PCI / PM: Avoid resuming PCI devices during system suspend
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40
41 unsigned int pci_pm_d3_delay;
42
43 static void pci_pme_list_scan(struct work_struct *work);
44
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52 };
53
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64 }
65
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84 /*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92
93 /*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97 unsigned int pcibios_max_latency = 255;
98
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101
102 /**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
110 {
111 struct pci_bus *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
117 if (n > max)
118 max = n;
119 }
120 return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139
140 #define PCI_FIND_CAP_TTL 48
141
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144 {
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161 }
162
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165 {
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180 {
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198 }
199
200 /**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228 }
229 EXPORT_SYMBOL(pci_find_capability);
230
231 /**
232 * pci_bus_find_capability - query for devices' capabilities
233 * @bus: the PCI bus to query
234 * @devfn: PCI device to query
235 * @cap: capability code
236 *
237 * Like pci_find_capability() but works for pci devices that do not have a
238 * pci_dev structure set up yet.
239 *
240 * Returns the address of the requested capability structure within the
241 * device's PCI configuration space or 0 in case the device does not
242 * support it.
243 */
244 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245 {
246 int pos;
247 u8 hdr_type;
248
249 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250
251 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
252 if (pos)
253 pos = __pci_find_next_cap(bus, devfn, pos, cap);
254
255 return pos;
256 }
257 EXPORT_SYMBOL(pci_bus_find_capability);
258
259 /**
260 * pci_find_next_ext_capability - Find an extended capability
261 * @dev: PCI device to query
262 * @start: address at which to start looking (0 to start at beginning of list)
263 * @cap: capability code
264 *
265 * Returns the address of the next matching extended capability structure
266 * within the device's PCI configuration space or 0 if the device does
267 * not support it. Some capabilities can occur several times, e.g., the
268 * vendor-specific capability, and this provides a way to find them all.
269 */
270 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
271 {
272 u32 header;
273 int ttl;
274 int pos = PCI_CFG_SPACE_SIZE;
275
276 /* minimum 8 bytes per capability */
277 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
278
279 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
280 return 0;
281
282 if (start)
283 pos = start;
284
285 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
286 return 0;
287
288 /*
289 * If we have no capabilities, this is indicated by cap ID,
290 * cap version and next pointer all being 0.
291 */
292 if (header == 0)
293 return 0;
294
295 while (ttl-- > 0) {
296 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
297 return pos;
298
299 pos = PCI_EXT_CAP_NEXT(header);
300 if (pos < PCI_CFG_SPACE_SIZE)
301 break;
302
303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 break;
305 }
306
307 return 0;
308 }
309 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310
311 /**
312 * pci_find_ext_capability - Find an extended capability
313 * @dev: PCI device to query
314 * @cap: capability code
315 *
316 * Returns the address of the requested extended capability structure
317 * within the device's PCI configuration space or 0 if the device does
318 * not support it. Possible values for @cap:
319 *
320 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
321 * %PCI_EXT_CAP_ID_VC Virtual Channel
322 * %PCI_EXT_CAP_ID_DSN Device Serial Number
323 * %PCI_EXT_CAP_ID_PWR Power Budgeting
324 */
325 int pci_find_ext_capability(struct pci_dev *dev, int cap)
326 {
327 return pci_find_next_ext_capability(dev, 0, cap);
328 }
329 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
330
331 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
332 {
333 int rc, ttl = PCI_FIND_CAP_TTL;
334 u8 cap, mask;
335
336 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
337 mask = HT_3BIT_CAP_MASK;
338 else
339 mask = HT_5BIT_CAP_MASK;
340
341 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
342 PCI_CAP_ID_HT, &ttl);
343 while (pos) {
344 rc = pci_read_config_byte(dev, pos + 3, &cap);
345 if (rc != PCIBIOS_SUCCESSFUL)
346 return 0;
347
348 if ((cap & mask) == ht_cap)
349 return pos;
350
351 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
352 pos + PCI_CAP_LIST_NEXT,
353 PCI_CAP_ID_HT, &ttl);
354 }
355
356 return 0;
357 }
358 /**
359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
360 * @dev: PCI device to query
361 * @pos: Position from which to continue searching
362 * @ht_cap: Hypertransport capability code
363 *
364 * To be used in conjunction with pci_find_ht_capability() to search for
365 * all capabilities matching @ht_cap. @pos should always be a value returned
366 * from pci_find_ht_capability().
367 *
368 * NB. To be 100% safe against broken PCI devices, the caller should take
369 * steps to avoid an infinite loop.
370 */
371 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
374 }
375 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376
377 /**
378 * pci_find_ht_capability - query a device's Hypertransport capabilities
379 * @dev: PCI device to query
380 * @ht_cap: Hypertransport capability code
381 *
382 * Tell if a device supports a given Hypertransport capability.
383 * Returns an address within the device's PCI configuration space
384 * or 0 in case the device does not support the request capability.
385 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
386 * which has a Hypertransport capability matching @ht_cap.
387 */
388 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
389 {
390 int pos;
391
392 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
393 if (pos)
394 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
395
396 return pos;
397 }
398 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399
400 /**
401 * pci_find_parent_resource - return resource region of parent bus of given region
402 * @dev: PCI device structure contains resources to be searched
403 * @res: child resource record for which parent is sought
404 *
405 * For given resource region of given device, return the resource
406 * region of parent bus the given region is contained in.
407 */
408 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
409 struct resource *res)
410 {
411 const struct pci_bus *bus = dev->bus;
412 struct resource *r;
413 int i;
414
415 pci_bus_for_each_resource(bus, r, i) {
416 if (!r)
417 continue;
418 if (res->start && resource_contains(r, res)) {
419
420 /*
421 * If the window is prefetchable but the BAR is
422 * not, the allocator made a mistake.
423 */
424 if (r->flags & IORESOURCE_PREFETCH &&
425 !(res->flags & IORESOURCE_PREFETCH))
426 return NULL;
427
428 /*
429 * If we're below a transparent bridge, there may
430 * be both a positively-decoded aperture and a
431 * subtractively-decoded region that contain the BAR.
432 * We want the positively-decoded one, so this depends
433 * on pci_bus_for_each_resource() giving us those
434 * first.
435 */
436 return r;
437 }
438 }
439 return NULL;
440 }
441 EXPORT_SYMBOL(pci_find_parent_resource);
442
443 /**
444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
445 * @dev: the PCI device to operate on
446 * @pos: config space offset of status word
447 * @mask: mask of bit(s) to care about in status word
448 *
449 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
450 */
451 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
452 {
453 int i;
454
455 /* Wait for Transaction Pending bit clean */
456 for (i = 0; i < 4; i++) {
457 u16 status;
458 if (i)
459 msleep((1 << (i - 1)) * 100);
460
461 pci_read_config_word(dev, pos, &status);
462 if (!(status & mask))
463 return 1;
464 }
465
466 return 0;
467 }
468
469 /**
470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471 * @dev: PCI device to have its BARs restored
472 *
473 * Restore the BAR values for a given device, so as to make it
474 * accessible by its driver.
475 */
476 static void pci_restore_bars(struct pci_dev *dev)
477 {
478 int i;
479
480 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
481 pci_update_resource(dev, i);
482 }
483
484 static struct pci_platform_pm_ops *pci_platform_pm;
485
486 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
487 {
488 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
489 || !ops->sleep_wake)
490 return -EINVAL;
491 pci_platform_pm = ops;
492 return 0;
493 }
494
495 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
496 {
497 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
498 }
499
500 static inline int platform_pci_set_power_state(struct pci_dev *dev,
501 pci_power_t t)
502 {
503 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
504 }
505
506 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
507 {
508 return pci_platform_pm ?
509 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
510 }
511
512 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
513 {
514 return pci_platform_pm ?
515 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
516 }
517
518 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
519 {
520 return pci_platform_pm ?
521 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
522 }
523
524 static inline bool platform_pci_need_resume(struct pci_dev *dev)
525 {
526 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
527 }
528
529 /**
530 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
531 * given PCI device
532 * @dev: PCI device to handle.
533 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
534 *
535 * RETURN VALUE:
536 * -EINVAL if the requested state is invalid.
537 * -EIO if device does not support PCI PM or its PM capabilities register has a
538 * wrong version, or device doesn't support the requested state.
539 * 0 if device already is in the requested state.
540 * 0 if device's power state has been successfully changed.
541 */
542 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
543 {
544 u16 pmcsr;
545 bool need_restore = false;
546
547 /* Check if we're already there */
548 if (dev->current_state == state)
549 return 0;
550
551 if (!dev->pm_cap)
552 return -EIO;
553
554 if (state < PCI_D0 || state > PCI_D3hot)
555 return -EINVAL;
556
557 /* Validate current state:
558 * Can enter D0 from any state, but if we can only go deeper
559 * to sleep if we're already in a low power state
560 */
561 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
562 && dev->current_state > state) {
563 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
564 dev->current_state, state);
565 return -EINVAL;
566 }
567
568 /* check if this device supports the desired state */
569 if ((state == PCI_D1 && !dev->d1_support)
570 || (state == PCI_D2 && !dev->d2_support))
571 return -EIO;
572
573 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
574
575 /* If we're (effectively) in D3, force entire word to 0.
576 * This doesn't affect PME_Status, disables PME_En, and
577 * sets PowerState to 0.
578 */
579 switch (dev->current_state) {
580 case PCI_D0:
581 case PCI_D1:
582 case PCI_D2:
583 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
584 pmcsr |= state;
585 break;
586 case PCI_D3hot:
587 case PCI_D3cold:
588 case PCI_UNKNOWN: /* Boot-up */
589 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
590 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
591 need_restore = true;
592 /* Fall-through: force to D0 */
593 default:
594 pmcsr = 0;
595 break;
596 }
597
598 /* enter specified state */
599 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
600
601 /* Mandatory power management transition delays */
602 /* see PCI PM 1.1 5.6.1 table 18 */
603 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
604 pci_dev_d3_sleep(dev);
605 else if (state == PCI_D2 || dev->current_state == PCI_D2)
606 udelay(PCI_PM_D2_DELAY);
607
608 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
609 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
610 if (dev->current_state != state && printk_ratelimit())
611 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
612 dev->current_state);
613
614 /*
615 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
616 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
617 * from D3hot to D0 _may_ perform an internal reset, thereby
618 * going to "D0 Uninitialized" rather than "D0 Initialized".
619 * For example, at least some versions of the 3c905B and the
620 * 3c556B exhibit this behaviour.
621 *
622 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
623 * devices in a D3hot state at boot. Consequently, we need to
624 * restore at least the BARs so that the device will be
625 * accessible to its driver.
626 */
627 if (need_restore)
628 pci_restore_bars(dev);
629
630 if (dev->bus->self)
631 pcie_aspm_pm_state_change(dev->bus->self);
632
633 return 0;
634 }
635
636 /**
637 * pci_update_current_state - Read PCI power state of given device from its
638 * PCI PM registers and cache it
639 * @dev: PCI device to handle.
640 * @state: State to cache in case the device doesn't have the PM capability
641 */
642 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
643 {
644 if (dev->pm_cap) {
645 u16 pmcsr;
646
647 /*
648 * Configuration space is not accessible for device in
649 * D3cold, so just keep or set D3cold for safety
650 */
651 if (dev->current_state == PCI_D3cold)
652 return;
653 if (state == PCI_D3cold) {
654 dev->current_state = PCI_D3cold;
655 return;
656 }
657 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
658 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
659 } else {
660 dev->current_state = state;
661 }
662 }
663
664 /**
665 * pci_power_up - Put the given device into D0 forcibly
666 * @dev: PCI device to power up
667 */
668 void pci_power_up(struct pci_dev *dev)
669 {
670 if (platform_pci_power_manageable(dev))
671 platform_pci_set_power_state(dev, PCI_D0);
672
673 pci_raw_set_power_state(dev, PCI_D0);
674 pci_update_current_state(dev, PCI_D0);
675 }
676
677 /**
678 * pci_platform_power_transition - Use platform to change device power state
679 * @dev: PCI device to handle.
680 * @state: State to put the device into.
681 */
682 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
683 {
684 int error;
685
686 if (platform_pci_power_manageable(dev)) {
687 error = platform_pci_set_power_state(dev, state);
688 if (!error)
689 pci_update_current_state(dev, state);
690 } else
691 error = -ENODEV;
692
693 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
694 dev->current_state = PCI_D0;
695
696 return error;
697 }
698
699 /**
700 * pci_wakeup - Wake up a PCI device
701 * @pci_dev: Device to handle.
702 * @ign: ignored parameter
703 */
704 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
705 {
706 pci_wakeup_event(pci_dev);
707 pm_request_resume(&pci_dev->dev);
708 return 0;
709 }
710
711 /**
712 * pci_wakeup_bus - Walk given bus and wake up devices on it
713 * @bus: Top bus of the subtree to walk.
714 */
715 static void pci_wakeup_bus(struct pci_bus *bus)
716 {
717 if (bus)
718 pci_walk_bus(bus, pci_wakeup, NULL);
719 }
720
721 /**
722 * __pci_start_power_transition - Start power transition of a PCI device
723 * @dev: PCI device to handle.
724 * @state: State to put the device into.
725 */
726 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
727 {
728 if (state == PCI_D0) {
729 pci_platform_power_transition(dev, PCI_D0);
730 /*
731 * Mandatory power management transition delays, see
732 * PCI Express Base Specification Revision 2.0 Section
733 * 6.6.1: Conventional Reset. Do not delay for
734 * devices powered on/off by corresponding bridge,
735 * because have already delayed for the bridge.
736 */
737 if (dev->runtime_d3cold) {
738 msleep(dev->d3cold_delay);
739 /*
740 * When powering on a bridge from D3cold, the
741 * whole hierarchy may be powered on into
742 * D0uninitialized state, resume them to give
743 * them a chance to suspend again
744 */
745 pci_wakeup_bus(dev->subordinate);
746 }
747 }
748 }
749
750 /**
751 * __pci_dev_set_current_state - Set current state of a PCI device
752 * @dev: Device to handle
753 * @data: pointer to state to be set
754 */
755 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
756 {
757 pci_power_t state = *(pci_power_t *)data;
758
759 dev->current_state = state;
760 return 0;
761 }
762
763 /**
764 * __pci_bus_set_current_state - Walk given bus and set current state of devices
765 * @bus: Top bus of the subtree to walk.
766 * @state: state to be set
767 */
768 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
769 {
770 if (bus)
771 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
772 }
773
774 /**
775 * __pci_complete_power_transition - Complete power transition of a PCI device
776 * @dev: PCI device to handle.
777 * @state: State to put the device into.
778 *
779 * This function should not be called directly by device drivers.
780 */
781 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
782 {
783 int ret;
784
785 if (state <= PCI_D0)
786 return -EINVAL;
787 ret = pci_platform_power_transition(dev, state);
788 /* Power off the bridge may power off the whole hierarchy */
789 if (!ret && state == PCI_D3cold)
790 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
791 return ret;
792 }
793 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
794
795 /**
796 * pci_set_power_state - Set the power state of a PCI device
797 * @dev: PCI device to handle.
798 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
799 *
800 * Transition a device to a new power state, using the platform firmware and/or
801 * the device's PCI PM registers.
802 *
803 * RETURN VALUE:
804 * -EINVAL if the requested state is invalid.
805 * -EIO if device does not support PCI PM or its PM capabilities register has a
806 * wrong version, or device doesn't support the requested state.
807 * 0 if device already is in the requested state.
808 * 0 if device's power state has been successfully changed.
809 */
810 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
811 {
812 int error;
813
814 /* bound the state we're entering */
815 if (state > PCI_D3cold)
816 state = PCI_D3cold;
817 else if (state < PCI_D0)
818 state = PCI_D0;
819 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
820 /*
821 * If the device or the parent bridge do not support PCI PM,
822 * ignore the request if we're doing anything other than putting
823 * it into D0 (which would only happen on boot).
824 */
825 return 0;
826
827 /* Check if we're already there */
828 if (dev->current_state == state)
829 return 0;
830
831 __pci_start_power_transition(dev, state);
832
833 /* This device is quirked not to be put into D3, so
834 don't put it in D3 */
835 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
836 return 0;
837
838 /*
839 * To put device in D3cold, we put device into D3hot in native
840 * way, then put device into D3cold with platform ops
841 */
842 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
843 PCI_D3hot : state);
844
845 if (!__pci_complete_power_transition(dev, state))
846 error = 0;
847
848 return error;
849 }
850 EXPORT_SYMBOL(pci_set_power_state);
851
852 /**
853 * pci_choose_state - Choose the power state of a PCI device
854 * @dev: PCI device to be suspended
855 * @state: target sleep state for the whole system. This is the value
856 * that is passed to suspend() function.
857 *
858 * Returns PCI power state suitable for given device and given system
859 * message.
860 */
861
862 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
863 {
864 pci_power_t ret;
865
866 if (!dev->pm_cap)
867 return PCI_D0;
868
869 ret = platform_pci_choose_state(dev);
870 if (ret != PCI_POWER_ERROR)
871 return ret;
872
873 switch (state.event) {
874 case PM_EVENT_ON:
875 return PCI_D0;
876 case PM_EVENT_FREEZE:
877 case PM_EVENT_PRETHAW:
878 /* REVISIT both freeze and pre-thaw "should" use D0 */
879 case PM_EVENT_SUSPEND:
880 case PM_EVENT_HIBERNATE:
881 return PCI_D3hot;
882 default:
883 dev_info(&dev->dev, "unrecognized suspend event %d\n",
884 state.event);
885 BUG();
886 }
887 return PCI_D0;
888 }
889 EXPORT_SYMBOL(pci_choose_state);
890
891 #define PCI_EXP_SAVE_REGS 7
892
893 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
894 u16 cap, bool extended)
895 {
896 struct pci_cap_saved_state *tmp;
897
898 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
899 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
900 return tmp;
901 }
902 return NULL;
903 }
904
905 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
906 {
907 return _pci_find_saved_cap(dev, cap, false);
908 }
909
910 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
911 {
912 return _pci_find_saved_cap(dev, cap, true);
913 }
914
915 static int pci_save_pcie_state(struct pci_dev *dev)
916 {
917 int i = 0;
918 struct pci_cap_saved_state *save_state;
919 u16 *cap;
920
921 if (!pci_is_pcie(dev))
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 cap = (u16 *)&save_state->cap.data[0];
931 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
938
939 return 0;
940 }
941
942 static void pci_restore_pcie_state(struct pci_dev *dev)
943 {
944 int i = 0;
945 struct pci_cap_saved_state *save_state;
946 u16 *cap;
947
948 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
949 if (!save_state)
950 return;
951
952 cap = (u16 *)&save_state->cap.data[0];
953 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
960 }
961
962
963 static int pci_save_pcix_state(struct pci_dev *dev)
964 {
965 int pos;
966 struct pci_cap_saved_state *save_state;
967
968 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
969 if (pos <= 0)
970 return 0;
971
972 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
973 if (!save_state) {
974 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
975 return -ENOMEM;
976 }
977
978 pci_read_config_word(dev, pos + PCI_X_CMD,
979 (u16 *)save_state->cap.data);
980
981 return 0;
982 }
983
984 static void pci_restore_pcix_state(struct pci_dev *dev)
985 {
986 int i = 0, pos;
987 struct pci_cap_saved_state *save_state;
988 u16 *cap;
989
990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
991 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
992 if (!save_state || pos <= 0)
993 return;
994 cap = (u16 *)&save_state->cap.data[0];
995
996 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
997 }
998
999
1000 /**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1003 */
1004 int pci_save_state(struct pci_dev *dev)
1005 {
1006 int i;
1007 /* XXX: 100% dword access ok here? */
1008 for (i = 0; i < 16; i++)
1009 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1010 dev->state_saved = true;
1011
1012 i = pci_save_pcie_state(dev);
1013 if (i != 0)
1014 return i;
1015
1016 i = pci_save_pcix_state(dev);
1017 if (i != 0)
1018 return i;
1019
1020 return pci_save_vc_state(dev);
1021 }
1022 EXPORT_SYMBOL(pci_save_state);
1023
1024 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1025 u32 saved_val, int retry)
1026 {
1027 u32 val;
1028
1029 pci_read_config_dword(pdev, offset, &val);
1030 if (val == saved_val)
1031 return;
1032
1033 for (;;) {
1034 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1035 offset, val, saved_val);
1036 pci_write_config_dword(pdev, offset, saved_val);
1037 if (retry-- <= 0)
1038 return;
1039
1040 pci_read_config_dword(pdev, offset, &val);
1041 if (val == saved_val)
1042 return;
1043
1044 mdelay(1);
1045 }
1046 }
1047
1048 static void pci_restore_config_space_range(struct pci_dev *pdev,
1049 int start, int end, int retry)
1050 {
1051 int index;
1052
1053 for (index = end; index >= start; index--)
1054 pci_restore_config_dword(pdev, 4 * index,
1055 pdev->saved_config_space[index],
1056 retry);
1057 }
1058
1059 static void pci_restore_config_space(struct pci_dev *pdev)
1060 {
1061 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1062 pci_restore_config_space_range(pdev, 10, 15, 0);
1063 /* Restore BARs before the command register. */
1064 pci_restore_config_space_range(pdev, 4, 9, 10);
1065 pci_restore_config_space_range(pdev, 0, 3, 0);
1066 } else {
1067 pci_restore_config_space_range(pdev, 0, 15, 0);
1068 }
1069 }
1070
1071 /**
1072 * pci_restore_state - Restore the saved state of a PCI device
1073 * @dev: - PCI device that we're dealing with
1074 */
1075 void pci_restore_state(struct pci_dev *dev)
1076 {
1077 if (!dev->state_saved)
1078 return;
1079
1080 /* PCI Express register must be restored first */
1081 pci_restore_pcie_state(dev);
1082 pci_restore_ats_state(dev);
1083 pci_restore_vc_state(dev);
1084
1085 pci_restore_config_space(dev);
1086
1087 pci_restore_pcix_state(dev);
1088 pci_restore_msi_state(dev);
1089 pci_restore_iov_state(dev);
1090
1091 dev->state_saved = false;
1092 }
1093 EXPORT_SYMBOL(pci_restore_state);
1094
1095 struct pci_saved_state {
1096 u32 config_space[16];
1097 struct pci_cap_saved_data cap[0];
1098 };
1099
1100 /**
1101 * pci_store_saved_state - Allocate and return an opaque struct containing
1102 * the device saved state.
1103 * @dev: PCI device that we're dealing with
1104 *
1105 * Return NULL if no state or error.
1106 */
1107 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1108 {
1109 struct pci_saved_state *state;
1110 struct pci_cap_saved_state *tmp;
1111 struct pci_cap_saved_data *cap;
1112 size_t size;
1113
1114 if (!dev->state_saved)
1115 return NULL;
1116
1117 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1118
1119 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1120 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1121
1122 state = kzalloc(size, GFP_KERNEL);
1123 if (!state)
1124 return NULL;
1125
1126 memcpy(state->config_space, dev->saved_config_space,
1127 sizeof(state->config_space));
1128
1129 cap = state->cap;
1130 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1131 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1132 memcpy(cap, &tmp->cap, len);
1133 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1134 }
1135 /* Empty cap_save terminates list */
1136
1137 return state;
1138 }
1139 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1140
1141 /**
1142 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1143 * @dev: PCI device that we're dealing with
1144 * @state: Saved state returned from pci_store_saved_state()
1145 */
1146 int pci_load_saved_state(struct pci_dev *dev,
1147 struct pci_saved_state *state)
1148 {
1149 struct pci_cap_saved_data *cap;
1150
1151 dev->state_saved = false;
1152
1153 if (!state)
1154 return 0;
1155
1156 memcpy(dev->saved_config_space, state->config_space,
1157 sizeof(state->config_space));
1158
1159 cap = state->cap;
1160 while (cap->size) {
1161 struct pci_cap_saved_state *tmp;
1162
1163 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1164 if (!tmp || tmp->cap.size != cap->size)
1165 return -EINVAL;
1166
1167 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1168 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1169 sizeof(struct pci_cap_saved_data) + cap->size);
1170 }
1171
1172 dev->state_saved = true;
1173 return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1176
1177 /**
1178 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1179 * and free the memory allocated for it.
1180 * @dev: PCI device that we're dealing with
1181 * @state: Pointer to saved state returned from pci_store_saved_state()
1182 */
1183 int pci_load_and_free_saved_state(struct pci_dev *dev,
1184 struct pci_saved_state **state)
1185 {
1186 int ret = pci_load_saved_state(dev, *state);
1187 kfree(*state);
1188 *state = NULL;
1189 return ret;
1190 }
1191 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1192
1193 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 return pci_enable_resources(dev, bars);
1196 }
1197
1198 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1199 {
1200 int err;
1201 struct pci_dev *bridge;
1202 u16 cmd;
1203 u8 pin;
1204
1205 err = pci_set_power_state(dev, PCI_D0);
1206 if (err < 0 && err != -EIO)
1207 return err;
1208
1209 bridge = pci_upstream_bridge(dev);
1210 if (bridge)
1211 pcie_aspm_powersave_config_link(bridge);
1212
1213 err = pcibios_enable_device(dev, bars);
1214 if (err < 0)
1215 return err;
1216 pci_fixup_device(pci_fixup_enable, dev);
1217
1218 if (dev->msi_enabled || dev->msix_enabled)
1219 return 0;
1220
1221 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1222 if (pin) {
1223 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1224 if (cmd & PCI_COMMAND_INTX_DISABLE)
1225 pci_write_config_word(dev, PCI_COMMAND,
1226 cmd & ~PCI_COMMAND_INTX_DISABLE);
1227 }
1228
1229 return 0;
1230 }
1231
1232 /**
1233 * pci_reenable_device - Resume abandoned device
1234 * @dev: PCI device to be resumed
1235 *
1236 * Note this function is a backend of pci_default_resume and is not supposed
1237 * to be called by normal code, write proper resume handler and use it instead.
1238 */
1239 int pci_reenable_device(struct pci_dev *dev)
1240 {
1241 if (pci_is_enabled(dev))
1242 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1243 return 0;
1244 }
1245 EXPORT_SYMBOL(pci_reenable_device);
1246
1247 static void pci_enable_bridge(struct pci_dev *dev)
1248 {
1249 struct pci_dev *bridge;
1250 int retval;
1251
1252 bridge = pci_upstream_bridge(dev);
1253 if (bridge)
1254 pci_enable_bridge(bridge);
1255
1256 if (pci_is_enabled(dev)) {
1257 if (!dev->is_busmaster)
1258 pci_set_master(dev);
1259 return;
1260 }
1261
1262 retval = pci_enable_device(dev);
1263 if (retval)
1264 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1265 retval);
1266 pci_set_master(dev);
1267 }
1268
1269 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1270 {
1271 struct pci_dev *bridge;
1272 int err;
1273 int i, bars = 0;
1274
1275 /*
1276 * Power state could be unknown at this point, either due to a fresh
1277 * boot or a device removal call. So get the current power state
1278 * so that things like MSI message writing will behave as expected
1279 * (e.g. if the device really is in D0 at enable time).
1280 */
1281 if (dev->pm_cap) {
1282 u16 pmcsr;
1283 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1284 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1285 }
1286
1287 if (atomic_inc_return(&dev->enable_cnt) > 1)
1288 return 0; /* already enabled */
1289
1290 bridge = pci_upstream_bridge(dev);
1291 if (bridge)
1292 pci_enable_bridge(bridge);
1293
1294 /* only skip sriov related */
1295 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1296 if (dev->resource[i].flags & flags)
1297 bars |= (1 << i);
1298 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1299 if (dev->resource[i].flags & flags)
1300 bars |= (1 << i);
1301
1302 err = do_pci_enable_device(dev, bars);
1303 if (err < 0)
1304 atomic_dec(&dev->enable_cnt);
1305 return err;
1306 }
1307
1308 /**
1309 * pci_enable_device_io - Initialize a device for use with IO space
1310 * @dev: PCI device to be initialized
1311 *
1312 * Initialize device before it's used by a driver. Ask low-level code
1313 * to enable I/O resources. Wake up the device if it was suspended.
1314 * Beware, this function can fail.
1315 */
1316 int pci_enable_device_io(struct pci_dev *dev)
1317 {
1318 return pci_enable_device_flags(dev, IORESOURCE_IO);
1319 }
1320 EXPORT_SYMBOL(pci_enable_device_io);
1321
1322 /**
1323 * pci_enable_device_mem - Initialize a device for use with Memory space
1324 * @dev: PCI device to be initialized
1325 *
1326 * Initialize device before it's used by a driver. Ask low-level code
1327 * to enable Memory resources. Wake up the device if it was suspended.
1328 * Beware, this function can fail.
1329 */
1330 int pci_enable_device_mem(struct pci_dev *dev)
1331 {
1332 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1333 }
1334 EXPORT_SYMBOL(pci_enable_device_mem);
1335
1336 /**
1337 * pci_enable_device - Initialize device before it's used by a driver.
1338 * @dev: PCI device to be initialized
1339 *
1340 * Initialize device before it's used by a driver. Ask low-level code
1341 * to enable I/O and memory. Wake up the device if it was suspended.
1342 * Beware, this function can fail.
1343 *
1344 * Note we don't actually enable the device many times if we call
1345 * this function repeatedly (we just increment the count).
1346 */
1347 int pci_enable_device(struct pci_dev *dev)
1348 {
1349 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1350 }
1351 EXPORT_SYMBOL(pci_enable_device);
1352
1353 /*
1354 * Managed PCI resources. This manages device on/off, intx/msi/msix
1355 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1356 * there's no need to track it separately. pci_devres is initialized
1357 * when a device is enabled using managed PCI device enable interface.
1358 */
1359 struct pci_devres {
1360 unsigned int enabled:1;
1361 unsigned int pinned:1;
1362 unsigned int orig_intx:1;
1363 unsigned int restore_intx:1;
1364 u32 region_mask;
1365 };
1366
1367 static void pcim_release(struct device *gendev, void *res)
1368 {
1369 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1370 struct pci_devres *this = res;
1371 int i;
1372
1373 if (dev->msi_enabled)
1374 pci_disable_msi(dev);
1375 if (dev->msix_enabled)
1376 pci_disable_msix(dev);
1377
1378 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1379 if (this->region_mask & (1 << i))
1380 pci_release_region(dev, i);
1381
1382 if (this->restore_intx)
1383 pci_intx(dev, this->orig_intx);
1384
1385 if (this->enabled && !this->pinned)
1386 pci_disable_device(dev);
1387 }
1388
1389 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1390 {
1391 struct pci_devres *dr, *new_dr;
1392
1393 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1394 if (dr)
1395 return dr;
1396
1397 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1398 if (!new_dr)
1399 return NULL;
1400 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1401 }
1402
1403 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1404 {
1405 if (pci_is_managed(pdev))
1406 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1407 return NULL;
1408 }
1409
1410 /**
1411 * pcim_enable_device - Managed pci_enable_device()
1412 * @pdev: PCI device to be initialized
1413 *
1414 * Managed pci_enable_device().
1415 */
1416 int pcim_enable_device(struct pci_dev *pdev)
1417 {
1418 struct pci_devres *dr;
1419 int rc;
1420
1421 dr = get_pci_dr(pdev);
1422 if (unlikely(!dr))
1423 return -ENOMEM;
1424 if (dr->enabled)
1425 return 0;
1426
1427 rc = pci_enable_device(pdev);
1428 if (!rc) {
1429 pdev->is_managed = 1;
1430 dr->enabled = 1;
1431 }
1432 return rc;
1433 }
1434 EXPORT_SYMBOL(pcim_enable_device);
1435
1436 /**
1437 * pcim_pin_device - Pin managed PCI device
1438 * @pdev: PCI device to pin
1439 *
1440 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1441 * driver detach. @pdev must have been enabled with
1442 * pcim_enable_device().
1443 */
1444 void pcim_pin_device(struct pci_dev *pdev)
1445 {
1446 struct pci_devres *dr;
1447
1448 dr = find_pci_dr(pdev);
1449 WARN_ON(!dr || !dr->enabled);
1450 if (dr)
1451 dr->pinned = 1;
1452 }
1453 EXPORT_SYMBOL(pcim_pin_device);
1454
1455 /*
1456 * pcibios_add_device - provide arch specific hooks when adding device dev
1457 * @dev: the PCI device being added
1458 *
1459 * Permits the platform to provide architecture specific functionality when
1460 * devices are added. This is the default implementation. Architecture
1461 * implementations can override this.
1462 */
1463 int __weak pcibios_add_device(struct pci_dev *dev)
1464 {
1465 return 0;
1466 }
1467
1468 /**
1469 * pcibios_release_device - provide arch specific hooks when releasing device dev
1470 * @dev: the PCI device being released
1471 *
1472 * Permits the platform to provide architecture specific functionality when
1473 * devices are released. This is the default implementation. Architecture
1474 * implementations can override this.
1475 */
1476 void __weak pcibios_release_device(struct pci_dev *dev) {}
1477
1478 /**
1479 * pcibios_disable_device - disable arch specific PCI resources for device dev
1480 * @dev: the PCI device to disable
1481 *
1482 * Disables architecture specific PCI resources for the device. This
1483 * is the default implementation. Architecture implementations can
1484 * override this.
1485 */
1486 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1487
1488 /**
1489 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1490 * @irq: ISA IRQ to penalize
1491 * @active: IRQ active or not
1492 *
1493 * Permits the platform to provide architecture-specific functionality when
1494 * penalizing ISA IRQs. This is the default implementation. Architecture
1495 * implementations can override this.
1496 */
1497 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1498
1499 static void do_pci_disable_device(struct pci_dev *dev)
1500 {
1501 u16 pci_command;
1502
1503 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1504 if (pci_command & PCI_COMMAND_MASTER) {
1505 pci_command &= ~PCI_COMMAND_MASTER;
1506 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1507 }
1508
1509 pcibios_disable_device(dev);
1510 }
1511
1512 /**
1513 * pci_disable_enabled_device - Disable device without updating enable_cnt
1514 * @dev: PCI device to disable
1515 *
1516 * NOTE: This function is a backend of PCI power management routines and is
1517 * not supposed to be called drivers.
1518 */
1519 void pci_disable_enabled_device(struct pci_dev *dev)
1520 {
1521 if (pci_is_enabled(dev))
1522 do_pci_disable_device(dev);
1523 }
1524
1525 /**
1526 * pci_disable_device - Disable PCI device after use
1527 * @dev: PCI device to be disabled
1528 *
1529 * Signal to the system that the PCI device is not in use by the system
1530 * anymore. This only involves disabling PCI bus-mastering, if active.
1531 *
1532 * Note we don't actually disable the device until all callers of
1533 * pci_enable_device() have called pci_disable_device().
1534 */
1535 void pci_disable_device(struct pci_dev *dev)
1536 {
1537 struct pci_devres *dr;
1538
1539 dr = find_pci_dr(dev);
1540 if (dr)
1541 dr->enabled = 0;
1542
1543 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1544 "disabling already-disabled device");
1545
1546 if (atomic_dec_return(&dev->enable_cnt) != 0)
1547 return;
1548
1549 do_pci_disable_device(dev);
1550
1551 dev->is_busmaster = 0;
1552 }
1553 EXPORT_SYMBOL(pci_disable_device);
1554
1555 /**
1556 * pcibios_set_pcie_reset_state - set reset state for device dev
1557 * @dev: the PCIe device reset
1558 * @state: Reset state to enter into
1559 *
1560 *
1561 * Sets the PCIe reset state for the device. This is the default
1562 * implementation. Architecture implementations can override this.
1563 */
1564 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1565 enum pcie_reset_state state)
1566 {
1567 return -EINVAL;
1568 }
1569
1570 /**
1571 * pci_set_pcie_reset_state - set reset state for device dev
1572 * @dev: the PCIe device reset
1573 * @state: Reset state to enter into
1574 *
1575 *
1576 * Sets the PCI reset state for the device.
1577 */
1578 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1579 {
1580 return pcibios_set_pcie_reset_state(dev, state);
1581 }
1582 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1583
1584 /**
1585 * pci_check_pme_status - Check if given device has generated PME.
1586 * @dev: Device to check.
1587 *
1588 * Check the PME status of the device and if set, clear it and clear PME enable
1589 * (if set). Return 'true' if PME status and PME enable were both set or
1590 * 'false' otherwise.
1591 */
1592 bool pci_check_pme_status(struct pci_dev *dev)
1593 {
1594 int pmcsr_pos;
1595 u16 pmcsr;
1596 bool ret = false;
1597
1598 if (!dev->pm_cap)
1599 return false;
1600
1601 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1602 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1603 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1604 return false;
1605
1606 /* Clear PME status. */
1607 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1608 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1609 /* Disable PME to avoid interrupt flood. */
1610 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1611 ret = true;
1612 }
1613
1614 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1615
1616 return ret;
1617 }
1618
1619 /**
1620 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1621 * @dev: Device to handle.
1622 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1623 *
1624 * Check if @dev has generated PME and queue a resume request for it in that
1625 * case.
1626 */
1627 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1628 {
1629 if (pme_poll_reset && dev->pme_poll)
1630 dev->pme_poll = false;
1631
1632 if (pci_check_pme_status(dev)) {
1633 pci_wakeup_event(dev);
1634 pm_request_resume(&dev->dev);
1635 }
1636 return 0;
1637 }
1638
1639 /**
1640 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1641 * @bus: Top bus of the subtree to walk.
1642 */
1643 void pci_pme_wakeup_bus(struct pci_bus *bus)
1644 {
1645 if (bus)
1646 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1647 }
1648
1649
1650 /**
1651 * pci_pme_capable - check the capability of PCI device to generate PME#
1652 * @dev: PCI device to handle.
1653 * @state: PCI state from which device will issue PME#.
1654 */
1655 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1656 {
1657 if (!dev->pm_cap)
1658 return false;
1659
1660 return !!(dev->pme_support & (1 << state));
1661 }
1662 EXPORT_SYMBOL(pci_pme_capable);
1663
1664 static void pci_pme_list_scan(struct work_struct *work)
1665 {
1666 struct pci_pme_device *pme_dev, *n;
1667
1668 mutex_lock(&pci_pme_list_mutex);
1669 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1670 if (pme_dev->dev->pme_poll) {
1671 struct pci_dev *bridge;
1672
1673 bridge = pme_dev->dev->bus->self;
1674 /*
1675 * If bridge is in low power state, the
1676 * configuration space of subordinate devices
1677 * may be not accessible
1678 */
1679 if (bridge && bridge->current_state != PCI_D0)
1680 continue;
1681 pci_pme_wakeup(pme_dev->dev, NULL);
1682 } else {
1683 list_del(&pme_dev->list);
1684 kfree(pme_dev);
1685 }
1686 }
1687 if (!list_empty(&pci_pme_list))
1688 schedule_delayed_work(&pci_pme_work,
1689 msecs_to_jiffies(PME_TIMEOUT));
1690 mutex_unlock(&pci_pme_list_mutex);
1691 }
1692
1693 /**
1694 * pci_pme_active - enable or disable PCI device's PME# function
1695 * @dev: PCI device to handle.
1696 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1697 *
1698 * The caller must verify that the device is capable of generating PME# before
1699 * calling this function with @enable equal to 'true'.
1700 */
1701 void pci_pme_active(struct pci_dev *dev, bool enable)
1702 {
1703 u16 pmcsr;
1704
1705 if (!dev->pme_support)
1706 return;
1707
1708 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1709 /* Clear PME_Status by writing 1 to it and enable PME# */
1710 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1711 if (!enable)
1712 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713
1714 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1715
1716 /*
1717 * PCI (as opposed to PCIe) PME requires that the device have
1718 * its PME# line hooked up correctly. Not all hardware vendors
1719 * do this, so the PME never gets delivered and the device
1720 * remains asleep. The easiest way around this is to
1721 * periodically walk the list of suspended devices and check
1722 * whether any have their PME flag set. The assumption is that
1723 * we'll wake up often enough anyway that this won't be a huge
1724 * hit, and the power savings from the devices will still be a
1725 * win.
1726 *
1727 * Although PCIe uses in-band PME message instead of PME# line
1728 * to report PME, PME does not work for some PCIe devices in
1729 * reality. For example, there are devices that set their PME
1730 * status bits, but don't really bother to send a PME message;
1731 * there are PCI Express Root Ports that don't bother to
1732 * trigger interrupts when they receive PME messages from the
1733 * devices below. So PME poll is used for PCIe devices too.
1734 */
1735
1736 if (dev->pme_poll) {
1737 struct pci_pme_device *pme_dev;
1738 if (enable) {
1739 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1740 GFP_KERNEL);
1741 if (!pme_dev) {
1742 dev_warn(&dev->dev, "can't enable PME#\n");
1743 return;
1744 }
1745 pme_dev->dev = dev;
1746 mutex_lock(&pci_pme_list_mutex);
1747 list_add(&pme_dev->list, &pci_pme_list);
1748 if (list_is_singular(&pci_pme_list))
1749 schedule_delayed_work(&pci_pme_work,
1750 msecs_to_jiffies(PME_TIMEOUT));
1751 mutex_unlock(&pci_pme_list_mutex);
1752 } else {
1753 mutex_lock(&pci_pme_list_mutex);
1754 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1755 if (pme_dev->dev == dev) {
1756 list_del(&pme_dev->list);
1757 kfree(pme_dev);
1758 break;
1759 }
1760 }
1761 mutex_unlock(&pci_pme_list_mutex);
1762 }
1763 }
1764
1765 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1766 }
1767 EXPORT_SYMBOL(pci_pme_active);
1768
1769 /**
1770 * __pci_enable_wake - enable PCI device as wakeup event source
1771 * @dev: PCI device affected
1772 * @state: PCI state from which device will issue wakeup events
1773 * @runtime: True if the events are to be generated at run time
1774 * @enable: True to enable event generation; false to disable
1775 *
1776 * This enables the device as a wakeup event source, or disables it.
1777 * When such events involves platform-specific hooks, those hooks are
1778 * called automatically by this routine.
1779 *
1780 * Devices with legacy power management (no standard PCI PM capabilities)
1781 * always require such platform hooks.
1782 *
1783 * RETURN VALUE:
1784 * 0 is returned on success
1785 * -EINVAL is returned if device is not supposed to wake up the system
1786 * Error code depending on the platform is returned if both the platform and
1787 * the native mechanism fail to enable the generation of wake-up events
1788 */
1789 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1790 bool runtime, bool enable)
1791 {
1792 int ret = 0;
1793
1794 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1795 return -EINVAL;
1796
1797 /* Don't do the same thing twice in a row for one device. */
1798 if (!!enable == !!dev->wakeup_prepared)
1799 return 0;
1800
1801 /*
1802 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1803 * Anderson we should be doing PME# wake enable followed by ACPI wake
1804 * enable. To disable wake-up we call the platform first, for symmetry.
1805 */
1806
1807 if (enable) {
1808 int error;
1809
1810 if (pci_pme_capable(dev, state))
1811 pci_pme_active(dev, true);
1812 else
1813 ret = 1;
1814 error = runtime ? platform_pci_run_wake(dev, true) :
1815 platform_pci_sleep_wake(dev, true);
1816 if (ret)
1817 ret = error;
1818 if (!ret)
1819 dev->wakeup_prepared = true;
1820 } else {
1821 if (runtime)
1822 platform_pci_run_wake(dev, false);
1823 else
1824 platform_pci_sleep_wake(dev, false);
1825 pci_pme_active(dev, false);
1826 dev->wakeup_prepared = false;
1827 }
1828
1829 return ret;
1830 }
1831 EXPORT_SYMBOL(__pci_enable_wake);
1832
1833 /**
1834 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1835 * @dev: PCI device to prepare
1836 * @enable: True to enable wake-up event generation; false to disable
1837 *
1838 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1839 * and this function allows them to set that up cleanly - pci_enable_wake()
1840 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1841 * ordering constraints.
1842 *
1843 * This function only returns error code if the device is not capable of
1844 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1845 * enable wake-up power for it.
1846 */
1847 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1848 {
1849 return pci_pme_capable(dev, PCI_D3cold) ?
1850 pci_enable_wake(dev, PCI_D3cold, enable) :
1851 pci_enable_wake(dev, PCI_D3hot, enable);
1852 }
1853 EXPORT_SYMBOL(pci_wake_from_d3);
1854
1855 /**
1856 * pci_target_state - find an appropriate low power state for a given PCI dev
1857 * @dev: PCI device
1858 *
1859 * Use underlying platform code to find a supported low power state for @dev.
1860 * If the platform can't manage @dev, return the deepest state from which it
1861 * can generate wake events, based on any available PME info.
1862 */
1863 static pci_power_t pci_target_state(struct pci_dev *dev)
1864 {
1865 pci_power_t target_state = PCI_D3hot;
1866
1867 if (platform_pci_power_manageable(dev)) {
1868 /*
1869 * Call the platform to choose the target state of the device
1870 * and enable wake-up from this state if supported.
1871 */
1872 pci_power_t state = platform_pci_choose_state(dev);
1873
1874 switch (state) {
1875 case PCI_POWER_ERROR:
1876 case PCI_UNKNOWN:
1877 break;
1878 case PCI_D1:
1879 case PCI_D2:
1880 if (pci_no_d1d2(dev))
1881 break;
1882 default:
1883 target_state = state;
1884 }
1885 } else if (!dev->pm_cap) {
1886 target_state = PCI_D0;
1887 } else if (device_may_wakeup(&dev->dev)) {
1888 /*
1889 * Find the deepest state from which the device can generate
1890 * wake-up events, make it the target state and enable device
1891 * to generate PME#.
1892 */
1893 if (dev->pme_support) {
1894 while (target_state
1895 && !(dev->pme_support & (1 << target_state)))
1896 target_state--;
1897 }
1898 }
1899
1900 return target_state;
1901 }
1902
1903 /**
1904 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1905 * @dev: Device to handle.
1906 *
1907 * Choose the power state appropriate for the device depending on whether
1908 * it can wake up the system and/or is power manageable by the platform
1909 * (PCI_D3hot is the default) and put the device into that state.
1910 */
1911 int pci_prepare_to_sleep(struct pci_dev *dev)
1912 {
1913 pci_power_t target_state = pci_target_state(dev);
1914 int error;
1915
1916 if (target_state == PCI_POWER_ERROR)
1917 return -EIO;
1918
1919 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1920
1921 error = pci_set_power_state(dev, target_state);
1922
1923 if (error)
1924 pci_enable_wake(dev, target_state, false);
1925
1926 return error;
1927 }
1928 EXPORT_SYMBOL(pci_prepare_to_sleep);
1929
1930 /**
1931 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1932 * @dev: Device to handle.
1933 *
1934 * Disable device's system wake-up capability and put it into D0.
1935 */
1936 int pci_back_from_sleep(struct pci_dev *dev)
1937 {
1938 pci_enable_wake(dev, PCI_D0, false);
1939 return pci_set_power_state(dev, PCI_D0);
1940 }
1941 EXPORT_SYMBOL(pci_back_from_sleep);
1942
1943 /**
1944 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1945 * @dev: PCI device being suspended.
1946 *
1947 * Prepare @dev to generate wake-up events at run time and put it into a low
1948 * power state.
1949 */
1950 int pci_finish_runtime_suspend(struct pci_dev *dev)
1951 {
1952 pci_power_t target_state = pci_target_state(dev);
1953 int error;
1954
1955 if (target_state == PCI_POWER_ERROR)
1956 return -EIO;
1957
1958 dev->runtime_d3cold = target_state == PCI_D3cold;
1959
1960 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1961
1962 error = pci_set_power_state(dev, target_state);
1963
1964 if (error) {
1965 __pci_enable_wake(dev, target_state, true, false);
1966 dev->runtime_d3cold = false;
1967 }
1968
1969 return error;
1970 }
1971
1972 /**
1973 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1974 * @dev: Device to check.
1975 *
1976 * Return true if the device itself is capable of generating wake-up events
1977 * (through the platform or using the native PCIe PME) or if the device supports
1978 * PME and one of its upstream bridges can generate wake-up events.
1979 */
1980 bool pci_dev_run_wake(struct pci_dev *dev)
1981 {
1982 struct pci_bus *bus = dev->bus;
1983
1984 if (device_run_wake(&dev->dev))
1985 return true;
1986
1987 if (!dev->pme_support)
1988 return false;
1989
1990 while (bus->parent) {
1991 struct pci_dev *bridge = bus->self;
1992
1993 if (device_run_wake(&bridge->dev))
1994 return true;
1995
1996 bus = bus->parent;
1997 }
1998
1999 /* We have reached the root bus. */
2000 if (bus->bridge)
2001 return device_run_wake(bus->bridge);
2002
2003 return false;
2004 }
2005 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2006
2007 /**
2008 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2009 * @pci_dev: Device to check.
2010 *
2011 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2012 * reconfigured due to wakeup settings difference between system and runtime
2013 * suspend and the current power state of it is suitable for the upcoming
2014 * (system) transition.
2015 */
2016 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2017 {
2018 struct device *dev = &pci_dev->dev;
2019
2020 if (!pm_runtime_suspended(dev)
2021 || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2022 || platform_pci_need_resume(pci_dev))
2023 return false;
2024
2025 return pci_target_state(pci_dev) == pci_dev->current_state;
2026 }
2027
2028 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2029 {
2030 struct device *dev = &pdev->dev;
2031 struct device *parent = dev->parent;
2032
2033 if (parent)
2034 pm_runtime_get_sync(parent);
2035 pm_runtime_get_noresume(dev);
2036 /*
2037 * pdev->current_state is set to PCI_D3cold during suspending,
2038 * so wait until suspending completes
2039 */
2040 pm_runtime_barrier(dev);
2041 /*
2042 * Only need to resume devices in D3cold, because config
2043 * registers are still accessible for devices suspended but
2044 * not in D3cold.
2045 */
2046 if (pdev->current_state == PCI_D3cold)
2047 pm_runtime_resume(dev);
2048 }
2049
2050 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2051 {
2052 struct device *dev = &pdev->dev;
2053 struct device *parent = dev->parent;
2054
2055 pm_runtime_put(dev);
2056 if (parent)
2057 pm_runtime_put_sync(parent);
2058 }
2059
2060 /**
2061 * pci_pm_init - Initialize PM functions of given PCI device
2062 * @dev: PCI device to handle.
2063 */
2064 void pci_pm_init(struct pci_dev *dev)
2065 {
2066 int pm;
2067 u16 pmc;
2068
2069 pm_runtime_forbid(&dev->dev);
2070 pm_runtime_set_active(&dev->dev);
2071 pm_runtime_enable(&dev->dev);
2072 device_enable_async_suspend(&dev->dev);
2073 dev->wakeup_prepared = false;
2074
2075 dev->pm_cap = 0;
2076 dev->pme_support = 0;
2077
2078 /* find PCI PM capability in list */
2079 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2080 if (!pm)
2081 return;
2082 /* Check device's ability to generate PME# */
2083 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2084
2085 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2086 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2087 pmc & PCI_PM_CAP_VER_MASK);
2088 return;
2089 }
2090
2091 dev->pm_cap = pm;
2092 dev->d3_delay = PCI_PM_D3_WAIT;
2093 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2094 dev->d3cold_allowed = true;
2095
2096 dev->d1_support = false;
2097 dev->d2_support = false;
2098 if (!pci_no_d1d2(dev)) {
2099 if (pmc & PCI_PM_CAP_D1)
2100 dev->d1_support = true;
2101 if (pmc & PCI_PM_CAP_D2)
2102 dev->d2_support = true;
2103
2104 if (dev->d1_support || dev->d2_support)
2105 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2106 dev->d1_support ? " D1" : "",
2107 dev->d2_support ? " D2" : "");
2108 }
2109
2110 pmc &= PCI_PM_CAP_PME_MASK;
2111 if (pmc) {
2112 dev_printk(KERN_DEBUG, &dev->dev,
2113 "PME# supported from%s%s%s%s%s\n",
2114 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2115 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2116 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2117 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2118 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2119 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2120 dev->pme_poll = true;
2121 /*
2122 * Make device's PM flags reflect the wake-up capability, but
2123 * let the user space enable it to wake up the system as needed.
2124 */
2125 device_set_wakeup_capable(&dev->dev, true);
2126 /* Disable the PME# generation functionality */
2127 pci_pme_active(dev, false);
2128 }
2129 }
2130
2131 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2132 struct pci_cap_saved_state *new_cap)
2133 {
2134 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2135 }
2136
2137 /**
2138 * _pci_add_cap_save_buffer - allocate buffer for saving given
2139 * capability registers
2140 * @dev: the PCI device
2141 * @cap: the capability to allocate the buffer for
2142 * @extended: Standard or Extended capability ID
2143 * @size: requested size of the buffer
2144 */
2145 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2146 bool extended, unsigned int size)
2147 {
2148 int pos;
2149 struct pci_cap_saved_state *save_state;
2150
2151 if (extended)
2152 pos = pci_find_ext_capability(dev, cap);
2153 else
2154 pos = pci_find_capability(dev, cap);
2155
2156 if (pos <= 0)
2157 return 0;
2158
2159 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2160 if (!save_state)
2161 return -ENOMEM;
2162
2163 save_state->cap.cap_nr = cap;
2164 save_state->cap.cap_extended = extended;
2165 save_state->cap.size = size;
2166 pci_add_saved_cap(dev, save_state);
2167
2168 return 0;
2169 }
2170
2171 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2172 {
2173 return _pci_add_cap_save_buffer(dev, cap, false, size);
2174 }
2175
2176 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2177 {
2178 return _pci_add_cap_save_buffer(dev, cap, true, size);
2179 }
2180
2181 /**
2182 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2183 * @dev: the PCI device
2184 */
2185 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2186 {
2187 int error;
2188
2189 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2190 PCI_EXP_SAVE_REGS * sizeof(u16));
2191 if (error)
2192 dev_err(&dev->dev,
2193 "unable to preallocate PCI Express save buffer\n");
2194
2195 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2196 if (error)
2197 dev_err(&dev->dev,
2198 "unable to preallocate PCI-X save buffer\n");
2199
2200 pci_allocate_vc_save_buffers(dev);
2201 }
2202
2203 void pci_free_cap_save_buffers(struct pci_dev *dev)
2204 {
2205 struct pci_cap_saved_state *tmp;
2206 struct hlist_node *n;
2207
2208 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2209 kfree(tmp);
2210 }
2211
2212 /**
2213 * pci_configure_ari - enable or disable ARI forwarding
2214 * @dev: the PCI device
2215 *
2216 * If @dev and its upstream bridge both support ARI, enable ARI in the
2217 * bridge. Otherwise, disable ARI in the bridge.
2218 */
2219 void pci_configure_ari(struct pci_dev *dev)
2220 {
2221 u32 cap;
2222 struct pci_dev *bridge;
2223
2224 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2225 return;
2226
2227 bridge = dev->bus->self;
2228 if (!bridge)
2229 return;
2230
2231 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2232 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2233 return;
2234
2235 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2236 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2237 PCI_EXP_DEVCTL2_ARI);
2238 bridge->ari_enabled = 1;
2239 } else {
2240 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2241 PCI_EXP_DEVCTL2_ARI);
2242 bridge->ari_enabled = 0;
2243 }
2244 }
2245
2246 static int pci_acs_enable;
2247
2248 /**
2249 * pci_request_acs - ask for ACS to be enabled if supported
2250 */
2251 void pci_request_acs(void)
2252 {
2253 pci_acs_enable = 1;
2254 }
2255
2256 /**
2257 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2258 * @dev: the PCI device
2259 */
2260 static int pci_std_enable_acs(struct pci_dev *dev)
2261 {
2262 int pos;
2263 u16 cap;
2264 u16 ctrl;
2265
2266 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2267 if (!pos)
2268 return -ENODEV;
2269
2270 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2271 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2272
2273 /* Source Validation */
2274 ctrl |= (cap & PCI_ACS_SV);
2275
2276 /* P2P Request Redirect */
2277 ctrl |= (cap & PCI_ACS_RR);
2278
2279 /* P2P Completion Redirect */
2280 ctrl |= (cap & PCI_ACS_CR);
2281
2282 /* Upstream Forwarding */
2283 ctrl |= (cap & PCI_ACS_UF);
2284
2285 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2286
2287 return 0;
2288 }
2289
2290 /**
2291 * pci_enable_acs - enable ACS if hardware support it
2292 * @dev: the PCI device
2293 */
2294 void pci_enable_acs(struct pci_dev *dev)
2295 {
2296 if (!pci_acs_enable)
2297 return;
2298
2299 if (!pci_std_enable_acs(dev))
2300 return;
2301
2302 pci_dev_specific_enable_acs(dev);
2303 }
2304
2305 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2306 {
2307 int pos;
2308 u16 cap, ctrl;
2309
2310 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2311 if (!pos)
2312 return false;
2313
2314 /*
2315 * Except for egress control, capabilities are either required
2316 * or only required if controllable. Features missing from the
2317 * capability field can therefore be assumed as hard-wired enabled.
2318 */
2319 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2320 acs_flags &= (cap | PCI_ACS_EC);
2321
2322 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2323 return (ctrl & acs_flags) == acs_flags;
2324 }
2325
2326 /**
2327 * pci_acs_enabled - test ACS against required flags for a given device
2328 * @pdev: device to test
2329 * @acs_flags: required PCI ACS flags
2330 *
2331 * Return true if the device supports the provided flags. Automatically
2332 * filters out flags that are not implemented on multifunction devices.
2333 *
2334 * Note that this interface checks the effective ACS capabilities of the
2335 * device rather than the actual capabilities. For instance, most single
2336 * function endpoints are not required to support ACS because they have no
2337 * opportunity for peer-to-peer access. We therefore return 'true'
2338 * regardless of whether the device exposes an ACS capability. This makes
2339 * it much easier for callers of this function to ignore the actual type
2340 * or topology of the device when testing ACS support.
2341 */
2342 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2343 {
2344 int ret;
2345
2346 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2347 if (ret >= 0)
2348 return ret > 0;
2349
2350 /*
2351 * Conventional PCI and PCI-X devices never support ACS, either
2352 * effectively or actually. The shared bus topology implies that
2353 * any device on the bus can receive or snoop DMA.
2354 */
2355 if (!pci_is_pcie(pdev))
2356 return false;
2357
2358 switch (pci_pcie_type(pdev)) {
2359 /*
2360 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2361 * but since their primary interface is PCI/X, we conservatively
2362 * handle them as we would a non-PCIe device.
2363 */
2364 case PCI_EXP_TYPE_PCIE_BRIDGE:
2365 /*
2366 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2367 * applicable... must never implement an ACS Extended Capability...".
2368 * This seems arbitrary, but we take a conservative interpretation
2369 * of this statement.
2370 */
2371 case PCI_EXP_TYPE_PCI_BRIDGE:
2372 case PCI_EXP_TYPE_RC_EC:
2373 return false;
2374 /*
2375 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2376 * implement ACS in order to indicate their peer-to-peer capabilities,
2377 * regardless of whether they are single- or multi-function devices.
2378 */
2379 case PCI_EXP_TYPE_DOWNSTREAM:
2380 case PCI_EXP_TYPE_ROOT_PORT:
2381 return pci_acs_flags_enabled(pdev, acs_flags);
2382 /*
2383 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2384 * implemented by the remaining PCIe types to indicate peer-to-peer
2385 * capabilities, but only when they are part of a multifunction
2386 * device. The footnote for section 6.12 indicates the specific
2387 * PCIe types included here.
2388 */
2389 case PCI_EXP_TYPE_ENDPOINT:
2390 case PCI_EXP_TYPE_UPSTREAM:
2391 case PCI_EXP_TYPE_LEG_END:
2392 case PCI_EXP_TYPE_RC_END:
2393 if (!pdev->multifunction)
2394 break;
2395
2396 return pci_acs_flags_enabled(pdev, acs_flags);
2397 }
2398
2399 /*
2400 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2401 * to single function devices with the exception of downstream ports.
2402 */
2403 return true;
2404 }
2405
2406 /**
2407 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2408 * @start: starting downstream device
2409 * @end: ending upstream device or NULL to search to the root bus
2410 * @acs_flags: required flags
2411 *
2412 * Walk up a device tree from start to end testing PCI ACS support. If
2413 * any step along the way does not support the required flags, return false.
2414 */
2415 bool pci_acs_path_enabled(struct pci_dev *start,
2416 struct pci_dev *end, u16 acs_flags)
2417 {
2418 struct pci_dev *pdev, *parent = start;
2419
2420 do {
2421 pdev = parent;
2422
2423 if (!pci_acs_enabled(pdev, acs_flags))
2424 return false;
2425
2426 if (pci_is_root_bus(pdev->bus))
2427 return (end == NULL);
2428
2429 parent = pdev->bus->self;
2430 } while (pdev != end);
2431
2432 return true;
2433 }
2434
2435 /**
2436 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2437 * @dev: the PCI device
2438 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2439 *
2440 * Perform INTx swizzling for a device behind one level of bridge. This is
2441 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2442 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2443 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2444 * the PCI Express Base Specification, Revision 2.1)
2445 */
2446 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2447 {
2448 int slot;
2449
2450 if (pci_ari_enabled(dev->bus))
2451 slot = 0;
2452 else
2453 slot = PCI_SLOT(dev->devfn);
2454
2455 return (((pin - 1) + slot) % 4) + 1;
2456 }
2457
2458 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2459 {
2460 u8 pin;
2461
2462 pin = dev->pin;
2463 if (!pin)
2464 return -1;
2465
2466 while (!pci_is_root_bus(dev->bus)) {
2467 pin = pci_swizzle_interrupt_pin(dev, pin);
2468 dev = dev->bus->self;
2469 }
2470 *bridge = dev;
2471 return pin;
2472 }
2473
2474 /**
2475 * pci_common_swizzle - swizzle INTx all the way to root bridge
2476 * @dev: the PCI device
2477 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2478 *
2479 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2480 * bridges all the way up to a PCI root bus.
2481 */
2482 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2483 {
2484 u8 pin = *pinp;
2485
2486 while (!pci_is_root_bus(dev->bus)) {
2487 pin = pci_swizzle_interrupt_pin(dev, pin);
2488 dev = dev->bus->self;
2489 }
2490 *pinp = pin;
2491 return PCI_SLOT(dev->devfn);
2492 }
2493
2494 /**
2495 * pci_release_region - Release a PCI bar
2496 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2497 * @bar: BAR to release
2498 *
2499 * Releases the PCI I/O and memory resources previously reserved by a
2500 * successful call to pci_request_region. Call this function only
2501 * after all use of the PCI regions has ceased.
2502 */
2503 void pci_release_region(struct pci_dev *pdev, int bar)
2504 {
2505 struct pci_devres *dr;
2506
2507 if (pci_resource_len(pdev, bar) == 0)
2508 return;
2509 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2510 release_region(pci_resource_start(pdev, bar),
2511 pci_resource_len(pdev, bar));
2512 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2513 release_mem_region(pci_resource_start(pdev, bar),
2514 pci_resource_len(pdev, bar));
2515
2516 dr = find_pci_dr(pdev);
2517 if (dr)
2518 dr->region_mask &= ~(1 << bar);
2519 }
2520 EXPORT_SYMBOL(pci_release_region);
2521
2522 /**
2523 * __pci_request_region - Reserved PCI I/O and memory resource
2524 * @pdev: PCI device whose resources are to be reserved
2525 * @bar: BAR to be reserved
2526 * @res_name: Name to be associated with resource.
2527 * @exclusive: whether the region access is exclusive or not
2528 *
2529 * Mark the PCI region associated with PCI device @pdev BR @bar as
2530 * being reserved by owner @res_name. Do not access any
2531 * address inside the PCI regions unless this call returns
2532 * successfully.
2533 *
2534 * If @exclusive is set, then the region is marked so that userspace
2535 * is explicitly not allowed to map the resource via /dev/mem or
2536 * sysfs MMIO access.
2537 *
2538 * Returns 0 on success, or %EBUSY on error. A warning
2539 * message is also printed on failure.
2540 */
2541 static int __pci_request_region(struct pci_dev *pdev, int bar,
2542 const char *res_name, int exclusive)
2543 {
2544 struct pci_devres *dr;
2545
2546 if (pci_resource_len(pdev, bar) == 0)
2547 return 0;
2548
2549 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2550 if (!request_region(pci_resource_start(pdev, bar),
2551 pci_resource_len(pdev, bar), res_name))
2552 goto err_out;
2553 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2554 if (!__request_mem_region(pci_resource_start(pdev, bar),
2555 pci_resource_len(pdev, bar), res_name,
2556 exclusive))
2557 goto err_out;
2558 }
2559
2560 dr = find_pci_dr(pdev);
2561 if (dr)
2562 dr->region_mask |= 1 << bar;
2563
2564 return 0;
2565
2566 err_out:
2567 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2568 &pdev->resource[bar]);
2569 return -EBUSY;
2570 }
2571
2572 /**
2573 * pci_request_region - Reserve PCI I/O and memory resource
2574 * @pdev: PCI device whose resources are to be reserved
2575 * @bar: BAR to be reserved
2576 * @res_name: Name to be associated with resource
2577 *
2578 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2579 * being reserved by owner @res_name. Do not access any
2580 * address inside the PCI regions unless this call returns
2581 * successfully.
2582 *
2583 * Returns 0 on success, or %EBUSY on error. A warning
2584 * message is also printed on failure.
2585 */
2586 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2587 {
2588 return __pci_request_region(pdev, bar, res_name, 0);
2589 }
2590 EXPORT_SYMBOL(pci_request_region);
2591
2592 /**
2593 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2594 * @pdev: PCI device whose resources are to be reserved
2595 * @bar: BAR to be reserved
2596 * @res_name: Name to be associated with resource.
2597 *
2598 * Mark the PCI region associated with PCI device @pdev BR @bar as
2599 * being reserved by owner @res_name. Do not access any
2600 * address inside the PCI regions unless this call returns
2601 * successfully.
2602 *
2603 * Returns 0 on success, or %EBUSY on error. A warning
2604 * message is also printed on failure.
2605 *
2606 * The key difference that _exclusive makes it that userspace is
2607 * explicitly not allowed to map the resource via /dev/mem or
2608 * sysfs.
2609 */
2610 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2611 const char *res_name)
2612 {
2613 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2614 }
2615 EXPORT_SYMBOL(pci_request_region_exclusive);
2616
2617 /**
2618 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2619 * @pdev: PCI device whose resources were previously reserved
2620 * @bars: Bitmask of BARs to be released
2621 *
2622 * Release selected PCI I/O and memory resources previously reserved.
2623 * Call this function only after all use of the PCI regions has ceased.
2624 */
2625 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2626 {
2627 int i;
2628
2629 for (i = 0; i < 6; i++)
2630 if (bars & (1 << i))
2631 pci_release_region(pdev, i);
2632 }
2633 EXPORT_SYMBOL(pci_release_selected_regions);
2634
2635 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2636 const char *res_name, int excl)
2637 {
2638 int i;
2639
2640 for (i = 0; i < 6; i++)
2641 if (bars & (1 << i))
2642 if (__pci_request_region(pdev, i, res_name, excl))
2643 goto err_out;
2644 return 0;
2645
2646 err_out:
2647 while (--i >= 0)
2648 if (bars & (1 << i))
2649 pci_release_region(pdev, i);
2650
2651 return -EBUSY;
2652 }
2653
2654
2655 /**
2656 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2657 * @pdev: PCI device whose resources are to be reserved
2658 * @bars: Bitmask of BARs to be requested
2659 * @res_name: Name to be associated with resource
2660 */
2661 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2662 const char *res_name)
2663 {
2664 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2665 }
2666 EXPORT_SYMBOL(pci_request_selected_regions);
2667
2668 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2669 const char *res_name)
2670 {
2671 return __pci_request_selected_regions(pdev, bars, res_name,
2672 IORESOURCE_EXCLUSIVE);
2673 }
2674 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2675
2676 /**
2677 * pci_release_regions - Release reserved PCI I/O and memory resources
2678 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2679 *
2680 * Releases all PCI I/O and memory resources previously reserved by a
2681 * successful call to pci_request_regions. Call this function only
2682 * after all use of the PCI regions has ceased.
2683 */
2684
2685 void pci_release_regions(struct pci_dev *pdev)
2686 {
2687 pci_release_selected_regions(pdev, (1 << 6) - 1);
2688 }
2689 EXPORT_SYMBOL(pci_release_regions);
2690
2691 /**
2692 * pci_request_regions - Reserved PCI I/O and memory resources
2693 * @pdev: PCI device whose resources are to be reserved
2694 * @res_name: Name to be associated with resource.
2695 *
2696 * Mark all PCI regions associated with PCI device @pdev as
2697 * being reserved by owner @res_name. Do not access any
2698 * address inside the PCI regions unless this call returns
2699 * successfully.
2700 *
2701 * Returns 0 on success, or %EBUSY on error. A warning
2702 * message is also printed on failure.
2703 */
2704 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2705 {
2706 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2707 }
2708 EXPORT_SYMBOL(pci_request_regions);
2709
2710 /**
2711 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2712 * @pdev: PCI device whose resources are to be reserved
2713 * @res_name: Name to be associated with resource.
2714 *
2715 * Mark all PCI regions associated with PCI device @pdev as
2716 * being reserved by owner @res_name. Do not access any
2717 * address inside the PCI regions unless this call returns
2718 * successfully.
2719 *
2720 * pci_request_regions_exclusive() will mark the region so that
2721 * /dev/mem and the sysfs MMIO access will not be allowed.
2722 *
2723 * Returns 0 on success, or %EBUSY on error. A warning
2724 * message is also printed on failure.
2725 */
2726 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2727 {
2728 return pci_request_selected_regions_exclusive(pdev,
2729 ((1 << 6) - 1), res_name);
2730 }
2731 EXPORT_SYMBOL(pci_request_regions_exclusive);
2732
2733 /**
2734 * pci_remap_iospace - Remap the memory mapped I/O space
2735 * @res: Resource describing the I/O space
2736 * @phys_addr: physical address of range to be mapped
2737 *
2738 * Remap the memory mapped I/O space described by the @res
2739 * and the CPU physical address @phys_addr into virtual address space.
2740 * Only architectures that have memory mapped IO functions defined
2741 * (and the PCI_IOBASE value defined) should call this function.
2742 */
2743 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2744 {
2745 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2746 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2747
2748 if (!(res->flags & IORESOURCE_IO))
2749 return -EINVAL;
2750
2751 if (res->end > IO_SPACE_LIMIT)
2752 return -EINVAL;
2753
2754 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2755 pgprot_device(PAGE_KERNEL));
2756 #else
2757 /* this architecture does not have memory mapped I/O space,
2758 so this function should never be called */
2759 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2760 return -ENODEV;
2761 #endif
2762 }
2763
2764 static void __pci_set_master(struct pci_dev *dev, bool enable)
2765 {
2766 u16 old_cmd, cmd;
2767
2768 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2769 if (enable)
2770 cmd = old_cmd | PCI_COMMAND_MASTER;
2771 else
2772 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2773 if (cmd != old_cmd) {
2774 dev_dbg(&dev->dev, "%s bus mastering\n",
2775 enable ? "enabling" : "disabling");
2776 pci_write_config_word(dev, PCI_COMMAND, cmd);
2777 }
2778 dev->is_busmaster = enable;
2779 }
2780
2781 /**
2782 * pcibios_setup - process "pci=" kernel boot arguments
2783 * @str: string used to pass in "pci=" kernel boot arguments
2784 *
2785 * Process kernel boot arguments. This is the default implementation.
2786 * Architecture specific implementations can override this as necessary.
2787 */
2788 char * __weak __init pcibios_setup(char *str)
2789 {
2790 return str;
2791 }
2792
2793 /**
2794 * pcibios_set_master - enable PCI bus-mastering for device dev
2795 * @dev: the PCI device to enable
2796 *
2797 * Enables PCI bus-mastering for the device. This is the default
2798 * implementation. Architecture specific implementations can override
2799 * this if necessary.
2800 */
2801 void __weak pcibios_set_master(struct pci_dev *dev)
2802 {
2803 u8 lat;
2804
2805 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2806 if (pci_is_pcie(dev))
2807 return;
2808
2809 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2810 if (lat < 16)
2811 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2812 else if (lat > pcibios_max_latency)
2813 lat = pcibios_max_latency;
2814 else
2815 return;
2816
2817 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2818 }
2819
2820 /**
2821 * pci_set_master - enables bus-mastering for device dev
2822 * @dev: the PCI device to enable
2823 *
2824 * Enables bus-mastering on the device and calls pcibios_set_master()
2825 * to do the needed arch specific settings.
2826 */
2827 void pci_set_master(struct pci_dev *dev)
2828 {
2829 __pci_set_master(dev, true);
2830 pcibios_set_master(dev);
2831 }
2832 EXPORT_SYMBOL(pci_set_master);
2833
2834 /**
2835 * pci_clear_master - disables bus-mastering for device dev
2836 * @dev: the PCI device to disable
2837 */
2838 void pci_clear_master(struct pci_dev *dev)
2839 {
2840 __pci_set_master(dev, false);
2841 }
2842 EXPORT_SYMBOL(pci_clear_master);
2843
2844 /**
2845 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2846 * @dev: the PCI device for which MWI is to be enabled
2847 *
2848 * Helper function for pci_set_mwi.
2849 * Originally copied from drivers/net/acenic.c.
2850 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2851 *
2852 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2853 */
2854 int pci_set_cacheline_size(struct pci_dev *dev)
2855 {
2856 u8 cacheline_size;
2857
2858 if (!pci_cache_line_size)
2859 return -EINVAL;
2860
2861 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2862 equal to or multiple of the right value. */
2863 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2864 if (cacheline_size >= pci_cache_line_size &&
2865 (cacheline_size % pci_cache_line_size) == 0)
2866 return 0;
2867
2868 /* Write the correct value. */
2869 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2870 /* Read it back. */
2871 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2872 if (cacheline_size == pci_cache_line_size)
2873 return 0;
2874
2875 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2876 pci_cache_line_size << 2);
2877
2878 return -EINVAL;
2879 }
2880 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2881
2882 /**
2883 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2884 * @dev: the PCI device for which MWI is enabled
2885 *
2886 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2887 *
2888 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2889 */
2890 int pci_set_mwi(struct pci_dev *dev)
2891 {
2892 #ifdef PCI_DISABLE_MWI
2893 return 0;
2894 #else
2895 int rc;
2896 u16 cmd;
2897
2898 rc = pci_set_cacheline_size(dev);
2899 if (rc)
2900 return rc;
2901
2902 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2903 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2904 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2905 cmd |= PCI_COMMAND_INVALIDATE;
2906 pci_write_config_word(dev, PCI_COMMAND, cmd);
2907 }
2908 return 0;
2909 #endif
2910 }
2911 EXPORT_SYMBOL(pci_set_mwi);
2912
2913 /**
2914 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2915 * @dev: the PCI device for which MWI is enabled
2916 *
2917 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2918 * Callers are not required to check the return value.
2919 *
2920 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2921 */
2922 int pci_try_set_mwi(struct pci_dev *dev)
2923 {
2924 #ifdef PCI_DISABLE_MWI
2925 return 0;
2926 #else
2927 return pci_set_mwi(dev);
2928 #endif
2929 }
2930 EXPORT_SYMBOL(pci_try_set_mwi);
2931
2932 /**
2933 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2934 * @dev: the PCI device to disable
2935 *
2936 * Disables PCI Memory-Write-Invalidate transaction on the device
2937 */
2938 void pci_clear_mwi(struct pci_dev *dev)
2939 {
2940 #ifndef PCI_DISABLE_MWI
2941 u16 cmd;
2942
2943 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2944 if (cmd & PCI_COMMAND_INVALIDATE) {
2945 cmd &= ~PCI_COMMAND_INVALIDATE;
2946 pci_write_config_word(dev, PCI_COMMAND, cmd);
2947 }
2948 #endif
2949 }
2950 EXPORT_SYMBOL(pci_clear_mwi);
2951
2952 /**
2953 * pci_intx - enables/disables PCI INTx for device dev
2954 * @pdev: the PCI device to operate on
2955 * @enable: boolean: whether to enable or disable PCI INTx
2956 *
2957 * Enables/disables PCI INTx for device dev
2958 */
2959 void pci_intx(struct pci_dev *pdev, int enable)
2960 {
2961 u16 pci_command, new;
2962
2963 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2964
2965 if (enable)
2966 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2967 else
2968 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2969
2970 if (new != pci_command) {
2971 struct pci_devres *dr;
2972
2973 pci_write_config_word(pdev, PCI_COMMAND, new);
2974
2975 dr = find_pci_dr(pdev);
2976 if (dr && !dr->restore_intx) {
2977 dr->restore_intx = 1;
2978 dr->orig_intx = !enable;
2979 }
2980 }
2981 }
2982 EXPORT_SYMBOL_GPL(pci_intx);
2983
2984 /**
2985 * pci_intx_mask_supported - probe for INTx masking support
2986 * @dev: the PCI device to operate on
2987 *
2988 * Check if the device dev support INTx masking via the config space
2989 * command word.
2990 */
2991 bool pci_intx_mask_supported(struct pci_dev *dev)
2992 {
2993 bool mask_supported = false;
2994 u16 orig, new;
2995
2996 if (dev->broken_intx_masking)
2997 return false;
2998
2999 pci_cfg_access_lock(dev);
3000
3001 pci_read_config_word(dev, PCI_COMMAND, &orig);
3002 pci_write_config_word(dev, PCI_COMMAND,
3003 orig ^ PCI_COMMAND_INTX_DISABLE);
3004 pci_read_config_word(dev, PCI_COMMAND, &new);
3005
3006 /*
3007 * There's no way to protect against hardware bugs or detect them
3008 * reliably, but as long as we know what the value should be, let's
3009 * go ahead and check it.
3010 */
3011 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3012 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3013 orig, new);
3014 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3015 mask_supported = true;
3016 pci_write_config_word(dev, PCI_COMMAND, orig);
3017 }
3018
3019 pci_cfg_access_unlock(dev);
3020 return mask_supported;
3021 }
3022 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3023
3024 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3025 {
3026 struct pci_bus *bus = dev->bus;
3027 bool mask_updated = true;
3028 u32 cmd_status_dword;
3029 u16 origcmd, newcmd;
3030 unsigned long flags;
3031 bool irq_pending;
3032
3033 /*
3034 * We do a single dword read to retrieve both command and status.
3035 * Document assumptions that make this possible.
3036 */
3037 BUILD_BUG_ON(PCI_COMMAND % 4);
3038 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3039
3040 raw_spin_lock_irqsave(&pci_lock, flags);
3041
3042 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3043
3044 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3045
3046 /*
3047 * Check interrupt status register to see whether our device
3048 * triggered the interrupt (when masking) or the next IRQ is
3049 * already pending (when unmasking).
3050 */
3051 if (mask != irq_pending) {
3052 mask_updated = false;
3053 goto done;
3054 }
3055
3056 origcmd = cmd_status_dword;
3057 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3058 if (mask)
3059 newcmd |= PCI_COMMAND_INTX_DISABLE;
3060 if (newcmd != origcmd)
3061 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3062
3063 done:
3064 raw_spin_unlock_irqrestore(&pci_lock, flags);
3065
3066 return mask_updated;
3067 }
3068
3069 /**
3070 * pci_check_and_mask_intx - mask INTx on pending interrupt
3071 * @dev: the PCI device to operate on
3072 *
3073 * Check if the device dev has its INTx line asserted, mask it and
3074 * return true in that case. False is returned if not interrupt was
3075 * pending.
3076 */
3077 bool pci_check_and_mask_intx(struct pci_dev *dev)
3078 {
3079 return pci_check_and_set_intx_mask(dev, true);
3080 }
3081 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3082
3083 /**
3084 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3085 * @dev: the PCI device to operate on
3086 *
3087 * Check if the device dev has its INTx line asserted, unmask it if not
3088 * and return true. False is returned and the mask remains active if
3089 * there was still an interrupt pending.
3090 */
3091 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3092 {
3093 return pci_check_and_set_intx_mask(dev, false);
3094 }
3095 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3096
3097 /**
3098 * pci_msi_off - disables any MSI or MSI-X capabilities
3099 * @dev: the PCI device to operate on
3100 *
3101 * If you want to use MSI, see pci_enable_msi() and friends.
3102 * This is a lower-level primitive that allows us to disable
3103 * MSI operation at the device level.
3104 */
3105 void pci_msi_off(struct pci_dev *dev)
3106 {
3107 int pos;
3108 u16 control;
3109
3110 /*
3111 * This looks like it could go in msi.c, but we need it even when
3112 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3113 * dev->msi_cap or dev->msix_cap here.
3114 */
3115 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3116 if (pos) {
3117 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3118 control &= ~PCI_MSI_FLAGS_ENABLE;
3119 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3120 }
3121 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3122 if (pos) {
3123 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3124 control &= ~PCI_MSIX_FLAGS_ENABLE;
3125 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3126 }
3127 }
3128 EXPORT_SYMBOL_GPL(pci_msi_off);
3129
3130 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3131 {
3132 return dma_set_max_seg_size(&dev->dev, size);
3133 }
3134 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3135
3136 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3137 {
3138 return dma_set_seg_boundary(&dev->dev, mask);
3139 }
3140 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3141
3142 /**
3143 * pci_wait_for_pending_transaction - waits for pending transaction
3144 * @dev: the PCI device to operate on
3145 *
3146 * Return 0 if transaction is pending 1 otherwise.
3147 */
3148 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3149 {
3150 if (!pci_is_pcie(dev))
3151 return 1;
3152
3153 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3154 PCI_EXP_DEVSTA_TRPND);
3155 }
3156 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3157
3158 static int pcie_flr(struct pci_dev *dev, int probe)
3159 {
3160 u32 cap;
3161
3162 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3163 if (!(cap & PCI_EXP_DEVCAP_FLR))
3164 return -ENOTTY;
3165
3166 if (probe)
3167 return 0;
3168
3169 if (!pci_wait_for_pending_transaction(dev))
3170 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3171
3172 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3173 msleep(100);
3174 return 0;
3175 }
3176
3177 static int pci_af_flr(struct pci_dev *dev, int probe)
3178 {
3179 int pos;
3180 u8 cap;
3181
3182 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3183 if (!pos)
3184 return -ENOTTY;
3185
3186 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3187 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3188 return -ENOTTY;
3189
3190 if (probe)
3191 return 0;
3192
3193 /*
3194 * Wait for Transaction Pending bit to clear. A word-aligned test
3195 * is used, so we use the conrol offset rather than status and shift
3196 * the test bit to match.
3197 */
3198 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3199 PCI_AF_STATUS_TP << 8))
3200 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3201
3202 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3203 msleep(100);
3204 return 0;
3205 }
3206
3207 /**
3208 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3209 * @dev: Device to reset.
3210 * @probe: If set, only check if the device can be reset this way.
3211 *
3212 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3213 * unset, it will be reinitialized internally when going from PCI_D3hot to
3214 * PCI_D0. If that's the case and the device is not in a low-power state
3215 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3216 *
3217 * NOTE: This causes the caller to sleep for twice the device power transition
3218 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3219 * by default (i.e. unless the @dev's d3_delay field has a different value).
3220 * Moreover, only devices in D0 can be reset by this function.
3221 */
3222 static int pci_pm_reset(struct pci_dev *dev, int probe)
3223 {
3224 u16 csr;
3225
3226 if (!dev->pm_cap)
3227 return -ENOTTY;
3228
3229 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3230 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3231 return -ENOTTY;
3232
3233 if (probe)
3234 return 0;
3235
3236 if (dev->current_state != PCI_D0)
3237 return -EINVAL;
3238
3239 csr &= ~PCI_PM_CTRL_STATE_MASK;
3240 csr |= PCI_D3hot;
3241 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3242 pci_dev_d3_sleep(dev);
3243
3244 csr &= ~PCI_PM_CTRL_STATE_MASK;
3245 csr |= PCI_D0;
3246 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3247 pci_dev_d3_sleep(dev);
3248
3249 return 0;
3250 }
3251
3252 void pci_reset_secondary_bus(struct pci_dev *dev)
3253 {
3254 u16 ctrl;
3255
3256 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3257 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3258 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3259 /*
3260 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3261 * this to 2ms to ensure that we meet the minimum requirement.
3262 */
3263 msleep(2);
3264
3265 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3266 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3267
3268 /*
3269 * Trhfa for conventional PCI is 2^25 clock cycles.
3270 * Assuming a minimum 33MHz clock this results in a 1s
3271 * delay before we can consider subordinate devices to
3272 * be re-initialized. PCIe has some ways to shorten this,
3273 * but we don't make use of them yet.
3274 */
3275 ssleep(1);
3276 }
3277
3278 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3279 {
3280 pci_reset_secondary_bus(dev);
3281 }
3282
3283 /**
3284 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3285 * @dev: Bridge device
3286 *
3287 * Use the bridge control register to assert reset on the secondary bus.
3288 * Devices on the secondary bus are left in power-on state.
3289 */
3290 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3291 {
3292 pcibios_reset_secondary_bus(dev);
3293 }
3294 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3295
3296 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3297 {
3298 struct pci_dev *pdev;
3299
3300 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3301 return -ENOTTY;
3302
3303 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3304 if (pdev != dev)
3305 return -ENOTTY;
3306
3307 if (probe)
3308 return 0;
3309
3310 pci_reset_bridge_secondary_bus(dev->bus->self);
3311
3312 return 0;
3313 }
3314
3315 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3316 {
3317 int rc = -ENOTTY;
3318
3319 if (!hotplug || !try_module_get(hotplug->ops->owner))
3320 return rc;
3321
3322 if (hotplug->ops->reset_slot)
3323 rc = hotplug->ops->reset_slot(hotplug, probe);
3324
3325 module_put(hotplug->ops->owner);
3326
3327 return rc;
3328 }
3329
3330 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3331 {
3332 struct pci_dev *pdev;
3333
3334 if (dev->subordinate || !dev->slot)
3335 return -ENOTTY;
3336
3337 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3338 if (pdev != dev && pdev->slot == dev->slot)
3339 return -ENOTTY;
3340
3341 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3342 }
3343
3344 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3345 {
3346 int rc;
3347
3348 might_sleep();
3349
3350 rc = pci_dev_specific_reset(dev, probe);
3351 if (rc != -ENOTTY)
3352 goto done;
3353
3354 rc = pcie_flr(dev, probe);
3355 if (rc != -ENOTTY)
3356 goto done;
3357
3358 rc = pci_af_flr(dev, probe);
3359 if (rc != -ENOTTY)
3360 goto done;
3361
3362 rc = pci_pm_reset(dev, probe);
3363 if (rc != -ENOTTY)
3364 goto done;
3365
3366 rc = pci_dev_reset_slot_function(dev, probe);
3367 if (rc != -ENOTTY)
3368 goto done;
3369
3370 rc = pci_parent_bus_reset(dev, probe);
3371 done:
3372 return rc;
3373 }
3374
3375 static void pci_dev_lock(struct pci_dev *dev)
3376 {
3377 pci_cfg_access_lock(dev);
3378 /* block PM suspend, driver probe, etc. */
3379 device_lock(&dev->dev);
3380 }
3381
3382 /* Return 1 on successful lock, 0 on contention */
3383 static int pci_dev_trylock(struct pci_dev *dev)
3384 {
3385 if (pci_cfg_access_trylock(dev)) {
3386 if (device_trylock(&dev->dev))
3387 return 1;
3388 pci_cfg_access_unlock(dev);
3389 }
3390
3391 return 0;
3392 }
3393
3394 static void pci_dev_unlock(struct pci_dev *dev)
3395 {
3396 device_unlock(&dev->dev);
3397 pci_cfg_access_unlock(dev);
3398 }
3399
3400 /**
3401 * pci_reset_notify - notify device driver of reset
3402 * @dev: device to be notified of reset
3403 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3404 * completed
3405 *
3406 * Must be called prior to device access being disabled and after device
3407 * access is restored.
3408 */
3409 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3410 {
3411 const struct pci_error_handlers *err_handler =
3412 dev->driver ? dev->driver->err_handler : NULL;
3413 if (err_handler && err_handler->reset_notify)
3414 err_handler->reset_notify(dev, prepare);
3415 }
3416
3417 static void pci_dev_save_and_disable(struct pci_dev *dev)
3418 {
3419 pci_reset_notify(dev, true);
3420
3421 /*
3422 * Wake-up device prior to save. PM registers default to D0 after
3423 * reset and a simple register restore doesn't reliably return
3424 * to a non-D0 state anyway.
3425 */
3426 pci_set_power_state(dev, PCI_D0);
3427
3428 pci_save_state(dev);
3429 /*
3430 * Disable the device by clearing the Command register, except for
3431 * INTx-disable which is set. This not only disables MMIO and I/O port
3432 * BARs, but also prevents the device from being Bus Master, preventing
3433 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3434 * compliant devices, INTx-disable prevents legacy interrupts.
3435 */
3436 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3437 }
3438
3439 static void pci_dev_restore(struct pci_dev *dev)
3440 {
3441 pci_restore_state(dev);
3442 pci_reset_notify(dev, false);
3443 }
3444
3445 static int pci_dev_reset(struct pci_dev *dev, int probe)
3446 {
3447 int rc;
3448
3449 if (!probe)
3450 pci_dev_lock(dev);
3451
3452 rc = __pci_dev_reset(dev, probe);
3453
3454 if (!probe)
3455 pci_dev_unlock(dev);
3456
3457 return rc;
3458 }
3459
3460 /**
3461 * __pci_reset_function - reset a PCI device function
3462 * @dev: PCI device to reset
3463 *
3464 * Some devices allow an individual function to be reset without affecting
3465 * other functions in the same device. The PCI device must be responsive
3466 * to PCI config space in order to use this function.
3467 *
3468 * The device function is presumed to be unused when this function is called.
3469 * Resetting the device will make the contents of PCI configuration space
3470 * random, so any caller of this must be prepared to reinitialise the
3471 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3472 * etc.
3473 *
3474 * Returns 0 if the device function was successfully reset or negative if the
3475 * device doesn't support resetting a single function.
3476 */
3477 int __pci_reset_function(struct pci_dev *dev)
3478 {
3479 return pci_dev_reset(dev, 0);
3480 }
3481 EXPORT_SYMBOL_GPL(__pci_reset_function);
3482
3483 /**
3484 * __pci_reset_function_locked - reset a PCI device function while holding
3485 * the @dev mutex lock.
3486 * @dev: PCI device to reset
3487 *
3488 * Some devices allow an individual function to be reset without affecting
3489 * other functions in the same device. The PCI device must be responsive
3490 * to PCI config space in order to use this function.
3491 *
3492 * The device function is presumed to be unused and the caller is holding
3493 * the device mutex lock when this function is called.
3494 * Resetting the device will make the contents of PCI configuration space
3495 * random, so any caller of this must be prepared to reinitialise the
3496 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3497 * etc.
3498 *
3499 * Returns 0 if the device function was successfully reset or negative if the
3500 * device doesn't support resetting a single function.
3501 */
3502 int __pci_reset_function_locked(struct pci_dev *dev)
3503 {
3504 return __pci_dev_reset(dev, 0);
3505 }
3506 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3507
3508 /**
3509 * pci_probe_reset_function - check whether the device can be safely reset
3510 * @dev: PCI device to reset
3511 *
3512 * Some devices allow an individual function to be reset without affecting
3513 * other functions in the same device. The PCI device must be responsive
3514 * to PCI config space in order to use this function.
3515 *
3516 * Returns 0 if the device function can be reset or negative if the
3517 * device doesn't support resetting a single function.
3518 */
3519 int pci_probe_reset_function(struct pci_dev *dev)
3520 {
3521 return pci_dev_reset(dev, 1);
3522 }
3523
3524 /**
3525 * pci_reset_function - quiesce and reset a PCI device function
3526 * @dev: PCI device to reset
3527 *
3528 * Some devices allow an individual function to be reset without affecting
3529 * other functions in the same device. The PCI device must be responsive
3530 * to PCI config space in order to use this function.
3531 *
3532 * This function does not just reset the PCI portion of a device, but
3533 * clears all the state associated with the device. This function differs
3534 * from __pci_reset_function in that it saves and restores device state
3535 * over the reset.
3536 *
3537 * Returns 0 if the device function was successfully reset or negative if the
3538 * device doesn't support resetting a single function.
3539 */
3540 int pci_reset_function(struct pci_dev *dev)
3541 {
3542 int rc;
3543
3544 rc = pci_dev_reset(dev, 1);
3545 if (rc)
3546 return rc;
3547
3548 pci_dev_save_and_disable(dev);
3549
3550 rc = pci_dev_reset(dev, 0);
3551
3552 pci_dev_restore(dev);
3553
3554 return rc;
3555 }
3556 EXPORT_SYMBOL_GPL(pci_reset_function);
3557
3558 /**
3559 * pci_try_reset_function - quiesce and reset a PCI device function
3560 * @dev: PCI device to reset
3561 *
3562 * Same as above, except return -EAGAIN if unable to lock device.
3563 */
3564 int pci_try_reset_function(struct pci_dev *dev)
3565 {
3566 int rc;
3567
3568 rc = pci_dev_reset(dev, 1);
3569 if (rc)
3570 return rc;
3571
3572 pci_dev_save_and_disable(dev);
3573
3574 if (pci_dev_trylock(dev)) {
3575 rc = __pci_dev_reset(dev, 0);
3576 pci_dev_unlock(dev);
3577 } else
3578 rc = -EAGAIN;
3579
3580 pci_dev_restore(dev);
3581
3582 return rc;
3583 }
3584 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3585
3586 /* Lock devices from the top of the tree down */
3587 static void pci_bus_lock(struct pci_bus *bus)
3588 {
3589 struct pci_dev *dev;
3590
3591 list_for_each_entry(dev, &bus->devices, bus_list) {
3592 pci_dev_lock(dev);
3593 if (dev->subordinate)
3594 pci_bus_lock(dev->subordinate);
3595 }
3596 }
3597
3598 /* Unlock devices from the bottom of the tree up */
3599 static void pci_bus_unlock(struct pci_bus *bus)
3600 {
3601 struct pci_dev *dev;
3602
3603 list_for_each_entry(dev, &bus->devices, bus_list) {
3604 if (dev->subordinate)
3605 pci_bus_unlock(dev->subordinate);
3606 pci_dev_unlock(dev);
3607 }
3608 }
3609
3610 /* Return 1 on successful lock, 0 on contention */
3611 static int pci_bus_trylock(struct pci_bus *bus)
3612 {
3613 struct pci_dev *dev;
3614
3615 list_for_each_entry(dev, &bus->devices, bus_list) {
3616 if (!pci_dev_trylock(dev))
3617 goto unlock;
3618 if (dev->subordinate) {
3619 if (!pci_bus_trylock(dev->subordinate)) {
3620 pci_dev_unlock(dev);
3621 goto unlock;
3622 }
3623 }
3624 }
3625 return 1;
3626
3627 unlock:
3628 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3629 if (dev->subordinate)
3630 pci_bus_unlock(dev->subordinate);
3631 pci_dev_unlock(dev);
3632 }
3633 return 0;
3634 }
3635
3636 /* Lock devices from the top of the tree down */
3637 static void pci_slot_lock(struct pci_slot *slot)
3638 {
3639 struct pci_dev *dev;
3640
3641 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3642 if (!dev->slot || dev->slot != slot)
3643 continue;
3644 pci_dev_lock(dev);
3645 if (dev->subordinate)
3646 pci_bus_lock(dev->subordinate);
3647 }
3648 }
3649
3650 /* Unlock devices from the bottom of the tree up */
3651 static void pci_slot_unlock(struct pci_slot *slot)
3652 {
3653 struct pci_dev *dev;
3654
3655 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3656 if (!dev->slot || dev->slot != slot)
3657 continue;
3658 if (dev->subordinate)
3659 pci_bus_unlock(dev->subordinate);
3660 pci_dev_unlock(dev);
3661 }
3662 }
3663
3664 /* Return 1 on successful lock, 0 on contention */
3665 static int pci_slot_trylock(struct pci_slot *slot)
3666 {
3667 struct pci_dev *dev;
3668
3669 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3670 if (!dev->slot || dev->slot != slot)
3671 continue;
3672 if (!pci_dev_trylock(dev))
3673 goto unlock;
3674 if (dev->subordinate) {
3675 if (!pci_bus_trylock(dev->subordinate)) {
3676 pci_dev_unlock(dev);
3677 goto unlock;
3678 }
3679 }
3680 }
3681 return 1;
3682
3683 unlock:
3684 list_for_each_entry_continue_reverse(dev,
3685 &slot->bus->devices, bus_list) {
3686 if (!dev->slot || dev->slot != slot)
3687 continue;
3688 if (dev->subordinate)
3689 pci_bus_unlock(dev->subordinate);
3690 pci_dev_unlock(dev);
3691 }
3692 return 0;
3693 }
3694
3695 /* Save and disable devices from the top of the tree down */
3696 static void pci_bus_save_and_disable(struct pci_bus *bus)
3697 {
3698 struct pci_dev *dev;
3699
3700 list_for_each_entry(dev, &bus->devices, bus_list) {
3701 pci_dev_save_and_disable(dev);
3702 if (dev->subordinate)
3703 pci_bus_save_and_disable(dev->subordinate);
3704 }
3705 }
3706
3707 /*
3708 * Restore devices from top of the tree down - parent bridges need to be
3709 * restored before we can get to subordinate devices.
3710 */
3711 static void pci_bus_restore(struct pci_bus *bus)
3712 {
3713 struct pci_dev *dev;
3714
3715 list_for_each_entry(dev, &bus->devices, bus_list) {
3716 pci_dev_restore(dev);
3717 if (dev->subordinate)
3718 pci_bus_restore(dev->subordinate);
3719 }
3720 }
3721
3722 /* Save and disable devices from the top of the tree down */
3723 static void pci_slot_save_and_disable(struct pci_slot *slot)
3724 {
3725 struct pci_dev *dev;
3726
3727 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3728 if (!dev->slot || dev->slot != slot)
3729 continue;
3730 pci_dev_save_and_disable(dev);
3731 if (dev->subordinate)
3732 pci_bus_save_and_disable(dev->subordinate);
3733 }
3734 }
3735
3736 /*
3737 * Restore devices from top of the tree down - parent bridges need to be
3738 * restored before we can get to subordinate devices.
3739 */
3740 static void pci_slot_restore(struct pci_slot *slot)
3741 {
3742 struct pci_dev *dev;
3743
3744 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3745 if (!dev->slot || dev->slot != slot)
3746 continue;
3747 pci_dev_restore(dev);
3748 if (dev->subordinate)
3749 pci_bus_restore(dev->subordinate);
3750 }
3751 }
3752
3753 static int pci_slot_reset(struct pci_slot *slot, int probe)
3754 {
3755 int rc;
3756
3757 if (!slot)
3758 return -ENOTTY;
3759
3760 if (!probe)
3761 pci_slot_lock(slot);
3762
3763 might_sleep();
3764
3765 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3766
3767 if (!probe)
3768 pci_slot_unlock(slot);
3769
3770 return rc;
3771 }
3772
3773 /**
3774 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3775 * @slot: PCI slot to probe
3776 *
3777 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3778 */
3779 int pci_probe_reset_slot(struct pci_slot *slot)
3780 {
3781 return pci_slot_reset(slot, 1);
3782 }
3783 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3784
3785 /**
3786 * pci_reset_slot - reset a PCI slot
3787 * @slot: PCI slot to reset
3788 *
3789 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3790 * independent of other slots. For instance, some slots may support slot power
3791 * control. In the case of a 1:1 bus to slot architecture, this function may
3792 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3793 * Generally a slot reset should be attempted before a bus reset. All of the
3794 * function of the slot and any subordinate buses behind the slot are reset
3795 * through this function. PCI config space of all devices in the slot and
3796 * behind the slot is saved before and restored after reset.
3797 *
3798 * Return 0 on success, non-zero on error.
3799 */
3800 int pci_reset_slot(struct pci_slot *slot)
3801 {
3802 int rc;
3803
3804 rc = pci_slot_reset(slot, 1);
3805 if (rc)
3806 return rc;
3807
3808 pci_slot_save_and_disable(slot);
3809
3810 rc = pci_slot_reset(slot, 0);
3811
3812 pci_slot_restore(slot);
3813
3814 return rc;
3815 }
3816 EXPORT_SYMBOL_GPL(pci_reset_slot);
3817
3818 /**
3819 * pci_try_reset_slot - Try to reset a PCI slot
3820 * @slot: PCI slot to reset
3821 *
3822 * Same as above except return -EAGAIN if the slot cannot be locked
3823 */
3824 int pci_try_reset_slot(struct pci_slot *slot)
3825 {
3826 int rc;
3827
3828 rc = pci_slot_reset(slot, 1);
3829 if (rc)
3830 return rc;
3831
3832 pci_slot_save_and_disable(slot);
3833
3834 if (pci_slot_trylock(slot)) {
3835 might_sleep();
3836 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3837 pci_slot_unlock(slot);
3838 } else
3839 rc = -EAGAIN;
3840
3841 pci_slot_restore(slot);
3842
3843 return rc;
3844 }
3845 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3846
3847 static int pci_bus_reset(struct pci_bus *bus, int probe)
3848 {
3849 if (!bus->self)
3850 return -ENOTTY;
3851
3852 if (probe)
3853 return 0;
3854
3855 pci_bus_lock(bus);
3856
3857 might_sleep();
3858
3859 pci_reset_bridge_secondary_bus(bus->self);
3860
3861 pci_bus_unlock(bus);
3862
3863 return 0;
3864 }
3865
3866 /**
3867 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3868 * @bus: PCI bus to probe
3869 *
3870 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3871 */
3872 int pci_probe_reset_bus(struct pci_bus *bus)
3873 {
3874 return pci_bus_reset(bus, 1);
3875 }
3876 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3877
3878 /**
3879 * pci_reset_bus - reset a PCI bus
3880 * @bus: top level PCI bus to reset
3881 *
3882 * Do a bus reset on the given bus and any subordinate buses, saving
3883 * and restoring state of all devices.
3884 *
3885 * Return 0 on success, non-zero on error.
3886 */
3887 int pci_reset_bus(struct pci_bus *bus)
3888 {
3889 int rc;
3890
3891 rc = pci_bus_reset(bus, 1);
3892 if (rc)
3893 return rc;
3894
3895 pci_bus_save_and_disable(bus);
3896
3897 rc = pci_bus_reset(bus, 0);
3898
3899 pci_bus_restore(bus);
3900
3901 return rc;
3902 }
3903 EXPORT_SYMBOL_GPL(pci_reset_bus);
3904
3905 /**
3906 * pci_try_reset_bus - Try to reset a PCI bus
3907 * @bus: top level PCI bus to reset
3908 *
3909 * Same as above except return -EAGAIN if the bus cannot be locked
3910 */
3911 int pci_try_reset_bus(struct pci_bus *bus)
3912 {
3913 int rc;
3914
3915 rc = pci_bus_reset(bus, 1);
3916 if (rc)
3917 return rc;
3918
3919 pci_bus_save_and_disable(bus);
3920
3921 if (pci_bus_trylock(bus)) {
3922 might_sleep();
3923 pci_reset_bridge_secondary_bus(bus->self);
3924 pci_bus_unlock(bus);
3925 } else
3926 rc = -EAGAIN;
3927
3928 pci_bus_restore(bus);
3929
3930 return rc;
3931 }
3932 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3933
3934 /**
3935 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3936 * @dev: PCI device to query
3937 *
3938 * Returns mmrbc: maximum designed memory read count in bytes
3939 * or appropriate error value.
3940 */
3941 int pcix_get_max_mmrbc(struct pci_dev *dev)
3942 {
3943 int cap;
3944 u32 stat;
3945
3946 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3947 if (!cap)
3948 return -EINVAL;
3949
3950 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3951 return -EINVAL;
3952
3953 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3954 }
3955 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3956
3957 /**
3958 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3959 * @dev: PCI device to query
3960 *
3961 * Returns mmrbc: maximum memory read count in bytes
3962 * or appropriate error value.
3963 */
3964 int pcix_get_mmrbc(struct pci_dev *dev)
3965 {
3966 int cap;
3967 u16 cmd;
3968
3969 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3970 if (!cap)
3971 return -EINVAL;
3972
3973 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3974 return -EINVAL;
3975
3976 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3977 }
3978 EXPORT_SYMBOL(pcix_get_mmrbc);
3979
3980 /**
3981 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3982 * @dev: PCI device to query
3983 * @mmrbc: maximum memory read count in bytes
3984 * valid values are 512, 1024, 2048, 4096
3985 *
3986 * If possible sets maximum memory read byte count, some bridges have erratas
3987 * that prevent this.
3988 */
3989 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3990 {
3991 int cap;
3992 u32 stat, v, o;
3993 u16 cmd;
3994
3995 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3996 return -EINVAL;
3997
3998 v = ffs(mmrbc) - 10;
3999
4000 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4001 if (!cap)
4002 return -EINVAL;
4003
4004 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4005 return -EINVAL;
4006
4007 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4008 return -E2BIG;
4009
4010 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4011 return -EINVAL;
4012
4013 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4014 if (o != v) {
4015 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4016 return -EIO;
4017
4018 cmd &= ~PCI_X_CMD_MAX_READ;
4019 cmd |= v << 2;
4020 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4021 return -EIO;
4022 }
4023 return 0;
4024 }
4025 EXPORT_SYMBOL(pcix_set_mmrbc);
4026
4027 /**
4028 * pcie_get_readrq - get PCI Express read request size
4029 * @dev: PCI device to query
4030 *
4031 * Returns maximum memory read request in bytes
4032 * or appropriate error value.
4033 */
4034 int pcie_get_readrq(struct pci_dev *dev)
4035 {
4036 u16 ctl;
4037
4038 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4039
4040 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4041 }
4042 EXPORT_SYMBOL(pcie_get_readrq);
4043
4044 /**
4045 * pcie_set_readrq - set PCI Express maximum memory read request
4046 * @dev: PCI device to query
4047 * @rq: maximum memory read count in bytes
4048 * valid values are 128, 256, 512, 1024, 2048, 4096
4049 *
4050 * If possible sets maximum memory read request in bytes
4051 */
4052 int pcie_set_readrq(struct pci_dev *dev, int rq)
4053 {
4054 u16 v;
4055
4056 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4057 return -EINVAL;
4058
4059 /*
4060 * If using the "performance" PCIe config, we clamp the
4061 * read rq size to the max packet size to prevent the
4062 * host bridge generating requests larger than we can
4063 * cope with
4064 */
4065 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4066 int mps = pcie_get_mps(dev);
4067
4068 if (mps < rq)
4069 rq = mps;
4070 }
4071
4072 v = (ffs(rq) - 8) << 12;
4073
4074 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4075 PCI_EXP_DEVCTL_READRQ, v);
4076 }
4077 EXPORT_SYMBOL(pcie_set_readrq);
4078
4079 /**
4080 * pcie_get_mps - get PCI Express maximum payload size
4081 * @dev: PCI device to query
4082 *
4083 * Returns maximum payload size in bytes
4084 */
4085 int pcie_get_mps(struct pci_dev *dev)
4086 {
4087 u16 ctl;
4088
4089 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4090
4091 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4092 }
4093 EXPORT_SYMBOL(pcie_get_mps);
4094
4095 /**
4096 * pcie_set_mps - set PCI Express maximum payload size
4097 * @dev: PCI device to query
4098 * @mps: maximum payload size in bytes
4099 * valid values are 128, 256, 512, 1024, 2048, 4096
4100 *
4101 * If possible sets maximum payload size
4102 */
4103 int pcie_set_mps(struct pci_dev *dev, int mps)
4104 {
4105 u16 v;
4106
4107 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4108 return -EINVAL;
4109
4110 v = ffs(mps) - 8;
4111 if (v > dev->pcie_mpss)
4112 return -EINVAL;
4113 v <<= 5;
4114
4115 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4116 PCI_EXP_DEVCTL_PAYLOAD, v);
4117 }
4118 EXPORT_SYMBOL(pcie_set_mps);
4119
4120 /**
4121 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4122 * @dev: PCI device to query
4123 * @speed: storage for minimum speed
4124 * @width: storage for minimum width
4125 *
4126 * This function will walk up the PCI device chain and determine the minimum
4127 * link width and speed of the device.
4128 */
4129 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4130 enum pcie_link_width *width)
4131 {
4132 int ret;
4133
4134 *speed = PCI_SPEED_UNKNOWN;
4135 *width = PCIE_LNK_WIDTH_UNKNOWN;
4136
4137 while (dev) {
4138 u16 lnksta;
4139 enum pci_bus_speed next_speed;
4140 enum pcie_link_width next_width;
4141
4142 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4143 if (ret)
4144 return ret;
4145
4146 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4147 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4148 PCI_EXP_LNKSTA_NLW_SHIFT;
4149
4150 if (next_speed < *speed)
4151 *speed = next_speed;
4152
4153 if (next_width < *width)
4154 *width = next_width;
4155
4156 dev = dev->bus->self;
4157 }
4158
4159 return 0;
4160 }
4161 EXPORT_SYMBOL(pcie_get_minimum_link);
4162
4163 /**
4164 * pci_select_bars - Make BAR mask from the type of resource
4165 * @dev: the PCI device for which BAR mask is made
4166 * @flags: resource type mask to be selected
4167 *
4168 * This helper routine makes bar mask from the type of resource.
4169 */
4170 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4171 {
4172 int i, bars = 0;
4173 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4174 if (pci_resource_flags(dev, i) & flags)
4175 bars |= (1 << i);
4176 return bars;
4177 }
4178 EXPORT_SYMBOL(pci_select_bars);
4179
4180 /**
4181 * pci_resource_bar - get position of the BAR associated with a resource
4182 * @dev: the PCI device
4183 * @resno: the resource number
4184 * @type: the BAR type to be filled in
4185 *
4186 * Returns BAR position in config space, or 0 if the BAR is invalid.
4187 */
4188 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4189 {
4190 int reg;
4191
4192 if (resno < PCI_ROM_RESOURCE) {
4193 *type = pci_bar_unknown;
4194 return PCI_BASE_ADDRESS_0 + 4 * resno;
4195 } else if (resno == PCI_ROM_RESOURCE) {
4196 *type = pci_bar_mem32;
4197 return dev->rom_base_reg;
4198 } else if (resno < PCI_BRIDGE_RESOURCES) {
4199 /* device specific resource */
4200 *type = pci_bar_unknown;
4201 reg = pci_iov_resource_bar(dev, resno);
4202 if (reg)
4203 return reg;
4204 }
4205
4206 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4207 return 0;
4208 }
4209
4210 /* Some architectures require additional programming to enable VGA */
4211 static arch_set_vga_state_t arch_set_vga_state;
4212
4213 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4214 {
4215 arch_set_vga_state = func; /* NULL disables */
4216 }
4217
4218 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4219 unsigned int command_bits, u32 flags)
4220 {
4221 if (arch_set_vga_state)
4222 return arch_set_vga_state(dev, decode, command_bits,
4223 flags);
4224 return 0;
4225 }
4226
4227 /**
4228 * pci_set_vga_state - set VGA decode state on device and parents if requested
4229 * @dev: the PCI device
4230 * @decode: true = enable decoding, false = disable decoding
4231 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4232 * @flags: traverse ancestors and change bridges
4233 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4234 */
4235 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4236 unsigned int command_bits, u32 flags)
4237 {
4238 struct pci_bus *bus;
4239 struct pci_dev *bridge;
4240 u16 cmd;
4241 int rc;
4242
4243 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4244
4245 /* ARCH specific VGA enables */
4246 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4247 if (rc)
4248 return rc;
4249
4250 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4251 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4252 if (decode == true)
4253 cmd |= command_bits;
4254 else
4255 cmd &= ~command_bits;
4256 pci_write_config_word(dev, PCI_COMMAND, cmd);
4257 }
4258
4259 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4260 return 0;
4261
4262 bus = dev->bus;
4263 while (bus) {
4264 bridge = bus->self;
4265 if (bridge) {
4266 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4267 &cmd);
4268 if (decode == true)
4269 cmd |= PCI_BRIDGE_CTL_VGA;
4270 else
4271 cmd &= ~PCI_BRIDGE_CTL_VGA;
4272 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4273 cmd);
4274 }
4275 bus = bus->parent;
4276 }
4277 return 0;
4278 }
4279
4280 bool pci_device_is_present(struct pci_dev *pdev)
4281 {
4282 u32 v;
4283
4284 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4285 }
4286 EXPORT_SYMBOL_GPL(pci_device_is_present);
4287
4288 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4289 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4290 static DEFINE_SPINLOCK(resource_alignment_lock);
4291
4292 /**
4293 * pci_specified_resource_alignment - get resource alignment specified by user.
4294 * @dev: the PCI device to get
4295 *
4296 * RETURNS: Resource alignment if it is specified.
4297 * Zero if it is not specified.
4298 */
4299 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4300 {
4301 int seg, bus, slot, func, align_order, count;
4302 resource_size_t align = 0;
4303 char *p;
4304
4305 spin_lock(&resource_alignment_lock);
4306 p = resource_alignment_param;
4307 while (*p) {
4308 count = 0;
4309 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4310 p[count] == '@') {
4311 p += count + 1;
4312 } else {
4313 align_order = -1;
4314 }
4315 if (sscanf(p, "%x:%x:%x.%x%n",
4316 &seg, &bus, &slot, &func, &count) != 4) {
4317 seg = 0;
4318 if (sscanf(p, "%x:%x.%x%n",
4319 &bus, &slot, &func, &count) != 3) {
4320 /* Invalid format */
4321 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4322 p);
4323 break;
4324 }
4325 }
4326 p += count;
4327 if (seg == pci_domain_nr(dev->bus) &&
4328 bus == dev->bus->number &&
4329 slot == PCI_SLOT(dev->devfn) &&
4330 func == PCI_FUNC(dev->devfn)) {
4331 if (align_order == -1)
4332 align = PAGE_SIZE;
4333 else
4334 align = 1 << align_order;
4335 /* Found */
4336 break;
4337 }
4338 if (*p != ';' && *p != ',') {
4339 /* End of param or invalid format */
4340 break;
4341 }
4342 p++;
4343 }
4344 spin_unlock(&resource_alignment_lock);
4345 return align;
4346 }
4347
4348 /*
4349 * This function disables memory decoding and releases memory resources
4350 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4351 * It also rounds up size to specified alignment.
4352 * Later on, the kernel will assign page-aligned memory resource back
4353 * to the device.
4354 */
4355 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4356 {
4357 int i;
4358 struct resource *r;
4359 resource_size_t align, size;
4360 u16 command;
4361
4362 /* check if specified PCI is target device to reassign */
4363 align = pci_specified_resource_alignment(dev);
4364 if (!align)
4365 return;
4366
4367 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4368 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4369 dev_warn(&dev->dev,
4370 "Can't reassign resources to host bridge.\n");
4371 return;
4372 }
4373
4374 dev_info(&dev->dev,
4375 "Disabling memory decoding and releasing memory resources.\n");
4376 pci_read_config_word(dev, PCI_COMMAND, &command);
4377 command &= ~PCI_COMMAND_MEMORY;
4378 pci_write_config_word(dev, PCI_COMMAND, command);
4379
4380 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4381 r = &dev->resource[i];
4382 if (!(r->flags & IORESOURCE_MEM))
4383 continue;
4384 size = resource_size(r);
4385 if (size < align) {
4386 size = align;
4387 dev_info(&dev->dev,
4388 "Rounding up size of resource #%d to %#llx.\n",
4389 i, (unsigned long long)size);
4390 }
4391 r->flags |= IORESOURCE_UNSET;
4392 r->end = size - 1;
4393 r->start = 0;
4394 }
4395 /* Need to disable bridge's resource window,
4396 * to enable the kernel to reassign new resource
4397 * window later on.
4398 */
4399 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4400 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4401 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4402 r = &dev->resource[i];
4403 if (!(r->flags & IORESOURCE_MEM))
4404 continue;
4405 r->flags |= IORESOURCE_UNSET;
4406 r->end = resource_size(r) - 1;
4407 r->start = 0;
4408 }
4409 pci_disable_bridge_window(dev);
4410 }
4411 }
4412
4413 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4414 {
4415 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4416 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4417 spin_lock(&resource_alignment_lock);
4418 strncpy(resource_alignment_param, buf, count);
4419 resource_alignment_param[count] = '\0';
4420 spin_unlock(&resource_alignment_lock);
4421 return count;
4422 }
4423
4424 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4425 {
4426 size_t count;
4427 spin_lock(&resource_alignment_lock);
4428 count = snprintf(buf, size, "%s", resource_alignment_param);
4429 spin_unlock(&resource_alignment_lock);
4430 return count;
4431 }
4432
4433 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4434 {
4435 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4436 }
4437
4438 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4439 const char *buf, size_t count)
4440 {
4441 return pci_set_resource_alignment_param(buf, count);
4442 }
4443
4444 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4445 pci_resource_alignment_store);
4446
4447 static int __init pci_resource_alignment_sysfs_init(void)
4448 {
4449 return bus_create_file(&pci_bus_type,
4450 &bus_attr_resource_alignment);
4451 }
4452 late_initcall(pci_resource_alignment_sysfs_init);
4453
4454 static void pci_no_domains(void)
4455 {
4456 #ifdef CONFIG_PCI_DOMAINS
4457 pci_domains_supported = 0;
4458 #endif
4459 }
4460
4461 #ifdef CONFIG_PCI_DOMAINS
4462 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4463
4464 int pci_get_new_domain_nr(void)
4465 {
4466 return atomic_inc_return(&__domain_nr);
4467 }
4468 #endif
4469
4470 /**
4471 * pci_ext_cfg_avail - can we access extended PCI config space?
4472 *
4473 * Returns 1 if we can access PCI extended config space (offsets
4474 * greater than 0xff). This is the default implementation. Architecture
4475 * implementations can override this.
4476 */
4477 int __weak pci_ext_cfg_avail(void)
4478 {
4479 return 1;
4480 }
4481
4482 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4483 {
4484 }
4485 EXPORT_SYMBOL(pci_fixup_cardbus);
4486
4487 static int __init pci_setup(char *str)
4488 {
4489 while (str) {
4490 char *k = strchr(str, ',');
4491 if (k)
4492 *k++ = 0;
4493 if (*str && (str = pcibios_setup(str)) && *str) {
4494 if (!strcmp(str, "nomsi")) {
4495 pci_no_msi();
4496 } else if (!strcmp(str, "noaer")) {
4497 pci_no_aer();
4498 } else if (!strncmp(str, "realloc=", 8)) {
4499 pci_realloc_get_opt(str + 8);
4500 } else if (!strncmp(str, "realloc", 7)) {
4501 pci_realloc_get_opt("on");
4502 } else if (!strcmp(str, "nodomains")) {
4503 pci_no_domains();
4504 } else if (!strncmp(str, "noari", 5)) {
4505 pcie_ari_disabled = true;
4506 } else if (!strncmp(str, "cbiosize=", 9)) {
4507 pci_cardbus_io_size = memparse(str + 9, &str);
4508 } else if (!strncmp(str, "cbmemsize=", 10)) {
4509 pci_cardbus_mem_size = memparse(str + 10, &str);
4510 } else if (!strncmp(str, "resource_alignment=", 19)) {
4511 pci_set_resource_alignment_param(str + 19,
4512 strlen(str + 19));
4513 } else if (!strncmp(str, "ecrc=", 5)) {
4514 pcie_ecrc_get_policy(str + 5);
4515 } else if (!strncmp(str, "hpiosize=", 9)) {
4516 pci_hotplug_io_size = memparse(str + 9, &str);
4517 } else if (!strncmp(str, "hpmemsize=", 10)) {
4518 pci_hotplug_mem_size = memparse(str + 10, &str);
4519 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4520 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4521 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4522 pcie_bus_config = PCIE_BUS_SAFE;
4523 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4524 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4525 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4526 pcie_bus_config = PCIE_BUS_PEER2PEER;
4527 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4528 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4529 } else {
4530 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4531 str);
4532 }
4533 }
4534 str = k;
4535 }
4536 return 0;
4537 }
4538 early_param("pci", pci_setup);
This page took 0.121037 seconds and 5 git commands to generate.