PCI: add a new function to map BAR offsets
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include "pci.h"
24
25 unsigned int pci_pm_d3_delay = 10;
26
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30
31 #define DEFAULT_CARDBUS_IO_SIZE (256)
32 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36
37 /**
38 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39 * @bus: pointer to PCI bus structure to search
40 *
41 * Given a PCI bus, returns the highest PCI bus number present in the set
42 * including the given PCI bus and its list of child PCI buses.
43 */
44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 struct list_head *tmp;
47 unsigned char max, n;
48
49 max = bus->subordinate;
50 list_for_each(tmp, &bus->children) {
51 n = pci_bus_max_busnr(pci_bus_b(tmp));
52 if(n > max)
53 max = n;
54 }
55 return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58
59 #ifdef CONFIG_HAS_IOMEM
60 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
61 {
62 /*
63 * Make sure the BAR is actually a memory resource, not an IO resource
64 */
65 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
66 WARN_ON(1);
67 return NULL;
68 }
69 return ioremap_nocache(pci_resource_start(pdev, bar),
70 pci_resource_len(pdev, bar));
71 }
72 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
73 #endif
74
75 #if 0
76 /**
77 * pci_max_busnr - returns maximum PCI bus number
78 *
79 * Returns the highest PCI bus number present in the system global list of
80 * PCI buses.
81 */
82 unsigned char __devinit
83 pci_max_busnr(void)
84 {
85 struct pci_bus *bus = NULL;
86 unsigned char max, n;
87
88 max = 0;
89 while ((bus = pci_find_next_bus(bus)) != NULL) {
90 n = pci_bus_max_busnr(bus);
91 if(n > max)
92 max = n;
93 }
94 return max;
95 }
96
97 #endif /* 0 */
98
99 #define PCI_FIND_CAP_TTL 48
100
101 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
102 u8 pos, int cap, int *ttl)
103 {
104 u8 id;
105
106 while ((*ttl)--) {
107 pci_bus_read_config_byte(bus, devfn, pos, &pos);
108 if (pos < 0x40)
109 break;
110 pos &= ~3;
111 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
112 &id);
113 if (id == 0xff)
114 break;
115 if (id == cap)
116 return pos;
117 pos += PCI_CAP_LIST_NEXT;
118 }
119 return 0;
120 }
121
122 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
123 u8 pos, int cap)
124 {
125 int ttl = PCI_FIND_CAP_TTL;
126
127 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
128 }
129
130 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
131 {
132 return __pci_find_next_cap(dev->bus, dev->devfn,
133 pos + PCI_CAP_LIST_NEXT, cap);
134 }
135 EXPORT_SYMBOL_GPL(pci_find_next_capability);
136
137 static int __pci_bus_find_cap_start(struct pci_bus *bus,
138 unsigned int devfn, u8 hdr_type)
139 {
140 u16 status;
141
142 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
143 if (!(status & PCI_STATUS_CAP_LIST))
144 return 0;
145
146 switch (hdr_type) {
147 case PCI_HEADER_TYPE_NORMAL:
148 case PCI_HEADER_TYPE_BRIDGE:
149 return PCI_CAPABILITY_LIST;
150 case PCI_HEADER_TYPE_CARDBUS:
151 return PCI_CB_CAPABILITY_LIST;
152 default:
153 return 0;
154 }
155
156 return 0;
157 }
158
159 /**
160 * pci_find_capability - query for devices' capabilities
161 * @dev: PCI device to query
162 * @cap: capability code
163 *
164 * Tell if a device supports a given PCI capability.
165 * Returns the address of the requested capability structure within the
166 * device's PCI configuration space or 0 in case the device does not
167 * support it. Possible values for @cap:
168 *
169 * %PCI_CAP_ID_PM Power Management
170 * %PCI_CAP_ID_AGP Accelerated Graphics Port
171 * %PCI_CAP_ID_VPD Vital Product Data
172 * %PCI_CAP_ID_SLOTID Slot Identification
173 * %PCI_CAP_ID_MSI Message Signalled Interrupts
174 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
175 * %PCI_CAP_ID_PCIX PCI-X
176 * %PCI_CAP_ID_EXP PCI Express
177 */
178 int pci_find_capability(struct pci_dev *dev, int cap)
179 {
180 int pos;
181
182 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
183 if (pos)
184 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
185
186 return pos;
187 }
188
189 /**
190 * pci_bus_find_capability - query for devices' capabilities
191 * @bus: the PCI bus to query
192 * @devfn: PCI device to query
193 * @cap: capability code
194 *
195 * Like pci_find_capability() but works for pci devices that do not have a
196 * pci_dev structure set up yet.
197 *
198 * Returns the address of the requested capability structure within the
199 * device's PCI configuration space or 0 in case the device does not
200 * support it.
201 */
202 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
203 {
204 int pos;
205 u8 hdr_type;
206
207 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
208
209 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
210 if (pos)
211 pos = __pci_find_next_cap(bus, devfn, pos, cap);
212
213 return pos;
214 }
215
216 /**
217 * pci_find_ext_capability - Find an extended capability
218 * @dev: PCI device to query
219 * @cap: capability code
220 *
221 * Returns the address of the requested extended capability structure
222 * within the device's PCI configuration space or 0 if the device does
223 * not support it. Possible values for @cap:
224 *
225 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
226 * %PCI_EXT_CAP_ID_VC Virtual Channel
227 * %PCI_EXT_CAP_ID_DSN Device Serial Number
228 * %PCI_EXT_CAP_ID_PWR Power Budgeting
229 */
230 int pci_find_ext_capability(struct pci_dev *dev, int cap)
231 {
232 u32 header;
233 int ttl;
234 int pos = PCI_CFG_SPACE_SIZE;
235
236 /* minimum 8 bytes per capability */
237 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
238
239 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
240 return 0;
241
242 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
243 return 0;
244
245 /*
246 * If we have no capabilities, this is indicated by cap ID,
247 * cap version and next pointer all being 0.
248 */
249 if (header == 0)
250 return 0;
251
252 while (ttl-- > 0) {
253 if (PCI_EXT_CAP_ID(header) == cap)
254 return pos;
255
256 pos = PCI_EXT_CAP_NEXT(header);
257 if (pos < PCI_CFG_SPACE_SIZE)
258 break;
259
260 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
261 break;
262 }
263
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
267
268 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
269 {
270 int rc, ttl = PCI_FIND_CAP_TTL;
271 u8 cap, mask;
272
273 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
274 mask = HT_3BIT_CAP_MASK;
275 else
276 mask = HT_5BIT_CAP_MASK;
277
278 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
279 PCI_CAP_ID_HT, &ttl);
280 while (pos) {
281 rc = pci_read_config_byte(dev, pos + 3, &cap);
282 if (rc != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 if ((cap & mask) == ht_cap)
286 return pos;
287
288 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
289 pos + PCI_CAP_LIST_NEXT,
290 PCI_CAP_ID_HT, &ttl);
291 }
292
293 return 0;
294 }
295 /**
296 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
297 * @dev: PCI device to query
298 * @pos: Position from which to continue searching
299 * @ht_cap: Hypertransport capability code
300 *
301 * To be used in conjunction with pci_find_ht_capability() to search for
302 * all capabilities matching @ht_cap. @pos should always be a value returned
303 * from pci_find_ht_capability().
304 *
305 * NB. To be 100% safe against broken PCI devices, the caller should take
306 * steps to avoid an infinite loop.
307 */
308 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
309 {
310 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
311 }
312 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
313
314 /**
315 * pci_find_ht_capability - query a device's Hypertransport capabilities
316 * @dev: PCI device to query
317 * @ht_cap: Hypertransport capability code
318 *
319 * Tell if a device supports a given Hypertransport capability.
320 * Returns an address within the device's PCI configuration space
321 * or 0 in case the device does not support the request capability.
322 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
323 * which has a Hypertransport capability matching @ht_cap.
324 */
325 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
326 {
327 int pos;
328
329 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
330 if (pos)
331 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
332
333 return pos;
334 }
335 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
336
337 /**
338 * pci_find_parent_resource - return resource region of parent bus of given region
339 * @dev: PCI device structure contains resources to be searched
340 * @res: child resource record for which parent is sought
341 *
342 * For given resource region of given device, return the resource
343 * region of parent bus the given region is contained in or where
344 * it should be allocated from.
345 */
346 struct resource *
347 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
348 {
349 const struct pci_bus *bus = dev->bus;
350 int i;
351 struct resource *best = NULL;
352
353 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
354 struct resource *r = bus->resource[i];
355 if (!r)
356 continue;
357 if (res->start && !(res->start >= r->start && res->end <= r->end))
358 continue; /* Not contained */
359 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
360 continue; /* Wrong type */
361 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
362 return r; /* Exact match */
363 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
364 best = r; /* Approximating prefetchable by non-prefetchable */
365 }
366 return best;
367 }
368
369 /**
370 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
371 * @dev: PCI device to have its BARs restored
372 *
373 * Restore the BAR values for a given device, so as to make it
374 * accessible by its driver.
375 */
376 static void
377 pci_restore_bars(struct pci_dev *dev)
378 {
379 int i;
380
381 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
382 pci_update_resource(dev, i);
383 }
384
385 static struct pci_platform_pm_ops *pci_platform_pm;
386
387 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
388 {
389 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
390 || !ops->sleep_wake || !ops->can_wakeup)
391 return -EINVAL;
392 pci_platform_pm = ops;
393 return 0;
394 }
395
396 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
397 {
398 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
399 }
400
401 static inline int platform_pci_set_power_state(struct pci_dev *dev,
402 pci_power_t t)
403 {
404 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
405 }
406
407 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
408 {
409 return pci_platform_pm ?
410 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
411 }
412
413 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
414 {
415 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
416 }
417
418 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
419 {
420 return pci_platform_pm ?
421 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
422 }
423
424 /**
425 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
426 * given PCI device
427 * @dev: PCI device to handle.
428 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
429 *
430 * RETURN VALUE:
431 * -EINVAL if the requested state is invalid.
432 * -EIO if device does not support PCI PM or its PM capabilities register has a
433 * wrong version, or device doesn't support the requested state.
434 * 0 if device already is in the requested state.
435 * 0 if device's power state has been successfully changed.
436 */
437 static int
438 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
439 {
440 u16 pmcsr;
441 bool need_restore = false;
442
443 if (!dev->pm_cap)
444 return -EIO;
445
446 if (state < PCI_D0 || state > PCI_D3hot)
447 return -EINVAL;
448
449 /* Validate current state:
450 * Can enter D0 from any state, but if we can only go deeper
451 * to sleep if we're already in a low power state
452 */
453 if (dev->current_state == state) {
454 /* we're already there */
455 return 0;
456 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
457 && dev->current_state > state) {
458 dev_err(&dev->dev, "invalid power transition "
459 "(from state %d to %d)\n", dev->current_state, state);
460 return -EINVAL;
461 }
462
463 /* check if this device supports the desired state */
464 if ((state == PCI_D1 && !dev->d1_support)
465 || (state == PCI_D2 && !dev->d2_support))
466 return -EIO;
467
468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
469
470 /* If we're (effectively) in D3, force entire word to 0.
471 * This doesn't affect PME_Status, disables PME_En, and
472 * sets PowerState to 0.
473 */
474 switch (dev->current_state) {
475 case PCI_D0:
476 case PCI_D1:
477 case PCI_D2:
478 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
479 pmcsr |= state;
480 break;
481 case PCI_UNKNOWN: /* Boot-up */
482 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
483 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
484 need_restore = true;
485 /* Fall-through: force to D0 */
486 default:
487 pmcsr = 0;
488 break;
489 }
490
491 /* enter specified state */
492 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
493
494 /* Mandatory power management transition delays */
495 /* see PCI PM 1.1 5.6.1 table 18 */
496 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
497 msleep(pci_pm_d3_delay);
498 else if (state == PCI_D2 || dev->current_state == PCI_D2)
499 udelay(200);
500
501 dev->current_state = state;
502
503 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
504 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
505 * from D3hot to D0 _may_ perform an internal reset, thereby
506 * going to "D0 Uninitialized" rather than "D0 Initialized".
507 * For example, at least some versions of the 3c905B and the
508 * 3c556B exhibit this behaviour.
509 *
510 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
511 * devices in a D3hot state at boot. Consequently, we need to
512 * restore at least the BARs so that the device will be
513 * accessible to its driver.
514 */
515 if (need_restore)
516 pci_restore_bars(dev);
517
518 if (dev->bus->self)
519 pcie_aspm_pm_state_change(dev->bus->self);
520
521 return 0;
522 }
523
524 /**
525 * pci_update_current_state - Read PCI power state of given device from its
526 * PCI PM registers and cache it
527 * @dev: PCI device to handle.
528 */
529 static void pci_update_current_state(struct pci_dev *dev)
530 {
531 if (dev->pm_cap) {
532 u16 pmcsr;
533
534 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
535 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
536 }
537 }
538
539 /**
540 * pci_set_power_state - Set the power state of a PCI device
541 * @dev: PCI device to handle.
542 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
543 *
544 * Transition a device to a new power state, using the platform formware and/or
545 * the device's PCI PM registers.
546 *
547 * RETURN VALUE:
548 * -EINVAL if the requested state is invalid.
549 * -EIO if device does not support PCI PM or its PM capabilities register has a
550 * wrong version, or device doesn't support the requested state.
551 * 0 if device already is in the requested state.
552 * 0 if device's power state has been successfully changed.
553 */
554 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
555 {
556 int error;
557
558 /* bound the state we're entering */
559 if (state > PCI_D3hot)
560 state = PCI_D3hot;
561 else if (state < PCI_D0)
562 state = PCI_D0;
563 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
564 /*
565 * If the device or the parent bridge do not support PCI PM,
566 * ignore the request if we're doing anything other than putting
567 * it into D0 (which would only happen on boot).
568 */
569 return 0;
570
571 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
572 /*
573 * Allow the platform to change the state, for example via ACPI
574 * _PR0, _PS0 and some such, but do not trust it.
575 */
576 int ret = platform_pci_set_power_state(dev, PCI_D0);
577 if (!ret)
578 pci_update_current_state(dev);
579 }
580 /* This device is quirked not to be put into D3, so
581 don't put it in D3 */
582 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
583 return 0;
584
585 error = pci_raw_set_power_state(dev, state);
586
587 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
588 /* Allow the platform to finalize the transition */
589 int ret = platform_pci_set_power_state(dev, state);
590 if (!ret) {
591 pci_update_current_state(dev);
592 error = 0;
593 }
594 }
595
596 return error;
597 }
598
599 /**
600 * pci_choose_state - Choose the power state of a PCI device
601 * @dev: PCI device to be suspended
602 * @state: target sleep state for the whole system. This is the value
603 * that is passed to suspend() function.
604 *
605 * Returns PCI power state suitable for given device and given system
606 * message.
607 */
608
609 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
610 {
611 pci_power_t ret;
612
613 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
614 return PCI_D0;
615
616 ret = platform_pci_choose_state(dev);
617 if (ret != PCI_POWER_ERROR)
618 return ret;
619
620 switch (state.event) {
621 case PM_EVENT_ON:
622 return PCI_D0;
623 case PM_EVENT_FREEZE:
624 case PM_EVENT_PRETHAW:
625 /* REVISIT both freeze and pre-thaw "should" use D0 */
626 case PM_EVENT_SUSPEND:
627 case PM_EVENT_HIBERNATE:
628 return PCI_D3hot;
629 default:
630 dev_info(&dev->dev, "unrecognized suspend event %d\n",
631 state.event);
632 BUG();
633 }
634 return PCI_D0;
635 }
636
637 EXPORT_SYMBOL(pci_choose_state);
638
639 static int pci_save_pcie_state(struct pci_dev *dev)
640 {
641 int pos, i = 0;
642 struct pci_cap_saved_state *save_state;
643 u16 *cap;
644
645 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
646 if (pos <= 0)
647 return 0;
648
649 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
650 if (!save_state) {
651 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
652 return -ENOMEM;
653 }
654 cap = (u16 *)&save_state->data[0];
655
656 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
657 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
658 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
659 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
660
661 return 0;
662 }
663
664 static void pci_restore_pcie_state(struct pci_dev *dev)
665 {
666 int i = 0, pos;
667 struct pci_cap_saved_state *save_state;
668 u16 *cap;
669
670 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
671 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
672 if (!save_state || pos <= 0)
673 return;
674 cap = (u16 *)&save_state->data[0];
675
676 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
677 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
678 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
679 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
680 }
681
682
683 static int pci_save_pcix_state(struct pci_dev *dev)
684 {
685 int pos;
686 struct pci_cap_saved_state *save_state;
687
688 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
689 if (pos <= 0)
690 return 0;
691
692 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
693 if (!save_state) {
694 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
695 return -ENOMEM;
696 }
697
698 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
699
700 return 0;
701 }
702
703 static void pci_restore_pcix_state(struct pci_dev *dev)
704 {
705 int i = 0, pos;
706 struct pci_cap_saved_state *save_state;
707 u16 *cap;
708
709 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
710 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
711 if (!save_state || pos <= 0)
712 return;
713 cap = (u16 *)&save_state->data[0];
714
715 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
716 }
717
718
719 /**
720 * pci_save_state - save the PCI configuration space of a device before suspending
721 * @dev: - PCI device that we're dealing with
722 */
723 int
724 pci_save_state(struct pci_dev *dev)
725 {
726 int i;
727 /* XXX: 100% dword access ok here? */
728 for (i = 0; i < 16; i++)
729 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
730 if ((i = pci_save_pcie_state(dev)) != 0)
731 return i;
732 if ((i = pci_save_pcix_state(dev)) != 0)
733 return i;
734 return 0;
735 }
736
737 /**
738 * pci_restore_state - Restore the saved state of a PCI device
739 * @dev: - PCI device that we're dealing with
740 */
741 int
742 pci_restore_state(struct pci_dev *dev)
743 {
744 int i;
745 u32 val;
746
747 /* PCI Express register must be restored first */
748 pci_restore_pcie_state(dev);
749
750 /*
751 * The Base Address register should be programmed before the command
752 * register(s)
753 */
754 for (i = 15; i >= 0; i--) {
755 pci_read_config_dword(dev, i * 4, &val);
756 if (val != dev->saved_config_space[i]) {
757 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
758 "space at offset %#x (was %#x, writing %#x)\n",
759 i, val, (int)dev->saved_config_space[i]);
760 pci_write_config_dword(dev,i * 4,
761 dev->saved_config_space[i]);
762 }
763 }
764 pci_restore_pcix_state(dev);
765 pci_restore_msi_state(dev);
766
767 return 0;
768 }
769
770 static int do_pci_enable_device(struct pci_dev *dev, int bars)
771 {
772 int err;
773
774 err = pci_set_power_state(dev, PCI_D0);
775 if (err < 0 && err != -EIO)
776 return err;
777 err = pcibios_enable_device(dev, bars);
778 if (err < 0)
779 return err;
780 pci_fixup_device(pci_fixup_enable, dev);
781
782 return 0;
783 }
784
785 /**
786 * pci_reenable_device - Resume abandoned device
787 * @dev: PCI device to be resumed
788 *
789 * Note this function is a backend of pci_default_resume and is not supposed
790 * to be called by normal code, write proper resume handler and use it instead.
791 */
792 int pci_reenable_device(struct pci_dev *dev)
793 {
794 if (atomic_read(&dev->enable_cnt))
795 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
796 return 0;
797 }
798
799 static int __pci_enable_device_flags(struct pci_dev *dev,
800 resource_size_t flags)
801 {
802 int err;
803 int i, bars = 0;
804
805 if (atomic_add_return(1, &dev->enable_cnt) > 1)
806 return 0; /* already enabled */
807
808 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
809 if (dev->resource[i].flags & flags)
810 bars |= (1 << i);
811
812 err = do_pci_enable_device(dev, bars);
813 if (err < 0)
814 atomic_dec(&dev->enable_cnt);
815 return err;
816 }
817
818 /**
819 * pci_enable_device_io - Initialize a device for use with IO space
820 * @dev: PCI device to be initialized
821 *
822 * Initialize device before it's used by a driver. Ask low-level code
823 * to enable I/O resources. Wake up the device if it was suspended.
824 * Beware, this function can fail.
825 */
826 int pci_enable_device_io(struct pci_dev *dev)
827 {
828 return __pci_enable_device_flags(dev, IORESOURCE_IO);
829 }
830
831 /**
832 * pci_enable_device_mem - Initialize a device for use with Memory space
833 * @dev: PCI device to be initialized
834 *
835 * Initialize device before it's used by a driver. Ask low-level code
836 * to enable Memory resources. Wake up the device if it was suspended.
837 * Beware, this function can fail.
838 */
839 int pci_enable_device_mem(struct pci_dev *dev)
840 {
841 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
842 }
843
844 /**
845 * pci_enable_device - Initialize device before it's used by a driver.
846 * @dev: PCI device to be initialized
847 *
848 * Initialize device before it's used by a driver. Ask low-level code
849 * to enable I/O and memory. Wake up the device if it was suspended.
850 * Beware, this function can fail.
851 *
852 * Note we don't actually enable the device many times if we call
853 * this function repeatedly (we just increment the count).
854 */
855 int pci_enable_device(struct pci_dev *dev)
856 {
857 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
858 }
859
860 /*
861 * Managed PCI resources. This manages device on/off, intx/msi/msix
862 * on/off and BAR regions. pci_dev itself records msi/msix status, so
863 * there's no need to track it separately. pci_devres is initialized
864 * when a device is enabled using managed PCI device enable interface.
865 */
866 struct pci_devres {
867 unsigned int enabled:1;
868 unsigned int pinned:1;
869 unsigned int orig_intx:1;
870 unsigned int restore_intx:1;
871 u32 region_mask;
872 };
873
874 static void pcim_release(struct device *gendev, void *res)
875 {
876 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
877 struct pci_devres *this = res;
878 int i;
879
880 if (dev->msi_enabled)
881 pci_disable_msi(dev);
882 if (dev->msix_enabled)
883 pci_disable_msix(dev);
884
885 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
886 if (this->region_mask & (1 << i))
887 pci_release_region(dev, i);
888
889 if (this->restore_intx)
890 pci_intx(dev, this->orig_intx);
891
892 if (this->enabled && !this->pinned)
893 pci_disable_device(dev);
894 }
895
896 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
897 {
898 struct pci_devres *dr, *new_dr;
899
900 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
901 if (dr)
902 return dr;
903
904 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
905 if (!new_dr)
906 return NULL;
907 return devres_get(&pdev->dev, new_dr, NULL, NULL);
908 }
909
910 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
911 {
912 if (pci_is_managed(pdev))
913 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
914 return NULL;
915 }
916
917 /**
918 * pcim_enable_device - Managed pci_enable_device()
919 * @pdev: PCI device to be initialized
920 *
921 * Managed pci_enable_device().
922 */
923 int pcim_enable_device(struct pci_dev *pdev)
924 {
925 struct pci_devres *dr;
926 int rc;
927
928 dr = get_pci_dr(pdev);
929 if (unlikely(!dr))
930 return -ENOMEM;
931 if (dr->enabled)
932 return 0;
933
934 rc = pci_enable_device(pdev);
935 if (!rc) {
936 pdev->is_managed = 1;
937 dr->enabled = 1;
938 }
939 return rc;
940 }
941
942 /**
943 * pcim_pin_device - Pin managed PCI device
944 * @pdev: PCI device to pin
945 *
946 * Pin managed PCI device @pdev. Pinned device won't be disabled on
947 * driver detach. @pdev must have been enabled with
948 * pcim_enable_device().
949 */
950 void pcim_pin_device(struct pci_dev *pdev)
951 {
952 struct pci_devres *dr;
953
954 dr = find_pci_dr(pdev);
955 WARN_ON(!dr || !dr->enabled);
956 if (dr)
957 dr->pinned = 1;
958 }
959
960 /**
961 * pcibios_disable_device - disable arch specific PCI resources for device dev
962 * @dev: the PCI device to disable
963 *
964 * Disables architecture specific PCI resources for the device. This
965 * is the default implementation. Architecture implementations can
966 * override this.
967 */
968 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
969
970 /**
971 * pci_disable_device - Disable PCI device after use
972 * @dev: PCI device to be disabled
973 *
974 * Signal to the system that the PCI device is not in use by the system
975 * anymore. This only involves disabling PCI bus-mastering, if active.
976 *
977 * Note we don't actually disable the device until all callers of
978 * pci_device_enable() have called pci_device_disable().
979 */
980 void
981 pci_disable_device(struct pci_dev *dev)
982 {
983 struct pci_devres *dr;
984 u16 pci_command;
985
986 dr = find_pci_dr(dev);
987 if (dr)
988 dr->enabled = 0;
989
990 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
991 return;
992
993 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
994 if (pci_command & PCI_COMMAND_MASTER) {
995 pci_command &= ~PCI_COMMAND_MASTER;
996 pci_write_config_word(dev, PCI_COMMAND, pci_command);
997 }
998 dev->is_busmaster = 0;
999
1000 pcibios_disable_device(dev);
1001 }
1002
1003 /**
1004 * pcibios_set_pcie_reset_state - set reset state for device dev
1005 * @dev: the PCI-E device reset
1006 * @state: Reset state to enter into
1007 *
1008 *
1009 * Sets the PCI-E reset state for the device. This is the default
1010 * implementation. Architecture implementations can override this.
1011 */
1012 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1013 enum pcie_reset_state state)
1014 {
1015 return -EINVAL;
1016 }
1017
1018 /**
1019 * pci_set_pcie_reset_state - set reset state for device dev
1020 * @dev: the PCI-E device reset
1021 * @state: Reset state to enter into
1022 *
1023 *
1024 * Sets the PCI reset state for the device.
1025 */
1026 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1027 {
1028 return pcibios_set_pcie_reset_state(dev, state);
1029 }
1030
1031 /**
1032 * pci_pme_capable - check the capability of PCI device to generate PME#
1033 * @dev: PCI device to handle.
1034 * @state: PCI state from which device will issue PME#.
1035 */
1036 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1037 {
1038 if (!dev->pm_cap)
1039 return false;
1040
1041 return !!(dev->pme_support & (1 << state));
1042 }
1043
1044 /**
1045 * pci_pme_active - enable or disable PCI device's PME# function
1046 * @dev: PCI device to handle.
1047 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1048 *
1049 * The caller must verify that the device is capable of generating PME# before
1050 * calling this function with @enable equal to 'true'.
1051 */
1052 void pci_pme_active(struct pci_dev *dev, bool enable)
1053 {
1054 u16 pmcsr;
1055
1056 if (!dev->pm_cap)
1057 return;
1058
1059 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1060 /* Clear PME_Status by writing 1 to it and enable PME# */
1061 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1062 if (!enable)
1063 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1064
1065 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1066
1067 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1068 enable ? "enabled" : "disabled");
1069 }
1070
1071 /**
1072 * pci_enable_wake - enable PCI device as wakeup event source
1073 * @dev: PCI device affected
1074 * @state: PCI state from which device will issue wakeup events
1075 * @enable: True to enable event generation; false to disable
1076 *
1077 * This enables the device as a wakeup event source, or disables it.
1078 * When such events involves platform-specific hooks, those hooks are
1079 * called automatically by this routine.
1080 *
1081 * Devices with legacy power management (no standard PCI PM capabilities)
1082 * always require such platform hooks.
1083 *
1084 * RETURN VALUE:
1085 * 0 is returned on success
1086 * -EINVAL is returned if device is not supposed to wake up the system
1087 * Error code depending on the platform is returned if both the platform and
1088 * the native mechanism fail to enable the generation of wake-up events
1089 */
1090 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1091 {
1092 int error = 0;
1093 bool pme_done = false;
1094
1095 if (enable && !device_may_wakeup(&dev->dev))
1096 return -EINVAL;
1097
1098 /*
1099 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1100 * Anderson we should be doing PME# wake enable followed by ACPI wake
1101 * enable. To disable wake-up we call the platform first, for symmetry.
1102 */
1103
1104 if (!enable && platform_pci_can_wakeup(dev))
1105 error = platform_pci_sleep_wake(dev, false);
1106
1107 if (!enable || pci_pme_capable(dev, state)) {
1108 pci_pme_active(dev, enable);
1109 pme_done = true;
1110 }
1111
1112 if (enable && platform_pci_can_wakeup(dev))
1113 error = platform_pci_sleep_wake(dev, true);
1114
1115 return pme_done ? 0 : error;
1116 }
1117
1118 /**
1119 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1120 * @dev: PCI device to prepare
1121 * @enable: True to enable wake-up event generation; false to disable
1122 *
1123 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1124 * and this function allows them to set that up cleanly - pci_enable_wake()
1125 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1126 * ordering constraints.
1127 *
1128 * This function only returns error code if the device is not capable of
1129 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1130 * enable wake-up power for it.
1131 */
1132 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1133 {
1134 return pci_pme_capable(dev, PCI_D3cold) ?
1135 pci_enable_wake(dev, PCI_D3cold, enable) :
1136 pci_enable_wake(dev, PCI_D3hot, enable);
1137 }
1138
1139 /**
1140 * pci_target_state - find an appropriate low power state for a given PCI dev
1141 * @dev: PCI device
1142 *
1143 * Use underlying platform code to find a supported low power state for @dev.
1144 * If the platform can't manage @dev, return the deepest state from which it
1145 * can generate wake events, based on any available PME info.
1146 */
1147 pci_power_t pci_target_state(struct pci_dev *dev)
1148 {
1149 pci_power_t target_state = PCI_D3hot;
1150
1151 if (platform_pci_power_manageable(dev)) {
1152 /*
1153 * Call the platform to choose the target state of the device
1154 * and enable wake-up from this state if supported.
1155 */
1156 pci_power_t state = platform_pci_choose_state(dev);
1157
1158 switch (state) {
1159 case PCI_POWER_ERROR:
1160 case PCI_UNKNOWN:
1161 break;
1162 case PCI_D1:
1163 case PCI_D2:
1164 if (pci_no_d1d2(dev))
1165 break;
1166 default:
1167 target_state = state;
1168 }
1169 } else if (device_may_wakeup(&dev->dev)) {
1170 /*
1171 * Find the deepest state from which the device can generate
1172 * wake-up events, make it the target state and enable device
1173 * to generate PME#.
1174 */
1175 if (!dev->pm_cap)
1176 return PCI_POWER_ERROR;
1177
1178 if (dev->pme_support) {
1179 while (target_state
1180 && !(dev->pme_support & (1 << target_state)))
1181 target_state--;
1182 }
1183 }
1184
1185 return target_state;
1186 }
1187
1188 /**
1189 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1190 * @dev: Device to handle.
1191 *
1192 * Choose the power state appropriate for the device depending on whether
1193 * it can wake up the system and/or is power manageable by the platform
1194 * (PCI_D3hot is the default) and put the device into that state.
1195 */
1196 int pci_prepare_to_sleep(struct pci_dev *dev)
1197 {
1198 pci_power_t target_state = pci_target_state(dev);
1199 int error;
1200
1201 if (target_state == PCI_POWER_ERROR)
1202 return -EIO;
1203
1204 pci_enable_wake(dev, target_state, true);
1205
1206 error = pci_set_power_state(dev, target_state);
1207
1208 if (error)
1209 pci_enable_wake(dev, target_state, false);
1210
1211 return error;
1212 }
1213
1214 /**
1215 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1216 * @dev: Device to handle.
1217 *
1218 * Disable device's sytem wake-up capability and put it into D0.
1219 */
1220 int pci_back_from_sleep(struct pci_dev *dev)
1221 {
1222 pci_enable_wake(dev, PCI_D0, false);
1223 return pci_set_power_state(dev, PCI_D0);
1224 }
1225
1226 /**
1227 * pci_pm_init - Initialize PM functions of given PCI device
1228 * @dev: PCI device to handle.
1229 */
1230 void pci_pm_init(struct pci_dev *dev)
1231 {
1232 int pm;
1233 u16 pmc;
1234
1235 dev->pm_cap = 0;
1236
1237 /* find PCI PM capability in list */
1238 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1239 if (!pm)
1240 return;
1241 /* Check device's ability to generate PME# */
1242 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1243
1244 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1245 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1246 pmc & PCI_PM_CAP_VER_MASK);
1247 return;
1248 }
1249
1250 dev->pm_cap = pm;
1251
1252 dev->d1_support = false;
1253 dev->d2_support = false;
1254 if (!pci_no_d1d2(dev)) {
1255 if (pmc & PCI_PM_CAP_D1)
1256 dev->d1_support = true;
1257 if (pmc & PCI_PM_CAP_D2)
1258 dev->d2_support = true;
1259
1260 if (dev->d1_support || dev->d2_support)
1261 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1262 dev->d1_support ? " D1" : "",
1263 dev->d2_support ? " D2" : "");
1264 }
1265
1266 pmc &= PCI_PM_CAP_PME_MASK;
1267 if (pmc) {
1268 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1269 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1270 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1271 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1272 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1273 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1274 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1275 /*
1276 * Make device's PM flags reflect the wake-up capability, but
1277 * let the user space enable it to wake up the system as needed.
1278 */
1279 device_set_wakeup_capable(&dev->dev, true);
1280 device_set_wakeup_enable(&dev->dev, false);
1281 /* Disable the PME# generation functionality */
1282 pci_pme_active(dev, false);
1283 } else {
1284 dev->pme_support = 0;
1285 }
1286 }
1287
1288 /**
1289 * pci_add_save_buffer - allocate buffer for saving given capability registers
1290 * @dev: the PCI device
1291 * @cap: the capability to allocate the buffer for
1292 * @size: requested size of the buffer
1293 */
1294 static int pci_add_cap_save_buffer(
1295 struct pci_dev *dev, char cap, unsigned int size)
1296 {
1297 int pos;
1298 struct pci_cap_saved_state *save_state;
1299
1300 pos = pci_find_capability(dev, cap);
1301 if (pos <= 0)
1302 return 0;
1303
1304 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1305 if (!save_state)
1306 return -ENOMEM;
1307
1308 save_state->cap_nr = cap;
1309 pci_add_saved_cap(dev, save_state);
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1316 * @dev: the PCI device
1317 */
1318 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1319 {
1320 int error;
1321
1322 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1323 if (error)
1324 dev_err(&dev->dev,
1325 "unable to preallocate PCI Express save buffer\n");
1326
1327 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1328 if (error)
1329 dev_err(&dev->dev,
1330 "unable to preallocate PCI-X save buffer\n");
1331 }
1332
1333 /**
1334 * pci_enable_ari - enable ARI forwarding if hardware support it
1335 * @dev: the PCI device
1336 */
1337 void pci_enable_ari(struct pci_dev *dev)
1338 {
1339 int pos;
1340 u32 cap;
1341 u16 ctrl;
1342 struct pci_dev *bridge;
1343
1344 if (!dev->is_pcie || dev->devfn)
1345 return;
1346
1347 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1348 if (!pos)
1349 return;
1350
1351 bridge = dev->bus->self;
1352 if (!bridge || !bridge->is_pcie)
1353 return;
1354
1355 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1356 if (!pos)
1357 return;
1358
1359 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1360 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1361 return;
1362
1363 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1364 ctrl |= PCI_EXP_DEVCTL2_ARI;
1365 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1366
1367 bridge->ari_enabled = 1;
1368 }
1369
1370 /**
1371 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1372 * @dev: the PCI device
1373 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1374 *
1375 * Perform INTx swizzling for a device behind one level of bridge. This is
1376 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1377 * behind bridges on add-in cards.
1378 */
1379 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1380 {
1381 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1382 }
1383
1384 int
1385 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1386 {
1387 u8 pin;
1388
1389 pin = dev->pin;
1390 if (!pin)
1391 return -1;
1392
1393 while (dev->bus->self) {
1394 pin = pci_swizzle_interrupt_pin(dev, pin);
1395 dev = dev->bus->self;
1396 }
1397 *bridge = dev;
1398 return pin;
1399 }
1400
1401 /**
1402 * pci_release_region - Release a PCI bar
1403 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1404 * @bar: BAR to release
1405 *
1406 * Releases the PCI I/O and memory resources previously reserved by a
1407 * successful call to pci_request_region. Call this function only
1408 * after all use of the PCI regions has ceased.
1409 */
1410 void pci_release_region(struct pci_dev *pdev, int bar)
1411 {
1412 struct pci_devres *dr;
1413
1414 if (pci_resource_len(pdev, bar) == 0)
1415 return;
1416 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1417 release_region(pci_resource_start(pdev, bar),
1418 pci_resource_len(pdev, bar));
1419 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1420 release_mem_region(pci_resource_start(pdev, bar),
1421 pci_resource_len(pdev, bar));
1422
1423 dr = find_pci_dr(pdev);
1424 if (dr)
1425 dr->region_mask &= ~(1 << bar);
1426 }
1427
1428 /**
1429 * pci_request_region - Reserved PCI I/O and memory resource
1430 * @pdev: PCI device whose resources are to be reserved
1431 * @bar: BAR to be reserved
1432 * @res_name: Name to be associated with resource.
1433 *
1434 * Mark the PCI region associated with PCI device @pdev BR @bar as
1435 * being reserved by owner @res_name. Do not access any
1436 * address inside the PCI regions unless this call returns
1437 * successfully.
1438 *
1439 * Returns 0 on success, or %EBUSY on error. A warning
1440 * message is also printed on failure.
1441 */
1442 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1443 int exclusive)
1444 {
1445 struct pci_devres *dr;
1446
1447 if (pci_resource_len(pdev, bar) == 0)
1448 return 0;
1449
1450 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1451 if (!request_region(pci_resource_start(pdev, bar),
1452 pci_resource_len(pdev, bar), res_name))
1453 goto err_out;
1454 }
1455 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1456 if (!__request_mem_region(pci_resource_start(pdev, bar),
1457 pci_resource_len(pdev, bar), res_name,
1458 exclusive))
1459 goto err_out;
1460 }
1461
1462 dr = find_pci_dr(pdev);
1463 if (dr)
1464 dr->region_mask |= 1 << bar;
1465
1466 return 0;
1467
1468 err_out:
1469 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1470 bar,
1471 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1472 &pdev->resource[bar]);
1473 return -EBUSY;
1474 }
1475
1476 /**
1477 * pci_request_region - Reserved PCI I/O and memory resource
1478 * @pdev: PCI device whose resources are to be reserved
1479 * @bar: BAR to be reserved
1480 * @res_name: Name to be associated with resource.
1481 *
1482 * Mark the PCI region associated with PCI device @pdev BR @bar as
1483 * being reserved by owner @res_name. Do not access any
1484 * address inside the PCI regions unless this call returns
1485 * successfully.
1486 *
1487 * Returns 0 on success, or %EBUSY on error. A warning
1488 * message is also printed on failure.
1489 */
1490 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1491 {
1492 return __pci_request_region(pdev, bar, res_name, 0);
1493 }
1494
1495 /**
1496 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1497 * @pdev: PCI device whose resources are to be reserved
1498 * @bar: BAR to be reserved
1499 * @res_name: Name to be associated with resource.
1500 *
1501 * Mark the PCI region associated with PCI device @pdev BR @bar as
1502 * being reserved by owner @res_name. Do not access any
1503 * address inside the PCI regions unless this call returns
1504 * successfully.
1505 *
1506 * Returns 0 on success, or %EBUSY on error. A warning
1507 * message is also printed on failure.
1508 *
1509 * The key difference that _exclusive makes it that userspace is
1510 * explicitly not allowed to map the resource via /dev/mem or
1511 * sysfs.
1512 */
1513 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1514 {
1515 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1516 }
1517 /**
1518 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1519 * @pdev: PCI device whose resources were previously reserved
1520 * @bars: Bitmask of BARs to be released
1521 *
1522 * Release selected PCI I/O and memory resources previously reserved.
1523 * Call this function only after all use of the PCI regions has ceased.
1524 */
1525 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1526 {
1527 int i;
1528
1529 for (i = 0; i < 6; i++)
1530 if (bars & (1 << i))
1531 pci_release_region(pdev, i);
1532 }
1533
1534 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1535 const char *res_name, int excl)
1536 {
1537 int i;
1538
1539 for (i = 0; i < 6; i++)
1540 if (bars & (1 << i))
1541 if (__pci_request_region(pdev, i, res_name, excl))
1542 goto err_out;
1543 return 0;
1544
1545 err_out:
1546 while(--i >= 0)
1547 if (bars & (1 << i))
1548 pci_release_region(pdev, i);
1549
1550 return -EBUSY;
1551 }
1552
1553
1554 /**
1555 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1556 * @pdev: PCI device whose resources are to be reserved
1557 * @bars: Bitmask of BARs to be requested
1558 * @res_name: Name to be associated with resource
1559 */
1560 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1561 const char *res_name)
1562 {
1563 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1564 }
1565
1566 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1567 int bars, const char *res_name)
1568 {
1569 return __pci_request_selected_regions(pdev, bars, res_name,
1570 IORESOURCE_EXCLUSIVE);
1571 }
1572
1573 /**
1574 * pci_release_regions - Release reserved PCI I/O and memory resources
1575 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1576 *
1577 * Releases all PCI I/O and memory resources previously reserved by a
1578 * successful call to pci_request_regions. Call this function only
1579 * after all use of the PCI regions has ceased.
1580 */
1581
1582 void pci_release_regions(struct pci_dev *pdev)
1583 {
1584 pci_release_selected_regions(pdev, (1 << 6) - 1);
1585 }
1586
1587 /**
1588 * pci_request_regions - Reserved PCI I/O and memory resources
1589 * @pdev: PCI device whose resources are to be reserved
1590 * @res_name: Name to be associated with resource.
1591 *
1592 * Mark all PCI regions associated with PCI device @pdev as
1593 * being reserved by owner @res_name. Do not access any
1594 * address inside the PCI regions unless this call returns
1595 * successfully.
1596 *
1597 * Returns 0 on success, or %EBUSY on error. A warning
1598 * message is also printed on failure.
1599 */
1600 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1601 {
1602 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1603 }
1604
1605 /**
1606 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1607 * @pdev: PCI device whose resources are to be reserved
1608 * @res_name: Name to be associated with resource.
1609 *
1610 * Mark all PCI regions associated with PCI device @pdev as
1611 * being reserved by owner @res_name. Do not access any
1612 * address inside the PCI regions unless this call returns
1613 * successfully.
1614 *
1615 * pci_request_regions_exclusive() will mark the region so that
1616 * /dev/mem and the sysfs MMIO access will not be allowed.
1617 *
1618 * Returns 0 on success, or %EBUSY on error. A warning
1619 * message is also printed on failure.
1620 */
1621 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1622 {
1623 return pci_request_selected_regions_exclusive(pdev,
1624 ((1 << 6) - 1), res_name);
1625 }
1626
1627
1628 /**
1629 * pci_set_master - enables bus-mastering for device dev
1630 * @dev: the PCI device to enable
1631 *
1632 * Enables bus-mastering on the device and calls pcibios_set_master()
1633 * to do the needed arch specific settings.
1634 */
1635 void
1636 pci_set_master(struct pci_dev *dev)
1637 {
1638 u16 cmd;
1639
1640 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1641 if (! (cmd & PCI_COMMAND_MASTER)) {
1642 dev_dbg(&dev->dev, "enabling bus mastering\n");
1643 cmd |= PCI_COMMAND_MASTER;
1644 pci_write_config_word(dev, PCI_COMMAND, cmd);
1645 }
1646 dev->is_busmaster = 1;
1647 pcibios_set_master(dev);
1648 }
1649
1650 #ifdef PCI_DISABLE_MWI
1651 int pci_set_mwi(struct pci_dev *dev)
1652 {
1653 return 0;
1654 }
1655
1656 int pci_try_set_mwi(struct pci_dev *dev)
1657 {
1658 return 0;
1659 }
1660
1661 void pci_clear_mwi(struct pci_dev *dev)
1662 {
1663 }
1664
1665 #else
1666
1667 #ifndef PCI_CACHE_LINE_BYTES
1668 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1669 #endif
1670
1671 /* This can be overridden by arch code. */
1672 /* Don't forget this is measured in 32-bit words, not bytes */
1673 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1674
1675 /**
1676 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1677 * @dev: the PCI device for which MWI is to be enabled
1678 *
1679 * Helper function for pci_set_mwi.
1680 * Originally copied from drivers/net/acenic.c.
1681 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1682 *
1683 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1684 */
1685 static int
1686 pci_set_cacheline_size(struct pci_dev *dev)
1687 {
1688 u8 cacheline_size;
1689
1690 if (!pci_cache_line_size)
1691 return -EINVAL; /* The system doesn't support MWI. */
1692
1693 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1694 equal to or multiple of the right value. */
1695 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1696 if (cacheline_size >= pci_cache_line_size &&
1697 (cacheline_size % pci_cache_line_size) == 0)
1698 return 0;
1699
1700 /* Write the correct value. */
1701 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1702 /* Read it back. */
1703 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1704 if (cacheline_size == pci_cache_line_size)
1705 return 0;
1706
1707 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1708 "supported\n", pci_cache_line_size << 2);
1709
1710 return -EINVAL;
1711 }
1712
1713 /**
1714 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1715 * @dev: the PCI device for which MWI is enabled
1716 *
1717 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1718 *
1719 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1720 */
1721 int
1722 pci_set_mwi(struct pci_dev *dev)
1723 {
1724 int rc;
1725 u16 cmd;
1726
1727 rc = pci_set_cacheline_size(dev);
1728 if (rc)
1729 return rc;
1730
1731 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1732 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1733 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1734 cmd |= PCI_COMMAND_INVALIDATE;
1735 pci_write_config_word(dev, PCI_COMMAND, cmd);
1736 }
1737
1738 return 0;
1739 }
1740
1741 /**
1742 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1743 * @dev: the PCI device for which MWI is enabled
1744 *
1745 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1746 * Callers are not required to check the return value.
1747 *
1748 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1749 */
1750 int pci_try_set_mwi(struct pci_dev *dev)
1751 {
1752 int rc = pci_set_mwi(dev);
1753 return rc;
1754 }
1755
1756 /**
1757 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1758 * @dev: the PCI device to disable
1759 *
1760 * Disables PCI Memory-Write-Invalidate transaction on the device
1761 */
1762 void
1763 pci_clear_mwi(struct pci_dev *dev)
1764 {
1765 u16 cmd;
1766
1767 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1768 if (cmd & PCI_COMMAND_INVALIDATE) {
1769 cmd &= ~PCI_COMMAND_INVALIDATE;
1770 pci_write_config_word(dev, PCI_COMMAND, cmd);
1771 }
1772 }
1773 #endif /* ! PCI_DISABLE_MWI */
1774
1775 /**
1776 * pci_intx - enables/disables PCI INTx for device dev
1777 * @pdev: the PCI device to operate on
1778 * @enable: boolean: whether to enable or disable PCI INTx
1779 *
1780 * Enables/disables PCI INTx for device dev
1781 */
1782 void
1783 pci_intx(struct pci_dev *pdev, int enable)
1784 {
1785 u16 pci_command, new;
1786
1787 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1788
1789 if (enable) {
1790 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1791 } else {
1792 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1793 }
1794
1795 if (new != pci_command) {
1796 struct pci_devres *dr;
1797
1798 pci_write_config_word(pdev, PCI_COMMAND, new);
1799
1800 dr = find_pci_dr(pdev);
1801 if (dr && !dr->restore_intx) {
1802 dr->restore_intx = 1;
1803 dr->orig_intx = !enable;
1804 }
1805 }
1806 }
1807
1808 /**
1809 * pci_msi_off - disables any msi or msix capabilities
1810 * @dev: the PCI device to operate on
1811 *
1812 * If you want to use msi see pci_enable_msi and friends.
1813 * This is a lower level primitive that allows us to disable
1814 * msi operation at the device level.
1815 */
1816 void pci_msi_off(struct pci_dev *dev)
1817 {
1818 int pos;
1819 u16 control;
1820
1821 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1822 if (pos) {
1823 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1824 control &= ~PCI_MSI_FLAGS_ENABLE;
1825 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1826 }
1827 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1828 if (pos) {
1829 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1830 control &= ~PCI_MSIX_FLAGS_ENABLE;
1831 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1832 }
1833 }
1834
1835 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1836 /*
1837 * These can be overridden by arch-specific implementations
1838 */
1839 int
1840 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1841 {
1842 if (!pci_dma_supported(dev, mask))
1843 return -EIO;
1844
1845 dev->dma_mask = mask;
1846
1847 return 0;
1848 }
1849
1850 int
1851 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1852 {
1853 if (!pci_dma_supported(dev, mask))
1854 return -EIO;
1855
1856 dev->dev.coherent_dma_mask = mask;
1857
1858 return 0;
1859 }
1860 #endif
1861
1862 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1863 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1864 {
1865 return dma_set_max_seg_size(&dev->dev, size);
1866 }
1867 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1868 #endif
1869
1870 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1871 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1872 {
1873 return dma_set_seg_boundary(&dev->dev, mask);
1874 }
1875 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1876 #endif
1877
1878 static int __pcie_flr(struct pci_dev *dev, int probe)
1879 {
1880 u16 status;
1881 u32 cap;
1882 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
1883
1884 if (!exppos)
1885 return -ENOTTY;
1886 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
1887 if (!(cap & PCI_EXP_DEVCAP_FLR))
1888 return -ENOTTY;
1889
1890 if (probe)
1891 return 0;
1892
1893 pci_block_user_cfg_access(dev);
1894
1895 /* Wait for Transaction Pending bit clean */
1896 msleep(100);
1897 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1898 if (status & PCI_EXP_DEVSTA_TRPND) {
1899 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
1900 "sleeping for 1 second\n");
1901 ssleep(1);
1902 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1903 if (status & PCI_EXP_DEVSTA_TRPND)
1904 dev_info(&dev->dev, "Still busy after 1s; "
1905 "proceeding with reset anyway\n");
1906 }
1907
1908 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
1909 PCI_EXP_DEVCTL_BCR_FLR);
1910 mdelay(100);
1911
1912 pci_unblock_user_cfg_access(dev);
1913 return 0;
1914 }
1915
1916 static int __pci_af_flr(struct pci_dev *dev, int probe)
1917 {
1918 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
1919 u8 status;
1920 u8 cap;
1921
1922 if (!cappos)
1923 return -ENOTTY;
1924 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
1925 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
1926 return -ENOTTY;
1927
1928 if (probe)
1929 return 0;
1930
1931 pci_block_user_cfg_access(dev);
1932
1933 /* Wait for Transaction Pending bit clean */
1934 msleep(100);
1935 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
1936 if (status & PCI_AF_STATUS_TP) {
1937 dev_info(&dev->dev, "Busy after 100ms while trying to"
1938 " reset; sleeping for 1 second\n");
1939 ssleep(1);
1940 pci_read_config_byte(dev,
1941 cappos + PCI_AF_STATUS, &status);
1942 if (status & PCI_AF_STATUS_TP)
1943 dev_info(&dev->dev, "Still busy after 1s; "
1944 "proceeding with reset anyway\n");
1945 }
1946 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
1947 mdelay(100);
1948
1949 pci_unblock_user_cfg_access(dev);
1950 return 0;
1951 }
1952
1953 static int __pci_reset_function(struct pci_dev *pdev, int probe)
1954 {
1955 int res;
1956
1957 res = __pcie_flr(pdev, probe);
1958 if (res != -ENOTTY)
1959 return res;
1960
1961 res = __pci_af_flr(pdev, probe);
1962 if (res != -ENOTTY)
1963 return res;
1964
1965 return res;
1966 }
1967
1968 /**
1969 * pci_execute_reset_function() - Reset a PCI device function
1970 * @dev: Device function to reset
1971 *
1972 * Some devices allow an individual function to be reset without affecting
1973 * other functions in the same device. The PCI device must be responsive
1974 * to PCI config space in order to use this function.
1975 *
1976 * The device function is presumed to be unused when this function is called.
1977 * Resetting the device will make the contents of PCI configuration space
1978 * random, so any caller of this must be prepared to reinitialise the
1979 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
1980 * etc.
1981 *
1982 * Returns 0 if the device function was successfully reset or -ENOTTY if the
1983 * device doesn't support resetting a single function.
1984 */
1985 int pci_execute_reset_function(struct pci_dev *dev)
1986 {
1987 return __pci_reset_function(dev, 0);
1988 }
1989 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
1990
1991 /**
1992 * pci_reset_function() - quiesce and reset a PCI device function
1993 * @dev: Device function to reset
1994 *
1995 * Some devices allow an individual function to be reset without affecting
1996 * other functions in the same device. The PCI device must be responsive
1997 * to PCI config space in order to use this function.
1998 *
1999 * This function does not just reset the PCI portion of a device, but
2000 * clears all the state associated with the device. This function differs
2001 * from pci_execute_reset_function in that it saves and restores device state
2002 * over the reset.
2003 *
2004 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2005 * device doesn't support resetting a single function.
2006 */
2007 int pci_reset_function(struct pci_dev *dev)
2008 {
2009 int r = __pci_reset_function(dev, 1);
2010
2011 if (r < 0)
2012 return r;
2013
2014 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2015 disable_irq(dev->irq);
2016 pci_save_state(dev);
2017
2018 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2019
2020 r = pci_execute_reset_function(dev);
2021
2022 pci_restore_state(dev);
2023 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2024 enable_irq(dev->irq);
2025
2026 return r;
2027 }
2028 EXPORT_SYMBOL_GPL(pci_reset_function);
2029
2030 /**
2031 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2032 * @dev: PCI device to query
2033 *
2034 * Returns mmrbc: maximum designed memory read count in bytes
2035 * or appropriate error value.
2036 */
2037 int pcix_get_max_mmrbc(struct pci_dev *dev)
2038 {
2039 int err, cap;
2040 u32 stat;
2041
2042 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2043 if (!cap)
2044 return -EINVAL;
2045
2046 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2047 if (err)
2048 return -EINVAL;
2049
2050 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2051 }
2052 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2053
2054 /**
2055 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2056 * @dev: PCI device to query
2057 *
2058 * Returns mmrbc: maximum memory read count in bytes
2059 * or appropriate error value.
2060 */
2061 int pcix_get_mmrbc(struct pci_dev *dev)
2062 {
2063 int ret, cap;
2064 u32 cmd;
2065
2066 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2067 if (!cap)
2068 return -EINVAL;
2069
2070 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2071 if (!ret)
2072 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2073
2074 return ret;
2075 }
2076 EXPORT_SYMBOL(pcix_get_mmrbc);
2077
2078 /**
2079 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2080 * @dev: PCI device to query
2081 * @mmrbc: maximum memory read count in bytes
2082 * valid values are 512, 1024, 2048, 4096
2083 *
2084 * If possible sets maximum memory read byte count, some bridges have erratas
2085 * that prevent this.
2086 */
2087 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2088 {
2089 int cap, err = -EINVAL;
2090 u32 stat, cmd, v, o;
2091
2092 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2093 goto out;
2094
2095 v = ffs(mmrbc) - 10;
2096
2097 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2098 if (!cap)
2099 goto out;
2100
2101 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2102 if (err)
2103 goto out;
2104
2105 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2106 return -E2BIG;
2107
2108 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2109 if (err)
2110 goto out;
2111
2112 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2113 if (o != v) {
2114 if (v > o && dev->bus &&
2115 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2116 return -EIO;
2117
2118 cmd &= ~PCI_X_CMD_MAX_READ;
2119 cmd |= v << 2;
2120 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2121 }
2122 out:
2123 return err;
2124 }
2125 EXPORT_SYMBOL(pcix_set_mmrbc);
2126
2127 /**
2128 * pcie_get_readrq - get PCI Express read request size
2129 * @dev: PCI device to query
2130 *
2131 * Returns maximum memory read request in bytes
2132 * or appropriate error value.
2133 */
2134 int pcie_get_readrq(struct pci_dev *dev)
2135 {
2136 int ret, cap;
2137 u16 ctl;
2138
2139 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2140 if (!cap)
2141 return -EINVAL;
2142
2143 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2144 if (!ret)
2145 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2146
2147 return ret;
2148 }
2149 EXPORT_SYMBOL(pcie_get_readrq);
2150
2151 /**
2152 * pcie_set_readrq - set PCI Express maximum memory read request
2153 * @dev: PCI device to query
2154 * @rq: maximum memory read count in bytes
2155 * valid values are 128, 256, 512, 1024, 2048, 4096
2156 *
2157 * If possible sets maximum read byte count
2158 */
2159 int pcie_set_readrq(struct pci_dev *dev, int rq)
2160 {
2161 int cap, err = -EINVAL;
2162 u16 ctl, v;
2163
2164 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2165 goto out;
2166
2167 v = (ffs(rq) - 8) << 12;
2168
2169 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2170 if (!cap)
2171 goto out;
2172
2173 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2174 if (err)
2175 goto out;
2176
2177 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2178 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2179 ctl |= v;
2180 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2181 }
2182
2183 out:
2184 return err;
2185 }
2186 EXPORT_SYMBOL(pcie_set_readrq);
2187
2188 /**
2189 * pci_select_bars - Make BAR mask from the type of resource
2190 * @dev: the PCI device for which BAR mask is made
2191 * @flags: resource type mask to be selected
2192 *
2193 * This helper routine makes bar mask from the type of resource.
2194 */
2195 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2196 {
2197 int i, bars = 0;
2198 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2199 if (pci_resource_flags(dev, i) & flags)
2200 bars |= (1 << i);
2201 return bars;
2202 }
2203
2204 /**
2205 * pci_resource_bar - get position of the BAR associated with a resource
2206 * @dev: the PCI device
2207 * @resno: the resource number
2208 * @type: the BAR type to be filled in
2209 *
2210 * Returns BAR position in config space, or 0 if the BAR is invalid.
2211 */
2212 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2213 {
2214 if (resno < PCI_ROM_RESOURCE) {
2215 *type = pci_bar_unknown;
2216 return PCI_BASE_ADDRESS_0 + 4 * resno;
2217 } else if (resno == PCI_ROM_RESOURCE) {
2218 *type = pci_bar_mem32;
2219 return dev->rom_base_reg;
2220 }
2221
2222 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2223 return 0;
2224 }
2225
2226 static void __devinit pci_no_domains(void)
2227 {
2228 #ifdef CONFIG_PCI_DOMAINS
2229 pci_domains_supported = 0;
2230 #endif
2231 }
2232
2233 /**
2234 * pci_ext_cfg_enabled - can we access extended PCI config space?
2235 * @dev: The PCI device of the root bridge.
2236 *
2237 * Returns 1 if we can access PCI extended config space (offsets
2238 * greater than 0xff). This is the default implementation. Architecture
2239 * implementations can override this.
2240 */
2241 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2242 {
2243 return 1;
2244 }
2245
2246 static int __devinit pci_init(void)
2247 {
2248 struct pci_dev *dev = NULL;
2249
2250 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2251 pci_fixup_device(pci_fixup_final, dev);
2252 }
2253
2254 return 0;
2255 }
2256
2257 static int __init pci_setup(char *str)
2258 {
2259 while (str) {
2260 char *k = strchr(str, ',');
2261 if (k)
2262 *k++ = 0;
2263 if (*str && (str = pcibios_setup(str)) && *str) {
2264 if (!strcmp(str, "nomsi")) {
2265 pci_no_msi();
2266 } else if (!strcmp(str, "noaer")) {
2267 pci_no_aer();
2268 } else if (!strcmp(str, "nodomains")) {
2269 pci_no_domains();
2270 } else if (!strncmp(str, "cbiosize=", 9)) {
2271 pci_cardbus_io_size = memparse(str + 9, &str);
2272 } else if (!strncmp(str, "cbmemsize=", 10)) {
2273 pci_cardbus_mem_size = memparse(str + 10, &str);
2274 } else {
2275 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2276 str);
2277 }
2278 }
2279 str = k;
2280 }
2281 return 0;
2282 }
2283 early_param("pci", pci_setup);
2284
2285 device_initcall(pci_init);
2286
2287 EXPORT_SYMBOL(pci_reenable_device);
2288 EXPORT_SYMBOL(pci_enable_device_io);
2289 EXPORT_SYMBOL(pci_enable_device_mem);
2290 EXPORT_SYMBOL(pci_enable_device);
2291 EXPORT_SYMBOL(pcim_enable_device);
2292 EXPORT_SYMBOL(pcim_pin_device);
2293 EXPORT_SYMBOL(pci_disable_device);
2294 EXPORT_SYMBOL(pci_find_capability);
2295 EXPORT_SYMBOL(pci_bus_find_capability);
2296 EXPORT_SYMBOL(pci_release_regions);
2297 EXPORT_SYMBOL(pci_request_regions);
2298 EXPORT_SYMBOL(pci_request_regions_exclusive);
2299 EXPORT_SYMBOL(pci_release_region);
2300 EXPORT_SYMBOL(pci_request_region);
2301 EXPORT_SYMBOL(pci_request_region_exclusive);
2302 EXPORT_SYMBOL(pci_release_selected_regions);
2303 EXPORT_SYMBOL(pci_request_selected_regions);
2304 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2305 EXPORT_SYMBOL(pci_set_master);
2306 EXPORT_SYMBOL(pci_set_mwi);
2307 EXPORT_SYMBOL(pci_try_set_mwi);
2308 EXPORT_SYMBOL(pci_clear_mwi);
2309 EXPORT_SYMBOL_GPL(pci_intx);
2310 EXPORT_SYMBOL(pci_set_dma_mask);
2311 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2312 EXPORT_SYMBOL(pci_assign_resource);
2313 EXPORT_SYMBOL(pci_find_parent_resource);
2314 EXPORT_SYMBOL(pci_select_bars);
2315
2316 EXPORT_SYMBOL(pci_set_power_state);
2317 EXPORT_SYMBOL(pci_save_state);
2318 EXPORT_SYMBOL(pci_restore_state);
2319 EXPORT_SYMBOL(pci_pme_capable);
2320 EXPORT_SYMBOL(pci_pme_active);
2321 EXPORT_SYMBOL(pci_enable_wake);
2322 EXPORT_SYMBOL(pci_wake_from_d3);
2323 EXPORT_SYMBOL(pci_target_state);
2324 EXPORT_SYMBOL(pci_prepare_to_sleep);
2325 EXPORT_SYMBOL(pci_back_from_sleep);
2326 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2327
This page took 0.080132 seconds and 5 git commands to generate.