Merge commit 'ftrace/function-graph' into next
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include "pci.h"
24
25 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
26
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30
31 #define DEFAULT_CARDBUS_IO_SIZE (256)
32 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36
37 /**
38 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39 * @bus: pointer to PCI bus structure to search
40 *
41 * Given a PCI bus, returns the highest PCI bus number present in the set
42 * including the given PCI bus and its list of child PCI buses.
43 */
44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 struct list_head *tmp;
47 unsigned char max, n;
48
49 max = bus->subordinate;
50 list_for_each(tmp, &bus->children) {
51 n = pci_bus_max_busnr(pci_bus_b(tmp));
52 if(n > max)
53 max = n;
54 }
55 return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58
59 #ifdef CONFIG_HAS_IOMEM
60 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
61 {
62 /*
63 * Make sure the BAR is actually a memory resource, not an IO resource
64 */
65 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
66 WARN_ON(1);
67 return NULL;
68 }
69 return ioremap_nocache(pci_resource_start(pdev, bar),
70 pci_resource_len(pdev, bar));
71 }
72 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
73 #endif
74
75 #if 0
76 /**
77 * pci_max_busnr - returns maximum PCI bus number
78 *
79 * Returns the highest PCI bus number present in the system global list of
80 * PCI buses.
81 */
82 unsigned char __devinit
83 pci_max_busnr(void)
84 {
85 struct pci_bus *bus = NULL;
86 unsigned char max, n;
87
88 max = 0;
89 while ((bus = pci_find_next_bus(bus)) != NULL) {
90 n = pci_bus_max_busnr(bus);
91 if(n > max)
92 max = n;
93 }
94 return max;
95 }
96
97 #endif /* 0 */
98
99 #define PCI_FIND_CAP_TTL 48
100
101 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
102 u8 pos, int cap, int *ttl)
103 {
104 u8 id;
105
106 while ((*ttl)--) {
107 pci_bus_read_config_byte(bus, devfn, pos, &pos);
108 if (pos < 0x40)
109 break;
110 pos &= ~3;
111 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
112 &id);
113 if (id == 0xff)
114 break;
115 if (id == cap)
116 return pos;
117 pos += PCI_CAP_LIST_NEXT;
118 }
119 return 0;
120 }
121
122 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
123 u8 pos, int cap)
124 {
125 int ttl = PCI_FIND_CAP_TTL;
126
127 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
128 }
129
130 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
131 {
132 return __pci_find_next_cap(dev->bus, dev->devfn,
133 pos + PCI_CAP_LIST_NEXT, cap);
134 }
135 EXPORT_SYMBOL_GPL(pci_find_next_capability);
136
137 static int __pci_bus_find_cap_start(struct pci_bus *bus,
138 unsigned int devfn, u8 hdr_type)
139 {
140 u16 status;
141
142 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
143 if (!(status & PCI_STATUS_CAP_LIST))
144 return 0;
145
146 switch (hdr_type) {
147 case PCI_HEADER_TYPE_NORMAL:
148 case PCI_HEADER_TYPE_BRIDGE:
149 return PCI_CAPABILITY_LIST;
150 case PCI_HEADER_TYPE_CARDBUS:
151 return PCI_CB_CAPABILITY_LIST;
152 default:
153 return 0;
154 }
155
156 return 0;
157 }
158
159 /**
160 * pci_find_capability - query for devices' capabilities
161 * @dev: PCI device to query
162 * @cap: capability code
163 *
164 * Tell if a device supports a given PCI capability.
165 * Returns the address of the requested capability structure within the
166 * device's PCI configuration space or 0 in case the device does not
167 * support it. Possible values for @cap:
168 *
169 * %PCI_CAP_ID_PM Power Management
170 * %PCI_CAP_ID_AGP Accelerated Graphics Port
171 * %PCI_CAP_ID_VPD Vital Product Data
172 * %PCI_CAP_ID_SLOTID Slot Identification
173 * %PCI_CAP_ID_MSI Message Signalled Interrupts
174 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
175 * %PCI_CAP_ID_PCIX PCI-X
176 * %PCI_CAP_ID_EXP PCI Express
177 */
178 int pci_find_capability(struct pci_dev *dev, int cap)
179 {
180 int pos;
181
182 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
183 if (pos)
184 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
185
186 return pos;
187 }
188
189 /**
190 * pci_bus_find_capability - query for devices' capabilities
191 * @bus: the PCI bus to query
192 * @devfn: PCI device to query
193 * @cap: capability code
194 *
195 * Like pci_find_capability() but works for pci devices that do not have a
196 * pci_dev structure set up yet.
197 *
198 * Returns the address of the requested capability structure within the
199 * device's PCI configuration space or 0 in case the device does not
200 * support it.
201 */
202 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
203 {
204 int pos;
205 u8 hdr_type;
206
207 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
208
209 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
210 if (pos)
211 pos = __pci_find_next_cap(bus, devfn, pos, cap);
212
213 return pos;
214 }
215
216 /**
217 * pci_find_ext_capability - Find an extended capability
218 * @dev: PCI device to query
219 * @cap: capability code
220 *
221 * Returns the address of the requested extended capability structure
222 * within the device's PCI configuration space or 0 if the device does
223 * not support it. Possible values for @cap:
224 *
225 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
226 * %PCI_EXT_CAP_ID_VC Virtual Channel
227 * %PCI_EXT_CAP_ID_DSN Device Serial Number
228 * %PCI_EXT_CAP_ID_PWR Power Budgeting
229 */
230 int pci_find_ext_capability(struct pci_dev *dev, int cap)
231 {
232 u32 header;
233 int ttl;
234 int pos = PCI_CFG_SPACE_SIZE;
235
236 /* minimum 8 bytes per capability */
237 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
238
239 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
240 return 0;
241
242 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
243 return 0;
244
245 /*
246 * If we have no capabilities, this is indicated by cap ID,
247 * cap version and next pointer all being 0.
248 */
249 if (header == 0)
250 return 0;
251
252 while (ttl-- > 0) {
253 if (PCI_EXT_CAP_ID(header) == cap)
254 return pos;
255
256 pos = PCI_EXT_CAP_NEXT(header);
257 if (pos < PCI_CFG_SPACE_SIZE)
258 break;
259
260 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
261 break;
262 }
263
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
267
268 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
269 {
270 int rc, ttl = PCI_FIND_CAP_TTL;
271 u8 cap, mask;
272
273 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
274 mask = HT_3BIT_CAP_MASK;
275 else
276 mask = HT_5BIT_CAP_MASK;
277
278 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
279 PCI_CAP_ID_HT, &ttl);
280 while (pos) {
281 rc = pci_read_config_byte(dev, pos + 3, &cap);
282 if (rc != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 if ((cap & mask) == ht_cap)
286 return pos;
287
288 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
289 pos + PCI_CAP_LIST_NEXT,
290 PCI_CAP_ID_HT, &ttl);
291 }
292
293 return 0;
294 }
295 /**
296 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
297 * @dev: PCI device to query
298 * @pos: Position from which to continue searching
299 * @ht_cap: Hypertransport capability code
300 *
301 * To be used in conjunction with pci_find_ht_capability() to search for
302 * all capabilities matching @ht_cap. @pos should always be a value returned
303 * from pci_find_ht_capability().
304 *
305 * NB. To be 100% safe against broken PCI devices, the caller should take
306 * steps to avoid an infinite loop.
307 */
308 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
309 {
310 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
311 }
312 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
313
314 /**
315 * pci_find_ht_capability - query a device's Hypertransport capabilities
316 * @dev: PCI device to query
317 * @ht_cap: Hypertransport capability code
318 *
319 * Tell if a device supports a given Hypertransport capability.
320 * Returns an address within the device's PCI configuration space
321 * or 0 in case the device does not support the request capability.
322 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
323 * which has a Hypertransport capability matching @ht_cap.
324 */
325 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
326 {
327 int pos;
328
329 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
330 if (pos)
331 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
332
333 return pos;
334 }
335 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
336
337 /**
338 * pci_find_parent_resource - return resource region of parent bus of given region
339 * @dev: PCI device structure contains resources to be searched
340 * @res: child resource record for which parent is sought
341 *
342 * For given resource region of given device, return the resource
343 * region of parent bus the given region is contained in or where
344 * it should be allocated from.
345 */
346 struct resource *
347 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
348 {
349 const struct pci_bus *bus = dev->bus;
350 int i;
351 struct resource *best = NULL;
352
353 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
354 struct resource *r = bus->resource[i];
355 if (!r)
356 continue;
357 if (res->start && !(res->start >= r->start && res->end <= r->end))
358 continue; /* Not contained */
359 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
360 continue; /* Wrong type */
361 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
362 return r; /* Exact match */
363 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
364 best = r; /* Approximating prefetchable by non-prefetchable */
365 }
366 return best;
367 }
368
369 /**
370 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
371 * @dev: PCI device to have its BARs restored
372 *
373 * Restore the BAR values for a given device, so as to make it
374 * accessible by its driver.
375 */
376 static void
377 pci_restore_bars(struct pci_dev *dev)
378 {
379 int i;
380
381 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
382 pci_update_resource(dev, i);
383 }
384
385 static struct pci_platform_pm_ops *pci_platform_pm;
386
387 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
388 {
389 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
390 || !ops->sleep_wake || !ops->can_wakeup)
391 return -EINVAL;
392 pci_platform_pm = ops;
393 return 0;
394 }
395
396 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
397 {
398 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
399 }
400
401 static inline int platform_pci_set_power_state(struct pci_dev *dev,
402 pci_power_t t)
403 {
404 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
405 }
406
407 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
408 {
409 return pci_platform_pm ?
410 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
411 }
412
413 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
414 {
415 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
416 }
417
418 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
419 {
420 return pci_platform_pm ?
421 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
422 }
423
424 /**
425 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
426 * given PCI device
427 * @dev: PCI device to handle.
428 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
429 * @wait: If 'true', wait for the device to change its power state
430 *
431 * RETURN VALUE:
432 * -EINVAL if the requested state is invalid.
433 * -EIO if device does not support PCI PM or its PM capabilities register has a
434 * wrong version, or device doesn't support the requested state.
435 * 0 if device already is in the requested state.
436 * 0 if device's power state has been successfully changed.
437 */
438 static int
439 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state, bool wait)
440 {
441 u16 pmcsr;
442 bool need_restore = false;
443
444 if (!dev->pm_cap)
445 return -EIO;
446
447 if (state < PCI_D0 || state > PCI_D3hot)
448 return -EINVAL;
449
450 /* Validate current state:
451 * Can enter D0 from any state, but if we can only go deeper
452 * to sleep if we're already in a low power state
453 */
454 if (dev->current_state == state) {
455 /* we're already there */
456 return 0;
457 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
458 && dev->current_state > state) {
459 dev_err(&dev->dev, "invalid power transition "
460 "(from state %d to %d)\n", dev->current_state, state);
461 return -EINVAL;
462 }
463
464 /* check if this device supports the desired state */
465 if ((state == PCI_D1 && !dev->d1_support)
466 || (state == PCI_D2 && !dev->d2_support))
467 return -EIO;
468
469 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
470
471 /* If we're (effectively) in D3, force entire word to 0.
472 * This doesn't affect PME_Status, disables PME_En, and
473 * sets PowerState to 0.
474 */
475 switch (dev->current_state) {
476 case PCI_D0:
477 case PCI_D1:
478 case PCI_D2:
479 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
480 pmcsr |= state;
481 break;
482 case PCI_UNKNOWN: /* Boot-up */
483 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
484 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) {
485 need_restore = true;
486 wait = true;
487 }
488 /* Fall-through: force to D0 */
489 default:
490 pmcsr = 0;
491 break;
492 }
493
494 /* enter specified state */
495 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
496
497 if (!wait)
498 return 0;
499
500 /* Mandatory power management transition delays */
501 /* see PCI PM 1.1 5.6.1 table 18 */
502 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
503 msleep(pci_pm_d3_delay);
504 else if (state == PCI_D2 || dev->current_state == PCI_D2)
505 udelay(PCI_PM_D2_DELAY);
506
507 dev->current_state = state;
508
509 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
510 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
511 * from D3hot to D0 _may_ perform an internal reset, thereby
512 * going to "D0 Uninitialized" rather than "D0 Initialized".
513 * For example, at least some versions of the 3c905B and the
514 * 3c556B exhibit this behaviour.
515 *
516 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
517 * devices in a D3hot state at boot. Consequently, we need to
518 * restore at least the BARs so that the device will be
519 * accessible to its driver.
520 */
521 if (need_restore)
522 pci_restore_bars(dev);
523
524 if (wait && dev->bus->self)
525 pcie_aspm_pm_state_change(dev->bus->self);
526
527 return 0;
528 }
529
530 /**
531 * pci_update_current_state - Read PCI power state of given device from its
532 * PCI PM registers and cache it
533 * @dev: PCI device to handle.
534 * @state: State to cache in case the device doesn't have the PM capability
535 */
536 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
537 {
538 if (dev->pm_cap) {
539 u16 pmcsr;
540
541 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
542 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
543 } else {
544 dev->current_state = state;
545 }
546 }
547
548 /**
549 * pci_set_power_state - Set the power state of a PCI device
550 * @dev: PCI device to handle.
551 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
552 *
553 * Transition a device to a new power state, using the platform formware and/or
554 * the device's PCI PM registers.
555 *
556 * RETURN VALUE:
557 * -EINVAL if the requested state is invalid.
558 * -EIO if device does not support PCI PM or its PM capabilities register has a
559 * wrong version, or device doesn't support the requested state.
560 * 0 if device already is in the requested state.
561 * 0 if device's power state has been successfully changed.
562 */
563 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
564 {
565 int error;
566
567 /* bound the state we're entering */
568 if (state > PCI_D3hot)
569 state = PCI_D3hot;
570 else if (state < PCI_D0)
571 state = PCI_D0;
572 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
573 /*
574 * If the device or the parent bridge do not support PCI PM,
575 * ignore the request if we're doing anything other than putting
576 * it into D0 (which would only happen on boot).
577 */
578 return 0;
579
580 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
581 /*
582 * Allow the platform to change the state, for example via ACPI
583 * _PR0, _PS0 and some such, but do not trust it.
584 */
585 int ret = platform_pci_set_power_state(dev, PCI_D0);
586 if (!ret)
587 pci_update_current_state(dev, PCI_D0);
588 }
589 /* This device is quirked not to be put into D3, so
590 don't put it in D3 */
591 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
592 return 0;
593
594 error = pci_raw_set_power_state(dev, state, true);
595
596 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
597 /* Allow the platform to finalize the transition */
598 int ret = platform_pci_set_power_state(dev, state);
599 if (!ret) {
600 pci_update_current_state(dev, state);
601 error = 0;
602 }
603 }
604
605 return error;
606 }
607
608 /**
609 * pci_choose_state - Choose the power state of a PCI device
610 * @dev: PCI device to be suspended
611 * @state: target sleep state for the whole system. This is the value
612 * that is passed to suspend() function.
613 *
614 * Returns PCI power state suitable for given device and given system
615 * message.
616 */
617
618 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
619 {
620 pci_power_t ret;
621
622 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
623 return PCI_D0;
624
625 ret = platform_pci_choose_state(dev);
626 if (ret != PCI_POWER_ERROR)
627 return ret;
628
629 switch (state.event) {
630 case PM_EVENT_ON:
631 return PCI_D0;
632 case PM_EVENT_FREEZE:
633 case PM_EVENT_PRETHAW:
634 /* REVISIT both freeze and pre-thaw "should" use D0 */
635 case PM_EVENT_SUSPEND:
636 case PM_EVENT_HIBERNATE:
637 return PCI_D3hot;
638 default:
639 dev_info(&dev->dev, "unrecognized suspend event %d\n",
640 state.event);
641 BUG();
642 }
643 return PCI_D0;
644 }
645
646 EXPORT_SYMBOL(pci_choose_state);
647
648 static int pci_save_pcie_state(struct pci_dev *dev)
649 {
650 int pos, i = 0;
651 struct pci_cap_saved_state *save_state;
652 u16 *cap;
653
654 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
655 if (pos <= 0)
656 return 0;
657
658 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
659 if (!save_state) {
660 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
661 return -ENOMEM;
662 }
663 cap = (u16 *)&save_state->data[0];
664
665 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
666 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
667 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
668 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
669
670 return 0;
671 }
672
673 static void pci_restore_pcie_state(struct pci_dev *dev)
674 {
675 int i = 0, pos;
676 struct pci_cap_saved_state *save_state;
677 u16 *cap;
678
679 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
680 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
681 if (!save_state || pos <= 0)
682 return;
683 cap = (u16 *)&save_state->data[0];
684
685 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
686 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
687 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
688 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
689 }
690
691
692 static int pci_save_pcix_state(struct pci_dev *dev)
693 {
694 int pos;
695 struct pci_cap_saved_state *save_state;
696
697 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
698 if (pos <= 0)
699 return 0;
700
701 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
702 if (!save_state) {
703 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
704 return -ENOMEM;
705 }
706
707 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
708
709 return 0;
710 }
711
712 static void pci_restore_pcix_state(struct pci_dev *dev)
713 {
714 int i = 0, pos;
715 struct pci_cap_saved_state *save_state;
716 u16 *cap;
717
718 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
719 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
720 if (!save_state || pos <= 0)
721 return;
722 cap = (u16 *)&save_state->data[0];
723
724 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
725 }
726
727
728 /**
729 * pci_save_state - save the PCI configuration space of a device before suspending
730 * @dev: - PCI device that we're dealing with
731 */
732 int
733 pci_save_state(struct pci_dev *dev)
734 {
735 int i;
736 /* XXX: 100% dword access ok here? */
737 for (i = 0; i < 16; i++)
738 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
739 dev->state_saved = true;
740 if ((i = pci_save_pcie_state(dev)) != 0)
741 return i;
742 if ((i = pci_save_pcix_state(dev)) != 0)
743 return i;
744 return 0;
745 }
746
747 /**
748 * pci_restore_state - Restore the saved state of a PCI device
749 * @dev: - PCI device that we're dealing with
750 */
751 int
752 pci_restore_state(struct pci_dev *dev)
753 {
754 int i;
755 u32 val;
756
757 /* PCI Express register must be restored first */
758 pci_restore_pcie_state(dev);
759
760 /*
761 * The Base Address register should be programmed before the command
762 * register(s)
763 */
764 for (i = 15; i >= 0; i--) {
765 pci_read_config_dword(dev, i * 4, &val);
766 if (val != dev->saved_config_space[i]) {
767 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
768 "space at offset %#x (was %#x, writing %#x)\n",
769 i, val, (int)dev->saved_config_space[i]);
770 pci_write_config_dword(dev,i * 4,
771 dev->saved_config_space[i]);
772 }
773 }
774 pci_restore_pcix_state(dev);
775 pci_restore_msi_state(dev);
776
777 return 0;
778 }
779
780 static int do_pci_enable_device(struct pci_dev *dev, int bars)
781 {
782 int err;
783
784 err = pci_set_power_state(dev, PCI_D0);
785 if (err < 0 && err != -EIO)
786 return err;
787 err = pcibios_enable_device(dev, bars);
788 if (err < 0)
789 return err;
790 pci_fixup_device(pci_fixup_enable, dev);
791
792 return 0;
793 }
794
795 /**
796 * pci_reenable_device - Resume abandoned device
797 * @dev: PCI device to be resumed
798 *
799 * Note this function is a backend of pci_default_resume and is not supposed
800 * to be called by normal code, write proper resume handler and use it instead.
801 */
802 int pci_reenable_device(struct pci_dev *dev)
803 {
804 if (atomic_read(&dev->enable_cnt))
805 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
806 return 0;
807 }
808
809 static int __pci_enable_device_flags(struct pci_dev *dev,
810 resource_size_t flags)
811 {
812 int err;
813 int i, bars = 0;
814
815 if (atomic_add_return(1, &dev->enable_cnt) > 1)
816 return 0; /* already enabled */
817
818 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
819 if (dev->resource[i].flags & flags)
820 bars |= (1 << i);
821
822 err = do_pci_enable_device(dev, bars);
823 if (err < 0)
824 atomic_dec(&dev->enable_cnt);
825 return err;
826 }
827
828 /**
829 * pci_enable_device_io - Initialize a device for use with IO space
830 * @dev: PCI device to be initialized
831 *
832 * Initialize device before it's used by a driver. Ask low-level code
833 * to enable I/O resources. Wake up the device if it was suspended.
834 * Beware, this function can fail.
835 */
836 int pci_enable_device_io(struct pci_dev *dev)
837 {
838 return __pci_enable_device_flags(dev, IORESOURCE_IO);
839 }
840
841 /**
842 * pci_enable_device_mem - Initialize a device for use with Memory space
843 * @dev: PCI device to be initialized
844 *
845 * Initialize device before it's used by a driver. Ask low-level code
846 * to enable Memory resources. Wake up the device if it was suspended.
847 * Beware, this function can fail.
848 */
849 int pci_enable_device_mem(struct pci_dev *dev)
850 {
851 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
852 }
853
854 /**
855 * pci_enable_device - Initialize device before it's used by a driver.
856 * @dev: PCI device to be initialized
857 *
858 * Initialize device before it's used by a driver. Ask low-level code
859 * to enable I/O and memory. Wake up the device if it was suspended.
860 * Beware, this function can fail.
861 *
862 * Note we don't actually enable the device many times if we call
863 * this function repeatedly (we just increment the count).
864 */
865 int pci_enable_device(struct pci_dev *dev)
866 {
867 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
868 }
869
870 /*
871 * Managed PCI resources. This manages device on/off, intx/msi/msix
872 * on/off and BAR regions. pci_dev itself records msi/msix status, so
873 * there's no need to track it separately. pci_devres is initialized
874 * when a device is enabled using managed PCI device enable interface.
875 */
876 struct pci_devres {
877 unsigned int enabled:1;
878 unsigned int pinned:1;
879 unsigned int orig_intx:1;
880 unsigned int restore_intx:1;
881 u32 region_mask;
882 };
883
884 static void pcim_release(struct device *gendev, void *res)
885 {
886 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
887 struct pci_devres *this = res;
888 int i;
889
890 if (dev->msi_enabled)
891 pci_disable_msi(dev);
892 if (dev->msix_enabled)
893 pci_disable_msix(dev);
894
895 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
896 if (this->region_mask & (1 << i))
897 pci_release_region(dev, i);
898
899 if (this->restore_intx)
900 pci_intx(dev, this->orig_intx);
901
902 if (this->enabled && !this->pinned)
903 pci_disable_device(dev);
904 }
905
906 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
907 {
908 struct pci_devres *dr, *new_dr;
909
910 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
911 if (dr)
912 return dr;
913
914 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
915 if (!new_dr)
916 return NULL;
917 return devres_get(&pdev->dev, new_dr, NULL, NULL);
918 }
919
920 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
921 {
922 if (pci_is_managed(pdev))
923 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
924 return NULL;
925 }
926
927 /**
928 * pcim_enable_device - Managed pci_enable_device()
929 * @pdev: PCI device to be initialized
930 *
931 * Managed pci_enable_device().
932 */
933 int pcim_enable_device(struct pci_dev *pdev)
934 {
935 struct pci_devres *dr;
936 int rc;
937
938 dr = get_pci_dr(pdev);
939 if (unlikely(!dr))
940 return -ENOMEM;
941 if (dr->enabled)
942 return 0;
943
944 rc = pci_enable_device(pdev);
945 if (!rc) {
946 pdev->is_managed = 1;
947 dr->enabled = 1;
948 }
949 return rc;
950 }
951
952 /**
953 * pcim_pin_device - Pin managed PCI device
954 * @pdev: PCI device to pin
955 *
956 * Pin managed PCI device @pdev. Pinned device won't be disabled on
957 * driver detach. @pdev must have been enabled with
958 * pcim_enable_device().
959 */
960 void pcim_pin_device(struct pci_dev *pdev)
961 {
962 struct pci_devres *dr;
963
964 dr = find_pci_dr(pdev);
965 WARN_ON(!dr || !dr->enabled);
966 if (dr)
967 dr->pinned = 1;
968 }
969
970 /**
971 * pcibios_disable_device - disable arch specific PCI resources for device dev
972 * @dev: the PCI device to disable
973 *
974 * Disables architecture specific PCI resources for the device. This
975 * is the default implementation. Architecture implementations can
976 * override this.
977 */
978 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
979
980 static void do_pci_disable_device(struct pci_dev *dev)
981 {
982 u16 pci_command;
983
984 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
985 if (pci_command & PCI_COMMAND_MASTER) {
986 pci_command &= ~PCI_COMMAND_MASTER;
987 pci_write_config_word(dev, PCI_COMMAND, pci_command);
988 }
989
990 pcibios_disable_device(dev);
991 }
992
993 /**
994 * pci_disable_enabled_device - Disable device without updating enable_cnt
995 * @dev: PCI device to disable
996 *
997 * NOTE: This function is a backend of PCI power management routines and is
998 * not supposed to be called drivers.
999 */
1000 void pci_disable_enabled_device(struct pci_dev *dev)
1001 {
1002 if (atomic_read(&dev->enable_cnt))
1003 do_pci_disable_device(dev);
1004 }
1005
1006 /**
1007 * pci_disable_device - Disable PCI device after use
1008 * @dev: PCI device to be disabled
1009 *
1010 * Signal to the system that the PCI device is not in use by the system
1011 * anymore. This only involves disabling PCI bus-mastering, if active.
1012 *
1013 * Note we don't actually disable the device until all callers of
1014 * pci_device_enable() have called pci_device_disable().
1015 */
1016 void
1017 pci_disable_device(struct pci_dev *dev)
1018 {
1019 struct pci_devres *dr;
1020
1021 dr = find_pci_dr(dev);
1022 if (dr)
1023 dr->enabled = 0;
1024
1025 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1026 return;
1027
1028 do_pci_disable_device(dev);
1029
1030 dev->is_busmaster = 0;
1031 }
1032
1033 /**
1034 * pcibios_set_pcie_reset_state - set reset state for device dev
1035 * @dev: the PCI-E device reset
1036 * @state: Reset state to enter into
1037 *
1038 *
1039 * Sets the PCI-E reset state for the device. This is the default
1040 * implementation. Architecture implementations can override this.
1041 */
1042 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1043 enum pcie_reset_state state)
1044 {
1045 return -EINVAL;
1046 }
1047
1048 /**
1049 * pci_set_pcie_reset_state - set reset state for device dev
1050 * @dev: the PCI-E device reset
1051 * @state: Reset state to enter into
1052 *
1053 *
1054 * Sets the PCI reset state for the device.
1055 */
1056 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1057 {
1058 return pcibios_set_pcie_reset_state(dev, state);
1059 }
1060
1061 /**
1062 * pci_pme_capable - check the capability of PCI device to generate PME#
1063 * @dev: PCI device to handle.
1064 * @state: PCI state from which device will issue PME#.
1065 */
1066 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1067 {
1068 if (!dev->pm_cap)
1069 return false;
1070
1071 return !!(dev->pme_support & (1 << state));
1072 }
1073
1074 /**
1075 * pci_pme_active - enable or disable PCI device's PME# function
1076 * @dev: PCI device to handle.
1077 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1078 *
1079 * The caller must verify that the device is capable of generating PME# before
1080 * calling this function with @enable equal to 'true'.
1081 */
1082 void pci_pme_active(struct pci_dev *dev, bool enable)
1083 {
1084 u16 pmcsr;
1085
1086 if (!dev->pm_cap)
1087 return;
1088
1089 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1090 /* Clear PME_Status by writing 1 to it and enable PME# */
1091 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1092 if (!enable)
1093 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1094
1095 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1096
1097 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1098 enable ? "enabled" : "disabled");
1099 }
1100
1101 /**
1102 * pci_enable_wake - enable PCI device as wakeup event source
1103 * @dev: PCI device affected
1104 * @state: PCI state from which device will issue wakeup events
1105 * @enable: True to enable event generation; false to disable
1106 *
1107 * This enables the device as a wakeup event source, or disables it.
1108 * When such events involves platform-specific hooks, those hooks are
1109 * called automatically by this routine.
1110 *
1111 * Devices with legacy power management (no standard PCI PM capabilities)
1112 * always require such platform hooks.
1113 *
1114 * RETURN VALUE:
1115 * 0 is returned on success
1116 * -EINVAL is returned if device is not supposed to wake up the system
1117 * Error code depending on the platform is returned if both the platform and
1118 * the native mechanism fail to enable the generation of wake-up events
1119 */
1120 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1121 {
1122 int error = 0;
1123 bool pme_done = false;
1124
1125 if (enable && !device_may_wakeup(&dev->dev))
1126 return -EINVAL;
1127
1128 /*
1129 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1130 * Anderson we should be doing PME# wake enable followed by ACPI wake
1131 * enable. To disable wake-up we call the platform first, for symmetry.
1132 */
1133
1134 if (!enable && platform_pci_can_wakeup(dev))
1135 error = platform_pci_sleep_wake(dev, false);
1136
1137 if (!enable || pci_pme_capable(dev, state)) {
1138 pci_pme_active(dev, enable);
1139 pme_done = true;
1140 }
1141
1142 if (enable && platform_pci_can_wakeup(dev))
1143 error = platform_pci_sleep_wake(dev, true);
1144
1145 return pme_done ? 0 : error;
1146 }
1147
1148 /**
1149 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1150 * @dev: PCI device to prepare
1151 * @enable: True to enable wake-up event generation; false to disable
1152 *
1153 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1154 * and this function allows them to set that up cleanly - pci_enable_wake()
1155 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1156 * ordering constraints.
1157 *
1158 * This function only returns error code if the device is not capable of
1159 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1160 * enable wake-up power for it.
1161 */
1162 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1163 {
1164 return pci_pme_capable(dev, PCI_D3cold) ?
1165 pci_enable_wake(dev, PCI_D3cold, enable) :
1166 pci_enable_wake(dev, PCI_D3hot, enable);
1167 }
1168
1169 /**
1170 * pci_target_state - find an appropriate low power state for a given PCI dev
1171 * @dev: PCI device
1172 *
1173 * Use underlying platform code to find a supported low power state for @dev.
1174 * If the platform can't manage @dev, return the deepest state from which it
1175 * can generate wake events, based on any available PME info.
1176 */
1177 pci_power_t pci_target_state(struct pci_dev *dev)
1178 {
1179 pci_power_t target_state = PCI_D3hot;
1180
1181 if (platform_pci_power_manageable(dev)) {
1182 /*
1183 * Call the platform to choose the target state of the device
1184 * and enable wake-up from this state if supported.
1185 */
1186 pci_power_t state = platform_pci_choose_state(dev);
1187
1188 switch (state) {
1189 case PCI_POWER_ERROR:
1190 case PCI_UNKNOWN:
1191 break;
1192 case PCI_D1:
1193 case PCI_D2:
1194 if (pci_no_d1d2(dev))
1195 break;
1196 default:
1197 target_state = state;
1198 }
1199 } else if (device_may_wakeup(&dev->dev)) {
1200 /*
1201 * Find the deepest state from which the device can generate
1202 * wake-up events, make it the target state and enable device
1203 * to generate PME#.
1204 */
1205 if (!dev->pm_cap)
1206 return PCI_POWER_ERROR;
1207
1208 if (dev->pme_support) {
1209 while (target_state
1210 && !(dev->pme_support & (1 << target_state)))
1211 target_state--;
1212 }
1213 }
1214
1215 return target_state;
1216 }
1217
1218 /**
1219 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1220 * @dev: Device to handle.
1221 *
1222 * Choose the power state appropriate for the device depending on whether
1223 * it can wake up the system and/or is power manageable by the platform
1224 * (PCI_D3hot is the default) and put the device into that state.
1225 */
1226 int pci_prepare_to_sleep(struct pci_dev *dev)
1227 {
1228 pci_power_t target_state = pci_target_state(dev);
1229 int error;
1230
1231 if (target_state == PCI_POWER_ERROR)
1232 return -EIO;
1233
1234 pci_enable_wake(dev, target_state, true);
1235
1236 error = pci_set_power_state(dev, target_state);
1237
1238 if (error)
1239 pci_enable_wake(dev, target_state, false);
1240
1241 return error;
1242 }
1243
1244 /**
1245 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1246 * @dev: Device to handle.
1247 *
1248 * Disable device's sytem wake-up capability and put it into D0.
1249 */
1250 int pci_back_from_sleep(struct pci_dev *dev)
1251 {
1252 pci_enable_wake(dev, PCI_D0, false);
1253 return pci_set_power_state(dev, PCI_D0);
1254 }
1255
1256 /**
1257 * pci_pm_init - Initialize PM functions of given PCI device
1258 * @dev: PCI device to handle.
1259 */
1260 void pci_pm_init(struct pci_dev *dev)
1261 {
1262 int pm;
1263 u16 pmc;
1264
1265 dev->pm_cap = 0;
1266
1267 /* find PCI PM capability in list */
1268 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1269 if (!pm)
1270 return;
1271 /* Check device's ability to generate PME# */
1272 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1273
1274 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1275 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1276 pmc & PCI_PM_CAP_VER_MASK);
1277 return;
1278 }
1279
1280 dev->pm_cap = pm;
1281
1282 dev->d1_support = false;
1283 dev->d2_support = false;
1284 if (!pci_no_d1d2(dev)) {
1285 if (pmc & PCI_PM_CAP_D1)
1286 dev->d1_support = true;
1287 if (pmc & PCI_PM_CAP_D2)
1288 dev->d2_support = true;
1289
1290 if (dev->d1_support || dev->d2_support)
1291 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1292 dev->d1_support ? " D1" : "",
1293 dev->d2_support ? " D2" : "");
1294 }
1295
1296 pmc &= PCI_PM_CAP_PME_MASK;
1297 if (pmc) {
1298 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1299 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1300 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1301 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1302 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1303 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1304 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1305 /*
1306 * Make device's PM flags reflect the wake-up capability, but
1307 * let the user space enable it to wake up the system as needed.
1308 */
1309 device_set_wakeup_capable(&dev->dev, true);
1310 device_set_wakeup_enable(&dev->dev, false);
1311 /* Disable the PME# generation functionality */
1312 pci_pme_active(dev, false);
1313 } else {
1314 dev->pme_support = 0;
1315 }
1316 }
1317
1318 /**
1319 * platform_pci_wakeup_init - init platform wakeup if present
1320 * @dev: PCI device
1321 *
1322 * Some devices don't have PCI PM caps but can still generate wakeup
1323 * events through platform methods (like ACPI events). If @dev supports
1324 * platform wakeup events, set the device flag to indicate as much. This
1325 * may be redundant if the device also supports PCI PM caps, but double
1326 * initialization should be safe in that case.
1327 */
1328 void platform_pci_wakeup_init(struct pci_dev *dev)
1329 {
1330 if (!platform_pci_can_wakeup(dev))
1331 return;
1332
1333 device_set_wakeup_capable(&dev->dev, true);
1334 device_set_wakeup_enable(&dev->dev, false);
1335 platform_pci_sleep_wake(dev, false);
1336 }
1337
1338 /**
1339 * pci_add_save_buffer - allocate buffer for saving given capability registers
1340 * @dev: the PCI device
1341 * @cap: the capability to allocate the buffer for
1342 * @size: requested size of the buffer
1343 */
1344 static int pci_add_cap_save_buffer(
1345 struct pci_dev *dev, char cap, unsigned int size)
1346 {
1347 int pos;
1348 struct pci_cap_saved_state *save_state;
1349
1350 pos = pci_find_capability(dev, cap);
1351 if (pos <= 0)
1352 return 0;
1353
1354 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1355 if (!save_state)
1356 return -ENOMEM;
1357
1358 save_state->cap_nr = cap;
1359 pci_add_saved_cap(dev, save_state);
1360
1361 return 0;
1362 }
1363
1364 /**
1365 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1366 * @dev: the PCI device
1367 */
1368 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1369 {
1370 int error;
1371
1372 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1373 if (error)
1374 dev_err(&dev->dev,
1375 "unable to preallocate PCI Express save buffer\n");
1376
1377 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1378 if (error)
1379 dev_err(&dev->dev,
1380 "unable to preallocate PCI-X save buffer\n");
1381 }
1382
1383 /**
1384 * pci_restore_standard_config - restore standard config registers of PCI device
1385 * @dev: PCI device to handle
1386 *
1387 * This function assumes that the device's configuration space is accessible.
1388 * If the device needs to be powered up, the function will wait for it to
1389 * change the state.
1390 */
1391 int pci_restore_standard_config(struct pci_dev *dev)
1392 {
1393 pci_power_t prev_state;
1394 int error;
1395
1396 pci_update_current_state(dev, PCI_D0);
1397
1398 prev_state = dev->current_state;
1399 if (prev_state == PCI_D0)
1400 goto Restore;
1401
1402 error = pci_raw_set_power_state(dev, PCI_D0, false);
1403 if (error)
1404 return error;
1405
1406 /*
1407 * This assumes that we won't get a bus in B2 or B3 from the BIOS, but
1408 * we've made this assumption forever and it appears to be universally
1409 * satisfied.
1410 */
1411 switch(prev_state) {
1412 case PCI_D3cold:
1413 case PCI_D3hot:
1414 mdelay(pci_pm_d3_delay);
1415 break;
1416 case PCI_D2:
1417 udelay(PCI_PM_D2_DELAY);
1418 break;
1419 }
1420
1421 pci_update_current_state(dev, PCI_D0);
1422
1423 Restore:
1424 return dev->state_saved ? pci_restore_state(dev) : 0;
1425 }
1426
1427 /**
1428 * pci_enable_ari - enable ARI forwarding if hardware support it
1429 * @dev: the PCI device
1430 */
1431 void pci_enable_ari(struct pci_dev *dev)
1432 {
1433 int pos;
1434 u32 cap;
1435 u16 ctrl;
1436 struct pci_dev *bridge;
1437
1438 if (!dev->is_pcie || dev->devfn)
1439 return;
1440
1441 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1442 if (!pos)
1443 return;
1444
1445 bridge = dev->bus->self;
1446 if (!bridge || !bridge->is_pcie)
1447 return;
1448
1449 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1450 if (!pos)
1451 return;
1452
1453 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1454 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1455 return;
1456
1457 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1458 ctrl |= PCI_EXP_DEVCTL2_ARI;
1459 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1460
1461 bridge->ari_enabled = 1;
1462 }
1463
1464 /**
1465 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1466 * @dev: the PCI device
1467 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1468 *
1469 * Perform INTx swizzling for a device behind one level of bridge. This is
1470 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1471 * behind bridges on add-in cards.
1472 */
1473 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1474 {
1475 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1476 }
1477
1478 int
1479 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1480 {
1481 u8 pin;
1482
1483 pin = dev->pin;
1484 if (!pin)
1485 return -1;
1486
1487 while (dev->bus->self) {
1488 pin = pci_swizzle_interrupt_pin(dev, pin);
1489 dev = dev->bus->self;
1490 }
1491 *bridge = dev;
1492 return pin;
1493 }
1494
1495 /**
1496 * pci_common_swizzle - swizzle INTx all the way to root bridge
1497 * @dev: the PCI device
1498 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1499 *
1500 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1501 * bridges all the way up to a PCI root bus.
1502 */
1503 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1504 {
1505 u8 pin = *pinp;
1506
1507 while (dev->bus->self) {
1508 pin = pci_swizzle_interrupt_pin(dev, pin);
1509 dev = dev->bus->self;
1510 }
1511 *pinp = pin;
1512 return PCI_SLOT(dev->devfn);
1513 }
1514
1515 /**
1516 * pci_release_region - Release a PCI bar
1517 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1518 * @bar: BAR to release
1519 *
1520 * Releases the PCI I/O and memory resources previously reserved by a
1521 * successful call to pci_request_region. Call this function only
1522 * after all use of the PCI regions has ceased.
1523 */
1524 void pci_release_region(struct pci_dev *pdev, int bar)
1525 {
1526 struct pci_devres *dr;
1527
1528 if (pci_resource_len(pdev, bar) == 0)
1529 return;
1530 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1531 release_region(pci_resource_start(pdev, bar),
1532 pci_resource_len(pdev, bar));
1533 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1534 release_mem_region(pci_resource_start(pdev, bar),
1535 pci_resource_len(pdev, bar));
1536
1537 dr = find_pci_dr(pdev);
1538 if (dr)
1539 dr->region_mask &= ~(1 << bar);
1540 }
1541
1542 /**
1543 * __pci_request_region - Reserved PCI I/O and memory resource
1544 * @pdev: PCI device whose resources are to be reserved
1545 * @bar: BAR to be reserved
1546 * @res_name: Name to be associated with resource.
1547 * @exclusive: whether the region access is exclusive or not
1548 *
1549 * Mark the PCI region associated with PCI device @pdev BR @bar as
1550 * being reserved by owner @res_name. Do not access any
1551 * address inside the PCI regions unless this call returns
1552 * successfully.
1553 *
1554 * If @exclusive is set, then the region is marked so that userspace
1555 * is explicitly not allowed to map the resource via /dev/mem or
1556 * sysfs MMIO access.
1557 *
1558 * Returns 0 on success, or %EBUSY on error. A warning
1559 * message is also printed on failure.
1560 */
1561 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1562 int exclusive)
1563 {
1564 struct pci_devres *dr;
1565
1566 if (pci_resource_len(pdev, bar) == 0)
1567 return 0;
1568
1569 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1570 if (!request_region(pci_resource_start(pdev, bar),
1571 pci_resource_len(pdev, bar), res_name))
1572 goto err_out;
1573 }
1574 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1575 if (!__request_mem_region(pci_resource_start(pdev, bar),
1576 pci_resource_len(pdev, bar), res_name,
1577 exclusive))
1578 goto err_out;
1579 }
1580
1581 dr = find_pci_dr(pdev);
1582 if (dr)
1583 dr->region_mask |= 1 << bar;
1584
1585 return 0;
1586
1587 err_out:
1588 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1589 bar,
1590 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1591 &pdev->resource[bar]);
1592 return -EBUSY;
1593 }
1594
1595 /**
1596 * pci_request_region - Reserve PCI I/O and memory resource
1597 * @pdev: PCI device whose resources are to be reserved
1598 * @bar: BAR to be reserved
1599 * @res_name: Name to be associated with resource
1600 *
1601 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1602 * being reserved by owner @res_name. Do not access any
1603 * address inside the PCI regions unless this call returns
1604 * successfully.
1605 *
1606 * Returns 0 on success, or %EBUSY on error. A warning
1607 * message is also printed on failure.
1608 */
1609 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1610 {
1611 return __pci_request_region(pdev, bar, res_name, 0);
1612 }
1613
1614 /**
1615 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1616 * @pdev: PCI device whose resources are to be reserved
1617 * @bar: BAR to be reserved
1618 * @res_name: Name to be associated with resource.
1619 *
1620 * Mark the PCI region associated with PCI device @pdev BR @bar as
1621 * being reserved by owner @res_name. Do not access any
1622 * address inside the PCI regions unless this call returns
1623 * successfully.
1624 *
1625 * Returns 0 on success, or %EBUSY on error. A warning
1626 * message is also printed on failure.
1627 *
1628 * The key difference that _exclusive makes it that userspace is
1629 * explicitly not allowed to map the resource via /dev/mem or
1630 * sysfs.
1631 */
1632 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1633 {
1634 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1635 }
1636 /**
1637 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1638 * @pdev: PCI device whose resources were previously reserved
1639 * @bars: Bitmask of BARs to be released
1640 *
1641 * Release selected PCI I/O and memory resources previously reserved.
1642 * Call this function only after all use of the PCI regions has ceased.
1643 */
1644 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1645 {
1646 int i;
1647
1648 for (i = 0; i < 6; i++)
1649 if (bars & (1 << i))
1650 pci_release_region(pdev, i);
1651 }
1652
1653 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1654 const char *res_name, int excl)
1655 {
1656 int i;
1657
1658 for (i = 0; i < 6; i++)
1659 if (bars & (1 << i))
1660 if (__pci_request_region(pdev, i, res_name, excl))
1661 goto err_out;
1662 return 0;
1663
1664 err_out:
1665 while(--i >= 0)
1666 if (bars & (1 << i))
1667 pci_release_region(pdev, i);
1668
1669 return -EBUSY;
1670 }
1671
1672
1673 /**
1674 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1675 * @pdev: PCI device whose resources are to be reserved
1676 * @bars: Bitmask of BARs to be requested
1677 * @res_name: Name to be associated with resource
1678 */
1679 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1680 const char *res_name)
1681 {
1682 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1683 }
1684
1685 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1686 int bars, const char *res_name)
1687 {
1688 return __pci_request_selected_regions(pdev, bars, res_name,
1689 IORESOURCE_EXCLUSIVE);
1690 }
1691
1692 /**
1693 * pci_release_regions - Release reserved PCI I/O and memory resources
1694 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1695 *
1696 * Releases all PCI I/O and memory resources previously reserved by a
1697 * successful call to pci_request_regions. Call this function only
1698 * after all use of the PCI regions has ceased.
1699 */
1700
1701 void pci_release_regions(struct pci_dev *pdev)
1702 {
1703 pci_release_selected_regions(pdev, (1 << 6) - 1);
1704 }
1705
1706 /**
1707 * pci_request_regions - Reserved PCI I/O and memory resources
1708 * @pdev: PCI device whose resources are to be reserved
1709 * @res_name: Name to be associated with resource.
1710 *
1711 * Mark all PCI regions associated with PCI device @pdev as
1712 * being reserved by owner @res_name. Do not access any
1713 * address inside the PCI regions unless this call returns
1714 * successfully.
1715 *
1716 * Returns 0 on success, or %EBUSY on error. A warning
1717 * message is also printed on failure.
1718 */
1719 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1720 {
1721 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1722 }
1723
1724 /**
1725 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1726 * @pdev: PCI device whose resources are to be reserved
1727 * @res_name: Name to be associated with resource.
1728 *
1729 * Mark all PCI regions associated with PCI device @pdev as
1730 * being reserved by owner @res_name. Do not access any
1731 * address inside the PCI regions unless this call returns
1732 * successfully.
1733 *
1734 * pci_request_regions_exclusive() will mark the region so that
1735 * /dev/mem and the sysfs MMIO access will not be allowed.
1736 *
1737 * Returns 0 on success, or %EBUSY on error. A warning
1738 * message is also printed on failure.
1739 */
1740 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1741 {
1742 return pci_request_selected_regions_exclusive(pdev,
1743 ((1 << 6) - 1), res_name);
1744 }
1745
1746 static void __pci_set_master(struct pci_dev *dev, bool enable)
1747 {
1748 u16 old_cmd, cmd;
1749
1750 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1751 if (enable)
1752 cmd = old_cmd | PCI_COMMAND_MASTER;
1753 else
1754 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1755 if (cmd != old_cmd) {
1756 dev_dbg(&dev->dev, "%s bus mastering\n",
1757 enable ? "enabling" : "disabling");
1758 pci_write_config_word(dev, PCI_COMMAND, cmd);
1759 }
1760 dev->is_busmaster = enable;
1761 }
1762
1763 /**
1764 * pci_set_master - enables bus-mastering for device dev
1765 * @dev: the PCI device to enable
1766 *
1767 * Enables bus-mastering on the device and calls pcibios_set_master()
1768 * to do the needed arch specific settings.
1769 */
1770 void pci_set_master(struct pci_dev *dev)
1771 {
1772 __pci_set_master(dev, true);
1773 pcibios_set_master(dev);
1774 }
1775
1776 /**
1777 * pci_clear_master - disables bus-mastering for device dev
1778 * @dev: the PCI device to disable
1779 */
1780 void pci_clear_master(struct pci_dev *dev)
1781 {
1782 __pci_set_master(dev, false);
1783 }
1784
1785 #ifdef PCI_DISABLE_MWI
1786 int pci_set_mwi(struct pci_dev *dev)
1787 {
1788 return 0;
1789 }
1790
1791 int pci_try_set_mwi(struct pci_dev *dev)
1792 {
1793 return 0;
1794 }
1795
1796 void pci_clear_mwi(struct pci_dev *dev)
1797 {
1798 }
1799
1800 #else
1801
1802 #ifndef PCI_CACHE_LINE_BYTES
1803 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1804 #endif
1805
1806 /* This can be overridden by arch code. */
1807 /* Don't forget this is measured in 32-bit words, not bytes */
1808 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1809
1810 /**
1811 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1812 * @dev: the PCI device for which MWI is to be enabled
1813 *
1814 * Helper function for pci_set_mwi.
1815 * Originally copied from drivers/net/acenic.c.
1816 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1817 *
1818 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1819 */
1820 static int
1821 pci_set_cacheline_size(struct pci_dev *dev)
1822 {
1823 u8 cacheline_size;
1824
1825 if (!pci_cache_line_size)
1826 return -EINVAL; /* The system doesn't support MWI. */
1827
1828 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1829 equal to or multiple of the right value. */
1830 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1831 if (cacheline_size >= pci_cache_line_size &&
1832 (cacheline_size % pci_cache_line_size) == 0)
1833 return 0;
1834
1835 /* Write the correct value. */
1836 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1837 /* Read it back. */
1838 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1839 if (cacheline_size == pci_cache_line_size)
1840 return 0;
1841
1842 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1843 "supported\n", pci_cache_line_size << 2);
1844
1845 return -EINVAL;
1846 }
1847
1848 /**
1849 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1850 * @dev: the PCI device for which MWI is enabled
1851 *
1852 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1853 *
1854 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1855 */
1856 int
1857 pci_set_mwi(struct pci_dev *dev)
1858 {
1859 int rc;
1860 u16 cmd;
1861
1862 rc = pci_set_cacheline_size(dev);
1863 if (rc)
1864 return rc;
1865
1866 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1867 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1868 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1869 cmd |= PCI_COMMAND_INVALIDATE;
1870 pci_write_config_word(dev, PCI_COMMAND, cmd);
1871 }
1872
1873 return 0;
1874 }
1875
1876 /**
1877 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1878 * @dev: the PCI device for which MWI is enabled
1879 *
1880 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1881 * Callers are not required to check the return value.
1882 *
1883 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1884 */
1885 int pci_try_set_mwi(struct pci_dev *dev)
1886 {
1887 int rc = pci_set_mwi(dev);
1888 return rc;
1889 }
1890
1891 /**
1892 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1893 * @dev: the PCI device to disable
1894 *
1895 * Disables PCI Memory-Write-Invalidate transaction on the device
1896 */
1897 void
1898 pci_clear_mwi(struct pci_dev *dev)
1899 {
1900 u16 cmd;
1901
1902 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1903 if (cmd & PCI_COMMAND_INVALIDATE) {
1904 cmd &= ~PCI_COMMAND_INVALIDATE;
1905 pci_write_config_word(dev, PCI_COMMAND, cmd);
1906 }
1907 }
1908 #endif /* ! PCI_DISABLE_MWI */
1909
1910 /**
1911 * pci_intx - enables/disables PCI INTx for device dev
1912 * @pdev: the PCI device to operate on
1913 * @enable: boolean: whether to enable or disable PCI INTx
1914 *
1915 * Enables/disables PCI INTx for device dev
1916 */
1917 void
1918 pci_intx(struct pci_dev *pdev, int enable)
1919 {
1920 u16 pci_command, new;
1921
1922 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1923
1924 if (enable) {
1925 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1926 } else {
1927 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1928 }
1929
1930 if (new != pci_command) {
1931 struct pci_devres *dr;
1932
1933 pci_write_config_word(pdev, PCI_COMMAND, new);
1934
1935 dr = find_pci_dr(pdev);
1936 if (dr && !dr->restore_intx) {
1937 dr->restore_intx = 1;
1938 dr->orig_intx = !enable;
1939 }
1940 }
1941 }
1942
1943 /**
1944 * pci_msi_off - disables any msi or msix capabilities
1945 * @dev: the PCI device to operate on
1946 *
1947 * If you want to use msi see pci_enable_msi and friends.
1948 * This is a lower level primitive that allows us to disable
1949 * msi operation at the device level.
1950 */
1951 void pci_msi_off(struct pci_dev *dev)
1952 {
1953 int pos;
1954 u16 control;
1955
1956 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1957 if (pos) {
1958 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1959 control &= ~PCI_MSI_FLAGS_ENABLE;
1960 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1961 }
1962 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1963 if (pos) {
1964 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1965 control &= ~PCI_MSIX_FLAGS_ENABLE;
1966 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1967 }
1968 }
1969
1970 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1971 /*
1972 * These can be overridden by arch-specific implementations
1973 */
1974 int
1975 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1976 {
1977 if (!pci_dma_supported(dev, mask))
1978 return -EIO;
1979
1980 dev->dma_mask = mask;
1981
1982 return 0;
1983 }
1984
1985 int
1986 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1987 {
1988 if (!pci_dma_supported(dev, mask))
1989 return -EIO;
1990
1991 dev->dev.coherent_dma_mask = mask;
1992
1993 return 0;
1994 }
1995 #endif
1996
1997 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1998 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1999 {
2000 return dma_set_max_seg_size(&dev->dev, size);
2001 }
2002 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2003 #endif
2004
2005 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2006 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2007 {
2008 return dma_set_seg_boundary(&dev->dev, mask);
2009 }
2010 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2011 #endif
2012
2013 static int __pcie_flr(struct pci_dev *dev, int probe)
2014 {
2015 u16 status;
2016 u32 cap;
2017 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2018
2019 if (!exppos)
2020 return -ENOTTY;
2021 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2022 if (!(cap & PCI_EXP_DEVCAP_FLR))
2023 return -ENOTTY;
2024
2025 if (probe)
2026 return 0;
2027
2028 pci_block_user_cfg_access(dev);
2029
2030 /* Wait for Transaction Pending bit clean */
2031 msleep(100);
2032 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2033 if (status & PCI_EXP_DEVSTA_TRPND) {
2034 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2035 "sleeping for 1 second\n");
2036 ssleep(1);
2037 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2038 if (status & PCI_EXP_DEVSTA_TRPND)
2039 dev_info(&dev->dev, "Still busy after 1s; "
2040 "proceeding with reset anyway\n");
2041 }
2042
2043 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2044 PCI_EXP_DEVCTL_BCR_FLR);
2045 mdelay(100);
2046
2047 pci_unblock_user_cfg_access(dev);
2048 return 0;
2049 }
2050
2051 static int __pci_af_flr(struct pci_dev *dev, int probe)
2052 {
2053 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2054 u8 status;
2055 u8 cap;
2056
2057 if (!cappos)
2058 return -ENOTTY;
2059 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2060 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2061 return -ENOTTY;
2062
2063 if (probe)
2064 return 0;
2065
2066 pci_block_user_cfg_access(dev);
2067
2068 /* Wait for Transaction Pending bit clean */
2069 msleep(100);
2070 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2071 if (status & PCI_AF_STATUS_TP) {
2072 dev_info(&dev->dev, "Busy after 100ms while trying to"
2073 " reset; sleeping for 1 second\n");
2074 ssleep(1);
2075 pci_read_config_byte(dev,
2076 cappos + PCI_AF_STATUS, &status);
2077 if (status & PCI_AF_STATUS_TP)
2078 dev_info(&dev->dev, "Still busy after 1s; "
2079 "proceeding with reset anyway\n");
2080 }
2081 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2082 mdelay(100);
2083
2084 pci_unblock_user_cfg_access(dev);
2085 return 0;
2086 }
2087
2088 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2089 {
2090 int res;
2091
2092 res = __pcie_flr(pdev, probe);
2093 if (res != -ENOTTY)
2094 return res;
2095
2096 res = __pci_af_flr(pdev, probe);
2097 if (res != -ENOTTY)
2098 return res;
2099
2100 return res;
2101 }
2102
2103 /**
2104 * pci_execute_reset_function() - Reset a PCI device function
2105 * @dev: Device function to reset
2106 *
2107 * Some devices allow an individual function to be reset without affecting
2108 * other functions in the same device. The PCI device must be responsive
2109 * to PCI config space in order to use this function.
2110 *
2111 * The device function is presumed to be unused when this function is called.
2112 * Resetting the device will make the contents of PCI configuration space
2113 * random, so any caller of this must be prepared to reinitialise the
2114 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2115 * etc.
2116 *
2117 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2118 * device doesn't support resetting a single function.
2119 */
2120 int pci_execute_reset_function(struct pci_dev *dev)
2121 {
2122 return __pci_reset_function(dev, 0);
2123 }
2124 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2125
2126 /**
2127 * pci_reset_function() - quiesce and reset a PCI device function
2128 * @dev: Device function to reset
2129 *
2130 * Some devices allow an individual function to be reset without affecting
2131 * other functions in the same device. The PCI device must be responsive
2132 * to PCI config space in order to use this function.
2133 *
2134 * This function does not just reset the PCI portion of a device, but
2135 * clears all the state associated with the device. This function differs
2136 * from pci_execute_reset_function in that it saves and restores device state
2137 * over the reset.
2138 *
2139 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2140 * device doesn't support resetting a single function.
2141 */
2142 int pci_reset_function(struct pci_dev *dev)
2143 {
2144 int r = __pci_reset_function(dev, 1);
2145
2146 if (r < 0)
2147 return r;
2148
2149 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2150 disable_irq(dev->irq);
2151 pci_save_state(dev);
2152
2153 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2154
2155 r = pci_execute_reset_function(dev);
2156
2157 pci_restore_state(dev);
2158 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2159 enable_irq(dev->irq);
2160
2161 return r;
2162 }
2163 EXPORT_SYMBOL_GPL(pci_reset_function);
2164
2165 /**
2166 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2167 * @dev: PCI device to query
2168 *
2169 * Returns mmrbc: maximum designed memory read count in bytes
2170 * or appropriate error value.
2171 */
2172 int pcix_get_max_mmrbc(struct pci_dev *dev)
2173 {
2174 int err, cap;
2175 u32 stat;
2176
2177 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2178 if (!cap)
2179 return -EINVAL;
2180
2181 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2182 if (err)
2183 return -EINVAL;
2184
2185 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2186 }
2187 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2188
2189 /**
2190 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2191 * @dev: PCI device to query
2192 *
2193 * Returns mmrbc: maximum memory read count in bytes
2194 * or appropriate error value.
2195 */
2196 int pcix_get_mmrbc(struct pci_dev *dev)
2197 {
2198 int ret, cap;
2199 u32 cmd;
2200
2201 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2202 if (!cap)
2203 return -EINVAL;
2204
2205 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2206 if (!ret)
2207 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2208
2209 return ret;
2210 }
2211 EXPORT_SYMBOL(pcix_get_mmrbc);
2212
2213 /**
2214 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2215 * @dev: PCI device to query
2216 * @mmrbc: maximum memory read count in bytes
2217 * valid values are 512, 1024, 2048, 4096
2218 *
2219 * If possible sets maximum memory read byte count, some bridges have erratas
2220 * that prevent this.
2221 */
2222 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2223 {
2224 int cap, err = -EINVAL;
2225 u32 stat, cmd, v, o;
2226
2227 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2228 goto out;
2229
2230 v = ffs(mmrbc) - 10;
2231
2232 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2233 if (!cap)
2234 goto out;
2235
2236 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2237 if (err)
2238 goto out;
2239
2240 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2241 return -E2BIG;
2242
2243 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2244 if (err)
2245 goto out;
2246
2247 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2248 if (o != v) {
2249 if (v > o && dev->bus &&
2250 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2251 return -EIO;
2252
2253 cmd &= ~PCI_X_CMD_MAX_READ;
2254 cmd |= v << 2;
2255 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2256 }
2257 out:
2258 return err;
2259 }
2260 EXPORT_SYMBOL(pcix_set_mmrbc);
2261
2262 /**
2263 * pcie_get_readrq - get PCI Express read request size
2264 * @dev: PCI device to query
2265 *
2266 * Returns maximum memory read request in bytes
2267 * or appropriate error value.
2268 */
2269 int pcie_get_readrq(struct pci_dev *dev)
2270 {
2271 int ret, cap;
2272 u16 ctl;
2273
2274 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2275 if (!cap)
2276 return -EINVAL;
2277
2278 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2279 if (!ret)
2280 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2281
2282 return ret;
2283 }
2284 EXPORT_SYMBOL(pcie_get_readrq);
2285
2286 /**
2287 * pcie_set_readrq - set PCI Express maximum memory read request
2288 * @dev: PCI device to query
2289 * @rq: maximum memory read count in bytes
2290 * valid values are 128, 256, 512, 1024, 2048, 4096
2291 *
2292 * If possible sets maximum read byte count
2293 */
2294 int pcie_set_readrq(struct pci_dev *dev, int rq)
2295 {
2296 int cap, err = -EINVAL;
2297 u16 ctl, v;
2298
2299 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2300 goto out;
2301
2302 v = (ffs(rq) - 8) << 12;
2303
2304 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2305 if (!cap)
2306 goto out;
2307
2308 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2309 if (err)
2310 goto out;
2311
2312 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2313 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2314 ctl |= v;
2315 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2316 }
2317
2318 out:
2319 return err;
2320 }
2321 EXPORT_SYMBOL(pcie_set_readrq);
2322
2323 /**
2324 * pci_select_bars - Make BAR mask from the type of resource
2325 * @dev: the PCI device for which BAR mask is made
2326 * @flags: resource type mask to be selected
2327 *
2328 * This helper routine makes bar mask from the type of resource.
2329 */
2330 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2331 {
2332 int i, bars = 0;
2333 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2334 if (pci_resource_flags(dev, i) & flags)
2335 bars |= (1 << i);
2336 return bars;
2337 }
2338
2339 /**
2340 * pci_resource_bar - get position of the BAR associated with a resource
2341 * @dev: the PCI device
2342 * @resno: the resource number
2343 * @type: the BAR type to be filled in
2344 *
2345 * Returns BAR position in config space, or 0 if the BAR is invalid.
2346 */
2347 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2348 {
2349 if (resno < PCI_ROM_RESOURCE) {
2350 *type = pci_bar_unknown;
2351 return PCI_BASE_ADDRESS_0 + 4 * resno;
2352 } else if (resno == PCI_ROM_RESOURCE) {
2353 *type = pci_bar_mem32;
2354 return dev->rom_base_reg;
2355 }
2356
2357 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2358 return 0;
2359 }
2360
2361 static void __devinit pci_no_domains(void)
2362 {
2363 #ifdef CONFIG_PCI_DOMAINS
2364 pci_domains_supported = 0;
2365 #endif
2366 }
2367
2368 /**
2369 * pci_ext_cfg_enabled - can we access extended PCI config space?
2370 * @dev: The PCI device of the root bridge.
2371 *
2372 * Returns 1 if we can access PCI extended config space (offsets
2373 * greater than 0xff). This is the default implementation. Architecture
2374 * implementations can override this.
2375 */
2376 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2377 {
2378 return 1;
2379 }
2380
2381 static int __devinit pci_init(void)
2382 {
2383 struct pci_dev *dev = NULL;
2384
2385 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2386 pci_fixup_device(pci_fixup_final, dev);
2387 }
2388
2389 return 0;
2390 }
2391
2392 static int __init pci_setup(char *str)
2393 {
2394 while (str) {
2395 char *k = strchr(str, ',');
2396 if (k)
2397 *k++ = 0;
2398 if (*str && (str = pcibios_setup(str)) && *str) {
2399 if (!strcmp(str, "nomsi")) {
2400 pci_no_msi();
2401 } else if (!strcmp(str, "noaer")) {
2402 pci_no_aer();
2403 } else if (!strcmp(str, "nodomains")) {
2404 pci_no_domains();
2405 } else if (!strncmp(str, "cbiosize=", 9)) {
2406 pci_cardbus_io_size = memparse(str + 9, &str);
2407 } else if (!strncmp(str, "cbmemsize=", 10)) {
2408 pci_cardbus_mem_size = memparse(str + 10, &str);
2409 } else {
2410 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2411 str);
2412 }
2413 }
2414 str = k;
2415 }
2416 return 0;
2417 }
2418 early_param("pci", pci_setup);
2419
2420 device_initcall(pci_init);
2421
2422 EXPORT_SYMBOL(pci_reenable_device);
2423 EXPORT_SYMBOL(pci_enable_device_io);
2424 EXPORT_SYMBOL(pci_enable_device_mem);
2425 EXPORT_SYMBOL(pci_enable_device);
2426 EXPORT_SYMBOL(pcim_enable_device);
2427 EXPORT_SYMBOL(pcim_pin_device);
2428 EXPORT_SYMBOL(pci_disable_device);
2429 EXPORT_SYMBOL(pci_find_capability);
2430 EXPORT_SYMBOL(pci_bus_find_capability);
2431 EXPORT_SYMBOL(pci_release_regions);
2432 EXPORT_SYMBOL(pci_request_regions);
2433 EXPORT_SYMBOL(pci_request_regions_exclusive);
2434 EXPORT_SYMBOL(pci_release_region);
2435 EXPORT_SYMBOL(pci_request_region);
2436 EXPORT_SYMBOL(pci_request_region_exclusive);
2437 EXPORT_SYMBOL(pci_release_selected_regions);
2438 EXPORT_SYMBOL(pci_request_selected_regions);
2439 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2440 EXPORT_SYMBOL(pci_set_master);
2441 EXPORT_SYMBOL(pci_clear_master);
2442 EXPORT_SYMBOL(pci_set_mwi);
2443 EXPORT_SYMBOL(pci_try_set_mwi);
2444 EXPORT_SYMBOL(pci_clear_mwi);
2445 EXPORT_SYMBOL_GPL(pci_intx);
2446 EXPORT_SYMBOL(pci_set_dma_mask);
2447 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2448 EXPORT_SYMBOL(pci_assign_resource);
2449 EXPORT_SYMBOL(pci_find_parent_resource);
2450 EXPORT_SYMBOL(pci_select_bars);
2451
2452 EXPORT_SYMBOL(pci_set_power_state);
2453 EXPORT_SYMBOL(pci_save_state);
2454 EXPORT_SYMBOL(pci_restore_state);
2455 EXPORT_SYMBOL(pci_pme_capable);
2456 EXPORT_SYMBOL(pci_pme_active);
2457 EXPORT_SYMBOL(pci_enable_wake);
2458 EXPORT_SYMBOL(pci_wake_from_d3);
2459 EXPORT_SYMBOL(pci_target_state);
2460 EXPORT_SYMBOL(pci_prepare_to_sleep);
2461 EXPORT_SYMBOL(pci_back_from_sleep);
2462 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2463
This page took 0.106392 seconds and 5 git commands to generate.