
192
193 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
194 if (pos)
195 pos = __pci_find_next_cap(bus, devfn, pos, cap);
196
197 return pos;
198 }
199
200 /**
201 * pci_find_ext_capability - Find an extended capability
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Returns the address of the requested extended capability structure
206 * within the device's PCI configuration space or 0 if the device does
207 * not support it. Possible values for @cap:
208 *
209 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
210 * %PCI_EXT_CAP_ID_VC Virtual Channel
211 * %PCI_EXT_CAP_ID_DSN Device Serial Number
212 * %PCI_EXT_CAP_ID_PWR Power Budgeting
213 */
214 int pci_find_ext_capability(struct pci_dev *dev, int cap)
215 {
216 u32 header;
217 int ttl;
218 int pos = PCI_CFG_SPACE_SIZE;
219
220 /* minimum 8 bytes per capability */
221 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
222
223 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
224 return 0;
225
226 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
227 return 0;
228
229 /*
230 * If we have no capabilities, this is indicated by cap ID,
231 * cap version and next pointer all being 0.
232 */
233 if (header == 0)
234 return 0;
235
236 while (ttl-- > 0) {
237 if (PCI_EXT_CAP_ID(header) == cap)
238 return pos;
239
240 pos = PCI_EXT_CAP_NEXT(header);
241 if (pos < PCI_CFG_SPACE_SIZE)
242 break;
243
244 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
245 break;
246 }
247
248 return 0;
249 }
250 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
251
252 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
253 {
254 int rc, ttl = PCI_FIND_CAP_TTL;
255 u8 cap, mask;
256
257 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
258 mask = HT_3BIT_CAP_MASK;
259 else
260 mask = HT_5BIT_CAP_MASK;
261
262 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
263 PCI_CAP_ID_HT, &ttl);
264 while (pos) {
265 rc = pci_read_config_byte(dev, pos + 3, &cap);
266 if (rc != PCIBIOS_SUCCESSFUL)
267 return 0;
268
269 if ((cap & mask) == ht_cap)
270 return pos;
271
272 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
273 pos + PCI_CAP_LIST_NEXT,
274 PCI_CAP_ID_HT, &ttl);
275 }
276
277 return 0;
278 }
279 /**
280 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
281 * @dev: PCI device to query
282 * @pos: Position from which to continue searching
283 * @ht_cap: Hypertransport capability code
284 *
285 * To be used in conjunction with pci_find_ht_capability() to search for
286 * all capabilities matching @ht_cap. @pos should always be a value returned
287 * from pci_find_ht_capability().
288 *
289 * NB. To be 100% safe against broken PCI devices, the caller should take
290 * steps to avoid an infinite loop.
291 */
292 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
293 {
294 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
295 }
296 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
297
298 /**
299 * pci_find_ht_capability - query a device's Hypertransport capabilities
300 * @dev: PCI device to query
301 * @ht_cap: Hypertransport capability code
302 *
303 * Tell if a device supports a given Hypertransport capability.
304 * Returns an address within the device's PCI configuration space
305 * or 0 in case the device does not support the request capability.
306 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
307 * which has a Hypertransport capability matching @ht_cap.
308 */
309 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
310 {
311 int pos;
312
313 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
314 if (pos)
315 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
316
317 return pos;
318 }
319 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
320
321 /**
322 * pci_find_parent_resource - return resource region of parent bus of given region
323 * @dev: PCI device structure contains resources to be searched
324 * @res: child resource record for which parent is sought
325 *
326 * For given resource region of given device, return the resource
327 * region of parent bus the given region is contained in or where
328 * it should be allocated from.
329 */
330 struct resource *
331 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
332 {
333 const struct pci_bus *bus = dev->bus;
334 int i;
335 struct resource *best = NULL;
336
337 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
338 struct resource *r = bus->resource[i];
339 if (!r)
340 continue;
341 if (res->start && !(res->start >= r->start && res->end <= r->end))
342 continue; /* Not contained */
343 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
344 continue; /* Wrong type */
345 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
346 return r; /* Exact match */
347 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
348 best = r; /* Approximating prefetchable by non-prefetchable */
349 }
350 return best;
351 }
352
353 /**
354 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
355 * @dev: PCI device to have its BARs restored
356 *
357 * Restore the BAR values for a given device, so as to make it
358 * accessible by its driver.
359 */
360 static void
361 pci_restore_bars(struct pci_dev *dev)
362 {
363 int i, numres;
364
365 switch (dev->hdr_type) {
366 case PCI_HEADER_TYPE_NORMAL:
367 numres = 6;
368 break;
369 case PCI_HEADER_TYPE_BRIDGE:
370 numres = 2;
371 break;
372 case PCI_HEADER_TYPE_CARDBUS:
373 numres = 1;
374 break;
375 default:
376 /* Should never get here, but just in case... */
377 return;
378 }
379
380 for (i = 0; i < numres; i ++)
381 pci_update_resource(dev, &dev->resource[i], i);
382 }
383
384 static struct pci_platform_pm_ops *pci_platform_pm;
385
386 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
387 {
388 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
389 || !ops->sleep_wake || !ops->can_wakeup)
390 return -EINVAL;
391 pci_platform_pm = ops;
392 return 0;
393 }
394
395 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
396 {
397 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
398 }
399
400 static inline int platform_pci_set_power_state(struct pci_dev *dev,
401 pci_power_t t)
402 {
403 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
404 }
405
406 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
407 {
408 return pci_platform_pm ?
409 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
410 }
411
412 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
413 {
414 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
415 }
416
417 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
418 {
419 return pci_platform_pm ?
420 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
421 }
422
423 /**
424 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
425 * given PCI device
426 * @dev: PCI device to handle.
427 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
428 *
429 * RETURN VALUE:
430 * -EINVAL if the requested state is invalid.
431 * -EIO if device does not support PCI PM or its PM capabilities register has a
432 * wrong version, or device doesn't support the requested state.
433 * 0 if device already is in the requested state.
434 * 0 if device's power state has been successfully changed.
435 */
436 static int
437 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
438 {
439 u16 pmcsr;
440 bool need_restore = false;
441
442 if (!dev->pm_cap)
443 return -EIO;
444
445 if (state < PCI_D0 || state > PCI_D3hot)
446 return -EINVAL;
447
448 /* Validate current state:
449 * Can enter D0 from any state, but if we can only go deeper
450 * to sleep if we're already in a low power state
451 */
452 if (dev->current_state == state) {
453 /* we're already there */
454 return 0;
455 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
456 && dev->current_state > state) {
457 dev_err(&dev->dev, "invalid power transition "
458 "(from state %d to %d)\n", dev->current_state, state);
459 return -EINVAL;
460 }
461
462 /* check if this device supports the desired state */
463 if ((state == PCI_D1 && !dev->d1_support)
464 || (state == PCI_D2 && !dev->d2_support))
465 return -EIO;
466
467 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
468
469 /* If we're (effectively) in D3, force entire word to 0.
470 * This doesn't affect PME_Status, disables PME_En, and
471 * sets PowerState to 0.
472 */
473 switch (dev->current_state) {
474 case PCI_D0:
475 case PCI_D1:
476 case PCI_D2:
477 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
478 pmcsr |= state;
479 break;
480 case PCI_UNKNOWN: /* Boot-up */
481 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
482 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
483 need_restore = true;
484 /* Fall-through: force to D0 */
485 default:
486 pmcsr = 0;
487 break;
488 }
489
490 /* enter specified state */
491 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
492
493 /* Mandatory power management transition delays */
494 /* see PCI PM 1.1 5.6.1 table 18 */
495 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
496 msleep(pci_pm_d3_delay);
497 else if (state == PCI_D2 || dev->current_state == PCI_D2)
498 udelay(200);
499
500 dev->current_state = state;
501
502 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
503 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
504 * from D3hot to D0 _may_ perform an internal reset, thereby
505 * going to "D0 Uninitialized" rather than "D0 Initialized".
506 * For example, at least some versions of the 3c905B and the
507 * 3c556B exhibit this behaviour.
508 *
509 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
510 * devices in a D3hot state at boot. Consequently, we need to
511 * restore at least the BARs so that the device will be
512 * accessible to its driver.
513 */
514 if (need_restore)
515 pci_restore_bars(dev);
516
517 if (dev->bus->self)
518 pcie_aspm_pm_state_change(dev->bus->self);
519
520 return 0;
521 }
522
523 /**
524 * pci_update_current_state - Read PCI power state of given device from its
525 * PCI PM registers and cache it
526 * @dev: PCI device to handle.
527 */
528 static void pci_update_current_state(struct pci_dev *dev)
529 {
530 if (dev->pm_cap) {
531 u16 pmcsr;
532
533 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
534 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
535 }
536 }
537
538 /**
539 * pci_set_power_state - Set the power state of a PCI device
540 * @dev: PCI device to handle.
541 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
542 *
543 * Transition a device to a new power state, using the platform formware and/or
544 * the device's PCI PM registers.
545 *
546 * RETURN VALUE:
547 * -EINVAL if the requested state is invalid.
548 * -EIO if device does not support PCI PM or its PM capabilities register has a
549 * wrong version, or device doesn't support the requested state.
550 * 0 if device already is in the requested state.
551 * 0 if device's power state has been successfully changed.
552 */
553 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
554 {
555 int error;
556
557 /* bound the state we're entering */
558 if (state > PCI_D3hot)
559 state = PCI_D3hot;
560 else if (state < PCI_D0)
561 state = PCI_D0;
562 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
563 /*
564 * If the device or the parent bridge do not support PCI PM,
565 * ignore the request if we're doing anything other than putting
566 * it into D0 (which would only happen on boot).
567 */
568 return 0;
569
570 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
571 /*
572 * Allow the platform to change the state, for example via ACPI
573 * _PR0, _PS0 and some such, but do not trust it.
574 */
575 int ret = platform_pci_set_power_state(dev, PCI_D0);
576 if (!ret)
577 pci_update_current_state(dev);
578 }
579 /* This device is quirked not to be put into D3, so
580 don't put it in D3 */
581 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
582 return 0;
583
584 error = pci_raw_set_power_state(dev, state);
585
586 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
587 /* Allow the platform to finalize the transition */
588 int ret = platform_pci_set_power_state(dev, state);
589 if (!ret) {
590 pci_update_current_state(dev);
591 error = 0;
592 }
593 }
594
595 return error;
596 }
597
598 /**
599 * pci_choose_state - Choose the power state of a PCI device
600 * @dev: PCI device to be suspended
601 * @state: target sleep state for the whole system. This is the value
602 * that is passed to suspend() function.
603 *
604 * Returns PCI power state suitable for given device and given system
605 * message.
606 */
607
608 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
609 {
610 pci_power_t ret;
611
612 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
613 return PCI_D0;
614
615 ret = platform_pci_choose_state(dev);
616 if (ret != PCI_POWER_ERROR)
617 return ret;
618
619 switch (state.event) {
620 case PM_EVENT_ON:
621 return PCI_D0;
622 case PM_EVENT_FREEZE:
623 case PM_EVENT_PRETHAW:
624 /* REVISIT both freeze and pre-thaw "should" use D0 */
625 case PM_EVENT_SUSPEND:
626 case PM_EVENT_HIBERNATE:
627 return PCI_D3hot;
628 default:
629 dev_info(&dev->dev, "unrecognized suspend event %d\n",
630 state.event);
631 BUG();
632 }
633 return PCI_D0;
634 }
635
636 EXPORT_SYMBOL(pci_choose_state);
637
638 static int pci_save_pcie_state(struct pci_dev *dev)
639 {
640 int pos, i = 0;
641 struct pci_cap_saved_state *save_state;
642 u16 *cap;
643 int found = 0;
644
645 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
646 if (pos <= 0)
647 return 0;
648
649 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
650 if (!save_state)
651 save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL);
652 else
653 found = 1;
654 if (!save_state) {
655 dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
656 return -ENOMEM;
657 }
658 cap = (u16 *)&save_state->data[0];
659
660 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
661 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
662 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
663 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
664 save_state->cap_nr = PCI_CAP_ID_EXP;
665 if (!found)
666 pci_add_saved_cap(dev, save_state);
667 return 0;
668 }
669
670 static void pci_restore_pcie_state(struct pci_dev *dev)
671 {
672 int i = 0, pos;
673 struct pci_cap_saved_state *save_state;
674 u16 *cap;
675
676 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
677 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
678 if (!save_state || pos <= 0)
679 return;
680 cap = (u16 *)&save_state->data[0];
681
682 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
683 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
684 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
685 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
686 }
687
688
689 static int pci_save_pcix_state(struct pci_dev *dev)
690 {
691 int pos, i = 0;
692 struct pci_cap_saved_state *save_state;
693 u16 *cap;
694 int found = 0;
695
696 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
697 if (pos <= 0)
698 return 0;
699
700 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
701 if (!save_state)
702 save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL);
703 else
704 found = 1;
705 if (!save_state) {
706 dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
707 return -ENOMEM;
708 }
709 cap = (u16 *)&save_state->data[0];
710
711 pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]);
712 save_state->cap_nr = PCI_CAP_ID_PCIX;
713 if (!found)
714 pci_add_saved_cap(dev, save_state);
715 return 0;
716 }
717
718 static void pci_restore_pcix_state(struct pci_dev *dev)
719 {
720 int i = 0, pos;
721 struct pci_cap_saved_state *save_state;
722 u16 *cap;
723
724 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
725 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
726 if (!save_state || pos <= 0)
727 return;
728 cap = (u16 *)&save_state->data[0];
729
730 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
731 }
732
733
734 /**
735 * pci_save_state - save the PCI configuration space of a device before suspending
736 * @dev: - PCI device that we're dealing with
737 */
738 int
739 pci_save_state(struct pci_dev *dev)
740 {
741 int i;
742 /* XXX: 100% dword access ok here? */
743 for (i = 0; i < 16; i++)
744 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
745 if ((i = pci_save_pcie_state(dev)) != 0)
746 return i;
747 if ((i = pci_save_pcix_state(dev)) != 0)
748 return i;
749 return 0;
750 }
751
752 /**
753 * pci_restore_state - Restore the saved state of a PCI device
754 * @dev: - PCI device that we're dealing with
755 */
756 int
757 pci_restore_state(struct pci_dev *dev)
758 {
759 int i;
760 u32 val;
761
762 /* PCI Express register must be restored first */
763 pci_restore_pcie_state(dev);
764
765 /*
766 * The Base Address register should be programmed before the command
767 * register(s)
768 */
769 for (i = 15; i >= 0; i--) {
770 pci_read_config_dword(dev, i * 4, &val);
771 if (val != dev->saved_config_space[i]) {
772 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
773 "space at offset %#x (was %#x, writing %#x)\n",
774 i, val, (int)dev->saved_config_space[i]);
775 pci_write_config_dword(dev,i * 4,
776 dev->saved_config_space[i]);
777 }
778 }
779 pci_restore_pcix_state(dev);
780 pci_restore_msi_state(dev);
781
782 return 0;
783 }
784
785 static int do_pci_enable_device(struct pci_dev *dev, int bars)
786 {
787 int err;
788
789 err = pci_set_power_state(dev, PCI_D0);
790 if (err < 0 && err != -EIO)
791 return err;
792 err = pcibios_enable_device(dev, bars);
793 if (err < 0)
794 return err;
795 pci_fixup_device(pci_fixup_enable, dev);
796
797 return 0;
798 }
799
800 /**
801 * pci_reenable_device - Resume abandoned device
802 * @dev: PCI device to be resumed
803 *
804 * Note this function is a backend of pci_default_resume and is not supposed
805 * to be called by normal code, write proper resume handler and use it instead.
806 */
807 int pci_reenable_device(struct pci_dev *dev)
808 {
809 if (atomic_read(&dev->enable_cnt))
810 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
811 return 0;
812 }
813
814 static int __pci_enable_device_flags(struct pci_dev *dev,
815 resource_size_t flags)
816 {
817 int err;
818 int i, bars = 0;
819
820 if (atomic_add_return(1, &dev->enable_cnt) > 1)
821 return 0; /* already enabled */
822
823 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
824 if (dev->resource[i].flags & flags)
825 bars |= (1 << i);
826
827 err = do_pci_enable_device(dev, bars);
828 if (err < 0)
829 atomic_dec(&dev->enable_cnt);
830 return err;
831 }
832
833 /**
834 * pci_enable_device_io - Initialize a device for use with IO space
835 * @dev: PCI device to be initialized
836 *
837 * Initialize device before it's used by a driver. Ask low-level code
838 * to enable I/O resources. Wake up the device if it was suspended.
839 * Beware, this function can fail.
840 */
841 int pci_enable_device_io(struct pci_dev *dev)
842 {
843 return __pci_enable_device_flags(dev, IORESOURCE_IO);
844 }
845
846 /**
847 * pci_enable_device_mem - Initialize a device for use with Memory space
848 * @dev: PCI device to be initialized
849 *
850 * Initialize device before it's used by a driver. Ask low-level code
851 * to enable Memory resources. Wake up the device if it was suspended.
852 * Beware, this function can fail.
853 */
854 int pci_enable_device_mem(struct pci_dev *dev)
855 {
856 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
857 }
858
859 /**
860 * pci_enable_device - Initialize device before it's used by a driver.
861 * @dev: PCI device to be initialized
862 *
863 * Initialize device before it's used by a driver. Ask low-level code
864 * to enable I/O and memory. Wake up the device if it was suspended.
865 * Beware, this function can fail.
866 *
867 * Note we don't actually enable the device many times if we call
868 * this function repeatedly (we just increment the count).
869 */
870 int pci_enable_device(struct pci_dev *dev)
871 {
872 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
873 }
874
875 /*
876 * Managed PCI resources. This manages device on/off, intx/msi/msix
877 * on/off and BAR regions. pci_dev itself records msi/msix status, so
878 * there's no need to track it separately. pci_devres is initialized
879 * when a device is enabled using managed PCI device enable interface.
880 */
881 struct pci_devres {
882 unsigned int enabled:1;
883 unsigned int pinned:1;
884 unsigned int orig_intx:1;
885 unsigned int restore_intx:1;
886 u32 region_mask;
887 };
888
889 static void pcim_release(struct device *gendev, void *res)
890 {
891 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
892 struct pci_devres *this = res;
893 int i;
894
895 if (dev->msi_enabled)
896 pci_disable_msi(dev);
897 if (dev->msix_enabled)
898 pci_disable_msix(dev);
899
900 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
901 if (this->region_mask & (1 << i))
902 pci_release_region(dev, i);
903
904 if (this->restore_intx)
905 pci_intx(dev, this->orig_intx);
906
907 if (this->enabled && !this->pinned)
908 pci_disable_device(dev);
909 }
910
911 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
912 {
913 struct pci_devres *dr, *new_dr;
914
915 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
916 if (dr)
917 return dr;
918
919 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
920 if (!new_dr)
921 return NULL;
922 return devres_get(&pdev->dev, new_dr, NULL, NULL);
923 }
924
925 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
926 {
927 if (pci_is_managed(pdev))
928 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
929 return NULL;
930 }
931
932 /**
933 * pcim_enable_device - Managed pci_enable_device()
934 * @pdev: PCI device to be initialized
935 *
936 * Managed pci_enable_device().
937 */
938 int pcim_enable_device(struct pci_dev *pdev)
939 {
940 struct pci_devres *dr;
941 int rc;
942
943 dr = get_pci_dr(pdev);
944 if (unlikely(!dr))
945 return -ENOMEM;
946 if (dr->enabled)
947 return 0;
948
949 rc = pci_enable_device(pdev);
950 if (!rc) {
951 pdev->is_managed = 1;
952 dr->enabled = 1;
953 }
954 return rc;
955 }
956
957 /**
958 * pcim_pin_device - Pin managed PCI device
959 * @pdev: PCI device to pin
960 *
961 * Pin managed PCI device @pdev. Pinned device won't be disabled on
962 * driver detach. @pdev must have been enabled with
963 * pcim_enable_device().
964 */
965 void pcim_pin_device(struct pci_dev *pdev)
966 {
967 struct pci_devres *dr;
968
969 dr = find_pci_dr(pdev);
970 WARN_ON(!dr || !dr->enabled);
971 if (dr)
972 dr->pinned = 1;
973 }
974
975 /**
976 * pcibios_disable_device - disable arch specific PCI resources for device dev
977 * @dev: the PCI device to disable
978 *
979 * Disables architecture specific PCI resources for the device. This
980 * is the default implementation. Architecture implementations can
981 * override this.
982 */
983 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
984
985 /**
986 * pci_disable_device - Disable PCI device after use
987 * @dev: PCI device to be disabled
988 *
989 * Signal to the system that the PCI device is not in use by the system
990 * anymore. This only involves disabling PCI bus-mastering, if active.
991 *
992 * Note we don't actually disable the device until all callers of
993 * pci_device_enable() have called pci_device_disable().
994 */
995 void
996 pci_disable_device(struct pci_dev *dev)
997 {
998 struct pci_devres *dr;
999 u16 pci_command;
1000
1001 dr = find_pci_dr(dev);
1002 if (dr)
1003 dr->enabled = 0;
1004
1005 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1006 return;
1007
1008 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1009 if (pci_command & PCI_COMMAND_MASTER) {
1010 pci_command &= ~PCI_COMMAND_MASTER;
1011 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1012 }
1013 dev->is_busmaster = 0;
1014
1015 pcibios_disable_device(dev);
1016 }
1017
1018 /**
1019 * pcibios_set_pcie_reset_state - set reset state for device dev
1020 * @dev: the PCI-E device reset
1021 * @state: Reset state to enter into
1022 *
1023 *
1024 * Sets the PCI-E reset state for the device. This is the default
1025 * implementation. Architecture implementations can override this.
1026 */
1027 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1028 enum pcie_reset_state state)
1029 {
1030 return -EINVAL;
1031 }
1032
1033 /**
1034 * pci_set_pcie_reset_state - set reset state for device dev
1035 * @dev: the PCI-E device reset
1036 * @state: Reset state to enter into
1037 *
1038 *
1039 * Sets the PCI reset state for the device.
1040 */
1041 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1042 {
1043 return pcibios_set_pcie_reset_state(dev, state);
1044 }
1045
1046 /**
1047 * pci_pme_capable - check the capability of PCI device to generate PME#
1048 * @dev: PCI device to handle.
1049 * @state: PCI state from which device will issue PME#.
1050 */
1051 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1052 {
1053 if (!dev->pm_cap)
1054 return false;
1055
1056 return !!(dev->pme_support & (1 << state));
1057 }
1058
1059 /**
1060 * pci_pme_active - enable or disable PCI device's PME# function
1061 * @dev: PCI device to handle.
1062 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1063 *
1064 * The caller must verify that the device is capable of generating PME# before
1065 * calling this function with @enable equal to 'true'.
1066 */
1067 void pci_pme_active(struct pci_dev *dev, bool enable)
1068 {
1069 u16 pmcsr;
1070
1071 if (!dev->pm_cap)
1072 return;
1073
1074 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1075 /* Clear PME_Status by writing 1 to it and enable PME# */
1076 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1077 if (!enable)
1078 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1079
1080 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1081
1082 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1083 enable ? "enabled" : "disabled");
1084 }
1085
1086 /**
1087 * pci_enable_wake - enable PCI device as wakeup event source
1088 * @dev: PCI device affected
1089 * @state: PCI state from which device will issue wakeup events
1090 * @enable: True to enable event generation; false to disable
1091 *
1092 * This enables the device as a wakeup event source, or disables it.
1093 * When such events involves platform-specific hooks, those hooks are
1094 * called automatically by this routine.
1095 *
1096 * Devices with legacy power management (no standard PCI PM capabilities)
1097 * always require such platform hooks.
1098 *
1099 * RETURN VALUE:
1100 * 0 is returned on success
1101 * -EINVAL is returned if device is not supposed to wake up the system
1102 * Error code depending on the platform is returned if both the platform and
1103 * the native mechanism fail to enable the generation of wake-up events
1104 */
1105 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1106 {
1107 int error = 0;
1108 bool pme_done = false;
1109
1110 if (!device_may_wakeup(&dev->dev))
1111 return -EINVAL;
1112
1113 /*
1114 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1115 * Anderson we should be doing PME# wake enable followed by ACPI wake
1116 * enable. To disable wake-up we call the platform first, for symmetry.
1117 */
1118
1119 if (!enable && platform_pci_can_wakeup(dev))
1120 error = platform_pci_sleep_wake(dev, false);
1121
1122 if (!enable || pci_pme_capable(dev, state)) {
1123 pci_pme_active(dev, enable);
1124 pme_done = true;
1125 }
1126
1127 if (enable && platform_pci_can_wakeup(dev))
1128 error = platform_pci_sleep_wake(dev, true);
1129
1130 return pme_done ? 0 : error;
1131 }
1132
1133 /**
1134 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1135 * @dev: PCI device to prepare
1136 * @enable: True to enable wake-up event generation; false to disable
1137 *
1138 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1139 * and this function allows them to set that up cleanly - pci_enable_wake()
1140 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1141 * ordering constraints.
1142 *
1143 * This function only returns error code if the device is not capable of
1144 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1145 * enable wake-up power for it.
1146 */
1147 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1148 {
1149 return pci_pme_capable(dev, PCI_D3cold) ?
1150 pci_enable_wake(dev, PCI_D3cold, enable) :
1151 pci_enable_wake(dev, PCI_D3hot, enable);
1152 }
1153
1154 /**
1155 * pci_target_state - find an appropriate low power state for a given PCI dev
1156 * @dev: PCI device
1157 *
1158 * Use underlying platform code to find a supported low power state for @dev.
1159 * If the platform can't manage @dev, return the deepest state from which it
1160 * can generate wake events, based on any available PME info.
1161 */
1162 pci_power_t pci_target_state(struct pci_dev *dev)
1163 {
1164 pci_power_t target_state = PCI_D3hot;
1165
1166 if (platform_pci_power_manageable(dev)) {
1167 /*
1168 * Call the platform to choose the target state of the device
1169 * and enable wake-up from this state if supported.
1170 */
1171 pci_power_t state = platform_pci_choose_state(dev);
1172
1173 switch (state) {
1174 case PCI_POWER_ERROR:
1175 case PCI_UNKNOWN:
1176 break;
1177 case PCI_D1:
1178 case PCI_D2:
1179 if (pci_no_d1d2(dev))
1180 break;
1181 default:
1182 target_state = state;
1183 }
1184 } else if (device_may_wakeup(&dev->dev)) {
1185 /*
1186 * Find the deepest state from which the device can generate
1187 * wake-up events, make it the target state and enable device
1188 * to generate PME#.
1189 */
1190 if (!dev->pm_cap)
1191 return PCI_POWER_ERROR;
1192
1193 if (dev->pme_support) {
1194 while (target_state
1195 && !(dev->pme_support & (1 << target_state)))
1196 target_state--;
1197 }
1198 }
1199
1200 return target_state;
1201 }
1202
1203 /**
1204 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1205 * @dev: Device to handle.
1206 *
1207 * Choose the power state appropriate for the device depending on whether
1208 * it can wake up the system and/or is power manageable by the platform
1209 * (PCI_D3hot is the default) and put the device into that state.
1210 */
1211 int pci_prepare_to_sleep(struct pci_dev *dev)
1212 {
1213 pci_power_t target_state = pci_target_state(dev);
1214 int error;
1215
1216 if (target_state == PCI_POWER_ERROR)
1217 return -EIO;
1218
1219 pci_enable_wake(dev, target_state, true);
1220
1221 error = pci_set_power_state(dev, target_state);
1222
1223 if (error)
1224 pci_enable_wake(dev, target_state, false);
1225
1226 return error;
1227 }
1228
1229 /**
1230 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1231 * @dev: Device to handle.
1232 *
1233 * Disable device's sytem wake-up capability and put it into D0.
1234 */
1235 int pci_back_from_sleep(struct pci_dev *dev)
1236 {
1237 pci_enable_wake(dev, PCI_D0, false);
1238 return pci_set_power_state(dev, PCI_D0);
1239 }
1240
1241 /**
1242 * pci_pm_init - Initialize PM functions of given PCI device
1243 * @dev: PCI device to handle.
1244 */
1245 void pci_pm_init(struct pci_dev *dev)
1246 {
1247 int pm;
1248 u16 pmc;
1249
1250 dev->pm_cap = 0;
1251
1252 /* find PCI PM capability in list */
1253 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1254 if (!pm)
1255 return;
1256 /* Check device's ability to generate PME# */
1257 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1258
1259 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1260 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1261 pmc & PCI_PM_CAP_VER_MASK);
1262 return;
1263 }
1264
1265 dev->pm_cap = pm;
1266
1267 dev->d1_support = false;
1268 dev->d2_support = false;
1269 if (!pci_no_d1d2(dev)) {
1270 if (pmc & PCI_PM_CAP_D1)
1271 dev->d1_support = true;
1272 if (pmc & PCI_PM_CAP_D2)
1273 dev->d2_support = true;
1274
1275 if (dev->d1_support || dev->d2_support)
1276 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1277 dev->d1_support ? " D1" : "",
1278 dev->d2_support ? " D2" : "");
1279 }
1280
1281 pmc &= PCI_PM_CAP_PME_MASK;
1282 if (pmc) {
1283 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1284 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1285 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1286 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1287 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1288 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1289 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1290 /*
1291 * Make device's PM flags reflect the wake-up capability, but
1292 * let the user space enable it to wake up the system as needed.
1293 */
1294 device_set_wakeup_capable(&dev->dev, true);
1295 device_set_wakeup_enable(&dev->dev, false);
1296 /* Disable the PME# generation functionality */
1297 pci_pme_active(dev, false);
1298 } else {
1299 dev->pme_support = 0;
1300 }
1301 }
1302
1303 /**
1304 * pci_enable_ari - enable ARI forwarding if hardware support it
1305 * @dev: the PCI device
1306 */
1307 void pci_enable_ari(struct pci_dev *dev)
1308 {
1309 int pos;
1310 u32 cap;
1311 u16 ctrl;
1312 struct pci_dev *bridge;
1313
1314 if (!dev->is_pcie || dev->devfn)
1315 return;
1316
1317 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1318 if (!pos)
1319 return;
1320
1321 bridge = dev->bus->self;
1322 if (!bridge || !bridge->is_pcie)
1323 return;
1324
1325 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1326 if (!pos)
1327 return;
1328
1329 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1330 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1331 return;
1332
1333 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1334 ctrl |= PCI_EXP_DEVCTL2_ARI;
1335 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1336
1337 bridge->ari_enabled = 1;
1338 }
1339
1340 int
1341 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1342 {
1343 u8 pin;
1344
1345 pin = dev->pin;
1346 if (!pin)
1347 return -1;
1348 pin--;
1349 while (dev->bus->self) {
1350 pin = (pin + PCI_SLOT(dev->devfn)) % 4;
1351 dev = dev->bus->self;
1352 }
1353 *bridge = dev;
1354 return pin;
1355 }
1356
1357 /**
1358 * pci_release_region - Release a PCI bar
1359 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1360 * @bar: BAR to release
1361 *
1362 * Releases the PCI I/O and memory resources previously reserved by a
1363 * successful call to pci_request_region. Call this function only
1364 * after all use of the PCI regions has ceased.
1365 */
1366 void pci_release_region(struct pci_dev *pdev, int bar)
1367 {
1368 struct pci_devres *dr;
1369
1370 if (pci_resource_len(pdev, bar) == 0)
1371 return;
1372 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1373 release_region(pci_resource_start(pdev, bar),
1374 pci_resource_len(pdev, bar));
1375 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1376 release_mem_region(pci_resource_start(pdev, bar),
1377 pci_resource_len(pdev, bar));
1378
1379 dr = find_pci_dr(pdev);
1380 if (dr)
1381 dr->region_mask &= ~(1 << bar);
1382 }
1383
1384 /**
1385 * pci_request_region - Reserved PCI I/O and memory resource
1386 * @pdev: PCI device whose resources are to be reserved
1387 * @bar: BAR to be reserved
1388 * @res_name: Name to be associated with resource.
1389 *
1390 * Mark the PCI region associated with PCI device @pdev BR @bar as
1391 * being reserved by owner @res_name. Do not access any
1392 * address inside the PCI regions unless this call returns
1393 * successfully.
1394 *
1395 * Returns 0 on success, or %EBUSY on error. A warning
1396 * message is also printed on failure.
1397 */
1398 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1399 int exclusive)
1400 {
1401 struct pci_devres *dr;
1402
1403 if (pci_resource_len(pdev, bar) == 0)
1404 return 0;
1405
1406 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1407 if (!request_region(pci_resource_start(pdev, bar),
1408 pci_resource_len(pdev, bar), res_name))
1409 goto err_out;
1410 }
1411 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1412 if (!__request_mem_region(pci_resource_start(pdev, bar),
1413 pci_resource_len(pdev, bar), res_name,
1414 exclusive))
1415 goto err_out;
1416 }
1417
1418 dr = find_pci_dr(pdev);
1419 if (dr)
1420 dr->region_mask |= 1 << bar;
1421
1422 return 0;
1423
1424 err_out:
1425 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1426 bar,
1427 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1428 &pdev->resource[bar]);
1429 return -EBUSY;
1430 }
1431
1432 /**
1433 * pci_request_region - Reserved PCI I/O and memory resource
1434 * @pdev: PCI device whose resources are to be reserved
1435 * @bar: BAR to be reserved
1436 * @res_name: Name to be associated with resource.
1437 *
1438 * Mark the PCI region associated with PCI device @pdev BR @bar as
1439 * being reserved by owner @res_name. Do not access any
1440 * address inside the PCI regions unless this call returns
1441 * successfully.
1442 *
1443 * Returns 0 on success, or %EBUSY on error. A warning
1444 * message is also printed on failure.
1445 */
1446 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1447 {
1448 return __pci_request_region(pdev, bar, res_name, 0);
1449 }
1450
1451 /**
1452 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1453 * @pdev: PCI device whose resources are to be reserved
1454 * @bar: BAR to be reserved
1455 * @res_name: Name to be associated with resource.
1456 *
1457 * Mark the PCI region associated with PCI device @pdev BR @bar as
1458 * being reserved by owner @res_name. Do not access any
1459 * address inside the PCI regions unless this call returns
1460 * successfully.
1461 *
1462 * Returns 0 on success, or %EBUSY on error. A warning
1463 * message is also printed on failure.
1464 *
1465 * The key difference that _exclusive makes it that userspace is
1466 * explicitly not allowed to map the resource via /dev/mem or
1467 * sysfs.
1468 */
1469 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1470 {
1471 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1472 }
1473 /**
1474 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1475 * @pdev: PCI device whose resources were previously reserved
1476 * @bars: Bitmask of BARs to be released
1477 *
1478 * Release selected PCI I/O and memory resources previously reserved.
1479 * Call this function only after all use of the PCI regions has ceased.
1480 */
1481 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1482 {
1483 int i;
1484
1485 for (i = 0; i < 6; i++)
1486 if (bars & (1 << i))
1487 pci_release_region(pdev, i);
1488 }
1489
1490 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1491 const char *res_name, int excl)
1492 {
1493 int i;
1494
1495 for (i = 0; i < 6; i++)
1496 if (bars & (1 << i))
1497 if (__pci_request_region(pdev, i, res_name, excl))
1498 goto err_out;
1499 return 0;
1500
1501 err_out:
1502 while(--i >= 0)
1503 if (bars & (1 << i))
1504 pci_release_region(pdev, i);
1505
1506 return -EBUSY;
1507 }
1508
1509
1510 /**
1511 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1512 * @pdev: PCI device whose resources are to be reserved
1513 * @bars: Bitmask of BARs to be requested
1514 * @res_name: Name to be associated with resource
1515 */
1516 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1517 const char *res_name)
1518 {
1519 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1520 }
1521
1522 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1523 int bars, const char *res_name)
1524 {
1525 return __pci_request_selected_regions(pdev, bars, res_name,
1526 IORESOURCE_EXCLUSIVE);
1527 }
1528
1529 /**
1530 * pci_release_regions - Release reserved PCI I/O and memory resources
1531 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1532 *
1533 * Releases all PCI I/O and memory resources previously reserved by a
1534 * successful call to pci_request_regions. Call this function only
1535 * after all use of the PCI regions has ceased.
1536 */
1537
1538 void pci_release_regions(struct pci_dev *pdev)
1539 {
1540 pci_release_selected_regions(pdev, (1 << 6) - 1);
1541 }
1542
1543 /**
1544 * pci_request_regions - Reserved PCI I/O and memory resources
1545 * @pdev: PCI device whose resources are to be reserved
1546 * @res_name: Name to be associated with resource.
1547 *
1548 * Mark all PCI regions associated with PCI device @pdev as
1549 * being reserved by owner @res_name. Do not access any
1550 * address inside the PCI regions unless this call returns
1551 * successfully.
1552 *
1553 * Returns 0 on success, or %EBUSY on error. A warning
1554 * message is also printed on failure.
1555 */
1556 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1557 {
1558 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1559 }
1560
1561 /**
1562 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1563 * @pdev: PCI device whose resources are to be reserved
1564 * @res_name: Name to be associated with resource.
1565 *
1566 * Mark all PCI regions associated with PCI device @pdev as
1567 * being reserved by owner @res_name. Do not access any
1568 * address inside the PCI regions unless this call returns
1569 * successfully.
1570 *
1571 * pci_request_regions_exclusive() will mark the region so that
1572 * /dev/mem and the sysfs MMIO access will not be allowed.
1573 *
1574 * Returns 0 on success, or %EBUSY on error. A warning
1575 * message is also printed on failure.
1576 */
1577 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1578 {
1579 return pci_request_selected_regions_exclusive(pdev,
1580 ((1 << 6) - 1), res_name);
1581 }
1582
1583
1584 /**
1585 * pci_set_master - enables bus-mastering for device dev
1586 * @dev: the PCI device to enable
1587 *
1588 * Enables bus-mastering on the device and calls pcibios_set_master()
1589 * to do the needed arch specific settings.
1590 */
1591 void
1592 pci_set_master(struct pci_dev *dev)
1593 {
1594 u16 cmd;
1595
1596 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1597 if (! (cmd & PCI_COMMAND_MASTER)) {
1598 dev_dbg(&dev->dev, "enabling bus mastering\n");
1599 cmd |= PCI_COMMAND_MASTER;
1600 pci_write_config_word(dev, PCI_COMMAND, cmd);
1601 }
1602 dev->is_busmaster = 1;
1603 pcibios_set_master(dev);
1604 }
1605
1606 #ifdef PCI_DISABLE_MWI
1607 int pci_set_mwi(struct pci_dev *dev)
1608 {
1609 return 0;
1610 }
1611
1612 int pci_try_set_mwi(struct pci_dev *dev)
1613 {
1614 return 0;
1615 }
1616
1617 void pci_clear_mwi(struct pci_dev *dev)
1618 {
1619 }
1620
1621 #else
1622
1623 #ifndef PCI_CACHE_LINE_BYTES
1624 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1625 #endif
1626
1627 /* This can be overridden by arch code. */
1628 /* Don't forget this is measured in 32-bit words, not bytes */
1629 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1630
1631 /**
1632 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1633 * @dev: the PCI device for which MWI is to be enabled
1634 *
1635 * Helper function for pci_set_mwi.
1636 * Originally copied from drivers/net/acenic.c.
1637 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1638 *
1639 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1640 */
1641 static int
1642 pci_set_cacheline_size(struct pci_dev *dev)
1643 {
1644 u8 cacheline_size;
1645
1646 if (!pci_cache_line_size)
1647 return -EINVAL; /* The system doesn't support MWI. */
1648
1649 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1650 equal to or multiple of the right value. */
1651 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1652 if (cacheline_size >= pci_cache_line_size &&
1653 (cacheline_size % pci_cache_line_size) == 0)
1654 return 0;
1655
1656 /* Write the correct value. */
1657 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1658 /* Read it back. */
1659 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1660 if (cacheline_size == pci_cache_line_size)
1661 return 0;
1662
1663 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1664 "supported\n", pci_cache_line_size << 2);
1665
1666 return -EINVAL;
1667 }
1668
1669 /**
1670 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1671 * @dev: the PCI device for which MWI is enabled
1672 *
1673 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1674 *
1675 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1676 */
1677 int
1678 pci_set_mwi(struct pci_dev *dev)
1679 {
1680 int rc;
1681 u16 cmd;
1682
1683 rc = pci_set_cacheline_size(dev);
1684 if (rc)
1685 return rc;
1686
1687 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1688 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1689 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1690 cmd |= PCI_COMMAND_INVALIDATE;
1691 pci_write_config_word(dev, PCI_COMMAND, cmd);
1692 }
1693
1694 return 0;
1695 }
1696
1697 /**
1698 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1699 * @dev: the PCI device for which MWI is enabled
1700 *
1701 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1702 * Callers are not required to check the return value.
1703 *
1704 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1705 */
1706 int pci_try_set_mwi(struct pci_dev *dev)
1707 {
1708 int rc = pci_set_mwi(dev);
1709 return rc;
1710 }
1711
1712 /**
1713 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1714 * @dev: the PCI device to disable
1715 *
1716 * Disables PCI Memory-Write-Invalidate transaction on the device
1717 */
1718 void
1719 pci_clear_mwi(struct pci_dev *dev)
1720 {
1721 u16 cmd;
1722
1723 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1724 if (cmd & PCI_COMMAND_INVALIDATE) {
1725 cmd &= ~PCI_COMMAND_INVALIDATE;
1726 pci_write_config_word(dev, PCI_COMMAND, cmd);
1727 }
1728 }
1729 #endif /* ! PCI_DISABLE_MWI */
1730
1731 /**
1732 * pci_intx - enables/disables PCI INTx for device dev
1733 * @pdev: the PCI device to operate on
1734 * @enable: boolean: whether to enable or disable PCI INTx
1735 *
1736 * Enables/disables PCI INTx for device dev
1737 */
1738 void
1739 pci_intx(struct pci_dev *pdev, int enable)
1740 {
1741 u16 pci_command, new;
1742
1743 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1744
1745 if (enable) {
1746 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1747 } else {
1748 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1749 }
1750
1751 if (new != pci_command) {
1752 struct pci_devres *dr;
1753
1754 pci_write_config_word(pdev, PCI_COMMAND, new);
1755
1756 dr = find_pci_dr(pdev);
1757 if (dr && !dr->restore_intx) {
1758 dr->restore_intx = 1;
1759 dr->orig_intx = !enable;
1760 }
1761 }
1762 }
1763
1764 /**
1765 * pci_msi_off - disables any msi or msix capabilities
1766 * @dev: the PCI device to operate on
1767 *
1768 * If you want to use msi see pci_enable_msi and friends.
1769 * This is a lower level primitive that allows us to disable
1770 * msi operation at the device level.
1771 */
1772 void pci_msi_off(struct pci_dev *dev)
1773 {
1774 int pos;
1775 u16 control;
1776
1777 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1778 if (pos) {
1779 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1780 control &= ~PCI_MSI_FLAGS_ENABLE;
1781 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1782 }
1783 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1784 if (pos) {
1785 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1786 control &= ~PCI_MSIX_FLAGS_ENABLE;
1787 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1788 }
1789 }
1790
1791 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1792 /*
1793 * These can be overridden by arch-specific implementations
1794 */
1795 int
1796 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1797 {
1798 if (!pci_dma_supported(dev, mask))
1799 return -EIO;
1800
1801 dev->dma_mask = mask;
1802
1803 return 0;
1804 }
1805
1806 int
1807 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1808 {
1809 if (!pci_dma_supported(dev, mask))
1810 return -EIO;
1811
1812 dev->dev.coherent_dma_mask = mask;
1813
1814 return 0;
1815 }
1816 #endif
1817
1818 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1819 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1820 {
1821 return dma_set_max_seg_size(&dev->dev, size);
1822 }
1823 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1824 #endif
1825
1826 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1827 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1828 {
1829 return dma_set_seg_boundary(&dev->dev, mask);
1830 }
1831 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1832 #endif
1833
1834 static int __pcie_flr(struct pci_dev *dev, int probe)
1835 {
1836 u16 status;
1837 u32 cap;
1838 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
1839
1840 if (!exppos)
1841 return -ENOTTY;
1842 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
1843 if (!(cap & PCI_EXP_DEVCAP_FLR))
1844 return -ENOTTY;
1845
1846 if (probe)
1847 return 0;
1848
1849 pci_block_user_cfg_access(dev);
1850
1851 /* Wait for Transaction Pending bit clean */
1852 msleep(100);
1853 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1854 if (status & PCI_EXP_DEVSTA_TRPND) {
1855 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
1856 "sleeping for 1 second\n");
1857 ssleep(1);
1858 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1859 if (status & PCI_EXP_DEVSTA_TRPND)
1860 dev_info(&dev->dev, "Still busy after 1s; "
1861 "proceeding with reset anyway\n");
1862 }
1863
1864 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
1865 PCI_EXP_DEVCTL_BCR_FLR);
1866 mdelay(100);
1867
1868 pci_unblock_user_cfg_access(dev);
1869 return 0;
1870 }
1871
1872 static int __pci_af_flr(struct pci_dev *dev, int probe)
1873 {
1874 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
1875 u8 status;
1876 u8 cap;
1877
1878 if (!cappos)
1879 return -ENOTTY;
1880 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
1881 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
1882 return -ENOTTY;
1883
1884 if (probe)
1885 return 0;
1886
1887 pci_block_user_cfg_access(dev);
1888
1889 /* Wait for Transaction Pending bit clean */
1890 msleep(100);
1891 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
1892 if (status & PCI_AF_STATUS_TP) {
1893 dev_info(&dev->dev, "Busy after 100ms while trying to"
1894 " reset; sleeping for 1 second\n");
1895 ssleep(1);
1896 pci_read_config_byte(dev,
1897 cappos + PCI_AF_STATUS, &status);
1898 if (status & PCI_AF_STATUS_TP)
1899 dev_info(&dev->dev, "Still busy after 1s; "
1900 "proceeding with reset anyway\n");
1901 }
1902 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
1903 mdelay(100);
1904
1905 pci_unblock_user_cfg_access(dev);
1906 return 0;
1907 }
1908
1909 static int __pci_reset_function(struct pci_dev *pdev, int probe)
1910 {
1911 int res;
1912
1913 res = __pcie_flr(pdev, probe);
1914 if (res != -ENOTTY)
1915 return res;
1916
1917 res = __pci_af_flr(pdev, probe);
1918 if (res != -ENOTTY)
1919 return res;
1920
1921 return res;
1922 }
1923
1924 /**
1925 * pci_execute_reset_function() - Reset a PCI device function
1926 * @dev: Device function to reset
1927 *
1928 * Some devices allow an individual function to be reset without affecting
1929 * other functions in the same device. The PCI device must be responsive
1930 * to PCI config space in order to use this function.
1931 *
1932 * The device function is presumed to be unused when this function is called.
1933 * Resetting the device will make the contents of PCI configuration space
1934 * random, so any caller of this must be prepared to reinitialise the
1935 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
1936 * etc.
1937 *
1938 * Returns 0 if the device function was successfully reset or -ENOTTY if the
1939 * device doesn't support resetting a single function.
1940 */
1941 int pci_execute_reset_function(struct pci_dev *dev)
1942 {
1943 return __pci_reset_function(dev, 0);
1944 }
1945 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
1946
1947 /**
1948 * pci_reset_function() - quiesce and reset a PCI device function
1949 * @dev: Device function to reset
1950 *
1951 * Some devices allow an individual function to be reset without affecting
1952 * other functions in the same device. The PCI device must be responsive
1953 * to PCI config space in order to use this function.
1954 *
1955 * This function does not just reset the PCI portion of a device, but
1956 * clears all the state associated with the device. This function differs
1957 * from pci_execute_reset_function in that it saves and restores device state
1958 * over the reset.
1959 *
1960 * Returns 0 if the device function was successfully reset or -ENOTTY if the
1961 * device doesn't support resetting a single function.
1962 */
1963 int pci_reset_function(struct pci_dev *dev)
1964 {
1965 int r = __pci_reset_function(dev, 1);
1966
1967 if (r < 0)
1968 return r;
1969
1970 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
1971 disable_irq(dev->irq);
1972 pci_save_state(dev);
1973
1974 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
1975
1976 r = pci_execute_reset_function(dev);
1977
1978 pci_restore_state(dev);
1979 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
1980 enable_irq(dev->irq);
1981
1982 return r;
1983 }
1984 EXPORT_SYMBOL_GPL(pci_reset_function);
1985
1986 /**
1987 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
1988 * @dev: PCI device to query
1989 *
1990 * Returns mmrbc: maximum designed memory read count in bytes
1991 * or appropriate error value.
1992 */
1993 int pcix_get_max_mmrbc(struct pci_dev *dev)
1994 {
1995 int err, cap;
1996 u32 stat;
1997
1998 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1999 if (!cap)
2000 return -EINVAL;
2001
2002 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2003 if (err)
2004 return -EINVAL;
2005
2006 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2007 }
2008 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2009
2010 /**
2011 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2012 * @dev: PCI device to query
2013 *
2014 * Returns mmrbc: maximum memory read count in bytes
2015 * or appropriate error value.
2016 */
2017 int pcix_get_mmrbc(struct pci_dev *dev)
2018 {
2019 int ret, cap;
2020 u32 cmd;
2021
2022 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2023 if (!cap)
2024 return -EINVAL;
2025
2026 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2027 if (!ret)
2028 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2029
2030 return ret;
2031 }
2032 EXPORT_SYMBOL(pcix_get_mmrbc);
2033
2034 /**
2035 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2036 * @dev: PCI device to query
2037 * @mmrbc: maximum memory read count in bytes
2038 * valid values are 512, 1024, 2048, 4096
2039 *
2040 * If possible sets maximum memory read byte count, some bridges have erratas
2041 * that prevent this.
2042 */
2043 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2044 {
2045 int cap, err = -EINVAL;
2046 u32 stat, cmd, v, o;
2047
2048 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2049 goto out;
2050
2051 v = ffs(mmrbc) - 10;
2052
2053 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2054 if (!cap)
2055 goto out;
2056
2057 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2058 if (err)
2059 goto out;
2060
2061 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2062 return -E2BIG;
2063
2064 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2065 if (err)
2066 goto out;
2067
2068 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2069 if (o != v) {
2070 if (v > o && dev->bus &&
2071 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2072 return -EIO;
2073
2074 cmd &= ~PCI_X_CMD_MAX_READ;
2075 cmd |= v << 2;
2076 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2077 }
2078 out:
2079 return err;
2080 }
2081 EXPORT_SYMBOL(pcix_set_mmrbc);
2082
2083 /**
2084 * pcie_get_readrq - get PCI Express read request size
2085 * @dev: PCI device to query
2086 *
2087 * Returns maximum memory read request in bytes
2088 * or appropriate error value.
2089 */
2090 int pcie_get_readrq(struct pci_dev *dev)
2091 {
2092 int ret, cap;
2093 u16 ctl;
2094
2095 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2096 if (!cap)
2097 return -EINVAL;
2098
2099 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2100 if (!ret)
2101 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2102
2103 return ret;
2104 }
2105 EXPORT_SYMBOL(pcie_get_readrq);
2106
2107 /**
2108 * pcie_set_readrq - set PCI Express maximum memory read request
2109 * @dev: PCI device to query
2110 * @rq: maximum memory read count in bytes
2111 * valid values are 128, 256, 512, 1024, 2048, 4096
2112 *
2113 * If possible sets maximum read byte count
2114 */
2115 int pcie_set_readrq(struct pci_dev *dev, int rq)
2116 {
2117 int cap, err = -EINVAL;
2118 u16 ctl, v;
2119
2120 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2121 goto out;
2122
2123 v = (ffs(rq) - 8) << 12;
2124
2125 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2126 if (!cap)
2127 goto out;
2128
2129 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2130 if (err)
2131 goto out;
2132
2133 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2134 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2135 ctl |= v;
2136 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2137 }
2138
2139 out:
2140 return err;
2141 }
2142 EXPORT_SYMBOL(pcie_set_readrq);
2143
2144 /**
2145 * pci_select_bars - Make BAR mask from the type of resource
2146 * @dev: the PCI device for which BAR mask is made
2147 * @flags: resource type mask to be selected
2148 *
2149 * This helper routine makes bar mask from the type of resource.
2150 */
2151 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2152 {
2153 int i, bars = 0;
2154 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2155 if (pci_resource_flags(dev, i) & flags)
2156 bars |= (1 << i);
2157 return bars;
2158 }
2159
2160 static void __devinit pci_no_domains(void)
2161 {
2162 #ifdef CONFIG_PCI_DOMAINS
2163 pci_domains_supported = 0;
2164 #endif
2165 }
2166
2167 /**
2168 * pci_ext_cfg_enabled - can we access extended PCI config space?
2169 * @dev: The PCI device of the root bridge.
2170 *
2171 * Returns 1 if we can access PCI extended config space (offsets
2172 * greater than 0xff). This is the default implementation. Architecture
2173 * implementations can override this.
2174 */
2175 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2176 {
2177 return 1;
2178 }
2179
2180 static int __devinit pci_init(void)
2181 {
2182 struct pci_dev *dev = NULL;
2183
2184 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2185 pci_fixup_device(pci_fixup_final, dev);
2186 }
2187
2188 return 0;
2189 }
2190
2191 static int __init pci_setup(char *str)
2192 {
2193 while (str) {
2194 char *k = strchr(str, ',');
2195 if (k)
2196 *k++ = 0;
2197 if (*str && (str = pcibios_setup(str)) && *str) {
2198 if (!strcmp(str, "nomsi")) {
2199 pci_no_msi();
2200 } else if (!strcmp(str, "noaer")) {
2201 pci_no_aer();
2202 } else if (!strcmp(str, "nodomains")) {
2203 pci_no_domains();
2204 } else if (!strncmp(str, "cbiosize=", 9)) {
2205 pci_cardbus_io_size = memparse(str + 9, &str);
2206 } else if (!strncmp(str, "cbmemsize=", 10)) {
2207 pci_cardbus_mem_size = memparse(str + 10, &str);
2208 } else {
2209 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2210 str);
2211 }
2212 }
2213 str = k;
2214 }
2215 return 0;
2216 }
2217 early_param("pci", pci_setup);
2218
2219 device_initcall(pci_init);
2220
2221 EXPORT_SYMBOL(pci_reenable_device);
2222 EXPORT_SYMBOL(pci_enable_device_io);
2223 EXPORT_SYMBOL(pci_enable_device_mem);
2224 EXPORT_SYMBOL(pci_enable_device);
2225 EXPORT_SYMBOL(pcim_enable_device);
2226 EXPORT_SYMBOL(pcim_pin_device);
2227 EXPORT_SYMBOL(pci_disable_device);
2228 EXPORT_SYMBOL(pci_find_capability);
2229 EXPORT_SYMBOL(pci_bus_find_capability);
2230 EXPORT_SYMBOL(pci_release_regions);
2231 EXPORT_SYMBOL(pci_request_regions);
2232 EXPORT_SYMBOL(pci_request_regions_exclusive);
2233 EXPORT_SYMBOL(pci_release_region);
2234 EXPORT_SYMBOL(pci_request_region);
2235 EXPORT_SYMBOL(pci_request_region_exclusive);
2236 EXPORT_SYMBOL(pci_release_selected_regions);
2237 EXPORT_SYMBOL(pci_request_selected_regions);
2238 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2239 EXPORT_SYMBOL(pci_set_master);
2240 EXPORT_SYMBOL(pci_set_mwi);
2241 EXPORT_SYMBOL(pci_try_set_mwi);
2242 EXPORT_SYMBOL(pci_clear_mwi);
2243 EXPORT_SYMBOL_GPL(pci_intx);
2244 EXPORT_SYMBOL(pci_set_dma_mask);
2245 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2246 EXPORT_SYMBOL(pci_assign_resource);
2247 EXPORT_SYMBOL(pci_find_parent_resource);
2248 EXPORT_SYMBOL(pci_select_bars);
2249
2250 EXPORT_SYMBOL(pci_set_power_state);
2251 EXPORT_SYMBOL(pci_save_state);
2252 EXPORT_SYMBOL(pci_restore_state);
2253 EXPORT_SYMBOL(pci_pme_capable);
2254 EXPORT_SYMBOL(pci_pme_active);
2255 EXPORT_SYMBOL(pci_enable_wake);
2256 EXPORT_SYMBOL(pci_wake_from_d3);
2257 EXPORT_SYMBOL(pci_target_state);
2258 EXPORT_SYMBOL(pci_prepare_to_sleep);
2259 EXPORT_SYMBOL(pci_back_from_sleep);
2260 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2261
This page took 0.077096 seconds and 5 git commands to generate.