Merge tag 'v3.5-rc6' into irqdomain/next
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28
29 const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39
40 unsigned int pci_pm_d3_delay;
41
42 static void pci_pme_list_scan(struct work_struct *work);
43
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48 struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51 };
52
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63 }
64
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83 /*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91
92 /*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96 unsigned int pcibios_max_latency = 255;
97
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100
101 /**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->subordinate;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138
139 #if 0
140 /**
141 * pci_max_busnr - returns maximum PCI bus number
142 *
143 * Returns the highest PCI bus number present in the system global list of
144 * PCI buses.
145 */
146 unsigned char __devinit
147 pci_max_busnr(void)
148 {
149 struct pci_bus *bus = NULL;
150 unsigned char max, n;
151
152 max = 0;
153 while ((bus = pci_find_next_bus(bus)) != NULL) {
154 n = pci_bus_max_busnr(bus);
155 if(n > max)
156 max = n;
157 }
158 return max;
159 }
160
161 #endif /* 0 */
162
163 #define PCI_FIND_CAP_TTL 48
164
165 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
166 u8 pos, int cap, int *ttl)
167 {
168 u8 id;
169
170 while ((*ttl)--) {
171 pci_bus_read_config_byte(bus, devfn, pos, &pos);
172 if (pos < 0x40)
173 break;
174 pos &= ~3;
175 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
176 &id);
177 if (id == 0xff)
178 break;
179 if (id == cap)
180 return pos;
181 pos += PCI_CAP_LIST_NEXT;
182 }
183 return 0;
184 }
185
186 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
187 u8 pos, int cap)
188 {
189 int ttl = PCI_FIND_CAP_TTL;
190
191 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
192 }
193
194 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
195 {
196 return __pci_find_next_cap(dev->bus, dev->devfn,
197 pos + PCI_CAP_LIST_NEXT, cap);
198 }
199 EXPORT_SYMBOL_GPL(pci_find_next_capability);
200
201 static int __pci_bus_find_cap_start(struct pci_bus *bus,
202 unsigned int devfn, u8 hdr_type)
203 {
204 u16 status;
205
206 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
207 if (!(status & PCI_STATUS_CAP_LIST))
208 return 0;
209
210 switch (hdr_type) {
211 case PCI_HEADER_TYPE_NORMAL:
212 case PCI_HEADER_TYPE_BRIDGE:
213 return PCI_CAPABILITY_LIST;
214 case PCI_HEADER_TYPE_CARDBUS:
215 return PCI_CB_CAPABILITY_LIST;
216 default:
217 return 0;
218 }
219
220 return 0;
221 }
222
223 /**
224 * pci_find_capability - query for devices' capabilities
225 * @dev: PCI device to query
226 * @cap: capability code
227 *
228 * Tell if a device supports a given PCI capability.
229 * Returns the address of the requested capability structure within the
230 * device's PCI configuration space or 0 in case the device does not
231 * support it. Possible values for @cap:
232 *
233 * %PCI_CAP_ID_PM Power Management
234 * %PCI_CAP_ID_AGP Accelerated Graphics Port
235 * %PCI_CAP_ID_VPD Vital Product Data
236 * %PCI_CAP_ID_SLOTID Slot Identification
237 * %PCI_CAP_ID_MSI Message Signalled Interrupts
238 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
239 * %PCI_CAP_ID_PCIX PCI-X
240 * %PCI_CAP_ID_EXP PCI Express
241 */
242 int pci_find_capability(struct pci_dev *dev, int cap)
243 {
244 int pos;
245
246 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
247 if (pos)
248 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
249
250 return pos;
251 }
252
253 /**
254 * pci_bus_find_capability - query for devices' capabilities
255 * @bus: the PCI bus to query
256 * @devfn: PCI device to query
257 * @cap: capability code
258 *
259 * Like pci_find_capability() but works for pci devices that do not have a
260 * pci_dev structure set up yet.
261 *
262 * Returns the address of the requested capability structure within the
263 * device's PCI configuration space or 0 in case the device does not
264 * support it.
265 */
266 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
267 {
268 int pos;
269 u8 hdr_type;
270
271 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
272
273 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
274 if (pos)
275 pos = __pci_find_next_cap(bus, devfn, pos, cap);
276
277 return pos;
278 }
279
280 /**
281 * pci_find_ext_capability - Find an extended capability
282 * @dev: PCI device to query
283 * @cap: capability code
284 *
285 * Returns the address of the requested extended capability structure
286 * within the device's PCI configuration space or 0 if the device does
287 * not support it. Possible values for @cap:
288 *
289 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
290 * %PCI_EXT_CAP_ID_VC Virtual Channel
291 * %PCI_EXT_CAP_ID_DSN Device Serial Number
292 * %PCI_EXT_CAP_ID_PWR Power Budgeting
293 */
294 int pci_find_ext_capability(struct pci_dev *dev, int cap)
295 {
296 u32 header;
297 int ttl;
298 int pos = PCI_CFG_SPACE_SIZE;
299
300 /* minimum 8 bytes per capability */
301 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
302
303 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
304 return 0;
305
306 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
307 return 0;
308
309 /*
310 * If we have no capabilities, this is indicated by cap ID,
311 * cap version and next pointer all being 0.
312 */
313 if (header == 0)
314 return 0;
315
316 while (ttl-- > 0) {
317 if (PCI_EXT_CAP_ID(header) == cap)
318 return pos;
319
320 pos = PCI_EXT_CAP_NEXT(header);
321 if (pos < PCI_CFG_SPACE_SIZE)
322 break;
323
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 break;
326 }
327
328 return 0;
329 }
330 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
331
332 /**
333 * pci_bus_find_ext_capability - find an extended capability
334 * @bus: the PCI bus to query
335 * @devfn: PCI device to query
336 * @cap: capability code
337 *
338 * Like pci_find_ext_capability() but works for pci devices that do not have a
339 * pci_dev structure set up yet.
340 *
341 * Returns the address of the requested capability structure within the
342 * device's PCI configuration space or 0 in case the device does not
343 * support it.
344 */
345 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
346 int cap)
347 {
348 u32 header;
349 int ttl;
350 int pos = PCI_CFG_SPACE_SIZE;
351
352 /* minimum 8 bytes per capability */
353 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
354
355 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
356 return 0;
357 if (header == 0xffffffff || header == 0)
358 return 0;
359
360 while (ttl-- > 0) {
361 if (PCI_EXT_CAP_ID(header) == cap)
362 return pos;
363
364 pos = PCI_EXT_CAP_NEXT(header);
365 if (pos < PCI_CFG_SPACE_SIZE)
366 break;
367
368 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
369 break;
370 }
371
372 return 0;
373 }
374
375 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
376 {
377 int rc, ttl = PCI_FIND_CAP_TTL;
378 u8 cap, mask;
379
380 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
381 mask = HT_3BIT_CAP_MASK;
382 else
383 mask = HT_5BIT_CAP_MASK;
384
385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
386 PCI_CAP_ID_HT, &ttl);
387 while (pos) {
388 rc = pci_read_config_byte(dev, pos + 3, &cap);
389 if (rc != PCIBIOS_SUCCESSFUL)
390 return 0;
391
392 if ((cap & mask) == ht_cap)
393 return pos;
394
395 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT,
397 PCI_CAP_ID_HT, &ttl);
398 }
399
400 return 0;
401 }
402 /**
403 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
404 * @dev: PCI device to query
405 * @pos: Position from which to continue searching
406 * @ht_cap: Hypertransport capability code
407 *
408 * To be used in conjunction with pci_find_ht_capability() to search for
409 * all capabilities matching @ht_cap. @pos should always be a value returned
410 * from pci_find_ht_capability().
411 *
412 * NB. To be 100% safe against broken PCI devices, the caller should take
413 * steps to avoid an infinite loop.
414 */
415 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
416 {
417 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
418 }
419 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
420
421 /**
422 * pci_find_ht_capability - query a device's Hypertransport capabilities
423 * @dev: PCI device to query
424 * @ht_cap: Hypertransport capability code
425 *
426 * Tell if a device supports a given Hypertransport capability.
427 * Returns an address within the device's PCI configuration space
428 * or 0 in case the device does not support the request capability.
429 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
430 * which has a Hypertransport capability matching @ht_cap.
431 */
432 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
433 {
434 int pos;
435
436 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
437 if (pos)
438 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
439
440 return pos;
441 }
442 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
443
444 /**
445 * pci_find_parent_resource - return resource region of parent bus of given region
446 * @dev: PCI device structure contains resources to be searched
447 * @res: child resource record for which parent is sought
448 *
449 * For given resource region of given device, return the resource
450 * region of parent bus the given region is contained in or where
451 * it should be allocated from.
452 */
453 struct resource *
454 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
455 {
456 const struct pci_bus *bus = dev->bus;
457 int i;
458 struct resource *best = NULL, *r;
459
460 pci_bus_for_each_resource(bus, r, i) {
461 if (!r)
462 continue;
463 if (res->start && !(res->start >= r->start && res->end <= r->end))
464 continue; /* Not contained */
465 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
466 continue; /* Wrong type */
467 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
468 return r; /* Exact match */
469 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
470 if (r->flags & IORESOURCE_PREFETCH)
471 continue;
472 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
473 if (!best)
474 best = r;
475 }
476 return best;
477 }
478
479 /**
480 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
481 * @dev: PCI device to have its BARs restored
482 *
483 * Restore the BAR values for a given device, so as to make it
484 * accessible by its driver.
485 */
486 static void
487 pci_restore_bars(struct pci_dev *dev)
488 {
489 int i;
490
491 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
492 pci_update_resource(dev, i);
493 }
494
495 static struct pci_platform_pm_ops *pci_platform_pm;
496
497 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
498 {
499 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
500 || !ops->sleep_wake || !ops->can_wakeup)
501 return -EINVAL;
502 pci_platform_pm = ops;
503 return 0;
504 }
505
506 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
507 {
508 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
509 }
510
511 static inline int platform_pci_set_power_state(struct pci_dev *dev,
512 pci_power_t t)
513 {
514 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
515 }
516
517 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
518 {
519 return pci_platform_pm ?
520 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
521 }
522
523 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
524 {
525 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
526 }
527
528 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
529 {
530 return pci_platform_pm ?
531 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
532 }
533
534 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
535 {
536 return pci_platform_pm ?
537 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
538 }
539
540 /**
541 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
542 * given PCI device
543 * @dev: PCI device to handle.
544 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
545 *
546 * RETURN VALUE:
547 * -EINVAL if the requested state is invalid.
548 * -EIO if device does not support PCI PM or its PM capabilities register has a
549 * wrong version, or device doesn't support the requested state.
550 * 0 if device already is in the requested state.
551 * 0 if device's power state has been successfully changed.
552 */
553 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
554 {
555 u16 pmcsr;
556 bool need_restore = false;
557
558 /* Check if we're already there */
559 if (dev->current_state == state)
560 return 0;
561
562 if (!dev->pm_cap)
563 return -EIO;
564
565 if (state < PCI_D0 || state > PCI_D3hot)
566 return -EINVAL;
567
568 /* Validate current state:
569 * Can enter D0 from any state, but if we can only go deeper
570 * to sleep if we're already in a low power state
571 */
572 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
573 && dev->current_state > state) {
574 dev_err(&dev->dev, "invalid power transition "
575 "(from state %d to %d)\n", dev->current_state, state);
576 return -EINVAL;
577 }
578
579 /* check if this device supports the desired state */
580 if ((state == PCI_D1 && !dev->d1_support)
581 || (state == PCI_D2 && !dev->d2_support))
582 return -EIO;
583
584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
585
586 /* If we're (effectively) in D3, force entire word to 0.
587 * This doesn't affect PME_Status, disables PME_En, and
588 * sets PowerState to 0.
589 */
590 switch (dev->current_state) {
591 case PCI_D0:
592 case PCI_D1:
593 case PCI_D2:
594 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
595 pmcsr |= state;
596 break;
597 case PCI_D3hot:
598 case PCI_D3cold:
599 case PCI_UNKNOWN: /* Boot-up */
600 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
601 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
602 need_restore = true;
603 /* Fall-through: force to D0 */
604 default:
605 pmcsr = 0;
606 break;
607 }
608
609 /* enter specified state */
610 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
611
612 /* Mandatory power management transition delays */
613 /* see PCI PM 1.1 5.6.1 table 18 */
614 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
615 pci_dev_d3_sleep(dev);
616 else if (state == PCI_D2 || dev->current_state == PCI_D2)
617 udelay(PCI_PM_D2_DELAY);
618
619 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
620 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
621 if (dev->current_state != state && printk_ratelimit())
622 dev_info(&dev->dev, "Refused to change power state, "
623 "currently in D%d\n", dev->current_state);
624
625 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
626 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
627 * from D3hot to D0 _may_ perform an internal reset, thereby
628 * going to "D0 Uninitialized" rather than "D0 Initialized".
629 * For example, at least some versions of the 3c905B and the
630 * 3c556B exhibit this behaviour.
631 *
632 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
633 * devices in a D3hot state at boot. Consequently, we need to
634 * restore at least the BARs so that the device will be
635 * accessible to its driver.
636 */
637 if (need_restore)
638 pci_restore_bars(dev);
639
640 if (dev->bus->self)
641 pcie_aspm_pm_state_change(dev->bus->self);
642
643 return 0;
644 }
645
646 /**
647 * pci_update_current_state - Read PCI power state of given device from its
648 * PCI PM registers and cache it
649 * @dev: PCI device to handle.
650 * @state: State to cache in case the device doesn't have the PM capability
651 */
652 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
653 {
654 if (dev->pm_cap) {
655 u16 pmcsr;
656
657 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
658 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
659 } else {
660 dev->current_state = state;
661 }
662 }
663
664 /**
665 * pci_platform_power_transition - Use platform to change device power state
666 * @dev: PCI device to handle.
667 * @state: State to put the device into.
668 */
669 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
670 {
671 int error;
672
673 if (platform_pci_power_manageable(dev)) {
674 error = platform_pci_set_power_state(dev, state);
675 if (!error)
676 pci_update_current_state(dev, state);
677 /* Fall back to PCI_D0 if native PM is not supported */
678 if (!dev->pm_cap)
679 dev->current_state = PCI_D0;
680 } else {
681 error = -ENODEV;
682 /* Fall back to PCI_D0 if native PM is not supported */
683 if (!dev->pm_cap)
684 dev->current_state = PCI_D0;
685 }
686
687 return error;
688 }
689
690 /**
691 * __pci_start_power_transition - Start power transition of a PCI device
692 * @dev: PCI device to handle.
693 * @state: State to put the device into.
694 */
695 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
696 {
697 if (state == PCI_D0)
698 pci_platform_power_transition(dev, PCI_D0);
699 }
700
701 /**
702 * __pci_complete_power_transition - Complete power transition of a PCI device
703 * @dev: PCI device to handle.
704 * @state: State to put the device into.
705 *
706 * This function should not be called directly by device drivers.
707 */
708 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
709 {
710 return state >= PCI_D0 ?
711 pci_platform_power_transition(dev, state) : -EINVAL;
712 }
713 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
714
715 /**
716 * pci_set_power_state - Set the power state of a PCI device
717 * @dev: PCI device to handle.
718 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
719 *
720 * Transition a device to a new power state, using the platform firmware and/or
721 * the device's PCI PM registers.
722 *
723 * RETURN VALUE:
724 * -EINVAL if the requested state is invalid.
725 * -EIO if device does not support PCI PM or its PM capabilities register has a
726 * wrong version, or device doesn't support the requested state.
727 * 0 if device already is in the requested state.
728 * 0 if device's power state has been successfully changed.
729 */
730 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
731 {
732 int error;
733
734 /* bound the state we're entering */
735 if (state > PCI_D3hot)
736 state = PCI_D3hot;
737 else if (state < PCI_D0)
738 state = PCI_D0;
739 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
740 /*
741 * If the device or the parent bridge do not support PCI PM,
742 * ignore the request if we're doing anything other than putting
743 * it into D0 (which would only happen on boot).
744 */
745 return 0;
746
747 __pci_start_power_transition(dev, state);
748
749 /* This device is quirked not to be put into D3, so
750 don't put it in D3 */
751 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
752 return 0;
753
754 error = pci_raw_set_power_state(dev, state);
755
756 if (!__pci_complete_power_transition(dev, state))
757 error = 0;
758 /*
759 * When aspm_policy is "powersave" this call ensures
760 * that ASPM is configured.
761 */
762 if (!error && dev->bus->self)
763 pcie_aspm_powersave_config_link(dev->bus->self);
764
765 return error;
766 }
767
768 /**
769 * pci_choose_state - Choose the power state of a PCI device
770 * @dev: PCI device to be suspended
771 * @state: target sleep state for the whole system. This is the value
772 * that is passed to suspend() function.
773 *
774 * Returns PCI power state suitable for given device and given system
775 * message.
776 */
777
778 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
779 {
780 pci_power_t ret;
781
782 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
783 return PCI_D0;
784
785 ret = platform_pci_choose_state(dev);
786 if (ret != PCI_POWER_ERROR)
787 return ret;
788
789 switch (state.event) {
790 case PM_EVENT_ON:
791 return PCI_D0;
792 case PM_EVENT_FREEZE:
793 case PM_EVENT_PRETHAW:
794 /* REVISIT both freeze and pre-thaw "should" use D0 */
795 case PM_EVENT_SUSPEND:
796 case PM_EVENT_HIBERNATE:
797 return PCI_D3hot;
798 default:
799 dev_info(&dev->dev, "unrecognized suspend event %d\n",
800 state.event);
801 BUG();
802 }
803 return PCI_D0;
804 }
805
806 EXPORT_SYMBOL(pci_choose_state);
807
808 #define PCI_EXP_SAVE_REGS 7
809
810 #define pcie_cap_has_devctl(type, flags) 1
811 #define pcie_cap_has_lnkctl(type, flags) \
812 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
813 (type == PCI_EXP_TYPE_ROOT_PORT || \
814 type == PCI_EXP_TYPE_ENDPOINT || \
815 type == PCI_EXP_TYPE_LEG_END))
816 #define pcie_cap_has_sltctl(type, flags) \
817 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
818 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
819 (type == PCI_EXP_TYPE_DOWNSTREAM && \
820 (flags & PCI_EXP_FLAGS_SLOT))))
821 #define pcie_cap_has_rtctl(type, flags) \
822 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
823 (type == PCI_EXP_TYPE_ROOT_PORT || \
824 type == PCI_EXP_TYPE_RC_EC))
825 #define pcie_cap_has_devctl2(type, flags) \
826 ((flags & PCI_EXP_FLAGS_VERS) > 1)
827 #define pcie_cap_has_lnkctl2(type, flags) \
828 ((flags & PCI_EXP_FLAGS_VERS) > 1)
829 #define pcie_cap_has_sltctl2(type, flags) \
830 ((flags & PCI_EXP_FLAGS_VERS) > 1)
831
832 static struct pci_cap_saved_state *pci_find_saved_cap(
833 struct pci_dev *pci_dev, char cap)
834 {
835 struct pci_cap_saved_state *tmp;
836 struct hlist_node *pos;
837
838 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
839 if (tmp->cap.cap_nr == cap)
840 return tmp;
841 }
842 return NULL;
843 }
844
845 static int pci_save_pcie_state(struct pci_dev *dev)
846 {
847 int pos, i = 0;
848 struct pci_cap_saved_state *save_state;
849 u16 *cap;
850 u16 flags;
851
852 pos = pci_pcie_cap(dev);
853 if (!pos)
854 return 0;
855
856 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
857 if (!save_state) {
858 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
859 return -ENOMEM;
860 }
861 cap = (u16 *)&save_state->cap.data[0];
862
863 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
864
865 if (pcie_cap_has_devctl(dev->pcie_type, flags))
866 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
867 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
868 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
869 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
870 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
871 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
872 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
873 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
874 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
875 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
876 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
877 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
878 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
879
880 return 0;
881 }
882
883 static void pci_restore_pcie_state(struct pci_dev *dev)
884 {
885 int i = 0, pos;
886 struct pci_cap_saved_state *save_state;
887 u16 *cap;
888 u16 flags;
889
890 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
891 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
892 if (!save_state || pos <= 0)
893 return;
894 cap = (u16 *)&save_state->cap.data[0];
895
896 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
897
898 if (pcie_cap_has_devctl(dev->pcie_type, flags))
899 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
900 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
901 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
902 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
903 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
904 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
905 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
906 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
907 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
908 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
909 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
910 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
911 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
912 }
913
914
915 static int pci_save_pcix_state(struct pci_dev *dev)
916 {
917 int pos;
918 struct pci_cap_saved_state *save_state;
919
920 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
921 if (pos <= 0)
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 pci_read_config_word(dev, pos + PCI_X_CMD,
931 (u16 *)save_state->cap.data);
932
933 return 0;
934 }
935
936 static void pci_restore_pcix_state(struct pci_dev *dev)
937 {
938 int i = 0, pos;
939 struct pci_cap_saved_state *save_state;
940 u16 *cap;
941
942 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
943 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
944 if (!save_state || pos <= 0)
945 return;
946 cap = (u16 *)&save_state->cap.data[0];
947
948 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
949 }
950
951
952 /**
953 * pci_save_state - save the PCI configuration space of a device before suspending
954 * @dev: - PCI device that we're dealing with
955 */
956 int
957 pci_save_state(struct pci_dev *dev)
958 {
959 int i;
960 /* XXX: 100% dword access ok here? */
961 for (i = 0; i < 16; i++)
962 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
963 dev->state_saved = true;
964 if ((i = pci_save_pcie_state(dev)) != 0)
965 return i;
966 if ((i = pci_save_pcix_state(dev)) != 0)
967 return i;
968 return 0;
969 }
970
971 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
972 u32 saved_val, int retry)
973 {
974 u32 val;
975
976 pci_read_config_dword(pdev, offset, &val);
977 if (val == saved_val)
978 return;
979
980 for (;;) {
981 dev_dbg(&pdev->dev, "restoring config space at offset "
982 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
983 pci_write_config_dword(pdev, offset, saved_val);
984 if (retry-- <= 0)
985 return;
986
987 pci_read_config_dword(pdev, offset, &val);
988 if (val == saved_val)
989 return;
990
991 mdelay(1);
992 }
993 }
994
995 static void pci_restore_config_space_range(struct pci_dev *pdev,
996 int start, int end, int retry)
997 {
998 int index;
999
1000 for (index = end; index >= start; index--)
1001 pci_restore_config_dword(pdev, 4 * index,
1002 pdev->saved_config_space[index],
1003 retry);
1004 }
1005
1006 static void pci_restore_config_space(struct pci_dev *pdev)
1007 {
1008 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1009 pci_restore_config_space_range(pdev, 10, 15, 0);
1010 /* Restore BARs before the command register. */
1011 pci_restore_config_space_range(pdev, 4, 9, 10);
1012 pci_restore_config_space_range(pdev, 0, 3, 0);
1013 } else {
1014 pci_restore_config_space_range(pdev, 0, 15, 0);
1015 }
1016 }
1017
1018 /**
1019 * pci_restore_state - Restore the saved state of a PCI device
1020 * @dev: - PCI device that we're dealing with
1021 */
1022 void pci_restore_state(struct pci_dev *dev)
1023 {
1024 if (!dev->state_saved)
1025 return;
1026
1027 /* PCI Express register must be restored first */
1028 pci_restore_pcie_state(dev);
1029 pci_restore_ats_state(dev);
1030
1031 pci_restore_config_space(dev);
1032
1033 pci_restore_pcix_state(dev);
1034 pci_restore_msi_state(dev);
1035 pci_restore_iov_state(dev);
1036
1037 dev->state_saved = false;
1038 }
1039
1040 struct pci_saved_state {
1041 u32 config_space[16];
1042 struct pci_cap_saved_data cap[0];
1043 };
1044
1045 /**
1046 * pci_store_saved_state - Allocate and return an opaque struct containing
1047 * the device saved state.
1048 * @dev: PCI device that we're dealing with
1049 *
1050 * Rerturn NULL if no state or error.
1051 */
1052 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1053 {
1054 struct pci_saved_state *state;
1055 struct pci_cap_saved_state *tmp;
1056 struct pci_cap_saved_data *cap;
1057 struct hlist_node *pos;
1058 size_t size;
1059
1060 if (!dev->state_saved)
1061 return NULL;
1062
1063 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1064
1065 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1066 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1067
1068 state = kzalloc(size, GFP_KERNEL);
1069 if (!state)
1070 return NULL;
1071
1072 memcpy(state->config_space, dev->saved_config_space,
1073 sizeof(state->config_space));
1074
1075 cap = state->cap;
1076 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1077 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1078 memcpy(cap, &tmp->cap, len);
1079 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1080 }
1081 /* Empty cap_save terminates list */
1082
1083 return state;
1084 }
1085 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1086
1087 /**
1088 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1089 * @dev: PCI device that we're dealing with
1090 * @state: Saved state returned from pci_store_saved_state()
1091 */
1092 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1093 {
1094 struct pci_cap_saved_data *cap;
1095
1096 dev->state_saved = false;
1097
1098 if (!state)
1099 return 0;
1100
1101 memcpy(dev->saved_config_space, state->config_space,
1102 sizeof(state->config_space));
1103
1104 cap = state->cap;
1105 while (cap->size) {
1106 struct pci_cap_saved_state *tmp;
1107
1108 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1109 if (!tmp || tmp->cap.size != cap->size)
1110 return -EINVAL;
1111
1112 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1113 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1114 sizeof(struct pci_cap_saved_data) + cap->size);
1115 }
1116
1117 dev->state_saved = true;
1118 return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1121
1122 /**
1123 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1124 * and free the memory allocated for it.
1125 * @dev: PCI device that we're dealing with
1126 * @state: Pointer to saved state returned from pci_store_saved_state()
1127 */
1128 int pci_load_and_free_saved_state(struct pci_dev *dev,
1129 struct pci_saved_state **state)
1130 {
1131 int ret = pci_load_saved_state(dev, *state);
1132 kfree(*state);
1133 *state = NULL;
1134 return ret;
1135 }
1136 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1137
1138 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1139 {
1140 int err;
1141
1142 err = pci_set_power_state(dev, PCI_D0);
1143 if (err < 0 && err != -EIO)
1144 return err;
1145 err = pcibios_enable_device(dev, bars);
1146 if (err < 0)
1147 return err;
1148 pci_fixup_device(pci_fixup_enable, dev);
1149
1150 return 0;
1151 }
1152
1153 /**
1154 * pci_reenable_device - Resume abandoned device
1155 * @dev: PCI device to be resumed
1156 *
1157 * Note this function is a backend of pci_default_resume and is not supposed
1158 * to be called by normal code, write proper resume handler and use it instead.
1159 */
1160 int pci_reenable_device(struct pci_dev *dev)
1161 {
1162 if (pci_is_enabled(dev))
1163 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1164 return 0;
1165 }
1166
1167 static int __pci_enable_device_flags(struct pci_dev *dev,
1168 resource_size_t flags)
1169 {
1170 int err;
1171 int i, bars = 0;
1172
1173 /*
1174 * Power state could be unknown at this point, either due to a fresh
1175 * boot or a device removal call. So get the current power state
1176 * so that things like MSI message writing will behave as expected
1177 * (e.g. if the device really is in D0 at enable time).
1178 */
1179 if (dev->pm_cap) {
1180 u16 pmcsr;
1181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1182 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1183 }
1184
1185 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1186 return 0; /* already enabled */
1187
1188 /* only skip sriov related */
1189 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1190 if (dev->resource[i].flags & flags)
1191 bars |= (1 << i);
1192 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1193 if (dev->resource[i].flags & flags)
1194 bars |= (1 << i);
1195
1196 err = do_pci_enable_device(dev, bars);
1197 if (err < 0)
1198 atomic_dec(&dev->enable_cnt);
1199 return err;
1200 }
1201
1202 /**
1203 * pci_enable_device_io - Initialize a device for use with IO space
1204 * @dev: PCI device to be initialized
1205 *
1206 * Initialize device before it's used by a driver. Ask low-level code
1207 * to enable I/O resources. Wake up the device if it was suspended.
1208 * Beware, this function can fail.
1209 */
1210 int pci_enable_device_io(struct pci_dev *dev)
1211 {
1212 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1213 }
1214
1215 /**
1216 * pci_enable_device_mem - Initialize a device for use with Memory space
1217 * @dev: PCI device to be initialized
1218 *
1219 * Initialize device before it's used by a driver. Ask low-level code
1220 * to enable Memory resources. Wake up the device if it was suspended.
1221 * Beware, this function can fail.
1222 */
1223 int pci_enable_device_mem(struct pci_dev *dev)
1224 {
1225 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1226 }
1227
1228 /**
1229 * pci_enable_device - Initialize device before it's used by a driver.
1230 * @dev: PCI device to be initialized
1231 *
1232 * Initialize device before it's used by a driver. Ask low-level code
1233 * to enable I/O and memory. Wake up the device if it was suspended.
1234 * Beware, this function can fail.
1235 *
1236 * Note we don't actually enable the device many times if we call
1237 * this function repeatedly (we just increment the count).
1238 */
1239 int pci_enable_device(struct pci_dev *dev)
1240 {
1241 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1242 }
1243
1244 /*
1245 * Managed PCI resources. This manages device on/off, intx/msi/msix
1246 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1247 * there's no need to track it separately. pci_devres is initialized
1248 * when a device is enabled using managed PCI device enable interface.
1249 */
1250 struct pci_devres {
1251 unsigned int enabled:1;
1252 unsigned int pinned:1;
1253 unsigned int orig_intx:1;
1254 unsigned int restore_intx:1;
1255 u32 region_mask;
1256 };
1257
1258 static void pcim_release(struct device *gendev, void *res)
1259 {
1260 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1261 struct pci_devres *this = res;
1262 int i;
1263
1264 if (dev->msi_enabled)
1265 pci_disable_msi(dev);
1266 if (dev->msix_enabled)
1267 pci_disable_msix(dev);
1268
1269 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1270 if (this->region_mask & (1 << i))
1271 pci_release_region(dev, i);
1272
1273 if (this->restore_intx)
1274 pci_intx(dev, this->orig_intx);
1275
1276 if (this->enabled && !this->pinned)
1277 pci_disable_device(dev);
1278 }
1279
1280 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1281 {
1282 struct pci_devres *dr, *new_dr;
1283
1284 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1285 if (dr)
1286 return dr;
1287
1288 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1289 if (!new_dr)
1290 return NULL;
1291 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1292 }
1293
1294 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1295 {
1296 if (pci_is_managed(pdev))
1297 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1298 return NULL;
1299 }
1300
1301 /**
1302 * pcim_enable_device - Managed pci_enable_device()
1303 * @pdev: PCI device to be initialized
1304 *
1305 * Managed pci_enable_device().
1306 */
1307 int pcim_enable_device(struct pci_dev *pdev)
1308 {
1309 struct pci_devres *dr;
1310 int rc;
1311
1312 dr = get_pci_dr(pdev);
1313 if (unlikely(!dr))
1314 return -ENOMEM;
1315 if (dr->enabled)
1316 return 0;
1317
1318 rc = pci_enable_device(pdev);
1319 if (!rc) {
1320 pdev->is_managed = 1;
1321 dr->enabled = 1;
1322 }
1323 return rc;
1324 }
1325
1326 /**
1327 * pcim_pin_device - Pin managed PCI device
1328 * @pdev: PCI device to pin
1329 *
1330 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1331 * driver detach. @pdev must have been enabled with
1332 * pcim_enable_device().
1333 */
1334 void pcim_pin_device(struct pci_dev *pdev)
1335 {
1336 struct pci_devres *dr;
1337
1338 dr = find_pci_dr(pdev);
1339 WARN_ON(!dr || !dr->enabled);
1340 if (dr)
1341 dr->pinned = 1;
1342 }
1343
1344 /**
1345 * pcibios_disable_device - disable arch specific PCI resources for device dev
1346 * @dev: the PCI device to disable
1347 *
1348 * Disables architecture specific PCI resources for the device. This
1349 * is the default implementation. Architecture implementations can
1350 * override this.
1351 */
1352 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1353
1354 static void do_pci_disable_device(struct pci_dev *dev)
1355 {
1356 u16 pci_command;
1357
1358 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1359 if (pci_command & PCI_COMMAND_MASTER) {
1360 pci_command &= ~PCI_COMMAND_MASTER;
1361 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1362 }
1363
1364 pcibios_disable_device(dev);
1365 }
1366
1367 /**
1368 * pci_disable_enabled_device - Disable device without updating enable_cnt
1369 * @dev: PCI device to disable
1370 *
1371 * NOTE: This function is a backend of PCI power management routines and is
1372 * not supposed to be called drivers.
1373 */
1374 void pci_disable_enabled_device(struct pci_dev *dev)
1375 {
1376 if (pci_is_enabled(dev))
1377 do_pci_disable_device(dev);
1378 }
1379
1380 /**
1381 * pci_disable_device - Disable PCI device after use
1382 * @dev: PCI device to be disabled
1383 *
1384 * Signal to the system that the PCI device is not in use by the system
1385 * anymore. This only involves disabling PCI bus-mastering, if active.
1386 *
1387 * Note we don't actually disable the device until all callers of
1388 * pci_enable_device() have called pci_disable_device().
1389 */
1390 void
1391 pci_disable_device(struct pci_dev *dev)
1392 {
1393 struct pci_devres *dr;
1394
1395 dr = find_pci_dr(dev);
1396 if (dr)
1397 dr->enabled = 0;
1398
1399 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1400 return;
1401
1402 do_pci_disable_device(dev);
1403
1404 dev->is_busmaster = 0;
1405 }
1406
1407 /**
1408 * pcibios_set_pcie_reset_state - set reset state for device dev
1409 * @dev: the PCIe device reset
1410 * @state: Reset state to enter into
1411 *
1412 *
1413 * Sets the PCIe reset state for the device. This is the default
1414 * implementation. Architecture implementations can override this.
1415 */
1416 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417 enum pcie_reset_state state)
1418 {
1419 return -EINVAL;
1420 }
1421
1422 /**
1423 * pci_set_pcie_reset_state - set reset state for device dev
1424 * @dev: the PCIe device reset
1425 * @state: Reset state to enter into
1426 *
1427 *
1428 * Sets the PCI reset state for the device.
1429 */
1430 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1431 {
1432 return pcibios_set_pcie_reset_state(dev, state);
1433 }
1434
1435 /**
1436 * pci_check_pme_status - Check if given device has generated PME.
1437 * @dev: Device to check.
1438 *
1439 * Check the PME status of the device and if set, clear it and clear PME enable
1440 * (if set). Return 'true' if PME status and PME enable were both set or
1441 * 'false' otherwise.
1442 */
1443 bool pci_check_pme_status(struct pci_dev *dev)
1444 {
1445 int pmcsr_pos;
1446 u16 pmcsr;
1447 bool ret = false;
1448
1449 if (!dev->pm_cap)
1450 return false;
1451
1452 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455 return false;
1456
1457 /* Clear PME status. */
1458 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460 /* Disable PME to avoid interrupt flood. */
1461 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462 ret = true;
1463 }
1464
1465 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1466
1467 return ret;
1468 }
1469
1470 /**
1471 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472 * @dev: Device to handle.
1473 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1474 *
1475 * Check if @dev has generated PME and queue a resume request for it in that
1476 * case.
1477 */
1478 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1479 {
1480 if (pme_poll_reset && dev->pme_poll)
1481 dev->pme_poll = false;
1482
1483 if (pci_check_pme_status(dev)) {
1484 pci_wakeup_event(dev);
1485 pm_request_resume(&dev->dev);
1486 }
1487 return 0;
1488 }
1489
1490 /**
1491 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492 * @bus: Top bus of the subtree to walk.
1493 */
1494 void pci_pme_wakeup_bus(struct pci_bus *bus)
1495 {
1496 if (bus)
1497 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1498 }
1499
1500 /**
1501 * pci_pme_capable - check the capability of PCI device to generate PME#
1502 * @dev: PCI device to handle.
1503 * @state: PCI state from which device will issue PME#.
1504 */
1505 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1506 {
1507 if (!dev->pm_cap)
1508 return false;
1509
1510 return !!(dev->pme_support & (1 << state));
1511 }
1512
1513 static void pci_pme_list_scan(struct work_struct *work)
1514 {
1515 struct pci_pme_device *pme_dev, *n;
1516
1517 mutex_lock(&pci_pme_list_mutex);
1518 if (!list_empty(&pci_pme_list)) {
1519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1520 if (pme_dev->dev->pme_poll) {
1521 pci_pme_wakeup(pme_dev->dev, NULL);
1522 } else {
1523 list_del(&pme_dev->list);
1524 kfree(pme_dev);
1525 }
1526 }
1527 if (!list_empty(&pci_pme_list))
1528 schedule_delayed_work(&pci_pme_work,
1529 msecs_to_jiffies(PME_TIMEOUT));
1530 }
1531 mutex_unlock(&pci_pme_list_mutex);
1532 }
1533
1534 /**
1535 * pci_pme_active - enable or disable PCI device's PME# function
1536 * @dev: PCI device to handle.
1537 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1538 *
1539 * The caller must verify that the device is capable of generating PME# before
1540 * calling this function with @enable equal to 'true'.
1541 */
1542 void pci_pme_active(struct pci_dev *dev, bool enable)
1543 {
1544 u16 pmcsr;
1545
1546 if (!dev->pm_cap)
1547 return;
1548
1549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1550 /* Clear PME_Status by writing 1 to it and enable PME# */
1551 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1552 if (!enable)
1553 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1554
1555 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1556
1557 /* PCI (as opposed to PCIe) PME requires that the device have
1558 its PME# line hooked up correctly. Not all hardware vendors
1559 do this, so the PME never gets delivered and the device
1560 remains asleep. The easiest way around this is to
1561 periodically walk the list of suspended devices and check
1562 whether any have their PME flag set. The assumption is that
1563 we'll wake up often enough anyway that this won't be a huge
1564 hit, and the power savings from the devices will still be a
1565 win. */
1566
1567 if (dev->pme_poll) {
1568 struct pci_pme_device *pme_dev;
1569 if (enable) {
1570 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1571 GFP_KERNEL);
1572 if (!pme_dev)
1573 goto out;
1574 pme_dev->dev = dev;
1575 mutex_lock(&pci_pme_list_mutex);
1576 list_add(&pme_dev->list, &pci_pme_list);
1577 if (list_is_singular(&pci_pme_list))
1578 schedule_delayed_work(&pci_pme_work,
1579 msecs_to_jiffies(PME_TIMEOUT));
1580 mutex_unlock(&pci_pme_list_mutex);
1581 } else {
1582 mutex_lock(&pci_pme_list_mutex);
1583 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1584 if (pme_dev->dev == dev) {
1585 list_del(&pme_dev->list);
1586 kfree(pme_dev);
1587 break;
1588 }
1589 }
1590 mutex_unlock(&pci_pme_list_mutex);
1591 }
1592 }
1593
1594 out:
1595 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1596 }
1597
1598 /**
1599 * __pci_enable_wake - enable PCI device as wakeup event source
1600 * @dev: PCI device affected
1601 * @state: PCI state from which device will issue wakeup events
1602 * @runtime: True if the events are to be generated at run time
1603 * @enable: True to enable event generation; false to disable
1604 *
1605 * This enables the device as a wakeup event source, or disables it.
1606 * When such events involves platform-specific hooks, those hooks are
1607 * called automatically by this routine.
1608 *
1609 * Devices with legacy power management (no standard PCI PM capabilities)
1610 * always require such platform hooks.
1611 *
1612 * RETURN VALUE:
1613 * 0 is returned on success
1614 * -EINVAL is returned if device is not supposed to wake up the system
1615 * Error code depending on the platform is returned if both the platform and
1616 * the native mechanism fail to enable the generation of wake-up events
1617 */
1618 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1619 bool runtime, bool enable)
1620 {
1621 int ret = 0;
1622
1623 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1624 return -EINVAL;
1625
1626 /* Don't do the same thing twice in a row for one device. */
1627 if (!!enable == !!dev->wakeup_prepared)
1628 return 0;
1629
1630 /*
1631 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1632 * Anderson we should be doing PME# wake enable followed by ACPI wake
1633 * enable. To disable wake-up we call the platform first, for symmetry.
1634 */
1635
1636 if (enable) {
1637 int error;
1638
1639 if (pci_pme_capable(dev, state))
1640 pci_pme_active(dev, true);
1641 else
1642 ret = 1;
1643 error = runtime ? platform_pci_run_wake(dev, true) :
1644 platform_pci_sleep_wake(dev, true);
1645 if (ret)
1646 ret = error;
1647 if (!ret)
1648 dev->wakeup_prepared = true;
1649 } else {
1650 if (runtime)
1651 platform_pci_run_wake(dev, false);
1652 else
1653 platform_pci_sleep_wake(dev, false);
1654 pci_pme_active(dev, false);
1655 dev->wakeup_prepared = false;
1656 }
1657
1658 return ret;
1659 }
1660 EXPORT_SYMBOL(__pci_enable_wake);
1661
1662 /**
1663 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1664 * @dev: PCI device to prepare
1665 * @enable: True to enable wake-up event generation; false to disable
1666 *
1667 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1668 * and this function allows them to set that up cleanly - pci_enable_wake()
1669 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1670 * ordering constraints.
1671 *
1672 * This function only returns error code if the device is not capable of
1673 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1674 * enable wake-up power for it.
1675 */
1676 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1677 {
1678 return pci_pme_capable(dev, PCI_D3cold) ?
1679 pci_enable_wake(dev, PCI_D3cold, enable) :
1680 pci_enable_wake(dev, PCI_D3hot, enable);
1681 }
1682
1683 /**
1684 * pci_target_state - find an appropriate low power state for a given PCI dev
1685 * @dev: PCI device
1686 *
1687 * Use underlying platform code to find a supported low power state for @dev.
1688 * If the platform can't manage @dev, return the deepest state from which it
1689 * can generate wake events, based on any available PME info.
1690 */
1691 pci_power_t pci_target_state(struct pci_dev *dev)
1692 {
1693 pci_power_t target_state = PCI_D3hot;
1694
1695 if (platform_pci_power_manageable(dev)) {
1696 /*
1697 * Call the platform to choose the target state of the device
1698 * and enable wake-up from this state if supported.
1699 */
1700 pci_power_t state = platform_pci_choose_state(dev);
1701
1702 switch (state) {
1703 case PCI_POWER_ERROR:
1704 case PCI_UNKNOWN:
1705 break;
1706 case PCI_D1:
1707 case PCI_D2:
1708 if (pci_no_d1d2(dev))
1709 break;
1710 default:
1711 target_state = state;
1712 }
1713 } else if (!dev->pm_cap) {
1714 target_state = PCI_D0;
1715 } else if (device_may_wakeup(&dev->dev)) {
1716 /*
1717 * Find the deepest state from which the device can generate
1718 * wake-up events, make it the target state and enable device
1719 * to generate PME#.
1720 */
1721 if (dev->pme_support) {
1722 while (target_state
1723 && !(dev->pme_support & (1 << target_state)))
1724 target_state--;
1725 }
1726 }
1727
1728 return target_state;
1729 }
1730
1731 /**
1732 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1733 * @dev: Device to handle.
1734 *
1735 * Choose the power state appropriate for the device depending on whether
1736 * it can wake up the system and/or is power manageable by the platform
1737 * (PCI_D3hot is the default) and put the device into that state.
1738 */
1739 int pci_prepare_to_sleep(struct pci_dev *dev)
1740 {
1741 pci_power_t target_state = pci_target_state(dev);
1742 int error;
1743
1744 if (target_state == PCI_POWER_ERROR)
1745 return -EIO;
1746
1747 /* Some devices mustn't be in D3 during system sleep */
1748 if (target_state == PCI_D3hot &&
1749 (dev->dev_flags & PCI_DEV_FLAGS_NO_D3_DURING_SLEEP))
1750 return 0;
1751
1752 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1753
1754 error = pci_set_power_state(dev, target_state);
1755
1756 if (error)
1757 pci_enable_wake(dev, target_state, false);
1758
1759 return error;
1760 }
1761
1762 /**
1763 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1764 * @dev: Device to handle.
1765 *
1766 * Disable device's system wake-up capability and put it into D0.
1767 */
1768 int pci_back_from_sleep(struct pci_dev *dev)
1769 {
1770 pci_enable_wake(dev, PCI_D0, false);
1771 return pci_set_power_state(dev, PCI_D0);
1772 }
1773
1774 /**
1775 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1776 * @dev: PCI device being suspended.
1777 *
1778 * Prepare @dev to generate wake-up events at run time and put it into a low
1779 * power state.
1780 */
1781 int pci_finish_runtime_suspend(struct pci_dev *dev)
1782 {
1783 pci_power_t target_state = pci_target_state(dev);
1784 int error;
1785
1786 if (target_state == PCI_POWER_ERROR)
1787 return -EIO;
1788
1789 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1790
1791 error = pci_set_power_state(dev, target_state);
1792
1793 if (error)
1794 __pci_enable_wake(dev, target_state, true, false);
1795
1796 return error;
1797 }
1798
1799 /**
1800 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1801 * @dev: Device to check.
1802 *
1803 * Return true if the device itself is cabable of generating wake-up events
1804 * (through the platform or using the native PCIe PME) or if the device supports
1805 * PME and one of its upstream bridges can generate wake-up events.
1806 */
1807 bool pci_dev_run_wake(struct pci_dev *dev)
1808 {
1809 struct pci_bus *bus = dev->bus;
1810
1811 if (device_run_wake(&dev->dev))
1812 return true;
1813
1814 if (!dev->pme_support)
1815 return false;
1816
1817 while (bus->parent) {
1818 struct pci_dev *bridge = bus->self;
1819
1820 if (device_run_wake(&bridge->dev))
1821 return true;
1822
1823 bus = bus->parent;
1824 }
1825
1826 /* We have reached the root bus. */
1827 if (bus->bridge)
1828 return device_run_wake(bus->bridge);
1829
1830 return false;
1831 }
1832 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1833
1834 /**
1835 * pci_pm_init - Initialize PM functions of given PCI device
1836 * @dev: PCI device to handle.
1837 */
1838 void pci_pm_init(struct pci_dev *dev)
1839 {
1840 int pm;
1841 u16 pmc;
1842
1843 pm_runtime_forbid(&dev->dev);
1844 device_enable_async_suspend(&dev->dev);
1845 dev->wakeup_prepared = false;
1846
1847 dev->pm_cap = 0;
1848
1849 /* find PCI PM capability in list */
1850 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1851 if (!pm)
1852 return;
1853 /* Check device's ability to generate PME# */
1854 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1855
1856 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1857 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1858 pmc & PCI_PM_CAP_VER_MASK);
1859 return;
1860 }
1861
1862 dev->pm_cap = pm;
1863 dev->d3_delay = PCI_PM_D3_WAIT;
1864
1865 dev->d1_support = false;
1866 dev->d2_support = false;
1867 if (!pci_no_d1d2(dev)) {
1868 if (pmc & PCI_PM_CAP_D1)
1869 dev->d1_support = true;
1870 if (pmc & PCI_PM_CAP_D2)
1871 dev->d2_support = true;
1872
1873 if (dev->d1_support || dev->d2_support)
1874 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1875 dev->d1_support ? " D1" : "",
1876 dev->d2_support ? " D2" : "");
1877 }
1878
1879 pmc &= PCI_PM_CAP_PME_MASK;
1880 if (pmc) {
1881 dev_printk(KERN_DEBUG, &dev->dev,
1882 "PME# supported from%s%s%s%s%s\n",
1883 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1884 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1885 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1886 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1887 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1888 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1889 dev->pme_poll = true;
1890 /*
1891 * Make device's PM flags reflect the wake-up capability, but
1892 * let the user space enable it to wake up the system as needed.
1893 */
1894 device_set_wakeup_capable(&dev->dev, true);
1895 /* Disable the PME# generation functionality */
1896 pci_pme_active(dev, false);
1897 } else {
1898 dev->pme_support = 0;
1899 }
1900 }
1901
1902 /**
1903 * platform_pci_wakeup_init - init platform wakeup if present
1904 * @dev: PCI device
1905 *
1906 * Some devices don't have PCI PM caps but can still generate wakeup
1907 * events through platform methods (like ACPI events). If @dev supports
1908 * platform wakeup events, set the device flag to indicate as much. This
1909 * may be redundant if the device also supports PCI PM caps, but double
1910 * initialization should be safe in that case.
1911 */
1912 void platform_pci_wakeup_init(struct pci_dev *dev)
1913 {
1914 if (!platform_pci_can_wakeup(dev))
1915 return;
1916
1917 device_set_wakeup_capable(&dev->dev, true);
1918 platform_pci_sleep_wake(dev, false);
1919 }
1920
1921 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1922 struct pci_cap_saved_state *new_cap)
1923 {
1924 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1925 }
1926
1927 /**
1928 * pci_add_save_buffer - allocate buffer for saving given capability registers
1929 * @dev: the PCI device
1930 * @cap: the capability to allocate the buffer for
1931 * @size: requested size of the buffer
1932 */
1933 static int pci_add_cap_save_buffer(
1934 struct pci_dev *dev, char cap, unsigned int size)
1935 {
1936 int pos;
1937 struct pci_cap_saved_state *save_state;
1938
1939 pos = pci_find_capability(dev, cap);
1940 if (pos <= 0)
1941 return 0;
1942
1943 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1944 if (!save_state)
1945 return -ENOMEM;
1946
1947 save_state->cap.cap_nr = cap;
1948 save_state->cap.size = size;
1949 pci_add_saved_cap(dev, save_state);
1950
1951 return 0;
1952 }
1953
1954 /**
1955 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1956 * @dev: the PCI device
1957 */
1958 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1959 {
1960 int error;
1961
1962 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1963 PCI_EXP_SAVE_REGS * sizeof(u16));
1964 if (error)
1965 dev_err(&dev->dev,
1966 "unable to preallocate PCI Express save buffer\n");
1967
1968 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1969 if (error)
1970 dev_err(&dev->dev,
1971 "unable to preallocate PCI-X save buffer\n");
1972 }
1973
1974 void pci_free_cap_save_buffers(struct pci_dev *dev)
1975 {
1976 struct pci_cap_saved_state *tmp;
1977 struct hlist_node *pos, *n;
1978
1979 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
1980 kfree(tmp);
1981 }
1982
1983 /**
1984 * pci_enable_ari - enable ARI forwarding if hardware support it
1985 * @dev: the PCI device
1986 */
1987 void pci_enable_ari(struct pci_dev *dev)
1988 {
1989 int pos;
1990 u32 cap;
1991 u16 flags, ctrl;
1992 struct pci_dev *bridge;
1993
1994 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
1995 return;
1996
1997 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1998 if (!pos)
1999 return;
2000
2001 bridge = dev->bus->self;
2002 if (!bridge || !pci_is_pcie(bridge))
2003 return;
2004
2005 pos = pci_pcie_cap(bridge);
2006 if (!pos)
2007 return;
2008
2009 /* ARI is a PCIe v2 feature */
2010 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
2011 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
2012 return;
2013
2014 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2015 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2016 return;
2017
2018 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2019 ctrl |= PCI_EXP_DEVCTL2_ARI;
2020 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2021
2022 bridge->ari_enabled = 1;
2023 }
2024
2025 /**
2026 * pci_enable_ido - enable ID-based ordering on a device
2027 * @dev: the PCI device
2028 * @type: which types of IDO to enable
2029 *
2030 * Enable ID-based ordering on @dev. @type can contain the bits
2031 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2032 * which types of transactions are allowed to be re-ordered.
2033 */
2034 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2035 {
2036 int pos;
2037 u16 ctrl;
2038
2039 pos = pci_pcie_cap(dev);
2040 if (!pos)
2041 return;
2042
2043 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2044 if (type & PCI_EXP_IDO_REQUEST)
2045 ctrl |= PCI_EXP_IDO_REQ_EN;
2046 if (type & PCI_EXP_IDO_COMPLETION)
2047 ctrl |= PCI_EXP_IDO_CMP_EN;
2048 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2049 }
2050 EXPORT_SYMBOL(pci_enable_ido);
2051
2052 /**
2053 * pci_disable_ido - disable ID-based ordering on a device
2054 * @dev: the PCI device
2055 * @type: which types of IDO to disable
2056 */
2057 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2058 {
2059 int pos;
2060 u16 ctrl;
2061
2062 if (!pci_is_pcie(dev))
2063 return;
2064
2065 pos = pci_pcie_cap(dev);
2066 if (!pos)
2067 return;
2068
2069 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2070 if (type & PCI_EXP_IDO_REQUEST)
2071 ctrl &= ~PCI_EXP_IDO_REQ_EN;
2072 if (type & PCI_EXP_IDO_COMPLETION)
2073 ctrl &= ~PCI_EXP_IDO_CMP_EN;
2074 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2075 }
2076 EXPORT_SYMBOL(pci_disable_ido);
2077
2078 /**
2079 * pci_enable_obff - enable optimized buffer flush/fill
2080 * @dev: PCI device
2081 * @type: type of signaling to use
2082 *
2083 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2084 * signaling if possible, falling back to message signaling only if
2085 * WAKE# isn't supported. @type should indicate whether the PCIe link
2086 * be brought out of L0s or L1 to send the message. It should be either
2087 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2088 *
2089 * If your device can benefit from receiving all messages, even at the
2090 * power cost of bringing the link back up from a low power state, use
2091 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2092 * preferred type).
2093 *
2094 * RETURNS:
2095 * Zero on success, appropriate error number on failure.
2096 */
2097 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2098 {
2099 int pos;
2100 u32 cap;
2101 u16 ctrl;
2102 int ret;
2103
2104 if (!pci_is_pcie(dev))
2105 return -ENOTSUPP;
2106
2107 pos = pci_pcie_cap(dev);
2108 if (!pos)
2109 return -ENOTSUPP;
2110
2111 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2112 if (!(cap & PCI_EXP_OBFF_MASK))
2113 return -ENOTSUPP; /* no OBFF support at all */
2114
2115 /* Make sure the topology supports OBFF as well */
2116 if (dev->bus) {
2117 ret = pci_enable_obff(dev->bus->self, type);
2118 if (ret)
2119 return ret;
2120 }
2121
2122 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2123 if (cap & PCI_EXP_OBFF_WAKE)
2124 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2125 else {
2126 switch (type) {
2127 case PCI_EXP_OBFF_SIGNAL_L0:
2128 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2129 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2130 break;
2131 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2132 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2133 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2134 break;
2135 default:
2136 WARN(1, "bad OBFF signal type\n");
2137 return -ENOTSUPP;
2138 }
2139 }
2140 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2141
2142 return 0;
2143 }
2144 EXPORT_SYMBOL(pci_enable_obff);
2145
2146 /**
2147 * pci_disable_obff - disable optimized buffer flush/fill
2148 * @dev: PCI device
2149 *
2150 * Disable OBFF on @dev.
2151 */
2152 void pci_disable_obff(struct pci_dev *dev)
2153 {
2154 int pos;
2155 u16 ctrl;
2156
2157 if (!pci_is_pcie(dev))
2158 return;
2159
2160 pos = pci_pcie_cap(dev);
2161 if (!pos)
2162 return;
2163
2164 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2165 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2166 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2167 }
2168 EXPORT_SYMBOL(pci_disable_obff);
2169
2170 /**
2171 * pci_ltr_supported - check whether a device supports LTR
2172 * @dev: PCI device
2173 *
2174 * RETURNS:
2175 * True if @dev supports latency tolerance reporting, false otherwise.
2176 */
2177 bool pci_ltr_supported(struct pci_dev *dev)
2178 {
2179 int pos;
2180 u32 cap;
2181
2182 if (!pci_is_pcie(dev))
2183 return false;
2184
2185 pos = pci_pcie_cap(dev);
2186 if (!pos)
2187 return false;
2188
2189 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2190
2191 return cap & PCI_EXP_DEVCAP2_LTR;
2192 }
2193 EXPORT_SYMBOL(pci_ltr_supported);
2194
2195 /**
2196 * pci_enable_ltr - enable latency tolerance reporting
2197 * @dev: PCI device
2198 *
2199 * Enable LTR on @dev if possible, which means enabling it first on
2200 * upstream ports.
2201 *
2202 * RETURNS:
2203 * Zero on success, errno on failure.
2204 */
2205 int pci_enable_ltr(struct pci_dev *dev)
2206 {
2207 int pos;
2208 u16 ctrl;
2209 int ret;
2210
2211 if (!pci_ltr_supported(dev))
2212 return -ENOTSUPP;
2213
2214 pos = pci_pcie_cap(dev);
2215 if (!pos)
2216 return -ENOTSUPP;
2217
2218 /* Only primary function can enable/disable LTR */
2219 if (PCI_FUNC(dev->devfn) != 0)
2220 return -EINVAL;
2221
2222 /* Enable upstream ports first */
2223 if (dev->bus) {
2224 ret = pci_enable_ltr(dev->bus->self);
2225 if (ret)
2226 return ret;
2227 }
2228
2229 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2230 ctrl |= PCI_EXP_LTR_EN;
2231 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2232
2233 return 0;
2234 }
2235 EXPORT_SYMBOL(pci_enable_ltr);
2236
2237 /**
2238 * pci_disable_ltr - disable latency tolerance reporting
2239 * @dev: PCI device
2240 */
2241 void pci_disable_ltr(struct pci_dev *dev)
2242 {
2243 int pos;
2244 u16 ctrl;
2245
2246 if (!pci_ltr_supported(dev))
2247 return;
2248
2249 pos = pci_pcie_cap(dev);
2250 if (!pos)
2251 return;
2252
2253 /* Only primary function can enable/disable LTR */
2254 if (PCI_FUNC(dev->devfn) != 0)
2255 return;
2256
2257 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2258 ctrl &= ~PCI_EXP_LTR_EN;
2259 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2260 }
2261 EXPORT_SYMBOL(pci_disable_ltr);
2262
2263 static int __pci_ltr_scale(int *val)
2264 {
2265 int scale = 0;
2266
2267 while (*val > 1023) {
2268 *val = (*val + 31) / 32;
2269 scale++;
2270 }
2271 return scale;
2272 }
2273
2274 /**
2275 * pci_set_ltr - set LTR latency values
2276 * @dev: PCI device
2277 * @snoop_lat_ns: snoop latency in nanoseconds
2278 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2279 *
2280 * Figure out the scale and set the LTR values accordingly.
2281 */
2282 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2283 {
2284 int pos, ret, snoop_scale, nosnoop_scale;
2285 u16 val;
2286
2287 if (!pci_ltr_supported(dev))
2288 return -ENOTSUPP;
2289
2290 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2291 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2292
2293 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2294 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2295 return -EINVAL;
2296
2297 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2298 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2299 return -EINVAL;
2300
2301 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2302 if (!pos)
2303 return -ENOTSUPP;
2304
2305 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2306 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2307 if (ret != 4)
2308 return -EIO;
2309
2310 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2311 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2312 if (ret != 4)
2313 return -EIO;
2314
2315 return 0;
2316 }
2317 EXPORT_SYMBOL(pci_set_ltr);
2318
2319 static int pci_acs_enable;
2320
2321 /**
2322 * pci_request_acs - ask for ACS to be enabled if supported
2323 */
2324 void pci_request_acs(void)
2325 {
2326 pci_acs_enable = 1;
2327 }
2328
2329 /**
2330 * pci_enable_acs - enable ACS if hardware support it
2331 * @dev: the PCI device
2332 */
2333 void pci_enable_acs(struct pci_dev *dev)
2334 {
2335 int pos;
2336 u16 cap;
2337 u16 ctrl;
2338
2339 if (!pci_acs_enable)
2340 return;
2341
2342 if (!pci_is_pcie(dev))
2343 return;
2344
2345 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2346 if (!pos)
2347 return;
2348
2349 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2350 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2351
2352 /* Source Validation */
2353 ctrl |= (cap & PCI_ACS_SV);
2354
2355 /* P2P Request Redirect */
2356 ctrl |= (cap & PCI_ACS_RR);
2357
2358 /* P2P Completion Redirect */
2359 ctrl |= (cap & PCI_ACS_CR);
2360
2361 /* Upstream Forwarding */
2362 ctrl |= (cap & PCI_ACS_UF);
2363
2364 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2365 }
2366
2367 /**
2368 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2369 * @dev: the PCI device
2370 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2371 *
2372 * Perform INTx swizzling for a device behind one level of bridge. This is
2373 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2374 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2375 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2376 * the PCI Express Base Specification, Revision 2.1)
2377 */
2378 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2379 {
2380 int slot;
2381
2382 if (pci_ari_enabled(dev->bus))
2383 slot = 0;
2384 else
2385 slot = PCI_SLOT(dev->devfn);
2386
2387 return (((pin - 1) + slot) % 4) + 1;
2388 }
2389
2390 int
2391 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2392 {
2393 u8 pin;
2394
2395 pin = dev->pin;
2396 if (!pin)
2397 return -1;
2398
2399 while (!pci_is_root_bus(dev->bus)) {
2400 pin = pci_swizzle_interrupt_pin(dev, pin);
2401 dev = dev->bus->self;
2402 }
2403 *bridge = dev;
2404 return pin;
2405 }
2406
2407 /**
2408 * pci_common_swizzle - swizzle INTx all the way to root bridge
2409 * @dev: the PCI device
2410 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2411 *
2412 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2413 * bridges all the way up to a PCI root bus.
2414 */
2415 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2416 {
2417 u8 pin = *pinp;
2418
2419 while (!pci_is_root_bus(dev->bus)) {
2420 pin = pci_swizzle_interrupt_pin(dev, pin);
2421 dev = dev->bus->self;
2422 }
2423 *pinp = pin;
2424 return PCI_SLOT(dev->devfn);
2425 }
2426
2427 /**
2428 * pci_release_region - Release a PCI bar
2429 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2430 * @bar: BAR to release
2431 *
2432 * Releases the PCI I/O and memory resources previously reserved by a
2433 * successful call to pci_request_region. Call this function only
2434 * after all use of the PCI regions has ceased.
2435 */
2436 void pci_release_region(struct pci_dev *pdev, int bar)
2437 {
2438 struct pci_devres *dr;
2439
2440 if (pci_resource_len(pdev, bar) == 0)
2441 return;
2442 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2443 release_region(pci_resource_start(pdev, bar),
2444 pci_resource_len(pdev, bar));
2445 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2446 release_mem_region(pci_resource_start(pdev, bar),
2447 pci_resource_len(pdev, bar));
2448
2449 dr = find_pci_dr(pdev);
2450 if (dr)
2451 dr->region_mask &= ~(1 << bar);
2452 }
2453
2454 /**
2455 * __pci_request_region - Reserved PCI I/O and memory resource
2456 * @pdev: PCI device whose resources are to be reserved
2457 * @bar: BAR to be reserved
2458 * @res_name: Name to be associated with resource.
2459 * @exclusive: whether the region access is exclusive or not
2460 *
2461 * Mark the PCI region associated with PCI device @pdev BR @bar as
2462 * being reserved by owner @res_name. Do not access any
2463 * address inside the PCI regions unless this call returns
2464 * successfully.
2465 *
2466 * If @exclusive is set, then the region is marked so that userspace
2467 * is explicitly not allowed to map the resource via /dev/mem or
2468 * sysfs MMIO access.
2469 *
2470 * Returns 0 on success, or %EBUSY on error. A warning
2471 * message is also printed on failure.
2472 */
2473 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2474 int exclusive)
2475 {
2476 struct pci_devres *dr;
2477
2478 if (pci_resource_len(pdev, bar) == 0)
2479 return 0;
2480
2481 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2482 if (!request_region(pci_resource_start(pdev, bar),
2483 pci_resource_len(pdev, bar), res_name))
2484 goto err_out;
2485 }
2486 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2487 if (!__request_mem_region(pci_resource_start(pdev, bar),
2488 pci_resource_len(pdev, bar), res_name,
2489 exclusive))
2490 goto err_out;
2491 }
2492
2493 dr = find_pci_dr(pdev);
2494 if (dr)
2495 dr->region_mask |= 1 << bar;
2496
2497 return 0;
2498
2499 err_out:
2500 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2501 &pdev->resource[bar]);
2502 return -EBUSY;
2503 }
2504
2505 /**
2506 * pci_request_region - Reserve PCI I/O and memory resource
2507 * @pdev: PCI device whose resources are to be reserved
2508 * @bar: BAR to be reserved
2509 * @res_name: Name to be associated with resource
2510 *
2511 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2512 * being reserved by owner @res_name. Do not access any
2513 * address inside the PCI regions unless this call returns
2514 * successfully.
2515 *
2516 * Returns 0 on success, or %EBUSY on error. A warning
2517 * message is also printed on failure.
2518 */
2519 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2520 {
2521 return __pci_request_region(pdev, bar, res_name, 0);
2522 }
2523
2524 /**
2525 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2526 * @pdev: PCI device whose resources are to be reserved
2527 * @bar: BAR to be reserved
2528 * @res_name: Name to be associated with resource.
2529 *
2530 * Mark the PCI region associated with PCI device @pdev BR @bar as
2531 * being reserved by owner @res_name. Do not access any
2532 * address inside the PCI regions unless this call returns
2533 * successfully.
2534 *
2535 * Returns 0 on success, or %EBUSY on error. A warning
2536 * message is also printed on failure.
2537 *
2538 * The key difference that _exclusive makes it that userspace is
2539 * explicitly not allowed to map the resource via /dev/mem or
2540 * sysfs.
2541 */
2542 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2543 {
2544 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2545 }
2546 /**
2547 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2548 * @pdev: PCI device whose resources were previously reserved
2549 * @bars: Bitmask of BARs to be released
2550 *
2551 * Release selected PCI I/O and memory resources previously reserved.
2552 * Call this function only after all use of the PCI regions has ceased.
2553 */
2554 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2555 {
2556 int i;
2557
2558 for (i = 0; i < 6; i++)
2559 if (bars & (1 << i))
2560 pci_release_region(pdev, i);
2561 }
2562
2563 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2564 const char *res_name, int excl)
2565 {
2566 int i;
2567
2568 for (i = 0; i < 6; i++)
2569 if (bars & (1 << i))
2570 if (__pci_request_region(pdev, i, res_name, excl))
2571 goto err_out;
2572 return 0;
2573
2574 err_out:
2575 while(--i >= 0)
2576 if (bars & (1 << i))
2577 pci_release_region(pdev, i);
2578
2579 return -EBUSY;
2580 }
2581
2582
2583 /**
2584 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2585 * @pdev: PCI device whose resources are to be reserved
2586 * @bars: Bitmask of BARs to be requested
2587 * @res_name: Name to be associated with resource
2588 */
2589 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2590 const char *res_name)
2591 {
2592 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2593 }
2594
2595 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2596 int bars, const char *res_name)
2597 {
2598 return __pci_request_selected_regions(pdev, bars, res_name,
2599 IORESOURCE_EXCLUSIVE);
2600 }
2601
2602 /**
2603 * pci_release_regions - Release reserved PCI I/O and memory resources
2604 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2605 *
2606 * Releases all PCI I/O and memory resources previously reserved by a
2607 * successful call to pci_request_regions. Call this function only
2608 * after all use of the PCI regions has ceased.
2609 */
2610
2611 void pci_release_regions(struct pci_dev *pdev)
2612 {
2613 pci_release_selected_regions(pdev, (1 << 6) - 1);
2614 }
2615
2616 /**
2617 * pci_request_regions - Reserved PCI I/O and memory resources
2618 * @pdev: PCI device whose resources are to be reserved
2619 * @res_name: Name to be associated with resource.
2620 *
2621 * Mark all PCI regions associated with PCI device @pdev as
2622 * being reserved by owner @res_name. Do not access any
2623 * address inside the PCI regions unless this call returns
2624 * successfully.
2625 *
2626 * Returns 0 on success, or %EBUSY on error. A warning
2627 * message is also printed on failure.
2628 */
2629 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2630 {
2631 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2632 }
2633
2634 /**
2635 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2636 * @pdev: PCI device whose resources are to be reserved
2637 * @res_name: Name to be associated with resource.
2638 *
2639 * Mark all PCI regions associated with PCI device @pdev as
2640 * being reserved by owner @res_name. Do not access any
2641 * address inside the PCI regions unless this call returns
2642 * successfully.
2643 *
2644 * pci_request_regions_exclusive() will mark the region so that
2645 * /dev/mem and the sysfs MMIO access will not be allowed.
2646 *
2647 * Returns 0 on success, or %EBUSY on error. A warning
2648 * message is also printed on failure.
2649 */
2650 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2651 {
2652 return pci_request_selected_regions_exclusive(pdev,
2653 ((1 << 6) - 1), res_name);
2654 }
2655
2656 static void __pci_set_master(struct pci_dev *dev, bool enable)
2657 {
2658 u16 old_cmd, cmd;
2659
2660 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2661 if (enable)
2662 cmd = old_cmd | PCI_COMMAND_MASTER;
2663 else
2664 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2665 if (cmd != old_cmd) {
2666 dev_dbg(&dev->dev, "%s bus mastering\n",
2667 enable ? "enabling" : "disabling");
2668 pci_write_config_word(dev, PCI_COMMAND, cmd);
2669 }
2670 dev->is_busmaster = enable;
2671 }
2672
2673 /**
2674 * pcibios_set_master - enable PCI bus-mastering for device dev
2675 * @dev: the PCI device to enable
2676 *
2677 * Enables PCI bus-mastering for the device. This is the default
2678 * implementation. Architecture specific implementations can override
2679 * this if necessary.
2680 */
2681 void __weak pcibios_set_master(struct pci_dev *dev)
2682 {
2683 u8 lat;
2684
2685 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2686 if (pci_is_pcie(dev))
2687 return;
2688
2689 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2690 if (lat < 16)
2691 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2692 else if (lat > pcibios_max_latency)
2693 lat = pcibios_max_latency;
2694 else
2695 return;
2696 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2697 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2698 }
2699
2700 /**
2701 * pci_set_master - enables bus-mastering for device dev
2702 * @dev: the PCI device to enable
2703 *
2704 * Enables bus-mastering on the device and calls pcibios_set_master()
2705 * to do the needed arch specific settings.
2706 */
2707 void pci_set_master(struct pci_dev *dev)
2708 {
2709 __pci_set_master(dev, true);
2710 pcibios_set_master(dev);
2711 }
2712
2713 /**
2714 * pci_clear_master - disables bus-mastering for device dev
2715 * @dev: the PCI device to disable
2716 */
2717 void pci_clear_master(struct pci_dev *dev)
2718 {
2719 __pci_set_master(dev, false);
2720 }
2721
2722 /**
2723 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2724 * @dev: the PCI device for which MWI is to be enabled
2725 *
2726 * Helper function for pci_set_mwi.
2727 * Originally copied from drivers/net/acenic.c.
2728 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2729 *
2730 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2731 */
2732 int pci_set_cacheline_size(struct pci_dev *dev)
2733 {
2734 u8 cacheline_size;
2735
2736 if (!pci_cache_line_size)
2737 return -EINVAL;
2738
2739 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2740 equal to or multiple of the right value. */
2741 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2742 if (cacheline_size >= pci_cache_line_size &&
2743 (cacheline_size % pci_cache_line_size) == 0)
2744 return 0;
2745
2746 /* Write the correct value. */
2747 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2748 /* Read it back. */
2749 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2750 if (cacheline_size == pci_cache_line_size)
2751 return 0;
2752
2753 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2754 "supported\n", pci_cache_line_size << 2);
2755
2756 return -EINVAL;
2757 }
2758 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2759
2760 #ifdef PCI_DISABLE_MWI
2761 int pci_set_mwi(struct pci_dev *dev)
2762 {
2763 return 0;
2764 }
2765
2766 int pci_try_set_mwi(struct pci_dev *dev)
2767 {
2768 return 0;
2769 }
2770
2771 void pci_clear_mwi(struct pci_dev *dev)
2772 {
2773 }
2774
2775 #else
2776
2777 /**
2778 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2779 * @dev: the PCI device for which MWI is enabled
2780 *
2781 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2782 *
2783 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2784 */
2785 int
2786 pci_set_mwi(struct pci_dev *dev)
2787 {
2788 int rc;
2789 u16 cmd;
2790
2791 rc = pci_set_cacheline_size(dev);
2792 if (rc)
2793 return rc;
2794
2795 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2796 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2797 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2798 cmd |= PCI_COMMAND_INVALIDATE;
2799 pci_write_config_word(dev, PCI_COMMAND, cmd);
2800 }
2801
2802 return 0;
2803 }
2804
2805 /**
2806 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2807 * @dev: the PCI device for which MWI is enabled
2808 *
2809 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2810 * Callers are not required to check the return value.
2811 *
2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813 */
2814 int pci_try_set_mwi(struct pci_dev *dev)
2815 {
2816 int rc = pci_set_mwi(dev);
2817 return rc;
2818 }
2819
2820 /**
2821 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2822 * @dev: the PCI device to disable
2823 *
2824 * Disables PCI Memory-Write-Invalidate transaction on the device
2825 */
2826 void
2827 pci_clear_mwi(struct pci_dev *dev)
2828 {
2829 u16 cmd;
2830
2831 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2832 if (cmd & PCI_COMMAND_INVALIDATE) {
2833 cmd &= ~PCI_COMMAND_INVALIDATE;
2834 pci_write_config_word(dev, PCI_COMMAND, cmd);
2835 }
2836 }
2837 #endif /* ! PCI_DISABLE_MWI */
2838
2839 /**
2840 * pci_intx - enables/disables PCI INTx for device dev
2841 * @pdev: the PCI device to operate on
2842 * @enable: boolean: whether to enable or disable PCI INTx
2843 *
2844 * Enables/disables PCI INTx for device dev
2845 */
2846 void
2847 pci_intx(struct pci_dev *pdev, int enable)
2848 {
2849 u16 pci_command, new;
2850
2851 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2852
2853 if (enable) {
2854 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2855 } else {
2856 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2857 }
2858
2859 if (new != pci_command) {
2860 struct pci_devres *dr;
2861
2862 pci_write_config_word(pdev, PCI_COMMAND, new);
2863
2864 dr = find_pci_dr(pdev);
2865 if (dr && !dr->restore_intx) {
2866 dr->restore_intx = 1;
2867 dr->orig_intx = !enable;
2868 }
2869 }
2870 }
2871
2872 /**
2873 * pci_intx_mask_supported - probe for INTx masking support
2874 * @dev: the PCI device to operate on
2875 *
2876 * Check if the device dev support INTx masking via the config space
2877 * command word.
2878 */
2879 bool pci_intx_mask_supported(struct pci_dev *dev)
2880 {
2881 bool mask_supported = false;
2882 u16 orig, new;
2883
2884 pci_cfg_access_lock(dev);
2885
2886 pci_read_config_word(dev, PCI_COMMAND, &orig);
2887 pci_write_config_word(dev, PCI_COMMAND,
2888 orig ^ PCI_COMMAND_INTX_DISABLE);
2889 pci_read_config_word(dev, PCI_COMMAND, &new);
2890
2891 /*
2892 * There's no way to protect against hardware bugs or detect them
2893 * reliably, but as long as we know what the value should be, let's
2894 * go ahead and check it.
2895 */
2896 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2897 dev_err(&dev->dev, "Command register changed from "
2898 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2899 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2900 mask_supported = true;
2901 pci_write_config_word(dev, PCI_COMMAND, orig);
2902 }
2903
2904 pci_cfg_access_unlock(dev);
2905 return mask_supported;
2906 }
2907 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2908
2909 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2910 {
2911 struct pci_bus *bus = dev->bus;
2912 bool mask_updated = true;
2913 u32 cmd_status_dword;
2914 u16 origcmd, newcmd;
2915 unsigned long flags;
2916 bool irq_pending;
2917
2918 /*
2919 * We do a single dword read to retrieve both command and status.
2920 * Document assumptions that make this possible.
2921 */
2922 BUILD_BUG_ON(PCI_COMMAND % 4);
2923 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2924
2925 raw_spin_lock_irqsave(&pci_lock, flags);
2926
2927 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2928
2929 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2930
2931 /*
2932 * Check interrupt status register to see whether our device
2933 * triggered the interrupt (when masking) or the next IRQ is
2934 * already pending (when unmasking).
2935 */
2936 if (mask != irq_pending) {
2937 mask_updated = false;
2938 goto done;
2939 }
2940
2941 origcmd = cmd_status_dword;
2942 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2943 if (mask)
2944 newcmd |= PCI_COMMAND_INTX_DISABLE;
2945 if (newcmd != origcmd)
2946 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2947
2948 done:
2949 raw_spin_unlock_irqrestore(&pci_lock, flags);
2950
2951 return mask_updated;
2952 }
2953
2954 /**
2955 * pci_check_and_mask_intx - mask INTx on pending interrupt
2956 * @dev: the PCI device to operate on
2957 *
2958 * Check if the device dev has its INTx line asserted, mask it and
2959 * return true in that case. False is returned if not interrupt was
2960 * pending.
2961 */
2962 bool pci_check_and_mask_intx(struct pci_dev *dev)
2963 {
2964 return pci_check_and_set_intx_mask(dev, true);
2965 }
2966 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2967
2968 /**
2969 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2970 * @dev: the PCI device to operate on
2971 *
2972 * Check if the device dev has its INTx line asserted, unmask it if not
2973 * and return true. False is returned and the mask remains active if
2974 * there was still an interrupt pending.
2975 */
2976 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2977 {
2978 return pci_check_and_set_intx_mask(dev, false);
2979 }
2980 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2981
2982 /**
2983 * pci_msi_off - disables any msi or msix capabilities
2984 * @dev: the PCI device to operate on
2985 *
2986 * If you want to use msi see pci_enable_msi and friends.
2987 * This is a lower level primitive that allows us to disable
2988 * msi operation at the device level.
2989 */
2990 void pci_msi_off(struct pci_dev *dev)
2991 {
2992 int pos;
2993 u16 control;
2994
2995 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2996 if (pos) {
2997 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2998 control &= ~PCI_MSI_FLAGS_ENABLE;
2999 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3000 }
3001 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3002 if (pos) {
3003 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3004 control &= ~PCI_MSIX_FLAGS_ENABLE;
3005 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3006 }
3007 }
3008 EXPORT_SYMBOL_GPL(pci_msi_off);
3009
3010 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3011 {
3012 return dma_set_max_seg_size(&dev->dev, size);
3013 }
3014 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3015
3016 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3017 {
3018 return dma_set_seg_boundary(&dev->dev, mask);
3019 }
3020 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3021
3022 static int pcie_flr(struct pci_dev *dev, int probe)
3023 {
3024 int i;
3025 int pos;
3026 u32 cap;
3027 u16 status, control;
3028
3029 pos = pci_pcie_cap(dev);
3030 if (!pos)
3031 return -ENOTTY;
3032
3033 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3034 if (!(cap & PCI_EXP_DEVCAP_FLR))
3035 return -ENOTTY;
3036
3037 if (probe)
3038 return 0;
3039
3040 /* Wait for Transaction Pending bit clean */
3041 for (i = 0; i < 4; i++) {
3042 if (i)
3043 msleep((1 << (i - 1)) * 100);
3044
3045 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3046 if (!(status & PCI_EXP_DEVSTA_TRPND))
3047 goto clear;
3048 }
3049
3050 dev_err(&dev->dev, "transaction is not cleared; "
3051 "proceeding with reset anyway\n");
3052
3053 clear:
3054 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3055 control |= PCI_EXP_DEVCTL_BCR_FLR;
3056 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3057
3058 msleep(100);
3059
3060 return 0;
3061 }
3062
3063 static int pci_af_flr(struct pci_dev *dev, int probe)
3064 {
3065 int i;
3066 int pos;
3067 u8 cap;
3068 u8 status;
3069
3070 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3071 if (!pos)
3072 return -ENOTTY;
3073
3074 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3075 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3076 return -ENOTTY;
3077
3078 if (probe)
3079 return 0;
3080
3081 /* Wait for Transaction Pending bit clean */
3082 for (i = 0; i < 4; i++) {
3083 if (i)
3084 msleep((1 << (i - 1)) * 100);
3085
3086 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3087 if (!(status & PCI_AF_STATUS_TP))
3088 goto clear;
3089 }
3090
3091 dev_err(&dev->dev, "transaction is not cleared; "
3092 "proceeding with reset anyway\n");
3093
3094 clear:
3095 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3096 msleep(100);
3097
3098 return 0;
3099 }
3100
3101 /**
3102 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3103 * @dev: Device to reset.
3104 * @probe: If set, only check if the device can be reset this way.
3105 *
3106 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3107 * unset, it will be reinitialized internally when going from PCI_D3hot to
3108 * PCI_D0. If that's the case and the device is not in a low-power state
3109 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3110 *
3111 * NOTE: This causes the caller to sleep for twice the device power transition
3112 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3113 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3114 * Moreover, only devices in D0 can be reset by this function.
3115 */
3116 static int pci_pm_reset(struct pci_dev *dev, int probe)
3117 {
3118 u16 csr;
3119
3120 if (!dev->pm_cap)
3121 return -ENOTTY;
3122
3123 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3124 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3125 return -ENOTTY;
3126
3127 if (probe)
3128 return 0;
3129
3130 if (dev->current_state != PCI_D0)
3131 return -EINVAL;
3132
3133 csr &= ~PCI_PM_CTRL_STATE_MASK;
3134 csr |= PCI_D3hot;
3135 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3136 pci_dev_d3_sleep(dev);
3137
3138 csr &= ~PCI_PM_CTRL_STATE_MASK;
3139 csr |= PCI_D0;
3140 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3141 pci_dev_d3_sleep(dev);
3142
3143 return 0;
3144 }
3145
3146 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3147 {
3148 u16 ctrl;
3149 struct pci_dev *pdev;
3150
3151 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3152 return -ENOTTY;
3153
3154 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3155 if (pdev != dev)
3156 return -ENOTTY;
3157
3158 if (probe)
3159 return 0;
3160
3161 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3162 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3163 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3164 msleep(100);
3165
3166 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3167 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3168 msleep(100);
3169
3170 return 0;
3171 }
3172
3173 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3174 {
3175 int rc;
3176
3177 might_sleep();
3178
3179 rc = pci_dev_specific_reset(dev, probe);
3180 if (rc != -ENOTTY)
3181 goto done;
3182
3183 rc = pcie_flr(dev, probe);
3184 if (rc != -ENOTTY)
3185 goto done;
3186
3187 rc = pci_af_flr(dev, probe);
3188 if (rc != -ENOTTY)
3189 goto done;
3190
3191 rc = pci_pm_reset(dev, probe);
3192 if (rc != -ENOTTY)
3193 goto done;
3194
3195 rc = pci_parent_bus_reset(dev, probe);
3196 done:
3197 return rc;
3198 }
3199
3200 static int pci_dev_reset(struct pci_dev *dev, int probe)
3201 {
3202 int rc;
3203
3204 if (!probe) {
3205 pci_cfg_access_lock(dev);
3206 /* block PM suspend, driver probe, etc. */
3207 device_lock(&dev->dev);
3208 }
3209
3210 rc = __pci_dev_reset(dev, probe);
3211
3212 if (!probe) {
3213 device_unlock(&dev->dev);
3214 pci_cfg_access_unlock(dev);
3215 }
3216 return rc;
3217 }
3218 /**
3219 * __pci_reset_function - reset a PCI device function
3220 * @dev: PCI device to reset
3221 *
3222 * Some devices allow an individual function to be reset without affecting
3223 * other functions in the same device. The PCI device must be responsive
3224 * to PCI config space in order to use this function.
3225 *
3226 * The device function is presumed to be unused when this function is called.
3227 * Resetting the device will make the contents of PCI configuration space
3228 * random, so any caller of this must be prepared to reinitialise the
3229 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3230 * etc.
3231 *
3232 * Returns 0 if the device function was successfully reset or negative if the
3233 * device doesn't support resetting a single function.
3234 */
3235 int __pci_reset_function(struct pci_dev *dev)
3236 {
3237 return pci_dev_reset(dev, 0);
3238 }
3239 EXPORT_SYMBOL_GPL(__pci_reset_function);
3240
3241 /**
3242 * __pci_reset_function_locked - reset a PCI device function while holding
3243 * the @dev mutex lock.
3244 * @dev: PCI device to reset
3245 *
3246 * Some devices allow an individual function to be reset without affecting
3247 * other functions in the same device. The PCI device must be responsive
3248 * to PCI config space in order to use this function.
3249 *
3250 * The device function is presumed to be unused and the caller is holding
3251 * the device mutex lock when this function is called.
3252 * Resetting the device will make the contents of PCI configuration space
3253 * random, so any caller of this must be prepared to reinitialise the
3254 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3255 * etc.
3256 *
3257 * Returns 0 if the device function was successfully reset or negative if the
3258 * device doesn't support resetting a single function.
3259 */
3260 int __pci_reset_function_locked(struct pci_dev *dev)
3261 {
3262 return __pci_dev_reset(dev, 0);
3263 }
3264 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3265
3266 /**
3267 * pci_probe_reset_function - check whether the device can be safely reset
3268 * @dev: PCI device to reset
3269 *
3270 * Some devices allow an individual function to be reset without affecting
3271 * other functions in the same device. The PCI device must be responsive
3272 * to PCI config space in order to use this function.
3273 *
3274 * Returns 0 if the device function can be reset or negative if the
3275 * device doesn't support resetting a single function.
3276 */
3277 int pci_probe_reset_function(struct pci_dev *dev)
3278 {
3279 return pci_dev_reset(dev, 1);
3280 }
3281
3282 /**
3283 * pci_reset_function - quiesce and reset a PCI device function
3284 * @dev: PCI device to reset
3285 *
3286 * Some devices allow an individual function to be reset without affecting
3287 * other functions in the same device. The PCI device must be responsive
3288 * to PCI config space in order to use this function.
3289 *
3290 * This function does not just reset the PCI portion of a device, but
3291 * clears all the state associated with the device. This function differs
3292 * from __pci_reset_function in that it saves and restores device state
3293 * over the reset.
3294 *
3295 * Returns 0 if the device function was successfully reset or negative if the
3296 * device doesn't support resetting a single function.
3297 */
3298 int pci_reset_function(struct pci_dev *dev)
3299 {
3300 int rc;
3301
3302 rc = pci_dev_reset(dev, 1);
3303 if (rc)
3304 return rc;
3305
3306 pci_save_state(dev);
3307
3308 /*
3309 * both INTx and MSI are disabled after the Interrupt Disable bit
3310 * is set and the Bus Master bit is cleared.
3311 */
3312 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3313
3314 rc = pci_dev_reset(dev, 0);
3315
3316 pci_restore_state(dev);
3317
3318 return rc;
3319 }
3320 EXPORT_SYMBOL_GPL(pci_reset_function);
3321
3322 /**
3323 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3324 * @dev: PCI device to query
3325 *
3326 * Returns mmrbc: maximum designed memory read count in bytes
3327 * or appropriate error value.
3328 */
3329 int pcix_get_max_mmrbc(struct pci_dev *dev)
3330 {
3331 int cap;
3332 u32 stat;
3333
3334 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3335 if (!cap)
3336 return -EINVAL;
3337
3338 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3339 return -EINVAL;
3340
3341 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3342 }
3343 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3344
3345 /**
3346 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3347 * @dev: PCI device to query
3348 *
3349 * Returns mmrbc: maximum memory read count in bytes
3350 * or appropriate error value.
3351 */
3352 int pcix_get_mmrbc(struct pci_dev *dev)
3353 {
3354 int cap;
3355 u16 cmd;
3356
3357 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3358 if (!cap)
3359 return -EINVAL;
3360
3361 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3362 return -EINVAL;
3363
3364 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3365 }
3366 EXPORT_SYMBOL(pcix_get_mmrbc);
3367
3368 /**
3369 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3370 * @dev: PCI device to query
3371 * @mmrbc: maximum memory read count in bytes
3372 * valid values are 512, 1024, 2048, 4096
3373 *
3374 * If possible sets maximum memory read byte count, some bridges have erratas
3375 * that prevent this.
3376 */
3377 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3378 {
3379 int cap;
3380 u32 stat, v, o;
3381 u16 cmd;
3382
3383 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3384 return -EINVAL;
3385
3386 v = ffs(mmrbc) - 10;
3387
3388 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3389 if (!cap)
3390 return -EINVAL;
3391
3392 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3393 return -EINVAL;
3394
3395 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3396 return -E2BIG;
3397
3398 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3399 return -EINVAL;
3400
3401 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3402 if (o != v) {
3403 if (v > o && dev->bus &&
3404 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3405 return -EIO;
3406
3407 cmd &= ~PCI_X_CMD_MAX_READ;
3408 cmd |= v << 2;
3409 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3410 return -EIO;
3411 }
3412 return 0;
3413 }
3414 EXPORT_SYMBOL(pcix_set_mmrbc);
3415
3416 /**
3417 * pcie_get_readrq - get PCI Express read request size
3418 * @dev: PCI device to query
3419 *
3420 * Returns maximum memory read request in bytes
3421 * or appropriate error value.
3422 */
3423 int pcie_get_readrq(struct pci_dev *dev)
3424 {
3425 int ret, cap;
3426 u16 ctl;
3427
3428 cap = pci_pcie_cap(dev);
3429 if (!cap)
3430 return -EINVAL;
3431
3432 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3433 if (!ret)
3434 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3435
3436 return ret;
3437 }
3438 EXPORT_SYMBOL(pcie_get_readrq);
3439
3440 /**
3441 * pcie_set_readrq - set PCI Express maximum memory read request
3442 * @dev: PCI device to query
3443 * @rq: maximum memory read count in bytes
3444 * valid values are 128, 256, 512, 1024, 2048, 4096
3445 *
3446 * If possible sets maximum memory read request in bytes
3447 */
3448 int pcie_set_readrq(struct pci_dev *dev, int rq)
3449 {
3450 int cap, err = -EINVAL;
3451 u16 ctl, v;
3452
3453 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3454 goto out;
3455
3456 cap = pci_pcie_cap(dev);
3457 if (!cap)
3458 goto out;
3459
3460 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3461 if (err)
3462 goto out;
3463 /*
3464 * If using the "performance" PCIe config, we clamp the
3465 * read rq size to the max packet size to prevent the
3466 * host bridge generating requests larger than we can
3467 * cope with
3468 */
3469 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3470 int mps = pcie_get_mps(dev);
3471
3472 if (mps < 0)
3473 return mps;
3474 if (mps < rq)
3475 rq = mps;
3476 }
3477
3478 v = (ffs(rq) - 8) << 12;
3479
3480 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3481 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3482 ctl |= v;
3483 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3484 }
3485
3486 out:
3487 return err;
3488 }
3489 EXPORT_SYMBOL(pcie_set_readrq);
3490
3491 /**
3492 * pcie_get_mps - get PCI Express maximum payload size
3493 * @dev: PCI device to query
3494 *
3495 * Returns maximum payload size in bytes
3496 * or appropriate error value.
3497 */
3498 int pcie_get_mps(struct pci_dev *dev)
3499 {
3500 int ret, cap;
3501 u16 ctl;
3502
3503 cap = pci_pcie_cap(dev);
3504 if (!cap)
3505 return -EINVAL;
3506
3507 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3508 if (!ret)
3509 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3510
3511 return ret;
3512 }
3513
3514 /**
3515 * pcie_set_mps - set PCI Express maximum payload size
3516 * @dev: PCI device to query
3517 * @mps: maximum payload size in bytes
3518 * valid values are 128, 256, 512, 1024, 2048, 4096
3519 *
3520 * If possible sets maximum payload size
3521 */
3522 int pcie_set_mps(struct pci_dev *dev, int mps)
3523 {
3524 int cap, err = -EINVAL;
3525 u16 ctl, v;
3526
3527 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3528 goto out;
3529
3530 v = ffs(mps) - 8;
3531 if (v > dev->pcie_mpss)
3532 goto out;
3533 v <<= 5;
3534
3535 cap = pci_pcie_cap(dev);
3536 if (!cap)
3537 goto out;
3538
3539 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3540 if (err)
3541 goto out;
3542
3543 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3544 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3545 ctl |= v;
3546 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3547 }
3548 out:
3549 return err;
3550 }
3551
3552 /**
3553 * pci_select_bars - Make BAR mask from the type of resource
3554 * @dev: the PCI device for which BAR mask is made
3555 * @flags: resource type mask to be selected
3556 *
3557 * This helper routine makes bar mask from the type of resource.
3558 */
3559 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3560 {
3561 int i, bars = 0;
3562 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3563 if (pci_resource_flags(dev, i) & flags)
3564 bars |= (1 << i);
3565 return bars;
3566 }
3567
3568 /**
3569 * pci_resource_bar - get position of the BAR associated with a resource
3570 * @dev: the PCI device
3571 * @resno: the resource number
3572 * @type: the BAR type to be filled in
3573 *
3574 * Returns BAR position in config space, or 0 if the BAR is invalid.
3575 */
3576 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3577 {
3578 int reg;
3579
3580 if (resno < PCI_ROM_RESOURCE) {
3581 *type = pci_bar_unknown;
3582 return PCI_BASE_ADDRESS_0 + 4 * resno;
3583 } else if (resno == PCI_ROM_RESOURCE) {
3584 *type = pci_bar_mem32;
3585 return dev->rom_base_reg;
3586 } else if (resno < PCI_BRIDGE_RESOURCES) {
3587 /* device specific resource */
3588 reg = pci_iov_resource_bar(dev, resno, type);
3589 if (reg)
3590 return reg;
3591 }
3592
3593 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3594 return 0;
3595 }
3596
3597 /* Some architectures require additional programming to enable VGA */
3598 static arch_set_vga_state_t arch_set_vga_state;
3599
3600 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3601 {
3602 arch_set_vga_state = func; /* NULL disables */
3603 }
3604
3605 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3606 unsigned int command_bits, u32 flags)
3607 {
3608 if (arch_set_vga_state)
3609 return arch_set_vga_state(dev, decode, command_bits,
3610 flags);
3611 return 0;
3612 }
3613
3614 /**
3615 * pci_set_vga_state - set VGA decode state on device and parents if requested
3616 * @dev: the PCI device
3617 * @decode: true = enable decoding, false = disable decoding
3618 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3619 * @flags: traverse ancestors and change bridges
3620 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3621 */
3622 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3623 unsigned int command_bits, u32 flags)
3624 {
3625 struct pci_bus *bus;
3626 struct pci_dev *bridge;
3627 u16 cmd;
3628 int rc;
3629
3630 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3631
3632 /* ARCH specific VGA enables */
3633 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3634 if (rc)
3635 return rc;
3636
3637 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3638 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3639 if (decode == true)
3640 cmd |= command_bits;
3641 else
3642 cmd &= ~command_bits;
3643 pci_write_config_word(dev, PCI_COMMAND, cmd);
3644 }
3645
3646 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3647 return 0;
3648
3649 bus = dev->bus;
3650 while (bus) {
3651 bridge = bus->self;
3652 if (bridge) {
3653 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3654 &cmd);
3655 if (decode == true)
3656 cmd |= PCI_BRIDGE_CTL_VGA;
3657 else
3658 cmd &= ~PCI_BRIDGE_CTL_VGA;
3659 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3660 cmd);
3661 }
3662 bus = bus->parent;
3663 }
3664 return 0;
3665 }
3666
3667 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3668 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3669 static DEFINE_SPINLOCK(resource_alignment_lock);
3670
3671 /**
3672 * pci_specified_resource_alignment - get resource alignment specified by user.
3673 * @dev: the PCI device to get
3674 *
3675 * RETURNS: Resource alignment if it is specified.
3676 * Zero if it is not specified.
3677 */
3678 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3679 {
3680 int seg, bus, slot, func, align_order, count;
3681 resource_size_t align = 0;
3682 char *p;
3683
3684 spin_lock(&resource_alignment_lock);
3685 p = resource_alignment_param;
3686 while (*p) {
3687 count = 0;
3688 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3689 p[count] == '@') {
3690 p += count + 1;
3691 } else {
3692 align_order = -1;
3693 }
3694 if (sscanf(p, "%x:%x:%x.%x%n",
3695 &seg, &bus, &slot, &func, &count) != 4) {
3696 seg = 0;
3697 if (sscanf(p, "%x:%x.%x%n",
3698 &bus, &slot, &func, &count) != 3) {
3699 /* Invalid format */
3700 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3701 p);
3702 break;
3703 }
3704 }
3705 p += count;
3706 if (seg == pci_domain_nr(dev->bus) &&
3707 bus == dev->bus->number &&
3708 slot == PCI_SLOT(dev->devfn) &&
3709 func == PCI_FUNC(dev->devfn)) {
3710 if (align_order == -1) {
3711 align = PAGE_SIZE;
3712 } else {
3713 align = 1 << align_order;
3714 }
3715 /* Found */
3716 break;
3717 }
3718 if (*p != ';' && *p != ',') {
3719 /* End of param or invalid format */
3720 break;
3721 }
3722 p++;
3723 }
3724 spin_unlock(&resource_alignment_lock);
3725 return align;
3726 }
3727
3728 /**
3729 * pci_is_reassigndev - check if specified PCI is target device to reassign
3730 * @dev: the PCI device to check
3731 *
3732 * RETURNS: non-zero for PCI device is a target device to reassign,
3733 * or zero is not.
3734 */
3735 int pci_is_reassigndev(struct pci_dev *dev)
3736 {
3737 return (pci_specified_resource_alignment(dev) != 0);
3738 }
3739
3740 /*
3741 * This function disables memory decoding and releases memory resources
3742 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3743 * It also rounds up size to specified alignment.
3744 * Later on, the kernel will assign page-aligned memory resource back
3745 * to the device.
3746 */
3747 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3748 {
3749 int i;
3750 struct resource *r;
3751 resource_size_t align, size;
3752 u16 command;
3753
3754 if (!pci_is_reassigndev(dev))
3755 return;
3756
3757 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3758 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3759 dev_warn(&dev->dev,
3760 "Can't reassign resources to host bridge.\n");
3761 return;
3762 }
3763
3764 dev_info(&dev->dev,
3765 "Disabling memory decoding and releasing memory resources.\n");
3766 pci_read_config_word(dev, PCI_COMMAND, &command);
3767 command &= ~PCI_COMMAND_MEMORY;
3768 pci_write_config_word(dev, PCI_COMMAND, command);
3769
3770 align = pci_specified_resource_alignment(dev);
3771 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3772 r = &dev->resource[i];
3773 if (!(r->flags & IORESOURCE_MEM))
3774 continue;
3775 size = resource_size(r);
3776 if (size < align) {
3777 size = align;
3778 dev_info(&dev->dev,
3779 "Rounding up size of resource #%d to %#llx.\n",
3780 i, (unsigned long long)size);
3781 }
3782 r->end = size - 1;
3783 r->start = 0;
3784 }
3785 /* Need to disable bridge's resource window,
3786 * to enable the kernel to reassign new resource
3787 * window later on.
3788 */
3789 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3790 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3791 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3792 r = &dev->resource[i];
3793 if (!(r->flags & IORESOURCE_MEM))
3794 continue;
3795 r->end = resource_size(r) - 1;
3796 r->start = 0;
3797 }
3798 pci_disable_bridge_window(dev);
3799 }
3800 }
3801
3802 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3803 {
3804 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3805 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3806 spin_lock(&resource_alignment_lock);
3807 strncpy(resource_alignment_param, buf, count);
3808 resource_alignment_param[count] = '\0';
3809 spin_unlock(&resource_alignment_lock);
3810 return count;
3811 }
3812
3813 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3814 {
3815 size_t count;
3816 spin_lock(&resource_alignment_lock);
3817 count = snprintf(buf, size, "%s", resource_alignment_param);
3818 spin_unlock(&resource_alignment_lock);
3819 return count;
3820 }
3821
3822 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3823 {
3824 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3825 }
3826
3827 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3828 const char *buf, size_t count)
3829 {
3830 return pci_set_resource_alignment_param(buf, count);
3831 }
3832
3833 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3834 pci_resource_alignment_store);
3835
3836 static int __init pci_resource_alignment_sysfs_init(void)
3837 {
3838 return bus_create_file(&pci_bus_type,
3839 &bus_attr_resource_alignment);
3840 }
3841
3842 late_initcall(pci_resource_alignment_sysfs_init);
3843
3844 static void __devinit pci_no_domains(void)
3845 {
3846 #ifdef CONFIG_PCI_DOMAINS
3847 pci_domains_supported = 0;
3848 #endif
3849 }
3850
3851 /**
3852 * pci_ext_cfg_enabled - can we access extended PCI config space?
3853 * @dev: The PCI device of the root bridge.
3854 *
3855 * Returns 1 if we can access PCI extended config space (offsets
3856 * greater than 0xff). This is the default implementation. Architecture
3857 * implementations can override this.
3858 */
3859 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3860 {
3861 return 1;
3862 }
3863
3864 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3865 {
3866 }
3867 EXPORT_SYMBOL(pci_fixup_cardbus);
3868
3869 static int __init pci_setup(char *str)
3870 {
3871 while (str) {
3872 char *k = strchr(str, ',');
3873 if (k)
3874 *k++ = 0;
3875 if (*str && (str = pcibios_setup(str)) && *str) {
3876 if (!strcmp(str, "nomsi")) {
3877 pci_no_msi();
3878 } else if (!strcmp(str, "noaer")) {
3879 pci_no_aer();
3880 } else if (!strncmp(str, "realloc=", 8)) {
3881 pci_realloc_get_opt(str + 8);
3882 } else if (!strncmp(str, "realloc", 7)) {
3883 pci_realloc_get_opt("on");
3884 } else if (!strcmp(str, "nodomains")) {
3885 pci_no_domains();
3886 } else if (!strncmp(str, "noari", 5)) {
3887 pcie_ari_disabled = true;
3888 } else if (!strncmp(str, "cbiosize=", 9)) {
3889 pci_cardbus_io_size = memparse(str + 9, &str);
3890 } else if (!strncmp(str, "cbmemsize=", 10)) {
3891 pci_cardbus_mem_size = memparse(str + 10, &str);
3892 } else if (!strncmp(str, "resource_alignment=", 19)) {
3893 pci_set_resource_alignment_param(str + 19,
3894 strlen(str + 19));
3895 } else if (!strncmp(str, "ecrc=", 5)) {
3896 pcie_ecrc_get_policy(str + 5);
3897 } else if (!strncmp(str, "hpiosize=", 9)) {
3898 pci_hotplug_io_size = memparse(str + 9, &str);
3899 } else if (!strncmp(str, "hpmemsize=", 10)) {
3900 pci_hotplug_mem_size = memparse(str + 10, &str);
3901 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3902 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3903 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3904 pcie_bus_config = PCIE_BUS_SAFE;
3905 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3906 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3907 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3908 pcie_bus_config = PCIE_BUS_PEER2PEER;
3909 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3910 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3911 } else {
3912 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3913 str);
3914 }
3915 }
3916 str = k;
3917 }
3918 return 0;
3919 }
3920 early_param("pci", pci_setup);
3921
3922 EXPORT_SYMBOL(pci_reenable_device);
3923 EXPORT_SYMBOL(pci_enable_device_io);
3924 EXPORT_SYMBOL(pci_enable_device_mem);
3925 EXPORT_SYMBOL(pci_enable_device);
3926 EXPORT_SYMBOL(pcim_enable_device);
3927 EXPORT_SYMBOL(pcim_pin_device);
3928 EXPORT_SYMBOL(pci_disable_device);
3929 EXPORT_SYMBOL(pci_find_capability);
3930 EXPORT_SYMBOL(pci_bus_find_capability);
3931 EXPORT_SYMBOL(pci_release_regions);
3932 EXPORT_SYMBOL(pci_request_regions);
3933 EXPORT_SYMBOL(pci_request_regions_exclusive);
3934 EXPORT_SYMBOL(pci_release_region);
3935 EXPORT_SYMBOL(pci_request_region);
3936 EXPORT_SYMBOL(pci_request_region_exclusive);
3937 EXPORT_SYMBOL(pci_release_selected_regions);
3938 EXPORT_SYMBOL(pci_request_selected_regions);
3939 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3940 EXPORT_SYMBOL(pci_set_master);
3941 EXPORT_SYMBOL(pci_clear_master);
3942 EXPORT_SYMBOL(pci_set_mwi);
3943 EXPORT_SYMBOL(pci_try_set_mwi);
3944 EXPORT_SYMBOL(pci_clear_mwi);
3945 EXPORT_SYMBOL_GPL(pci_intx);
3946 EXPORT_SYMBOL(pci_assign_resource);
3947 EXPORT_SYMBOL(pci_find_parent_resource);
3948 EXPORT_SYMBOL(pci_select_bars);
3949
3950 EXPORT_SYMBOL(pci_set_power_state);
3951 EXPORT_SYMBOL(pci_save_state);
3952 EXPORT_SYMBOL(pci_restore_state);
3953 EXPORT_SYMBOL(pci_pme_capable);
3954 EXPORT_SYMBOL(pci_pme_active);
3955 EXPORT_SYMBOL(pci_wake_from_d3);
3956 EXPORT_SYMBOL(pci_target_state);
3957 EXPORT_SYMBOL(pci_prepare_to_sleep);
3958 EXPORT_SYMBOL(pci_back_from_sleep);
3959 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.133626 seconds and 5 git commands to generate.