Merge tag 'sunxi-fixes-for-4.0' of https://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include "pci.h"
31
32 const char *pci_power_names[] = {
33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42
43 unsigned int pci_pm_d3_delay;
44
45 static void pci_pme_list_scan(struct work_struct *work);
46
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50
51 struct pci_pme_device {
52 struct list_head list;
53 struct pci_dev *dev;
54 };
55
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57
58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 unsigned int delay = dev->d3_delay;
61
62 if (delay < pci_pm_d3_delay)
63 delay = pci_pm_d3_delay;
64
65 msleep(delay);
66 }
67
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71
72 #define DEFAULT_CARDBUS_IO_SIZE (256)
73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77
78 #define DEFAULT_HOTPLUG_IO_SIZE (256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85
86 /*
87 * The default CLS is used if arch didn't set CLS explicitly and not
88 * all pci devices agree on the same value. Arch can override either
89 * the dfl or actual value as it sees fit. Don't forget this is
90 * measured in 32-bit words, not bytes.
91 */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94
95 /*
96 * If we set up a device for bus mastering, we need to check the latency
97 * timer as certain BIOSes forget to set it properly.
98 */
99 unsigned int pcibios_max_latency = 255;
100
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103
104 /**
105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106 * @bus: pointer to PCI bus structure to search
107 *
108 * Given a PCI bus, returns the highest PCI bus number present in the set
109 * including the given PCI bus and its list of child PCI buses.
110 */
111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 struct pci_bus *tmp;
114 unsigned char max, n;
115
116 max = bus->busn_res.end;
117 list_for_each_entry(tmp, &bus->children, node) {
118 n = pci_bus_max_busnr(tmp);
119 if (n > max)
120 max = n;
121 }
122 return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 /*
130 * Make sure the BAR is actually a memory resource, not an IO resource
131 */
132 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
133 WARN_ON(1);
134 return NULL;
135 }
136 return ioremap_nocache(pci_resource_start(pdev, bar),
137 pci_resource_len(pdev, bar));
138 }
139 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
140 #endif
141
142 #define PCI_FIND_CAP_TTL 48
143
144 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
145 u8 pos, int cap, int *ttl)
146 {
147 u8 id;
148
149 while ((*ttl)--) {
150 pci_bus_read_config_byte(bus, devfn, pos, &pos);
151 if (pos < 0x40)
152 break;
153 pos &= ~3;
154 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
155 &id);
156 if (id == 0xff)
157 break;
158 if (id == cap)
159 return pos;
160 pos += PCI_CAP_LIST_NEXT;
161 }
162 return 0;
163 }
164
165 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
166 u8 pos, int cap)
167 {
168 int ttl = PCI_FIND_CAP_TTL;
169
170 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
171 }
172
173 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
174 {
175 return __pci_find_next_cap(dev->bus, dev->devfn,
176 pos + PCI_CAP_LIST_NEXT, cap);
177 }
178 EXPORT_SYMBOL_GPL(pci_find_next_capability);
179
180 static int __pci_bus_find_cap_start(struct pci_bus *bus,
181 unsigned int devfn, u8 hdr_type)
182 {
183 u16 status;
184
185 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
186 if (!(status & PCI_STATUS_CAP_LIST))
187 return 0;
188
189 switch (hdr_type) {
190 case PCI_HEADER_TYPE_NORMAL:
191 case PCI_HEADER_TYPE_BRIDGE:
192 return PCI_CAPABILITY_LIST;
193 case PCI_HEADER_TYPE_CARDBUS:
194 return PCI_CB_CAPABILITY_LIST;
195 default:
196 return 0;
197 }
198
199 return 0;
200 }
201
202 /**
203 * pci_find_capability - query for devices' capabilities
204 * @dev: PCI device to query
205 * @cap: capability code
206 *
207 * Tell if a device supports a given PCI capability.
208 * Returns the address of the requested capability structure within the
209 * device's PCI configuration space or 0 in case the device does not
210 * support it. Possible values for @cap:
211 *
212 * %PCI_CAP_ID_PM Power Management
213 * %PCI_CAP_ID_AGP Accelerated Graphics Port
214 * %PCI_CAP_ID_VPD Vital Product Data
215 * %PCI_CAP_ID_SLOTID Slot Identification
216 * %PCI_CAP_ID_MSI Message Signalled Interrupts
217 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
218 * %PCI_CAP_ID_PCIX PCI-X
219 * %PCI_CAP_ID_EXP PCI Express
220 */
221 int pci_find_capability(struct pci_dev *dev, int cap)
222 {
223 int pos;
224
225 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
226 if (pos)
227 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
228
229 return pos;
230 }
231 EXPORT_SYMBOL(pci_find_capability);
232
233 /**
234 * pci_bus_find_capability - query for devices' capabilities
235 * @bus: the PCI bus to query
236 * @devfn: PCI device to query
237 * @cap: capability code
238 *
239 * Like pci_find_capability() but works for pci devices that do not have a
240 * pci_dev structure set up yet.
241 *
242 * Returns the address of the requested capability structure within the
243 * device's PCI configuration space or 0 in case the device does not
244 * support it.
245 */
246 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
247 {
248 int pos;
249 u8 hdr_type;
250
251 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
252
253 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
254 if (pos)
255 pos = __pci_find_next_cap(bus, devfn, pos, cap);
256
257 return pos;
258 }
259 EXPORT_SYMBOL(pci_bus_find_capability);
260
261 /**
262 * pci_find_next_ext_capability - Find an extended capability
263 * @dev: PCI device to query
264 * @start: address at which to start looking (0 to start at beginning of list)
265 * @cap: capability code
266 *
267 * Returns the address of the next matching extended capability structure
268 * within the device's PCI configuration space or 0 if the device does
269 * not support it. Some capabilities can occur several times, e.g., the
270 * vendor-specific capability, and this provides a way to find them all.
271 */
272 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
273 {
274 u32 header;
275 int ttl;
276 int pos = PCI_CFG_SPACE_SIZE;
277
278 /* minimum 8 bytes per capability */
279 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
280
281 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
282 return 0;
283
284 if (start)
285 pos = start;
286
287 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
288 return 0;
289
290 /*
291 * If we have no capabilities, this is indicated by cap ID,
292 * cap version and next pointer all being 0.
293 */
294 if (header == 0)
295 return 0;
296
297 while (ttl-- > 0) {
298 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
299 return pos;
300
301 pos = PCI_EXT_CAP_NEXT(header);
302 if (pos < PCI_CFG_SPACE_SIZE)
303 break;
304
305 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
306 break;
307 }
308
309 return 0;
310 }
311 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
312
313 /**
314 * pci_find_ext_capability - Find an extended capability
315 * @dev: PCI device to query
316 * @cap: capability code
317 *
318 * Returns the address of the requested extended capability structure
319 * within the device's PCI configuration space or 0 if the device does
320 * not support it. Possible values for @cap:
321 *
322 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
323 * %PCI_EXT_CAP_ID_VC Virtual Channel
324 * %PCI_EXT_CAP_ID_DSN Device Serial Number
325 * %PCI_EXT_CAP_ID_PWR Power Budgeting
326 */
327 int pci_find_ext_capability(struct pci_dev *dev, int cap)
328 {
329 return pci_find_next_ext_capability(dev, 0, cap);
330 }
331 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
332
333 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
334 {
335 int rc, ttl = PCI_FIND_CAP_TTL;
336 u8 cap, mask;
337
338 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
339 mask = HT_3BIT_CAP_MASK;
340 else
341 mask = HT_5BIT_CAP_MASK;
342
343 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
344 PCI_CAP_ID_HT, &ttl);
345 while (pos) {
346 rc = pci_read_config_byte(dev, pos + 3, &cap);
347 if (rc != PCIBIOS_SUCCESSFUL)
348 return 0;
349
350 if ((cap & mask) == ht_cap)
351 return pos;
352
353 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
354 pos + PCI_CAP_LIST_NEXT,
355 PCI_CAP_ID_HT, &ttl);
356 }
357
358 return 0;
359 }
360 /**
361 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
362 * @dev: PCI device to query
363 * @pos: Position from which to continue searching
364 * @ht_cap: Hypertransport capability code
365 *
366 * To be used in conjunction with pci_find_ht_capability() to search for
367 * all capabilities matching @ht_cap. @pos should always be a value returned
368 * from pci_find_ht_capability().
369 *
370 * NB. To be 100% safe against broken PCI devices, the caller should take
371 * steps to avoid an infinite loop.
372 */
373 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
374 {
375 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
376 }
377 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
378
379 /**
380 * pci_find_ht_capability - query a device's Hypertransport capabilities
381 * @dev: PCI device to query
382 * @ht_cap: Hypertransport capability code
383 *
384 * Tell if a device supports a given Hypertransport capability.
385 * Returns an address within the device's PCI configuration space
386 * or 0 in case the device does not support the request capability.
387 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
388 * which has a Hypertransport capability matching @ht_cap.
389 */
390 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
391 {
392 int pos;
393
394 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
395 if (pos)
396 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
397
398 return pos;
399 }
400 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
401
402 /**
403 * pci_find_parent_resource - return resource region of parent bus of given region
404 * @dev: PCI device structure contains resources to be searched
405 * @res: child resource record for which parent is sought
406 *
407 * For given resource region of given device, return the resource
408 * region of parent bus the given region is contained in.
409 */
410 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
411 struct resource *res)
412 {
413 const struct pci_bus *bus = dev->bus;
414 struct resource *r;
415 int i;
416
417 pci_bus_for_each_resource(bus, r, i) {
418 if (!r)
419 continue;
420 if (res->start && resource_contains(r, res)) {
421
422 /*
423 * If the window is prefetchable but the BAR is
424 * not, the allocator made a mistake.
425 */
426 if (r->flags & IORESOURCE_PREFETCH &&
427 !(res->flags & IORESOURCE_PREFETCH))
428 return NULL;
429
430 /*
431 * If we're below a transparent bridge, there may
432 * be both a positively-decoded aperture and a
433 * subtractively-decoded region that contain the BAR.
434 * We want the positively-decoded one, so this depends
435 * on pci_bus_for_each_resource() giving us those
436 * first.
437 */
438 return r;
439 }
440 }
441 return NULL;
442 }
443 EXPORT_SYMBOL(pci_find_parent_resource);
444
445 /**
446 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
447 * @dev: the PCI device to operate on
448 * @pos: config space offset of status word
449 * @mask: mask of bit(s) to care about in status word
450 *
451 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
452 */
453 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
454 {
455 int i;
456
457 /* Wait for Transaction Pending bit clean */
458 for (i = 0; i < 4; i++) {
459 u16 status;
460 if (i)
461 msleep((1 << (i - 1)) * 100);
462
463 pci_read_config_word(dev, pos, &status);
464 if (!(status & mask))
465 return 1;
466 }
467
468 return 0;
469 }
470
471 /**
472 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
473 * @dev: PCI device to have its BARs restored
474 *
475 * Restore the BAR values for a given device, so as to make it
476 * accessible by its driver.
477 */
478 static void pci_restore_bars(struct pci_dev *dev)
479 {
480 int i;
481
482 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
483 pci_update_resource(dev, i);
484 }
485
486 static struct pci_platform_pm_ops *pci_platform_pm;
487
488 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
489 {
490 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
491 || !ops->sleep_wake)
492 return -EINVAL;
493 pci_platform_pm = ops;
494 return 0;
495 }
496
497 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
498 {
499 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
500 }
501
502 static inline int platform_pci_set_power_state(struct pci_dev *dev,
503 pci_power_t t)
504 {
505 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
506 }
507
508 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
509 {
510 return pci_platform_pm ?
511 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
512 }
513
514 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
515 {
516 return pci_platform_pm ?
517 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
518 }
519
520 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
521 {
522 return pci_platform_pm ?
523 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
524 }
525
526 static inline bool platform_pci_need_resume(struct pci_dev *dev)
527 {
528 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
529 }
530
531 /**
532 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
533 * given PCI device
534 * @dev: PCI device to handle.
535 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
536 *
537 * RETURN VALUE:
538 * -EINVAL if the requested state is invalid.
539 * -EIO if device does not support PCI PM or its PM capabilities register has a
540 * wrong version, or device doesn't support the requested state.
541 * 0 if device already is in the requested state.
542 * 0 if device's power state has been successfully changed.
543 */
544 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
545 {
546 u16 pmcsr;
547 bool need_restore = false;
548
549 /* Check if we're already there */
550 if (dev->current_state == state)
551 return 0;
552
553 if (!dev->pm_cap)
554 return -EIO;
555
556 if (state < PCI_D0 || state > PCI_D3hot)
557 return -EINVAL;
558
559 /* Validate current state:
560 * Can enter D0 from any state, but if we can only go deeper
561 * to sleep if we're already in a low power state
562 */
563 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
564 && dev->current_state > state) {
565 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
566 dev->current_state, state);
567 return -EINVAL;
568 }
569
570 /* check if this device supports the desired state */
571 if ((state == PCI_D1 && !dev->d1_support)
572 || (state == PCI_D2 && !dev->d2_support))
573 return -EIO;
574
575 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
576
577 /* If we're (effectively) in D3, force entire word to 0.
578 * This doesn't affect PME_Status, disables PME_En, and
579 * sets PowerState to 0.
580 */
581 switch (dev->current_state) {
582 case PCI_D0:
583 case PCI_D1:
584 case PCI_D2:
585 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
586 pmcsr |= state;
587 break;
588 case PCI_D3hot:
589 case PCI_D3cold:
590 case PCI_UNKNOWN: /* Boot-up */
591 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
592 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
593 need_restore = true;
594 /* Fall-through: force to D0 */
595 default:
596 pmcsr = 0;
597 break;
598 }
599
600 /* enter specified state */
601 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
602
603 /* Mandatory power management transition delays */
604 /* see PCI PM 1.1 5.6.1 table 18 */
605 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
606 pci_dev_d3_sleep(dev);
607 else if (state == PCI_D2 || dev->current_state == PCI_D2)
608 udelay(PCI_PM_D2_DELAY);
609
610 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
611 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
612 if (dev->current_state != state && printk_ratelimit())
613 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
614 dev->current_state);
615
616 /*
617 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
618 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
619 * from D3hot to D0 _may_ perform an internal reset, thereby
620 * going to "D0 Uninitialized" rather than "D0 Initialized".
621 * For example, at least some versions of the 3c905B and the
622 * 3c556B exhibit this behaviour.
623 *
624 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
625 * devices in a D3hot state at boot. Consequently, we need to
626 * restore at least the BARs so that the device will be
627 * accessible to its driver.
628 */
629 if (need_restore)
630 pci_restore_bars(dev);
631
632 if (dev->bus->self)
633 pcie_aspm_pm_state_change(dev->bus->self);
634
635 return 0;
636 }
637
638 /**
639 * pci_update_current_state - Read PCI power state of given device from its
640 * PCI PM registers and cache it
641 * @dev: PCI device to handle.
642 * @state: State to cache in case the device doesn't have the PM capability
643 */
644 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
645 {
646 if (dev->pm_cap) {
647 u16 pmcsr;
648
649 /*
650 * Configuration space is not accessible for device in
651 * D3cold, so just keep or set D3cold for safety
652 */
653 if (dev->current_state == PCI_D3cold)
654 return;
655 if (state == PCI_D3cold) {
656 dev->current_state = PCI_D3cold;
657 return;
658 }
659 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
660 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
661 } else {
662 dev->current_state = state;
663 }
664 }
665
666 /**
667 * pci_power_up - Put the given device into D0 forcibly
668 * @dev: PCI device to power up
669 */
670 void pci_power_up(struct pci_dev *dev)
671 {
672 if (platform_pci_power_manageable(dev))
673 platform_pci_set_power_state(dev, PCI_D0);
674
675 pci_raw_set_power_state(dev, PCI_D0);
676 pci_update_current_state(dev, PCI_D0);
677 }
678
679 /**
680 * pci_platform_power_transition - Use platform to change device power state
681 * @dev: PCI device to handle.
682 * @state: State to put the device into.
683 */
684 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
685 {
686 int error;
687
688 if (platform_pci_power_manageable(dev)) {
689 error = platform_pci_set_power_state(dev, state);
690 if (!error)
691 pci_update_current_state(dev, state);
692 } else
693 error = -ENODEV;
694
695 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
696 dev->current_state = PCI_D0;
697
698 return error;
699 }
700
701 /**
702 * pci_wakeup - Wake up a PCI device
703 * @pci_dev: Device to handle.
704 * @ign: ignored parameter
705 */
706 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
707 {
708 pci_wakeup_event(pci_dev);
709 pm_request_resume(&pci_dev->dev);
710 return 0;
711 }
712
713 /**
714 * pci_wakeup_bus - Walk given bus and wake up devices on it
715 * @bus: Top bus of the subtree to walk.
716 */
717 static void pci_wakeup_bus(struct pci_bus *bus)
718 {
719 if (bus)
720 pci_walk_bus(bus, pci_wakeup, NULL);
721 }
722
723 /**
724 * __pci_start_power_transition - Start power transition of a PCI device
725 * @dev: PCI device to handle.
726 * @state: State to put the device into.
727 */
728 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
729 {
730 if (state == PCI_D0) {
731 pci_platform_power_transition(dev, PCI_D0);
732 /*
733 * Mandatory power management transition delays, see
734 * PCI Express Base Specification Revision 2.0 Section
735 * 6.6.1: Conventional Reset. Do not delay for
736 * devices powered on/off by corresponding bridge,
737 * because have already delayed for the bridge.
738 */
739 if (dev->runtime_d3cold) {
740 msleep(dev->d3cold_delay);
741 /*
742 * When powering on a bridge from D3cold, the
743 * whole hierarchy may be powered on into
744 * D0uninitialized state, resume them to give
745 * them a chance to suspend again
746 */
747 pci_wakeup_bus(dev->subordinate);
748 }
749 }
750 }
751
752 /**
753 * __pci_dev_set_current_state - Set current state of a PCI device
754 * @dev: Device to handle
755 * @data: pointer to state to be set
756 */
757 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
758 {
759 pci_power_t state = *(pci_power_t *)data;
760
761 dev->current_state = state;
762 return 0;
763 }
764
765 /**
766 * __pci_bus_set_current_state - Walk given bus and set current state of devices
767 * @bus: Top bus of the subtree to walk.
768 * @state: state to be set
769 */
770 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
771 {
772 if (bus)
773 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
774 }
775
776 /**
777 * __pci_complete_power_transition - Complete power transition of a PCI device
778 * @dev: PCI device to handle.
779 * @state: State to put the device into.
780 *
781 * This function should not be called directly by device drivers.
782 */
783 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
784 {
785 int ret;
786
787 if (state <= PCI_D0)
788 return -EINVAL;
789 ret = pci_platform_power_transition(dev, state);
790 /* Power off the bridge may power off the whole hierarchy */
791 if (!ret && state == PCI_D3cold)
792 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
793 return ret;
794 }
795 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
796
797 /**
798 * pci_set_power_state - Set the power state of a PCI device
799 * @dev: PCI device to handle.
800 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
801 *
802 * Transition a device to a new power state, using the platform firmware and/or
803 * the device's PCI PM registers.
804 *
805 * RETURN VALUE:
806 * -EINVAL if the requested state is invalid.
807 * -EIO if device does not support PCI PM or its PM capabilities register has a
808 * wrong version, or device doesn't support the requested state.
809 * 0 if device already is in the requested state.
810 * 0 if device's power state has been successfully changed.
811 */
812 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
813 {
814 int error;
815
816 /* bound the state we're entering */
817 if (state > PCI_D3cold)
818 state = PCI_D3cold;
819 else if (state < PCI_D0)
820 state = PCI_D0;
821 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
822 /*
823 * If the device or the parent bridge do not support PCI PM,
824 * ignore the request if we're doing anything other than putting
825 * it into D0 (which would only happen on boot).
826 */
827 return 0;
828
829 /* Check if we're already there */
830 if (dev->current_state == state)
831 return 0;
832
833 __pci_start_power_transition(dev, state);
834
835 /* This device is quirked not to be put into D3, so
836 don't put it in D3 */
837 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
838 return 0;
839
840 /*
841 * To put device in D3cold, we put device into D3hot in native
842 * way, then put device into D3cold with platform ops
843 */
844 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
845 PCI_D3hot : state);
846
847 if (!__pci_complete_power_transition(dev, state))
848 error = 0;
849
850 return error;
851 }
852 EXPORT_SYMBOL(pci_set_power_state);
853
854 /**
855 * pci_choose_state - Choose the power state of a PCI device
856 * @dev: PCI device to be suspended
857 * @state: target sleep state for the whole system. This is the value
858 * that is passed to suspend() function.
859 *
860 * Returns PCI power state suitable for given device and given system
861 * message.
862 */
863
864 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
865 {
866 pci_power_t ret;
867
868 if (!dev->pm_cap)
869 return PCI_D0;
870
871 ret = platform_pci_choose_state(dev);
872 if (ret != PCI_POWER_ERROR)
873 return ret;
874
875 switch (state.event) {
876 case PM_EVENT_ON:
877 return PCI_D0;
878 case PM_EVENT_FREEZE:
879 case PM_EVENT_PRETHAW:
880 /* REVISIT both freeze and pre-thaw "should" use D0 */
881 case PM_EVENT_SUSPEND:
882 case PM_EVENT_HIBERNATE:
883 return PCI_D3hot;
884 default:
885 dev_info(&dev->dev, "unrecognized suspend event %d\n",
886 state.event);
887 BUG();
888 }
889 return PCI_D0;
890 }
891 EXPORT_SYMBOL(pci_choose_state);
892
893 #define PCI_EXP_SAVE_REGS 7
894
895 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
896 u16 cap, bool extended)
897 {
898 struct pci_cap_saved_state *tmp;
899
900 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
901 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
902 return tmp;
903 }
904 return NULL;
905 }
906
907 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
908 {
909 return _pci_find_saved_cap(dev, cap, false);
910 }
911
912 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
913 {
914 return _pci_find_saved_cap(dev, cap, true);
915 }
916
917 static int pci_save_pcie_state(struct pci_dev *dev)
918 {
919 int i = 0;
920 struct pci_cap_saved_state *save_state;
921 u16 *cap;
922
923 if (!pci_is_pcie(dev))
924 return 0;
925
926 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
927 if (!save_state) {
928 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
929 return -ENOMEM;
930 }
931
932 cap = (u16 *)&save_state->cap.data[0];
933 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
938 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
939 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
940
941 return 0;
942 }
943
944 static void pci_restore_pcie_state(struct pci_dev *dev)
945 {
946 int i = 0;
947 struct pci_cap_saved_state *save_state;
948 u16 *cap;
949
950 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
951 if (!save_state)
952 return;
953
954 cap = (u16 *)&save_state->cap.data[0];
955 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
960 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
961 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
962 }
963
964
965 static int pci_save_pcix_state(struct pci_dev *dev)
966 {
967 int pos;
968 struct pci_cap_saved_state *save_state;
969
970 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
971 if (pos <= 0)
972 return 0;
973
974 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
975 if (!save_state) {
976 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
977 return -ENOMEM;
978 }
979
980 pci_read_config_word(dev, pos + PCI_X_CMD,
981 (u16 *)save_state->cap.data);
982
983 return 0;
984 }
985
986 static void pci_restore_pcix_state(struct pci_dev *dev)
987 {
988 int i = 0, pos;
989 struct pci_cap_saved_state *save_state;
990 u16 *cap;
991
992 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
993 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
994 if (!save_state || pos <= 0)
995 return;
996 cap = (u16 *)&save_state->cap.data[0];
997
998 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
999 }
1000
1001
1002 /**
1003 * pci_save_state - save the PCI configuration space of a device before suspending
1004 * @dev: - PCI device that we're dealing with
1005 */
1006 int pci_save_state(struct pci_dev *dev)
1007 {
1008 int i;
1009 /* XXX: 100% dword access ok here? */
1010 for (i = 0; i < 16; i++)
1011 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1012 dev->state_saved = true;
1013
1014 i = pci_save_pcie_state(dev);
1015 if (i != 0)
1016 return i;
1017
1018 i = pci_save_pcix_state(dev);
1019 if (i != 0)
1020 return i;
1021
1022 return pci_save_vc_state(dev);
1023 }
1024 EXPORT_SYMBOL(pci_save_state);
1025
1026 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1027 u32 saved_val, int retry)
1028 {
1029 u32 val;
1030
1031 pci_read_config_dword(pdev, offset, &val);
1032 if (val == saved_val)
1033 return;
1034
1035 for (;;) {
1036 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1037 offset, val, saved_val);
1038 pci_write_config_dword(pdev, offset, saved_val);
1039 if (retry-- <= 0)
1040 return;
1041
1042 pci_read_config_dword(pdev, offset, &val);
1043 if (val == saved_val)
1044 return;
1045
1046 mdelay(1);
1047 }
1048 }
1049
1050 static void pci_restore_config_space_range(struct pci_dev *pdev,
1051 int start, int end, int retry)
1052 {
1053 int index;
1054
1055 for (index = end; index >= start; index--)
1056 pci_restore_config_dword(pdev, 4 * index,
1057 pdev->saved_config_space[index],
1058 retry);
1059 }
1060
1061 static void pci_restore_config_space(struct pci_dev *pdev)
1062 {
1063 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1064 pci_restore_config_space_range(pdev, 10, 15, 0);
1065 /* Restore BARs before the command register. */
1066 pci_restore_config_space_range(pdev, 4, 9, 10);
1067 pci_restore_config_space_range(pdev, 0, 3, 0);
1068 } else {
1069 pci_restore_config_space_range(pdev, 0, 15, 0);
1070 }
1071 }
1072
1073 /**
1074 * pci_restore_state - Restore the saved state of a PCI device
1075 * @dev: - PCI device that we're dealing with
1076 */
1077 void pci_restore_state(struct pci_dev *dev)
1078 {
1079 if (!dev->state_saved)
1080 return;
1081
1082 /* PCI Express register must be restored first */
1083 pci_restore_pcie_state(dev);
1084 pci_restore_ats_state(dev);
1085 pci_restore_vc_state(dev);
1086
1087 pci_restore_config_space(dev);
1088
1089 pci_restore_pcix_state(dev);
1090 pci_restore_msi_state(dev);
1091 pci_restore_iov_state(dev);
1092
1093 dev->state_saved = false;
1094 }
1095 EXPORT_SYMBOL(pci_restore_state);
1096
1097 struct pci_saved_state {
1098 u32 config_space[16];
1099 struct pci_cap_saved_data cap[0];
1100 };
1101
1102 /**
1103 * pci_store_saved_state - Allocate and return an opaque struct containing
1104 * the device saved state.
1105 * @dev: PCI device that we're dealing with
1106 *
1107 * Return NULL if no state or error.
1108 */
1109 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1110 {
1111 struct pci_saved_state *state;
1112 struct pci_cap_saved_state *tmp;
1113 struct pci_cap_saved_data *cap;
1114 size_t size;
1115
1116 if (!dev->state_saved)
1117 return NULL;
1118
1119 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1120
1121 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1122 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1123
1124 state = kzalloc(size, GFP_KERNEL);
1125 if (!state)
1126 return NULL;
1127
1128 memcpy(state->config_space, dev->saved_config_space,
1129 sizeof(state->config_space));
1130
1131 cap = state->cap;
1132 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1133 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1134 memcpy(cap, &tmp->cap, len);
1135 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1136 }
1137 /* Empty cap_save terminates list */
1138
1139 return state;
1140 }
1141 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1142
1143 /**
1144 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1145 * @dev: PCI device that we're dealing with
1146 * @state: Saved state returned from pci_store_saved_state()
1147 */
1148 int pci_load_saved_state(struct pci_dev *dev,
1149 struct pci_saved_state *state)
1150 {
1151 struct pci_cap_saved_data *cap;
1152
1153 dev->state_saved = false;
1154
1155 if (!state)
1156 return 0;
1157
1158 memcpy(dev->saved_config_space, state->config_space,
1159 sizeof(state->config_space));
1160
1161 cap = state->cap;
1162 while (cap->size) {
1163 struct pci_cap_saved_state *tmp;
1164
1165 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1166 if (!tmp || tmp->cap.size != cap->size)
1167 return -EINVAL;
1168
1169 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1170 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1171 sizeof(struct pci_cap_saved_data) + cap->size);
1172 }
1173
1174 dev->state_saved = true;
1175 return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1178
1179 /**
1180 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1181 * and free the memory allocated for it.
1182 * @dev: PCI device that we're dealing with
1183 * @state: Pointer to saved state returned from pci_store_saved_state()
1184 */
1185 int pci_load_and_free_saved_state(struct pci_dev *dev,
1186 struct pci_saved_state **state)
1187 {
1188 int ret = pci_load_saved_state(dev, *state);
1189 kfree(*state);
1190 *state = NULL;
1191 return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1194
1195 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1196 {
1197 return pci_enable_resources(dev, bars);
1198 }
1199
1200 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1201 {
1202 int err;
1203 struct pci_dev *bridge;
1204 u16 cmd;
1205 u8 pin;
1206
1207 err = pci_set_power_state(dev, PCI_D0);
1208 if (err < 0 && err != -EIO)
1209 return err;
1210
1211 bridge = pci_upstream_bridge(dev);
1212 if (bridge)
1213 pcie_aspm_powersave_config_link(bridge);
1214
1215 err = pcibios_enable_device(dev, bars);
1216 if (err < 0)
1217 return err;
1218 pci_fixup_device(pci_fixup_enable, dev);
1219
1220 if (dev->msi_enabled || dev->msix_enabled)
1221 return 0;
1222
1223 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1224 if (pin) {
1225 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1226 if (cmd & PCI_COMMAND_INTX_DISABLE)
1227 pci_write_config_word(dev, PCI_COMMAND,
1228 cmd & ~PCI_COMMAND_INTX_DISABLE);
1229 }
1230
1231 return 0;
1232 }
1233
1234 /**
1235 * pci_reenable_device - Resume abandoned device
1236 * @dev: PCI device to be resumed
1237 *
1238 * Note this function is a backend of pci_default_resume and is not supposed
1239 * to be called by normal code, write proper resume handler and use it instead.
1240 */
1241 int pci_reenable_device(struct pci_dev *dev)
1242 {
1243 if (pci_is_enabled(dev))
1244 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(pci_reenable_device);
1248
1249 static void pci_enable_bridge(struct pci_dev *dev)
1250 {
1251 struct pci_dev *bridge;
1252 int retval;
1253
1254 bridge = pci_upstream_bridge(dev);
1255 if (bridge)
1256 pci_enable_bridge(bridge);
1257
1258 if (pci_is_enabled(dev)) {
1259 if (!dev->is_busmaster)
1260 pci_set_master(dev);
1261 return;
1262 }
1263
1264 retval = pci_enable_device(dev);
1265 if (retval)
1266 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1267 retval);
1268 pci_set_master(dev);
1269 }
1270
1271 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1272 {
1273 struct pci_dev *bridge;
1274 int err;
1275 int i, bars = 0;
1276
1277 /*
1278 * Power state could be unknown at this point, either due to a fresh
1279 * boot or a device removal call. So get the current power state
1280 * so that things like MSI message writing will behave as expected
1281 * (e.g. if the device really is in D0 at enable time).
1282 */
1283 if (dev->pm_cap) {
1284 u16 pmcsr;
1285 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1286 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1287 }
1288
1289 if (atomic_inc_return(&dev->enable_cnt) > 1)
1290 return 0; /* already enabled */
1291
1292 bridge = pci_upstream_bridge(dev);
1293 if (bridge)
1294 pci_enable_bridge(bridge);
1295
1296 /* only skip sriov related */
1297 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1298 if (dev->resource[i].flags & flags)
1299 bars |= (1 << i);
1300 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1301 if (dev->resource[i].flags & flags)
1302 bars |= (1 << i);
1303
1304 err = do_pci_enable_device(dev, bars);
1305 if (err < 0)
1306 atomic_dec(&dev->enable_cnt);
1307 return err;
1308 }
1309
1310 /**
1311 * pci_enable_device_io - Initialize a device for use with IO space
1312 * @dev: PCI device to be initialized
1313 *
1314 * Initialize device before it's used by a driver. Ask low-level code
1315 * to enable I/O resources. Wake up the device if it was suspended.
1316 * Beware, this function can fail.
1317 */
1318 int pci_enable_device_io(struct pci_dev *dev)
1319 {
1320 return pci_enable_device_flags(dev, IORESOURCE_IO);
1321 }
1322 EXPORT_SYMBOL(pci_enable_device_io);
1323
1324 /**
1325 * pci_enable_device_mem - Initialize a device for use with Memory space
1326 * @dev: PCI device to be initialized
1327 *
1328 * Initialize device before it's used by a driver. Ask low-level code
1329 * to enable Memory resources. Wake up the device if it was suspended.
1330 * Beware, this function can fail.
1331 */
1332 int pci_enable_device_mem(struct pci_dev *dev)
1333 {
1334 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1335 }
1336 EXPORT_SYMBOL(pci_enable_device_mem);
1337
1338 /**
1339 * pci_enable_device - Initialize device before it's used by a driver.
1340 * @dev: PCI device to be initialized
1341 *
1342 * Initialize device before it's used by a driver. Ask low-level code
1343 * to enable I/O and memory. Wake up the device if it was suspended.
1344 * Beware, this function can fail.
1345 *
1346 * Note we don't actually enable the device many times if we call
1347 * this function repeatedly (we just increment the count).
1348 */
1349 int pci_enable_device(struct pci_dev *dev)
1350 {
1351 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1352 }
1353 EXPORT_SYMBOL(pci_enable_device);
1354
1355 /*
1356 * Managed PCI resources. This manages device on/off, intx/msi/msix
1357 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1358 * there's no need to track it separately. pci_devres is initialized
1359 * when a device is enabled using managed PCI device enable interface.
1360 */
1361 struct pci_devres {
1362 unsigned int enabled:1;
1363 unsigned int pinned:1;
1364 unsigned int orig_intx:1;
1365 unsigned int restore_intx:1;
1366 u32 region_mask;
1367 };
1368
1369 static void pcim_release(struct device *gendev, void *res)
1370 {
1371 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1372 struct pci_devres *this = res;
1373 int i;
1374
1375 if (dev->msi_enabled)
1376 pci_disable_msi(dev);
1377 if (dev->msix_enabled)
1378 pci_disable_msix(dev);
1379
1380 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1381 if (this->region_mask & (1 << i))
1382 pci_release_region(dev, i);
1383
1384 if (this->restore_intx)
1385 pci_intx(dev, this->orig_intx);
1386
1387 if (this->enabled && !this->pinned)
1388 pci_disable_device(dev);
1389 }
1390
1391 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1392 {
1393 struct pci_devres *dr, *new_dr;
1394
1395 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1396 if (dr)
1397 return dr;
1398
1399 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1400 if (!new_dr)
1401 return NULL;
1402 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1403 }
1404
1405 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1406 {
1407 if (pci_is_managed(pdev))
1408 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1409 return NULL;
1410 }
1411
1412 /**
1413 * pcim_enable_device - Managed pci_enable_device()
1414 * @pdev: PCI device to be initialized
1415 *
1416 * Managed pci_enable_device().
1417 */
1418 int pcim_enable_device(struct pci_dev *pdev)
1419 {
1420 struct pci_devres *dr;
1421 int rc;
1422
1423 dr = get_pci_dr(pdev);
1424 if (unlikely(!dr))
1425 return -ENOMEM;
1426 if (dr->enabled)
1427 return 0;
1428
1429 rc = pci_enable_device(pdev);
1430 if (!rc) {
1431 pdev->is_managed = 1;
1432 dr->enabled = 1;
1433 }
1434 return rc;
1435 }
1436 EXPORT_SYMBOL(pcim_enable_device);
1437
1438 /**
1439 * pcim_pin_device - Pin managed PCI device
1440 * @pdev: PCI device to pin
1441 *
1442 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1443 * driver detach. @pdev must have been enabled with
1444 * pcim_enable_device().
1445 */
1446 void pcim_pin_device(struct pci_dev *pdev)
1447 {
1448 struct pci_devres *dr;
1449
1450 dr = find_pci_dr(pdev);
1451 WARN_ON(!dr || !dr->enabled);
1452 if (dr)
1453 dr->pinned = 1;
1454 }
1455 EXPORT_SYMBOL(pcim_pin_device);
1456
1457 /*
1458 * pcibios_add_device - provide arch specific hooks when adding device dev
1459 * @dev: the PCI device being added
1460 *
1461 * Permits the platform to provide architecture specific functionality when
1462 * devices are added. This is the default implementation. Architecture
1463 * implementations can override this.
1464 */
1465 int __weak pcibios_add_device(struct pci_dev *dev)
1466 {
1467 return 0;
1468 }
1469
1470 /**
1471 * pcibios_release_device - provide arch specific hooks when releasing device dev
1472 * @dev: the PCI device being released
1473 *
1474 * Permits the platform to provide architecture specific functionality when
1475 * devices are released. This is the default implementation. Architecture
1476 * implementations can override this.
1477 */
1478 void __weak pcibios_release_device(struct pci_dev *dev) {}
1479
1480 /**
1481 * pcibios_disable_device - disable arch specific PCI resources for device dev
1482 * @dev: the PCI device to disable
1483 *
1484 * Disables architecture specific PCI resources for the device. This
1485 * is the default implementation. Architecture implementations can
1486 * override this.
1487 */
1488 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1489
1490 /**
1491 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1492 * @irq: ISA IRQ to penalize
1493 * @active: IRQ active or not
1494 *
1495 * Permits the platform to provide architecture-specific functionality when
1496 * penalizing ISA IRQs. This is the default implementation. Architecture
1497 * implementations can override this.
1498 */
1499 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1500
1501 static void do_pci_disable_device(struct pci_dev *dev)
1502 {
1503 u16 pci_command;
1504
1505 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1506 if (pci_command & PCI_COMMAND_MASTER) {
1507 pci_command &= ~PCI_COMMAND_MASTER;
1508 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1509 }
1510
1511 pcibios_disable_device(dev);
1512 }
1513
1514 /**
1515 * pci_disable_enabled_device - Disable device without updating enable_cnt
1516 * @dev: PCI device to disable
1517 *
1518 * NOTE: This function is a backend of PCI power management routines and is
1519 * not supposed to be called drivers.
1520 */
1521 void pci_disable_enabled_device(struct pci_dev *dev)
1522 {
1523 if (pci_is_enabled(dev))
1524 do_pci_disable_device(dev);
1525 }
1526
1527 /**
1528 * pci_disable_device - Disable PCI device after use
1529 * @dev: PCI device to be disabled
1530 *
1531 * Signal to the system that the PCI device is not in use by the system
1532 * anymore. This only involves disabling PCI bus-mastering, if active.
1533 *
1534 * Note we don't actually disable the device until all callers of
1535 * pci_enable_device() have called pci_disable_device().
1536 */
1537 void pci_disable_device(struct pci_dev *dev)
1538 {
1539 struct pci_devres *dr;
1540
1541 dr = find_pci_dr(dev);
1542 if (dr)
1543 dr->enabled = 0;
1544
1545 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1546 "disabling already-disabled device");
1547
1548 if (atomic_dec_return(&dev->enable_cnt) != 0)
1549 return;
1550
1551 do_pci_disable_device(dev);
1552
1553 dev->is_busmaster = 0;
1554 }
1555 EXPORT_SYMBOL(pci_disable_device);
1556
1557 /**
1558 * pcibios_set_pcie_reset_state - set reset state for device dev
1559 * @dev: the PCIe device reset
1560 * @state: Reset state to enter into
1561 *
1562 *
1563 * Sets the PCIe reset state for the device. This is the default
1564 * implementation. Architecture implementations can override this.
1565 */
1566 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1567 enum pcie_reset_state state)
1568 {
1569 return -EINVAL;
1570 }
1571
1572 /**
1573 * pci_set_pcie_reset_state - set reset state for device dev
1574 * @dev: the PCIe device reset
1575 * @state: Reset state to enter into
1576 *
1577 *
1578 * Sets the PCI reset state for the device.
1579 */
1580 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1581 {
1582 return pcibios_set_pcie_reset_state(dev, state);
1583 }
1584 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1585
1586 /**
1587 * pci_check_pme_status - Check if given device has generated PME.
1588 * @dev: Device to check.
1589 *
1590 * Check the PME status of the device and if set, clear it and clear PME enable
1591 * (if set). Return 'true' if PME status and PME enable were both set or
1592 * 'false' otherwise.
1593 */
1594 bool pci_check_pme_status(struct pci_dev *dev)
1595 {
1596 int pmcsr_pos;
1597 u16 pmcsr;
1598 bool ret = false;
1599
1600 if (!dev->pm_cap)
1601 return false;
1602
1603 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1604 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1605 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1606 return false;
1607
1608 /* Clear PME status. */
1609 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1610 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1611 /* Disable PME to avoid interrupt flood. */
1612 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1613 ret = true;
1614 }
1615
1616 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1617
1618 return ret;
1619 }
1620
1621 /**
1622 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1623 * @dev: Device to handle.
1624 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1625 *
1626 * Check if @dev has generated PME and queue a resume request for it in that
1627 * case.
1628 */
1629 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1630 {
1631 if (pme_poll_reset && dev->pme_poll)
1632 dev->pme_poll = false;
1633
1634 if (pci_check_pme_status(dev)) {
1635 pci_wakeup_event(dev);
1636 pm_request_resume(&dev->dev);
1637 }
1638 return 0;
1639 }
1640
1641 /**
1642 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1643 * @bus: Top bus of the subtree to walk.
1644 */
1645 void pci_pme_wakeup_bus(struct pci_bus *bus)
1646 {
1647 if (bus)
1648 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1649 }
1650
1651
1652 /**
1653 * pci_pme_capable - check the capability of PCI device to generate PME#
1654 * @dev: PCI device to handle.
1655 * @state: PCI state from which device will issue PME#.
1656 */
1657 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1658 {
1659 if (!dev->pm_cap)
1660 return false;
1661
1662 return !!(dev->pme_support & (1 << state));
1663 }
1664 EXPORT_SYMBOL(pci_pme_capable);
1665
1666 static void pci_pme_list_scan(struct work_struct *work)
1667 {
1668 struct pci_pme_device *pme_dev, *n;
1669
1670 mutex_lock(&pci_pme_list_mutex);
1671 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1672 if (pme_dev->dev->pme_poll) {
1673 struct pci_dev *bridge;
1674
1675 bridge = pme_dev->dev->bus->self;
1676 /*
1677 * If bridge is in low power state, the
1678 * configuration space of subordinate devices
1679 * may be not accessible
1680 */
1681 if (bridge && bridge->current_state != PCI_D0)
1682 continue;
1683 pci_pme_wakeup(pme_dev->dev, NULL);
1684 } else {
1685 list_del(&pme_dev->list);
1686 kfree(pme_dev);
1687 }
1688 }
1689 if (!list_empty(&pci_pme_list))
1690 schedule_delayed_work(&pci_pme_work,
1691 msecs_to_jiffies(PME_TIMEOUT));
1692 mutex_unlock(&pci_pme_list_mutex);
1693 }
1694
1695 /**
1696 * pci_pme_active - enable or disable PCI device's PME# function
1697 * @dev: PCI device to handle.
1698 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1699 *
1700 * The caller must verify that the device is capable of generating PME# before
1701 * calling this function with @enable equal to 'true'.
1702 */
1703 void pci_pme_active(struct pci_dev *dev, bool enable)
1704 {
1705 u16 pmcsr;
1706
1707 if (!dev->pme_support)
1708 return;
1709
1710 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1711 /* Clear PME_Status by writing 1 to it and enable PME# */
1712 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1713 if (!enable)
1714 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1715
1716 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1717
1718 /*
1719 * PCI (as opposed to PCIe) PME requires that the device have
1720 * its PME# line hooked up correctly. Not all hardware vendors
1721 * do this, so the PME never gets delivered and the device
1722 * remains asleep. The easiest way around this is to
1723 * periodically walk the list of suspended devices and check
1724 * whether any have their PME flag set. The assumption is that
1725 * we'll wake up often enough anyway that this won't be a huge
1726 * hit, and the power savings from the devices will still be a
1727 * win.
1728 *
1729 * Although PCIe uses in-band PME message instead of PME# line
1730 * to report PME, PME does not work for some PCIe devices in
1731 * reality. For example, there are devices that set their PME
1732 * status bits, but don't really bother to send a PME message;
1733 * there are PCI Express Root Ports that don't bother to
1734 * trigger interrupts when they receive PME messages from the
1735 * devices below. So PME poll is used for PCIe devices too.
1736 */
1737
1738 if (dev->pme_poll) {
1739 struct pci_pme_device *pme_dev;
1740 if (enable) {
1741 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1742 GFP_KERNEL);
1743 if (!pme_dev) {
1744 dev_warn(&dev->dev, "can't enable PME#\n");
1745 return;
1746 }
1747 pme_dev->dev = dev;
1748 mutex_lock(&pci_pme_list_mutex);
1749 list_add(&pme_dev->list, &pci_pme_list);
1750 if (list_is_singular(&pci_pme_list))
1751 schedule_delayed_work(&pci_pme_work,
1752 msecs_to_jiffies(PME_TIMEOUT));
1753 mutex_unlock(&pci_pme_list_mutex);
1754 } else {
1755 mutex_lock(&pci_pme_list_mutex);
1756 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1757 if (pme_dev->dev == dev) {
1758 list_del(&pme_dev->list);
1759 kfree(pme_dev);
1760 break;
1761 }
1762 }
1763 mutex_unlock(&pci_pme_list_mutex);
1764 }
1765 }
1766
1767 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1768 }
1769 EXPORT_SYMBOL(pci_pme_active);
1770
1771 /**
1772 * __pci_enable_wake - enable PCI device as wakeup event source
1773 * @dev: PCI device affected
1774 * @state: PCI state from which device will issue wakeup events
1775 * @runtime: True if the events are to be generated at run time
1776 * @enable: True to enable event generation; false to disable
1777 *
1778 * This enables the device as a wakeup event source, or disables it.
1779 * When such events involves platform-specific hooks, those hooks are
1780 * called automatically by this routine.
1781 *
1782 * Devices with legacy power management (no standard PCI PM capabilities)
1783 * always require such platform hooks.
1784 *
1785 * RETURN VALUE:
1786 * 0 is returned on success
1787 * -EINVAL is returned if device is not supposed to wake up the system
1788 * Error code depending on the platform is returned if both the platform and
1789 * the native mechanism fail to enable the generation of wake-up events
1790 */
1791 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1792 bool runtime, bool enable)
1793 {
1794 int ret = 0;
1795
1796 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1797 return -EINVAL;
1798
1799 /* Don't do the same thing twice in a row for one device. */
1800 if (!!enable == !!dev->wakeup_prepared)
1801 return 0;
1802
1803 /*
1804 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1805 * Anderson we should be doing PME# wake enable followed by ACPI wake
1806 * enable. To disable wake-up we call the platform first, for symmetry.
1807 */
1808
1809 if (enable) {
1810 int error;
1811
1812 if (pci_pme_capable(dev, state))
1813 pci_pme_active(dev, true);
1814 else
1815 ret = 1;
1816 error = runtime ? platform_pci_run_wake(dev, true) :
1817 platform_pci_sleep_wake(dev, true);
1818 if (ret)
1819 ret = error;
1820 if (!ret)
1821 dev->wakeup_prepared = true;
1822 } else {
1823 if (runtime)
1824 platform_pci_run_wake(dev, false);
1825 else
1826 platform_pci_sleep_wake(dev, false);
1827 pci_pme_active(dev, false);
1828 dev->wakeup_prepared = false;
1829 }
1830
1831 return ret;
1832 }
1833 EXPORT_SYMBOL(__pci_enable_wake);
1834
1835 /**
1836 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1837 * @dev: PCI device to prepare
1838 * @enable: True to enable wake-up event generation; false to disable
1839 *
1840 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1841 * and this function allows them to set that up cleanly - pci_enable_wake()
1842 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1843 * ordering constraints.
1844 *
1845 * This function only returns error code if the device is not capable of
1846 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1847 * enable wake-up power for it.
1848 */
1849 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1850 {
1851 return pci_pme_capable(dev, PCI_D3cold) ?
1852 pci_enable_wake(dev, PCI_D3cold, enable) :
1853 pci_enable_wake(dev, PCI_D3hot, enable);
1854 }
1855 EXPORT_SYMBOL(pci_wake_from_d3);
1856
1857 /**
1858 * pci_target_state - find an appropriate low power state for a given PCI dev
1859 * @dev: PCI device
1860 *
1861 * Use underlying platform code to find a supported low power state for @dev.
1862 * If the platform can't manage @dev, return the deepest state from which it
1863 * can generate wake events, based on any available PME info.
1864 */
1865 static pci_power_t pci_target_state(struct pci_dev *dev)
1866 {
1867 pci_power_t target_state = PCI_D3hot;
1868
1869 if (platform_pci_power_manageable(dev)) {
1870 /*
1871 * Call the platform to choose the target state of the device
1872 * and enable wake-up from this state if supported.
1873 */
1874 pci_power_t state = platform_pci_choose_state(dev);
1875
1876 switch (state) {
1877 case PCI_POWER_ERROR:
1878 case PCI_UNKNOWN:
1879 break;
1880 case PCI_D1:
1881 case PCI_D2:
1882 if (pci_no_d1d2(dev))
1883 break;
1884 default:
1885 target_state = state;
1886 }
1887 } else if (!dev->pm_cap) {
1888 target_state = PCI_D0;
1889 } else if (device_may_wakeup(&dev->dev)) {
1890 /*
1891 * Find the deepest state from which the device can generate
1892 * wake-up events, make it the target state and enable device
1893 * to generate PME#.
1894 */
1895 if (dev->pme_support) {
1896 while (target_state
1897 && !(dev->pme_support & (1 << target_state)))
1898 target_state--;
1899 }
1900 }
1901
1902 return target_state;
1903 }
1904
1905 /**
1906 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1907 * @dev: Device to handle.
1908 *
1909 * Choose the power state appropriate for the device depending on whether
1910 * it can wake up the system and/or is power manageable by the platform
1911 * (PCI_D3hot is the default) and put the device into that state.
1912 */
1913 int pci_prepare_to_sleep(struct pci_dev *dev)
1914 {
1915 pci_power_t target_state = pci_target_state(dev);
1916 int error;
1917
1918 if (target_state == PCI_POWER_ERROR)
1919 return -EIO;
1920
1921 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1922
1923 error = pci_set_power_state(dev, target_state);
1924
1925 if (error)
1926 pci_enable_wake(dev, target_state, false);
1927
1928 return error;
1929 }
1930 EXPORT_SYMBOL(pci_prepare_to_sleep);
1931
1932 /**
1933 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1934 * @dev: Device to handle.
1935 *
1936 * Disable device's system wake-up capability and put it into D0.
1937 */
1938 int pci_back_from_sleep(struct pci_dev *dev)
1939 {
1940 pci_enable_wake(dev, PCI_D0, false);
1941 return pci_set_power_state(dev, PCI_D0);
1942 }
1943 EXPORT_SYMBOL(pci_back_from_sleep);
1944
1945 /**
1946 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1947 * @dev: PCI device being suspended.
1948 *
1949 * Prepare @dev to generate wake-up events at run time and put it into a low
1950 * power state.
1951 */
1952 int pci_finish_runtime_suspend(struct pci_dev *dev)
1953 {
1954 pci_power_t target_state = pci_target_state(dev);
1955 int error;
1956
1957 if (target_state == PCI_POWER_ERROR)
1958 return -EIO;
1959
1960 dev->runtime_d3cold = target_state == PCI_D3cold;
1961
1962 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1963
1964 error = pci_set_power_state(dev, target_state);
1965
1966 if (error) {
1967 __pci_enable_wake(dev, target_state, true, false);
1968 dev->runtime_d3cold = false;
1969 }
1970
1971 return error;
1972 }
1973
1974 /**
1975 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1976 * @dev: Device to check.
1977 *
1978 * Return true if the device itself is capable of generating wake-up events
1979 * (through the platform or using the native PCIe PME) or if the device supports
1980 * PME and one of its upstream bridges can generate wake-up events.
1981 */
1982 bool pci_dev_run_wake(struct pci_dev *dev)
1983 {
1984 struct pci_bus *bus = dev->bus;
1985
1986 if (device_run_wake(&dev->dev))
1987 return true;
1988
1989 if (!dev->pme_support)
1990 return false;
1991
1992 while (bus->parent) {
1993 struct pci_dev *bridge = bus->self;
1994
1995 if (device_run_wake(&bridge->dev))
1996 return true;
1997
1998 bus = bus->parent;
1999 }
2000
2001 /* We have reached the root bus. */
2002 if (bus->bridge)
2003 return device_run_wake(bus->bridge);
2004
2005 return false;
2006 }
2007 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2008
2009 /**
2010 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2011 * @pci_dev: Device to check.
2012 *
2013 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2014 * reconfigured due to wakeup settings difference between system and runtime
2015 * suspend and the current power state of it is suitable for the upcoming
2016 * (system) transition.
2017 */
2018 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2019 {
2020 struct device *dev = &pci_dev->dev;
2021
2022 if (!pm_runtime_suspended(dev)
2023 || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2024 || platform_pci_need_resume(pci_dev))
2025 return false;
2026
2027 return pci_target_state(pci_dev) == pci_dev->current_state;
2028 }
2029
2030 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2031 {
2032 struct device *dev = &pdev->dev;
2033 struct device *parent = dev->parent;
2034
2035 if (parent)
2036 pm_runtime_get_sync(parent);
2037 pm_runtime_get_noresume(dev);
2038 /*
2039 * pdev->current_state is set to PCI_D3cold during suspending,
2040 * so wait until suspending completes
2041 */
2042 pm_runtime_barrier(dev);
2043 /*
2044 * Only need to resume devices in D3cold, because config
2045 * registers are still accessible for devices suspended but
2046 * not in D3cold.
2047 */
2048 if (pdev->current_state == PCI_D3cold)
2049 pm_runtime_resume(dev);
2050 }
2051
2052 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2053 {
2054 struct device *dev = &pdev->dev;
2055 struct device *parent = dev->parent;
2056
2057 pm_runtime_put(dev);
2058 if (parent)
2059 pm_runtime_put_sync(parent);
2060 }
2061
2062 /**
2063 * pci_pm_init - Initialize PM functions of given PCI device
2064 * @dev: PCI device to handle.
2065 */
2066 void pci_pm_init(struct pci_dev *dev)
2067 {
2068 int pm;
2069 u16 pmc;
2070
2071 pm_runtime_forbid(&dev->dev);
2072 pm_runtime_set_active(&dev->dev);
2073 pm_runtime_enable(&dev->dev);
2074 device_enable_async_suspend(&dev->dev);
2075 dev->wakeup_prepared = false;
2076
2077 dev->pm_cap = 0;
2078 dev->pme_support = 0;
2079
2080 /* find PCI PM capability in list */
2081 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2082 if (!pm)
2083 return;
2084 /* Check device's ability to generate PME# */
2085 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2086
2087 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2088 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2089 pmc & PCI_PM_CAP_VER_MASK);
2090 return;
2091 }
2092
2093 dev->pm_cap = pm;
2094 dev->d3_delay = PCI_PM_D3_WAIT;
2095 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2096 dev->d3cold_allowed = true;
2097
2098 dev->d1_support = false;
2099 dev->d2_support = false;
2100 if (!pci_no_d1d2(dev)) {
2101 if (pmc & PCI_PM_CAP_D1)
2102 dev->d1_support = true;
2103 if (pmc & PCI_PM_CAP_D2)
2104 dev->d2_support = true;
2105
2106 if (dev->d1_support || dev->d2_support)
2107 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2108 dev->d1_support ? " D1" : "",
2109 dev->d2_support ? " D2" : "");
2110 }
2111
2112 pmc &= PCI_PM_CAP_PME_MASK;
2113 if (pmc) {
2114 dev_printk(KERN_DEBUG, &dev->dev,
2115 "PME# supported from%s%s%s%s%s\n",
2116 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2117 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2118 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2119 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2120 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2121 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2122 dev->pme_poll = true;
2123 /*
2124 * Make device's PM flags reflect the wake-up capability, but
2125 * let the user space enable it to wake up the system as needed.
2126 */
2127 device_set_wakeup_capable(&dev->dev, true);
2128 /* Disable the PME# generation functionality */
2129 pci_pme_active(dev, false);
2130 }
2131 }
2132
2133 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2134 struct pci_cap_saved_state *new_cap)
2135 {
2136 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2137 }
2138
2139 /**
2140 * _pci_add_cap_save_buffer - allocate buffer for saving given
2141 * capability registers
2142 * @dev: the PCI device
2143 * @cap: the capability to allocate the buffer for
2144 * @extended: Standard or Extended capability ID
2145 * @size: requested size of the buffer
2146 */
2147 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2148 bool extended, unsigned int size)
2149 {
2150 int pos;
2151 struct pci_cap_saved_state *save_state;
2152
2153 if (extended)
2154 pos = pci_find_ext_capability(dev, cap);
2155 else
2156 pos = pci_find_capability(dev, cap);
2157
2158 if (pos <= 0)
2159 return 0;
2160
2161 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2162 if (!save_state)
2163 return -ENOMEM;
2164
2165 save_state->cap.cap_nr = cap;
2166 save_state->cap.cap_extended = extended;
2167 save_state->cap.size = size;
2168 pci_add_saved_cap(dev, save_state);
2169
2170 return 0;
2171 }
2172
2173 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2174 {
2175 return _pci_add_cap_save_buffer(dev, cap, false, size);
2176 }
2177
2178 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2179 {
2180 return _pci_add_cap_save_buffer(dev, cap, true, size);
2181 }
2182
2183 /**
2184 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2185 * @dev: the PCI device
2186 */
2187 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2188 {
2189 int error;
2190
2191 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2192 PCI_EXP_SAVE_REGS * sizeof(u16));
2193 if (error)
2194 dev_err(&dev->dev,
2195 "unable to preallocate PCI Express save buffer\n");
2196
2197 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2198 if (error)
2199 dev_err(&dev->dev,
2200 "unable to preallocate PCI-X save buffer\n");
2201
2202 pci_allocate_vc_save_buffers(dev);
2203 }
2204
2205 void pci_free_cap_save_buffers(struct pci_dev *dev)
2206 {
2207 struct pci_cap_saved_state *tmp;
2208 struct hlist_node *n;
2209
2210 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2211 kfree(tmp);
2212 }
2213
2214 /**
2215 * pci_configure_ari - enable or disable ARI forwarding
2216 * @dev: the PCI device
2217 *
2218 * If @dev and its upstream bridge both support ARI, enable ARI in the
2219 * bridge. Otherwise, disable ARI in the bridge.
2220 */
2221 void pci_configure_ari(struct pci_dev *dev)
2222 {
2223 u32 cap;
2224 struct pci_dev *bridge;
2225
2226 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2227 return;
2228
2229 bridge = dev->bus->self;
2230 if (!bridge)
2231 return;
2232
2233 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2234 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2235 return;
2236
2237 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2238 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2239 PCI_EXP_DEVCTL2_ARI);
2240 bridge->ari_enabled = 1;
2241 } else {
2242 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2243 PCI_EXP_DEVCTL2_ARI);
2244 bridge->ari_enabled = 0;
2245 }
2246 }
2247
2248 static int pci_acs_enable;
2249
2250 /**
2251 * pci_request_acs - ask for ACS to be enabled if supported
2252 */
2253 void pci_request_acs(void)
2254 {
2255 pci_acs_enable = 1;
2256 }
2257
2258 /**
2259 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2260 * @dev: the PCI device
2261 */
2262 static int pci_std_enable_acs(struct pci_dev *dev)
2263 {
2264 int pos;
2265 u16 cap;
2266 u16 ctrl;
2267
2268 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2269 if (!pos)
2270 return -ENODEV;
2271
2272 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2273 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2274
2275 /* Source Validation */
2276 ctrl |= (cap & PCI_ACS_SV);
2277
2278 /* P2P Request Redirect */
2279 ctrl |= (cap & PCI_ACS_RR);
2280
2281 /* P2P Completion Redirect */
2282 ctrl |= (cap & PCI_ACS_CR);
2283
2284 /* Upstream Forwarding */
2285 ctrl |= (cap & PCI_ACS_UF);
2286
2287 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2288
2289 return 0;
2290 }
2291
2292 /**
2293 * pci_enable_acs - enable ACS if hardware support it
2294 * @dev: the PCI device
2295 */
2296 void pci_enable_acs(struct pci_dev *dev)
2297 {
2298 if (!pci_acs_enable)
2299 return;
2300
2301 if (!pci_std_enable_acs(dev))
2302 return;
2303
2304 pci_dev_specific_enable_acs(dev);
2305 }
2306
2307 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2308 {
2309 int pos;
2310 u16 cap, ctrl;
2311
2312 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2313 if (!pos)
2314 return false;
2315
2316 /*
2317 * Except for egress control, capabilities are either required
2318 * or only required if controllable. Features missing from the
2319 * capability field can therefore be assumed as hard-wired enabled.
2320 */
2321 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2322 acs_flags &= (cap | PCI_ACS_EC);
2323
2324 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2325 return (ctrl & acs_flags) == acs_flags;
2326 }
2327
2328 /**
2329 * pci_acs_enabled - test ACS against required flags for a given device
2330 * @pdev: device to test
2331 * @acs_flags: required PCI ACS flags
2332 *
2333 * Return true if the device supports the provided flags. Automatically
2334 * filters out flags that are not implemented on multifunction devices.
2335 *
2336 * Note that this interface checks the effective ACS capabilities of the
2337 * device rather than the actual capabilities. For instance, most single
2338 * function endpoints are not required to support ACS because they have no
2339 * opportunity for peer-to-peer access. We therefore return 'true'
2340 * regardless of whether the device exposes an ACS capability. This makes
2341 * it much easier for callers of this function to ignore the actual type
2342 * or topology of the device when testing ACS support.
2343 */
2344 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2345 {
2346 int ret;
2347
2348 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2349 if (ret >= 0)
2350 return ret > 0;
2351
2352 /*
2353 * Conventional PCI and PCI-X devices never support ACS, either
2354 * effectively or actually. The shared bus topology implies that
2355 * any device on the bus can receive or snoop DMA.
2356 */
2357 if (!pci_is_pcie(pdev))
2358 return false;
2359
2360 switch (pci_pcie_type(pdev)) {
2361 /*
2362 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2363 * but since their primary interface is PCI/X, we conservatively
2364 * handle them as we would a non-PCIe device.
2365 */
2366 case PCI_EXP_TYPE_PCIE_BRIDGE:
2367 /*
2368 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2369 * applicable... must never implement an ACS Extended Capability...".
2370 * This seems arbitrary, but we take a conservative interpretation
2371 * of this statement.
2372 */
2373 case PCI_EXP_TYPE_PCI_BRIDGE:
2374 case PCI_EXP_TYPE_RC_EC:
2375 return false;
2376 /*
2377 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2378 * implement ACS in order to indicate their peer-to-peer capabilities,
2379 * regardless of whether they are single- or multi-function devices.
2380 */
2381 case PCI_EXP_TYPE_DOWNSTREAM:
2382 case PCI_EXP_TYPE_ROOT_PORT:
2383 return pci_acs_flags_enabled(pdev, acs_flags);
2384 /*
2385 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2386 * implemented by the remaining PCIe types to indicate peer-to-peer
2387 * capabilities, but only when they are part of a multifunction
2388 * device. The footnote for section 6.12 indicates the specific
2389 * PCIe types included here.
2390 */
2391 case PCI_EXP_TYPE_ENDPOINT:
2392 case PCI_EXP_TYPE_UPSTREAM:
2393 case PCI_EXP_TYPE_LEG_END:
2394 case PCI_EXP_TYPE_RC_END:
2395 if (!pdev->multifunction)
2396 break;
2397
2398 return pci_acs_flags_enabled(pdev, acs_flags);
2399 }
2400
2401 /*
2402 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2403 * to single function devices with the exception of downstream ports.
2404 */
2405 return true;
2406 }
2407
2408 /**
2409 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2410 * @start: starting downstream device
2411 * @end: ending upstream device or NULL to search to the root bus
2412 * @acs_flags: required flags
2413 *
2414 * Walk up a device tree from start to end testing PCI ACS support. If
2415 * any step along the way does not support the required flags, return false.
2416 */
2417 bool pci_acs_path_enabled(struct pci_dev *start,
2418 struct pci_dev *end, u16 acs_flags)
2419 {
2420 struct pci_dev *pdev, *parent = start;
2421
2422 do {
2423 pdev = parent;
2424
2425 if (!pci_acs_enabled(pdev, acs_flags))
2426 return false;
2427
2428 if (pci_is_root_bus(pdev->bus))
2429 return (end == NULL);
2430
2431 parent = pdev->bus->self;
2432 } while (pdev != end);
2433
2434 return true;
2435 }
2436
2437 /**
2438 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2439 * @dev: the PCI device
2440 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2441 *
2442 * Perform INTx swizzling for a device behind one level of bridge. This is
2443 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2444 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2445 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2446 * the PCI Express Base Specification, Revision 2.1)
2447 */
2448 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2449 {
2450 int slot;
2451
2452 if (pci_ari_enabled(dev->bus))
2453 slot = 0;
2454 else
2455 slot = PCI_SLOT(dev->devfn);
2456
2457 return (((pin - 1) + slot) % 4) + 1;
2458 }
2459
2460 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2461 {
2462 u8 pin;
2463
2464 pin = dev->pin;
2465 if (!pin)
2466 return -1;
2467
2468 while (!pci_is_root_bus(dev->bus)) {
2469 pin = pci_swizzle_interrupt_pin(dev, pin);
2470 dev = dev->bus->self;
2471 }
2472 *bridge = dev;
2473 return pin;
2474 }
2475
2476 /**
2477 * pci_common_swizzle - swizzle INTx all the way to root bridge
2478 * @dev: the PCI device
2479 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2480 *
2481 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2482 * bridges all the way up to a PCI root bus.
2483 */
2484 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2485 {
2486 u8 pin = *pinp;
2487
2488 while (!pci_is_root_bus(dev->bus)) {
2489 pin = pci_swizzle_interrupt_pin(dev, pin);
2490 dev = dev->bus->self;
2491 }
2492 *pinp = pin;
2493 return PCI_SLOT(dev->devfn);
2494 }
2495
2496 /**
2497 * pci_release_region - Release a PCI bar
2498 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2499 * @bar: BAR to release
2500 *
2501 * Releases the PCI I/O and memory resources previously reserved by a
2502 * successful call to pci_request_region. Call this function only
2503 * after all use of the PCI regions has ceased.
2504 */
2505 void pci_release_region(struct pci_dev *pdev, int bar)
2506 {
2507 struct pci_devres *dr;
2508
2509 if (pci_resource_len(pdev, bar) == 0)
2510 return;
2511 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2512 release_region(pci_resource_start(pdev, bar),
2513 pci_resource_len(pdev, bar));
2514 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2515 release_mem_region(pci_resource_start(pdev, bar),
2516 pci_resource_len(pdev, bar));
2517
2518 dr = find_pci_dr(pdev);
2519 if (dr)
2520 dr->region_mask &= ~(1 << bar);
2521 }
2522 EXPORT_SYMBOL(pci_release_region);
2523
2524 /**
2525 * __pci_request_region - Reserved PCI I/O and memory resource
2526 * @pdev: PCI device whose resources are to be reserved
2527 * @bar: BAR to be reserved
2528 * @res_name: Name to be associated with resource.
2529 * @exclusive: whether the region access is exclusive or not
2530 *
2531 * Mark the PCI region associated with PCI device @pdev BR @bar as
2532 * being reserved by owner @res_name. Do not access any
2533 * address inside the PCI regions unless this call returns
2534 * successfully.
2535 *
2536 * If @exclusive is set, then the region is marked so that userspace
2537 * is explicitly not allowed to map the resource via /dev/mem or
2538 * sysfs MMIO access.
2539 *
2540 * Returns 0 on success, or %EBUSY on error. A warning
2541 * message is also printed on failure.
2542 */
2543 static int __pci_request_region(struct pci_dev *pdev, int bar,
2544 const char *res_name, int exclusive)
2545 {
2546 struct pci_devres *dr;
2547
2548 if (pci_resource_len(pdev, bar) == 0)
2549 return 0;
2550
2551 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2552 if (!request_region(pci_resource_start(pdev, bar),
2553 pci_resource_len(pdev, bar), res_name))
2554 goto err_out;
2555 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2556 if (!__request_mem_region(pci_resource_start(pdev, bar),
2557 pci_resource_len(pdev, bar), res_name,
2558 exclusive))
2559 goto err_out;
2560 }
2561
2562 dr = find_pci_dr(pdev);
2563 if (dr)
2564 dr->region_mask |= 1 << bar;
2565
2566 return 0;
2567
2568 err_out:
2569 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2570 &pdev->resource[bar]);
2571 return -EBUSY;
2572 }
2573
2574 /**
2575 * pci_request_region - Reserve PCI I/O and memory resource
2576 * @pdev: PCI device whose resources are to be reserved
2577 * @bar: BAR to be reserved
2578 * @res_name: Name to be associated with resource
2579 *
2580 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2581 * being reserved by owner @res_name. Do not access any
2582 * address inside the PCI regions unless this call returns
2583 * successfully.
2584 *
2585 * Returns 0 on success, or %EBUSY on error. A warning
2586 * message is also printed on failure.
2587 */
2588 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2589 {
2590 return __pci_request_region(pdev, bar, res_name, 0);
2591 }
2592 EXPORT_SYMBOL(pci_request_region);
2593
2594 /**
2595 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2596 * @pdev: PCI device whose resources are to be reserved
2597 * @bar: BAR to be reserved
2598 * @res_name: Name to be associated with resource.
2599 *
2600 * Mark the PCI region associated with PCI device @pdev BR @bar as
2601 * being reserved by owner @res_name. Do not access any
2602 * address inside the PCI regions unless this call returns
2603 * successfully.
2604 *
2605 * Returns 0 on success, or %EBUSY on error. A warning
2606 * message is also printed on failure.
2607 *
2608 * The key difference that _exclusive makes it that userspace is
2609 * explicitly not allowed to map the resource via /dev/mem or
2610 * sysfs.
2611 */
2612 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2613 const char *res_name)
2614 {
2615 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2616 }
2617 EXPORT_SYMBOL(pci_request_region_exclusive);
2618
2619 /**
2620 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2621 * @pdev: PCI device whose resources were previously reserved
2622 * @bars: Bitmask of BARs to be released
2623 *
2624 * Release selected PCI I/O and memory resources previously reserved.
2625 * Call this function only after all use of the PCI regions has ceased.
2626 */
2627 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2628 {
2629 int i;
2630
2631 for (i = 0; i < 6; i++)
2632 if (bars & (1 << i))
2633 pci_release_region(pdev, i);
2634 }
2635 EXPORT_SYMBOL(pci_release_selected_regions);
2636
2637 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2638 const char *res_name, int excl)
2639 {
2640 int i;
2641
2642 for (i = 0; i < 6; i++)
2643 if (bars & (1 << i))
2644 if (__pci_request_region(pdev, i, res_name, excl))
2645 goto err_out;
2646 return 0;
2647
2648 err_out:
2649 while (--i >= 0)
2650 if (bars & (1 << i))
2651 pci_release_region(pdev, i);
2652
2653 return -EBUSY;
2654 }
2655
2656
2657 /**
2658 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2659 * @pdev: PCI device whose resources are to be reserved
2660 * @bars: Bitmask of BARs to be requested
2661 * @res_name: Name to be associated with resource
2662 */
2663 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2664 const char *res_name)
2665 {
2666 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2667 }
2668 EXPORT_SYMBOL(pci_request_selected_regions);
2669
2670 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2671 const char *res_name)
2672 {
2673 return __pci_request_selected_regions(pdev, bars, res_name,
2674 IORESOURCE_EXCLUSIVE);
2675 }
2676 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2677
2678 /**
2679 * pci_release_regions - Release reserved PCI I/O and memory resources
2680 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2681 *
2682 * Releases all PCI I/O and memory resources previously reserved by a
2683 * successful call to pci_request_regions. Call this function only
2684 * after all use of the PCI regions has ceased.
2685 */
2686
2687 void pci_release_regions(struct pci_dev *pdev)
2688 {
2689 pci_release_selected_regions(pdev, (1 << 6) - 1);
2690 }
2691 EXPORT_SYMBOL(pci_release_regions);
2692
2693 /**
2694 * pci_request_regions - Reserved PCI I/O and memory resources
2695 * @pdev: PCI device whose resources are to be reserved
2696 * @res_name: Name to be associated with resource.
2697 *
2698 * Mark all PCI regions associated with PCI device @pdev as
2699 * being reserved by owner @res_name. Do not access any
2700 * address inside the PCI regions unless this call returns
2701 * successfully.
2702 *
2703 * Returns 0 on success, or %EBUSY on error. A warning
2704 * message is also printed on failure.
2705 */
2706 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2707 {
2708 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2709 }
2710 EXPORT_SYMBOL(pci_request_regions);
2711
2712 /**
2713 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2714 * @pdev: PCI device whose resources are to be reserved
2715 * @res_name: Name to be associated with resource.
2716 *
2717 * Mark all PCI regions associated with PCI device @pdev as
2718 * being reserved by owner @res_name. Do not access any
2719 * address inside the PCI regions unless this call returns
2720 * successfully.
2721 *
2722 * pci_request_regions_exclusive() will mark the region so that
2723 * /dev/mem and the sysfs MMIO access will not be allowed.
2724 *
2725 * Returns 0 on success, or %EBUSY on error. A warning
2726 * message is also printed on failure.
2727 */
2728 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2729 {
2730 return pci_request_selected_regions_exclusive(pdev,
2731 ((1 << 6) - 1), res_name);
2732 }
2733 EXPORT_SYMBOL(pci_request_regions_exclusive);
2734
2735 /**
2736 * pci_remap_iospace - Remap the memory mapped I/O space
2737 * @res: Resource describing the I/O space
2738 * @phys_addr: physical address of range to be mapped
2739 *
2740 * Remap the memory mapped I/O space described by the @res
2741 * and the CPU physical address @phys_addr into virtual address space.
2742 * Only architectures that have memory mapped IO functions defined
2743 * (and the PCI_IOBASE value defined) should call this function.
2744 */
2745 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2746 {
2747 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2748 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2749
2750 if (!(res->flags & IORESOURCE_IO))
2751 return -EINVAL;
2752
2753 if (res->end > IO_SPACE_LIMIT)
2754 return -EINVAL;
2755
2756 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2757 pgprot_device(PAGE_KERNEL));
2758 #else
2759 /* this architecture does not have memory mapped I/O space,
2760 so this function should never be called */
2761 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2762 return -ENODEV;
2763 #endif
2764 }
2765
2766 static void __pci_set_master(struct pci_dev *dev, bool enable)
2767 {
2768 u16 old_cmd, cmd;
2769
2770 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2771 if (enable)
2772 cmd = old_cmd | PCI_COMMAND_MASTER;
2773 else
2774 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2775 if (cmd != old_cmd) {
2776 dev_dbg(&dev->dev, "%s bus mastering\n",
2777 enable ? "enabling" : "disabling");
2778 pci_write_config_word(dev, PCI_COMMAND, cmd);
2779 }
2780 dev->is_busmaster = enable;
2781 }
2782
2783 /**
2784 * pcibios_setup - process "pci=" kernel boot arguments
2785 * @str: string used to pass in "pci=" kernel boot arguments
2786 *
2787 * Process kernel boot arguments. This is the default implementation.
2788 * Architecture specific implementations can override this as necessary.
2789 */
2790 char * __weak __init pcibios_setup(char *str)
2791 {
2792 return str;
2793 }
2794
2795 /**
2796 * pcibios_set_master - enable PCI bus-mastering for device dev
2797 * @dev: the PCI device to enable
2798 *
2799 * Enables PCI bus-mastering for the device. This is the default
2800 * implementation. Architecture specific implementations can override
2801 * this if necessary.
2802 */
2803 void __weak pcibios_set_master(struct pci_dev *dev)
2804 {
2805 u8 lat;
2806
2807 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2808 if (pci_is_pcie(dev))
2809 return;
2810
2811 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2812 if (lat < 16)
2813 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2814 else if (lat > pcibios_max_latency)
2815 lat = pcibios_max_latency;
2816 else
2817 return;
2818
2819 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2820 }
2821
2822 /**
2823 * pci_set_master - enables bus-mastering for device dev
2824 * @dev: the PCI device to enable
2825 *
2826 * Enables bus-mastering on the device and calls pcibios_set_master()
2827 * to do the needed arch specific settings.
2828 */
2829 void pci_set_master(struct pci_dev *dev)
2830 {
2831 __pci_set_master(dev, true);
2832 pcibios_set_master(dev);
2833 }
2834 EXPORT_SYMBOL(pci_set_master);
2835
2836 /**
2837 * pci_clear_master - disables bus-mastering for device dev
2838 * @dev: the PCI device to disable
2839 */
2840 void pci_clear_master(struct pci_dev *dev)
2841 {
2842 __pci_set_master(dev, false);
2843 }
2844 EXPORT_SYMBOL(pci_clear_master);
2845
2846 /**
2847 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2848 * @dev: the PCI device for which MWI is to be enabled
2849 *
2850 * Helper function for pci_set_mwi.
2851 * Originally copied from drivers/net/acenic.c.
2852 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2853 *
2854 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2855 */
2856 int pci_set_cacheline_size(struct pci_dev *dev)
2857 {
2858 u8 cacheline_size;
2859
2860 if (!pci_cache_line_size)
2861 return -EINVAL;
2862
2863 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2864 equal to or multiple of the right value. */
2865 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2866 if (cacheline_size >= pci_cache_line_size &&
2867 (cacheline_size % pci_cache_line_size) == 0)
2868 return 0;
2869
2870 /* Write the correct value. */
2871 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2872 /* Read it back. */
2873 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2874 if (cacheline_size == pci_cache_line_size)
2875 return 0;
2876
2877 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2878 pci_cache_line_size << 2);
2879
2880 return -EINVAL;
2881 }
2882 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2883
2884 /**
2885 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2886 * @dev: the PCI device for which MWI is enabled
2887 *
2888 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2889 *
2890 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2891 */
2892 int pci_set_mwi(struct pci_dev *dev)
2893 {
2894 #ifdef PCI_DISABLE_MWI
2895 return 0;
2896 #else
2897 int rc;
2898 u16 cmd;
2899
2900 rc = pci_set_cacheline_size(dev);
2901 if (rc)
2902 return rc;
2903
2904 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2905 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2906 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2907 cmd |= PCI_COMMAND_INVALIDATE;
2908 pci_write_config_word(dev, PCI_COMMAND, cmd);
2909 }
2910 return 0;
2911 #endif
2912 }
2913 EXPORT_SYMBOL(pci_set_mwi);
2914
2915 /**
2916 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2917 * @dev: the PCI device for which MWI is enabled
2918 *
2919 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2920 * Callers are not required to check the return value.
2921 *
2922 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2923 */
2924 int pci_try_set_mwi(struct pci_dev *dev)
2925 {
2926 #ifdef PCI_DISABLE_MWI
2927 return 0;
2928 #else
2929 return pci_set_mwi(dev);
2930 #endif
2931 }
2932 EXPORT_SYMBOL(pci_try_set_mwi);
2933
2934 /**
2935 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2936 * @dev: the PCI device to disable
2937 *
2938 * Disables PCI Memory-Write-Invalidate transaction on the device
2939 */
2940 void pci_clear_mwi(struct pci_dev *dev)
2941 {
2942 #ifndef PCI_DISABLE_MWI
2943 u16 cmd;
2944
2945 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2946 if (cmd & PCI_COMMAND_INVALIDATE) {
2947 cmd &= ~PCI_COMMAND_INVALIDATE;
2948 pci_write_config_word(dev, PCI_COMMAND, cmd);
2949 }
2950 #endif
2951 }
2952 EXPORT_SYMBOL(pci_clear_mwi);
2953
2954 /**
2955 * pci_intx - enables/disables PCI INTx for device dev
2956 * @pdev: the PCI device to operate on
2957 * @enable: boolean: whether to enable or disable PCI INTx
2958 *
2959 * Enables/disables PCI INTx for device dev
2960 */
2961 void pci_intx(struct pci_dev *pdev, int enable)
2962 {
2963 u16 pci_command, new;
2964
2965 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2966
2967 if (enable)
2968 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2969 else
2970 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2971
2972 if (new != pci_command) {
2973 struct pci_devres *dr;
2974
2975 pci_write_config_word(pdev, PCI_COMMAND, new);
2976
2977 dr = find_pci_dr(pdev);
2978 if (dr && !dr->restore_intx) {
2979 dr->restore_intx = 1;
2980 dr->orig_intx = !enable;
2981 }
2982 }
2983 }
2984 EXPORT_SYMBOL_GPL(pci_intx);
2985
2986 /**
2987 * pci_intx_mask_supported - probe for INTx masking support
2988 * @dev: the PCI device to operate on
2989 *
2990 * Check if the device dev support INTx masking via the config space
2991 * command word.
2992 */
2993 bool pci_intx_mask_supported(struct pci_dev *dev)
2994 {
2995 bool mask_supported = false;
2996 u16 orig, new;
2997
2998 if (dev->broken_intx_masking)
2999 return false;
3000
3001 pci_cfg_access_lock(dev);
3002
3003 pci_read_config_word(dev, PCI_COMMAND, &orig);
3004 pci_write_config_word(dev, PCI_COMMAND,
3005 orig ^ PCI_COMMAND_INTX_DISABLE);
3006 pci_read_config_word(dev, PCI_COMMAND, &new);
3007
3008 /*
3009 * There's no way to protect against hardware bugs or detect them
3010 * reliably, but as long as we know what the value should be, let's
3011 * go ahead and check it.
3012 */
3013 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3014 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3015 orig, new);
3016 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3017 mask_supported = true;
3018 pci_write_config_word(dev, PCI_COMMAND, orig);
3019 }
3020
3021 pci_cfg_access_unlock(dev);
3022 return mask_supported;
3023 }
3024 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3025
3026 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3027 {
3028 struct pci_bus *bus = dev->bus;
3029 bool mask_updated = true;
3030 u32 cmd_status_dword;
3031 u16 origcmd, newcmd;
3032 unsigned long flags;
3033 bool irq_pending;
3034
3035 /*
3036 * We do a single dword read to retrieve both command and status.
3037 * Document assumptions that make this possible.
3038 */
3039 BUILD_BUG_ON(PCI_COMMAND % 4);
3040 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3041
3042 raw_spin_lock_irqsave(&pci_lock, flags);
3043
3044 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3045
3046 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3047
3048 /*
3049 * Check interrupt status register to see whether our device
3050 * triggered the interrupt (when masking) or the next IRQ is
3051 * already pending (when unmasking).
3052 */
3053 if (mask != irq_pending) {
3054 mask_updated = false;
3055 goto done;
3056 }
3057
3058 origcmd = cmd_status_dword;
3059 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3060 if (mask)
3061 newcmd |= PCI_COMMAND_INTX_DISABLE;
3062 if (newcmd != origcmd)
3063 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3064
3065 done:
3066 raw_spin_unlock_irqrestore(&pci_lock, flags);
3067
3068 return mask_updated;
3069 }
3070
3071 /**
3072 * pci_check_and_mask_intx - mask INTx on pending interrupt
3073 * @dev: the PCI device to operate on
3074 *
3075 * Check if the device dev has its INTx line asserted, mask it and
3076 * return true in that case. False is returned if not interrupt was
3077 * pending.
3078 */
3079 bool pci_check_and_mask_intx(struct pci_dev *dev)
3080 {
3081 return pci_check_and_set_intx_mask(dev, true);
3082 }
3083 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3084
3085 /**
3086 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3087 * @dev: the PCI device to operate on
3088 *
3089 * Check if the device dev has its INTx line asserted, unmask it if not
3090 * and return true. False is returned and the mask remains active if
3091 * there was still an interrupt pending.
3092 */
3093 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3094 {
3095 return pci_check_and_set_intx_mask(dev, false);
3096 }
3097 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3098
3099 /**
3100 * pci_msi_off - disables any MSI or MSI-X capabilities
3101 * @dev: the PCI device to operate on
3102 *
3103 * If you want to use MSI, see pci_enable_msi() and friends.
3104 * This is a lower-level primitive that allows us to disable
3105 * MSI operation at the device level.
3106 */
3107 void pci_msi_off(struct pci_dev *dev)
3108 {
3109 int pos;
3110 u16 control;
3111
3112 /*
3113 * This looks like it could go in msi.c, but we need it even when
3114 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3115 * dev->msi_cap or dev->msix_cap here.
3116 */
3117 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3118 if (pos) {
3119 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3120 control &= ~PCI_MSI_FLAGS_ENABLE;
3121 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3122 }
3123 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3124 if (pos) {
3125 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3126 control &= ~PCI_MSIX_FLAGS_ENABLE;
3127 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3128 }
3129 }
3130 EXPORT_SYMBOL_GPL(pci_msi_off);
3131
3132 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3133 {
3134 return dma_set_max_seg_size(&dev->dev, size);
3135 }
3136 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3137
3138 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3139 {
3140 return dma_set_seg_boundary(&dev->dev, mask);
3141 }
3142 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3143
3144 /**
3145 * pci_wait_for_pending_transaction - waits for pending transaction
3146 * @dev: the PCI device to operate on
3147 *
3148 * Return 0 if transaction is pending 1 otherwise.
3149 */
3150 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3151 {
3152 if (!pci_is_pcie(dev))
3153 return 1;
3154
3155 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3156 PCI_EXP_DEVSTA_TRPND);
3157 }
3158 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3159
3160 static int pcie_flr(struct pci_dev *dev, int probe)
3161 {
3162 u32 cap;
3163
3164 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3165 if (!(cap & PCI_EXP_DEVCAP_FLR))
3166 return -ENOTTY;
3167
3168 if (probe)
3169 return 0;
3170
3171 if (!pci_wait_for_pending_transaction(dev))
3172 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3173
3174 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3175 msleep(100);
3176 return 0;
3177 }
3178
3179 static int pci_af_flr(struct pci_dev *dev, int probe)
3180 {
3181 int pos;
3182 u8 cap;
3183
3184 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3185 if (!pos)
3186 return -ENOTTY;
3187
3188 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3189 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3190 return -ENOTTY;
3191
3192 if (probe)
3193 return 0;
3194
3195 /*
3196 * Wait for Transaction Pending bit to clear. A word-aligned test
3197 * is used, so we use the conrol offset rather than status and shift
3198 * the test bit to match.
3199 */
3200 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3201 PCI_AF_STATUS_TP << 8))
3202 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3203
3204 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3205 msleep(100);
3206 return 0;
3207 }
3208
3209 /**
3210 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3211 * @dev: Device to reset.
3212 * @probe: If set, only check if the device can be reset this way.
3213 *
3214 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3215 * unset, it will be reinitialized internally when going from PCI_D3hot to
3216 * PCI_D0. If that's the case and the device is not in a low-power state
3217 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3218 *
3219 * NOTE: This causes the caller to sleep for twice the device power transition
3220 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3221 * by default (i.e. unless the @dev's d3_delay field has a different value).
3222 * Moreover, only devices in D0 can be reset by this function.
3223 */
3224 static int pci_pm_reset(struct pci_dev *dev, int probe)
3225 {
3226 u16 csr;
3227
3228 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3229 return -ENOTTY;
3230
3231 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3232 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3233 return -ENOTTY;
3234
3235 if (probe)
3236 return 0;
3237
3238 if (dev->current_state != PCI_D0)
3239 return -EINVAL;
3240
3241 csr &= ~PCI_PM_CTRL_STATE_MASK;
3242 csr |= PCI_D3hot;
3243 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3244 pci_dev_d3_sleep(dev);
3245
3246 csr &= ~PCI_PM_CTRL_STATE_MASK;
3247 csr |= PCI_D0;
3248 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3249 pci_dev_d3_sleep(dev);
3250
3251 return 0;
3252 }
3253
3254 void pci_reset_secondary_bus(struct pci_dev *dev)
3255 {
3256 u16 ctrl;
3257
3258 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3259 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3260 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3261 /*
3262 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3263 * this to 2ms to ensure that we meet the minimum requirement.
3264 */
3265 msleep(2);
3266
3267 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3268 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3269
3270 /*
3271 * Trhfa for conventional PCI is 2^25 clock cycles.
3272 * Assuming a minimum 33MHz clock this results in a 1s
3273 * delay before we can consider subordinate devices to
3274 * be re-initialized. PCIe has some ways to shorten this,
3275 * but we don't make use of them yet.
3276 */
3277 ssleep(1);
3278 }
3279
3280 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3281 {
3282 pci_reset_secondary_bus(dev);
3283 }
3284
3285 /**
3286 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3287 * @dev: Bridge device
3288 *
3289 * Use the bridge control register to assert reset on the secondary bus.
3290 * Devices on the secondary bus are left in power-on state.
3291 */
3292 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3293 {
3294 pcibios_reset_secondary_bus(dev);
3295 }
3296 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3297
3298 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3299 {
3300 struct pci_dev *pdev;
3301
3302 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3303 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3304 return -ENOTTY;
3305
3306 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3307 if (pdev != dev)
3308 return -ENOTTY;
3309
3310 if (probe)
3311 return 0;
3312
3313 pci_reset_bridge_secondary_bus(dev->bus->self);
3314
3315 return 0;
3316 }
3317
3318 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3319 {
3320 int rc = -ENOTTY;
3321
3322 if (!hotplug || !try_module_get(hotplug->ops->owner))
3323 return rc;
3324
3325 if (hotplug->ops->reset_slot)
3326 rc = hotplug->ops->reset_slot(hotplug, probe);
3327
3328 module_put(hotplug->ops->owner);
3329
3330 return rc;
3331 }
3332
3333 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3334 {
3335 struct pci_dev *pdev;
3336
3337 if (dev->subordinate || !dev->slot ||
3338 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3339 return -ENOTTY;
3340
3341 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3342 if (pdev != dev && pdev->slot == dev->slot)
3343 return -ENOTTY;
3344
3345 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3346 }
3347
3348 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3349 {
3350 int rc;
3351
3352 might_sleep();
3353
3354 rc = pci_dev_specific_reset(dev, probe);
3355 if (rc != -ENOTTY)
3356 goto done;
3357
3358 rc = pcie_flr(dev, probe);
3359 if (rc != -ENOTTY)
3360 goto done;
3361
3362 rc = pci_af_flr(dev, probe);
3363 if (rc != -ENOTTY)
3364 goto done;
3365
3366 rc = pci_pm_reset(dev, probe);
3367 if (rc != -ENOTTY)
3368 goto done;
3369
3370 rc = pci_dev_reset_slot_function(dev, probe);
3371 if (rc != -ENOTTY)
3372 goto done;
3373
3374 rc = pci_parent_bus_reset(dev, probe);
3375 done:
3376 return rc;
3377 }
3378
3379 static void pci_dev_lock(struct pci_dev *dev)
3380 {
3381 pci_cfg_access_lock(dev);
3382 /* block PM suspend, driver probe, etc. */
3383 device_lock(&dev->dev);
3384 }
3385
3386 /* Return 1 on successful lock, 0 on contention */
3387 static int pci_dev_trylock(struct pci_dev *dev)
3388 {
3389 if (pci_cfg_access_trylock(dev)) {
3390 if (device_trylock(&dev->dev))
3391 return 1;
3392 pci_cfg_access_unlock(dev);
3393 }
3394
3395 return 0;
3396 }
3397
3398 static void pci_dev_unlock(struct pci_dev *dev)
3399 {
3400 device_unlock(&dev->dev);
3401 pci_cfg_access_unlock(dev);
3402 }
3403
3404 /**
3405 * pci_reset_notify - notify device driver of reset
3406 * @dev: device to be notified of reset
3407 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3408 * completed
3409 *
3410 * Must be called prior to device access being disabled and after device
3411 * access is restored.
3412 */
3413 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3414 {
3415 const struct pci_error_handlers *err_handler =
3416 dev->driver ? dev->driver->err_handler : NULL;
3417 if (err_handler && err_handler->reset_notify)
3418 err_handler->reset_notify(dev, prepare);
3419 }
3420
3421 static void pci_dev_save_and_disable(struct pci_dev *dev)
3422 {
3423 pci_reset_notify(dev, true);
3424
3425 /*
3426 * Wake-up device prior to save. PM registers default to D0 after
3427 * reset and a simple register restore doesn't reliably return
3428 * to a non-D0 state anyway.
3429 */
3430 pci_set_power_state(dev, PCI_D0);
3431
3432 pci_save_state(dev);
3433 /*
3434 * Disable the device by clearing the Command register, except for
3435 * INTx-disable which is set. This not only disables MMIO and I/O port
3436 * BARs, but also prevents the device from being Bus Master, preventing
3437 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3438 * compliant devices, INTx-disable prevents legacy interrupts.
3439 */
3440 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3441 }
3442
3443 static void pci_dev_restore(struct pci_dev *dev)
3444 {
3445 pci_restore_state(dev);
3446 pci_reset_notify(dev, false);
3447 }
3448
3449 static int pci_dev_reset(struct pci_dev *dev, int probe)
3450 {
3451 int rc;
3452
3453 if (!probe)
3454 pci_dev_lock(dev);
3455
3456 rc = __pci_dev_reset(dev, probe);
3457
3458 if (!probe)
3459 pci_dev_unlock(dev);
3460
3461 return rc;
3462 }
3463
3464 /**
3465 * __pci_reset_function - reset a PCI device function
3466 * @dev: PCI device to reset
3467 *
3468 * Some devices allow an individual function to be reset without affecting
3469 * other functions in the same device. The PCI device must be responsive
3470 * to PCI config space in order to use this function.
3471 *
3472 * The device function is presumed to be unused when this function is called.
3473 * Resetting the device will make the contents of PCI configuration space
3474 * random, so any caller of this must be prepared to reinitialise the
3475 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3476 * etc.
3477 *
3478 * Returns 0 if the device function was successfully reset or negative if the
3479 * device doesn't support resetting a single function.
3480 */
3481 int __pci_reset_function(struct pci_dev *dev)
3482 {
3483 return pci_dev_reset(dev, 0);
3484 }
3485 EXPORT_SYMBOL_GPL(__pci_reset_function);
3486
3487 /**
3488 * __pci_reset_function_locked - reset a PCI device function while holding
3489 * the @dev mutex lock.
3490 * @dev: PCI device to reset
3491 *
3492 * Some devices allow an individual function to be reset without affecting
3493 * other functions in the same device. The PCI device must be responsive
3494 * to PCI config space in order to use this function.
3495 *
3496 * The device function is presumed to be unused and the caller is holding
3497 * the device mutex lock when this function is called.
3498 * Resetting the device will make the contents of PCI configuration space
3499 * random, so any caller of this must be prepared to reinitialise the
3500 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3501 * etc.
3502 *
3503 * Returns 0 if the device function was successfully reset or negative if the
3504 * device doesn't support resetting a single function.
3505 */
3506 int __pci_reset_function_locked(struct pci_dev *dev)
3507 {
3508 return __pci_dev_reset(dev, 0);
3509 }
3510 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3511
3512 /**
3513 * pci_probe_reset_function - check whether the device can be safely reset
3514 * @dev: PCI device to reset
3515 *
3516 * Some devices allow an individual function to be reset without affecting
3517 * other functions in the same device. The PCI device must be responsive
3518 * to PCI config space in order to use this function.
3519 *
3520 * Returns 0 if the device function can be reset or negative if the
3521 * device doesn't support resetting a single function.
3522 */
3523 int pci_probe_reset_function(struct pci_dev *dev)
3524 {
3525 return pci_dev_reset(dev, 1);
3526 }
3527
3528 /**
3529 * pci_reset_function - quiesce and reset a PCI device function
3530 * @dev: PCI device to reset
3531 *
3532 * Some devices allow an individual function to be reset without affecting
3533 * other functions in the same device. The PCI device must be responsive
3534 * to PCI config space in order to use this function.
3535 *
3536 * This function does not just reset the PCI portion of a device, but
3537 * clears all the state associated with the device. This function differs
3538 * from __pci_reset_function in that it saves and restores device state
3539 * over the reset.
3540 *
3541 * Returns 0 if the device function was successfully reset or negative if the
3542 * device doesn't support resetting a single function.
3543 */
3544 int pci_reset_function(struct pci_dev *dev)
3545 {
3546 int rc;
3547
3548 rc = pci_dev_reset(dev, 1);
3549 if (rc)
3550 return rc;
3551
3552 pci_dev_save_and_disable(dev);
3553
3554 rc = pci_dev_reset(dev, 0);
3555
3556 pci_dev_restore(dev);
3557
3558 return rc;
3559 }
3560 EXPORT_SYMBOL_GPL(pci_reset_function);
3561
3562 /**
3563 * pci_try_reset_function - quiesce and reset a PCI device function
3564 * @dev: PCI device to reset
3565 *
3566 * Same as above, except return -EAGAIN if unable to lock device.
3567 */
3568 int pci_try_reset_function(struct pci_dev *dev)
3569 {
3570 int rc;
3571
3572 rc = pci_dev_reset(dev, 1);
3573 if (rc)
3574 return rc;
3575
3576 pci_dev_save_and_disable(dev);
3577
3578 if (pci_dev_trylock(dev)) {
3579 rc = __pci_dev_reset(dev, 0);
3580 pci_dev_unlock(dev);
3581 } else
3582 rc = -EAGAIN;
3583
3584 pci_dev_restore(dev);
3585
3586 return rc;
3587 }
3588 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3589
3590 /* Do any devices on or below this bus prevent a bus reset? */
3591 static bool pci_bus_resetable(struct pci_bus *bus)
3592 {
3593 struct pci_dev *dev;
3594
3595 list_for_each_entry(dev, &bus->devices, bus_list) {
3596 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3597 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3598 return false;
3599 }
3600
3601 return true;
3602 }
3603
3604 /* Lock devices from the top of the tree down */
3605 static void pci_bus_lock(struct pci_bus *bus)
3606 {
3607 struct pci_dev *dev;
3608
3609 list_for_each_entry(dev, &bus->devices, bus_list) {
3610 pci_dev_lock(dev);
3611 if (dev->subordinate)
3612 pci_bus_lock(dev->subordinate);
3613 }
3614 }
3615
3616 /* Unlock devices from the bottom of the tree up */
3617 static void pci_bus_unlock(struct pci_bus *bus)
3618 {
3619 struct pci_dev *dev;
3620
3621 list_for_each_entry(dev, &bus->devices, bus_list) {
3622 if (dev->subordinate)
3623 pci_bus_unlock(dev->subordinate);
3624 pci_dev_unlock(dev);
3625 }
3626 }
3627
3628 /* Return 1 on successful lock, 0 on contention */
3629 static int pci_bus_trylock(struct pci_bus *bus)
3630 {
3631 struct pci_dev *dev;
3632
3633 list_for_each_entry(dev, &bus->devices, bus_list) {
3634 if (!pci_dev_trylock(dev))
3635 goto unlock;
3636 if (dev->subordinate) {
3637 if (!pci_bus_trylock(dev->subordinate)) {
3638 pci_dev_unlock(dev);
3639 goto unlock;
3640 }
3641 }
3642 }
3643 return 1;
3644
3645 unlock:
3646 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3647 if (dev->subordinate)
3648 pci_bus_unlock(dev->subordinate);
3649 pci_dev_unlock(dev);
3650 }
3651 return 0;
3652 }
3653
3654 /* Do any devices on or below this slot prevent a bus reset? */
3655 static bool pci_slot_resetable(struct pci_slot *slot)
3656 {
3657 struct pci_dev *dev;
3658
3659 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3660 if (!dev->slot || dev->slot != slot)
3661 continue;
3662 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3663 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3664 return false;
3665 }
3666
3667 return true;
3668 }
3669
3670 /* Lock devices from the top of the tree down */
3671 static void pci_slot_lock(struct pci_slot *slot)
3672 {
3673 struct pci_dev *dev;
3674
3675 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3676 if (!dev->slot || dev->slot != slot)
3677 continue;
3678 pci_dev_lock(dev);
3679 if (dev->subordinate)
3680 pci_bus_lock(dev->subordinate);
3681 }
3682 }
3683
3684 /* Unlock devices from the bottom of the tree up */
3685 static void pci_slot_unlock(struct pci_slot *slot)
3686 {
3687 struct pci_dev *dev;
3688
3689 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3690 if (!dev->slot || dev->slot != slot)
3691 continue;
3692 if (dev->subordinate)
3693 pci_bus_unlock(dev->subordinate);
3694 pci_dev_unlock(dev);
3695 }
3696 }
3697
3698 /* Return 1 on successful lock, 0 on contention */
3699 static int pci_slot_trylock(struct pci_slot *slot)
3700 {
3701 struct pci_dev *dev;
3702
3703 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3704 if (!dev->slot || dev->slot != slot)
3705 continue;
3706 if (!pci_dev_trylock(dev))
3707 goto unlock;
3708 if (dev->subordinate) {
3709 if (!pci_bus_trylock(dev->subordinate)) {
3710 pci_dev_unlock(dev);
3711 goto unlock;
3712 }
3713 }
3714 }
3715 return 1;
3716
3717 unlock:
3718 list_for_each_entry_continue_reverse(dev,
3719 &slot->bus->devices, bus_list) {
3720 if (!dev->slot || dev->slot != slot)
3721 continue;
3722 if (dev->subordinate)
3723 pci_bus_unlock(dev->subordinate);
3724 pci_dev_unlock(dev);
3725 }
3726 return 0;
3727 }
3728
3729 /* Save and disable devices from the top of the tree down */
3730 static void pci_bus_save_and_disable(struct pci_bus *bus)
3731 {
3732 struct pci_dev *dev;
3733
3734 list_for_each_entry(dev, &bus->devices, bus_list) {
3735 pci_dev_save_and_disable(dev);
3736 if (dev->subordinate)
3737 pci_bus_save_and_disable(dev->subordinate);
3738 }
3739 }
3740
3741 /*
3742 * Restore devices from top of the tree down - parent bridges need to be
3743 * restored before we can get to subordinate devices.
3744 */
3745 static void pci_bus_restore(struct pci_bus *bus)
3746 {
3747 struct pci_dev *dev;
3748
3749 list_for_each_entry(dev, &bus->devices, bus_list) {
3750 pci_dev_restore(dev);
3751 if (dev->subordinate)
3752 pci_bus_restore(dev->subordinate);
3753 }
3754 }
3755
3756 /* Save and disable devices from the top of the tree down */
3757 static void pci_slot_save_and_disable(struct pci_slot *slot)
3758 {
3759 struct pci_dev *dev;
3760
3761 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3762 if (!dev->slot || dev->slot != slot)
3763 continue;
3764 pci_dev_save_and_disable(dev);
3765 if (dev->subordinate)
3766 pci_bus_save_and_disable(dev->subordinate);
3767 }
3768 }
3769
3770 /*
3771 * Restore devices from top of the tree down - parent bridges need to be
3772 * restored before we can get to subordinate devices.
3773 */
3774 static void pci_slot_restore(struct pci_slot *slot)
3775 {
3776 struct pci_dev *dev;
3777
3778 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3779 if (!dev->slot || dev->slot != slot)
3780 continue;
3781 pci_dev_restore(dev);
3782 if (dev->subordinate)
3783 pci_bus_restore(dev->subordinate);
3784 }
3785 }
3786
3787 static int pci_slot_reset(struct pci_slot *slot, int probe)
3788 {
3789 int rc;
3790
3791 if (!slot || !pci_slot_resetable(slot))
3792 return -ENOTTY;
3793
3794 if (!probe)
3795 pci_slot_lock(slot);
3796
3797 might_sleep();
3798
3799 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3800
3801 if (!probe)
3802 pci_slot_unlock(slot);
3803
3804 return rc;
3805 }
3806
3807 /**
3808 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3809 * @slot: PCI slot to probe
3810 *
3811 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3812 */
3813 int pci_probe_reset_slot(struct pci_slot *slot)
3814 {
3815 return pci_slot_reset(slot, 1);
3816 }
3817 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3818
3819 /**
3820 * pci_reset_slot - reset a PCI slot
3821 * @slot: PCI slot to reset
3822 *
3823 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3824 * independent of other slots. For instance, some slots may support slot power
3825 * control. In the case of a 1:1 bus to slot architecture, this function may
3826 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3827 * Generally a slot reset should be attempted before a bus reset. All of the
3828 * function of the slot and any subordinate buses behind the slot are reset
3829 * through this function. PCI config space of all devices in the slot and
3830 * behind the slot is saved before and restored after reset.
3831 *
3832 * Return 0 on success, non-zero on error.
3833 */
3834 int pci_reset_slot(struct pci_slot *slot)
3835 {
3836 int rc;
3837
3838 rc = pci_slot_reset(slot, 1);
3839 if (rc)
3840 return rc;
3841
3842 pci_slot_save_and_disable(slot);
3843
3844 rc = pci_slot_reset(slot, 0);
3845
3846 pci_slot_restore(slot);
3847
3848 return rc;
3849 }
3850 EXPORT_SYMBOL_GPL(pci_reset_slot);
3851
3852 /**
3853 * pci_try_reset_slot - Try to reset a PCI slot
3854 * @slot: PCI slot to reset
3855 *
3856 * Same as above except return -EAGAIN if the slot cannot be locked
3857 */
3858 int pci_try_reset_slot(struct pci_slot *slot)
3859 {
3860 int rc;
3861
3862 rc = pci_slot_reset(slot, 1);
3863 if (rc)
3864 return rc;
3865
3866 pci_slot_save_and_disable(slot);
3867
3868 if (pci_slot_trylock(slot)) {
3869 might_sleep();
3870 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3871 pci_slot_unlock(slot);
3872 } else
3873 rc = -EAGAIN;
3874
3875 pci_slot_restore(slot);
3876
3877 return rc;
3878 }
3879 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3880
3881 static int pci_bus_reset(struct pci_bus *bus, int probe)
3882 {
3883 if (!bus->self || !pci_bus_resetable(bus))
3884 return -ENOTTY;
3885
3886 if (probe)
3887 return 0;
3888
3889 pci_bus_lock(bus);
3890
3891 might_sleep();
3892
3893 pci_reset_bridge_secondary_bus(bus->self);
3894
3895 pci_bus_unlock(bus);
3896
3897 return 0;
3898 }
3899
3900 /**
3901 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3902 * @bus: PCI bus to probe
3903 *
3904 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3905 */
3906 int pci_probe_reset_bus(struct pci_bus *bus)
3907 {
3908 return pci_bus_reset(bus, 1);
3909 }
3910 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3911
3912 /**
3913 * pci_reset_bus - reset a PCI bus
3914 * @bus: top level PCI bus to reset
3915 *
3916 * Do a bus reset on the given bus and any subordinate buses, saving
3917 * and restoring state of all devices.
3918 *
3919 * Return 0 on success, non-zero on error.
3920 */
3921 int pci_reset_bus(struct pci_bus *bus)
3922 {
3923 int rc;
3924
3925 rc = pci_bus_reset(bus, 1);
3926 if (rc)
3927 return rc;
3928
3929 pci_bus_save_and_disable(bus);
3930
3931 rc = pci_bus_reset(bus, 0);
3932
3933 pci_bus_restore(bus);
3934
3935 return rc;
3936 }
3937 EXPORT_SYMBOL_GPL(pci_reset_bus);
3938
3939 /**
3940 * pci_try_reset_bus - Try to reset a PCI bus
3941 * @bus: top level PCI bus to reset
3942 *
3943 * Same as above except return -EAGAIN if the bus cannot be locked
3944 */
3945 int pci_try_reset_bus(struct pci_bus *bus)
3946 {
3947 int rc;
3948
3949 rc = pci_bus_reset(bus, 1);
3950 if (rc)
3951 return rc;
3952
3953 pci_bus_save_and_disable(bus);
3954
3955 if (pci_bus_trylock(bus)) {
3956 might_sleep();
3957 pci_reset_bridge_secondary_bus(bus->self);
3958 pci_bus_unlock(bus);
3959 } else
3960 rc = -EAGAIN;
3961
3962 pci_bus_restore(bus);
3963
3964 return rc;
3965 }
3966 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3967
3968 /**
3969 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3970 * @dev: PCI device to query
3971 *
3972 * Returns mmrbc: maximum designed memory read count in bytes
3973 * or appropriate error value.
3974 */
3975 int pcix_get_max_mmrbc(struct pci_dev *dev)
3976 {
3977 int cap;
3978 u32 stat;
3979
3980 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3981 if (!cap)
3982 return -EINVAL;
3983
3984 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3985 return -EINVAL;
3986
3987 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3988 }
3989 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3990
3991 /**
3992 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3993 * @dev: PCI device to query
3994 *
3995 * Returns mmrbc: maximum memory read count in bytes
3996 * or appropriate error value.
3997 */
3998 int pcix_get_mmrbc(struct pci_dev *dev)
3999 {
4000 int cap;
4001 u16 cmd;
4002
4003 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4004 if (!cap)
4005 return -EINVAL;
4006
4007 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4008 return -EINVAL;
4009
4010 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4011 }
4012 EXPORT_SYMBOL(pcix_get_mmrbc);
4013
4014 /**
4015 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4016 * @dev: PCI device to query
4017 * @mmrbc: maximum memory read count in bytes
4018 * valid values are 512, 1024, 2048, 4096
4019 *
4020 * If possible sets maximum memory read byte count, some bridges have erratas
4021 * that prevent this.
4022 */
4023 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4024 {
4025 int cap;
4026 u32 stat, v, o;
4027 u16 cmd;
4028
4029 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4030 return -EINVAL;
4031
4032 v = ffs(mmrbc) - 10;
4033
4034 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4035 if (!cap)
4036 return -EINVAL;
4037
4038 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4039 return -EINVAL;
4040
4041 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4042 return -E2BIG;
4043
4044 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4045 return -EINVAL;
4046
4047 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4048 if (o != v) {
4049 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4050 return -EIO;
4051
4052 cmd &= ~PCI_X_CMD_MAX_READ;
4053 cmd |= v << 2;
4054 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4055 return -EIO;
4056 }
4057 return 0;
4058 }
4059 EXPORT_SYMBOL(pcix_set_mmrbc);
4060
4061 /**
4062 * pcie_get_readrq - get PCI Express read request size
4063 * @dev: PCI device to query
4064 *
4065 * Returns maximum memory read request in bytes
4066 * or appropriate error value.
4067 */
4068 int pcie_get_readrq(struct pci_dev *dev)
4069 {
4070 u16 ctl;
4071
4072 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4073
4074 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4075 }
4076 EXPORT_SYMBOL(pcie_get_readrq);
4077
4078 /**
4079 * pcie_set_readrq - set PCI Express maximum memory read request
4080 * @dev: PCI device to query
4081 * @rq: maximum memory read count in bytes
4082 * valid values are 128, 256, 512, 1024, 2048, 4096
4083 *
4084 * If possible sets maximum memory read request in bytes
4085 */
4086 int pcie_set_readrq(struct pci_dev *dev, int rq)
4087 {
4088 u16 v;
4089
4090 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4091 return -EINVAL;
4092
4093 /*
4094 * If using the "performance" PCIe config, we clamp the
4095 * read rq size to the max packet size to prevent the
4096 * host bridge generating requests larger than we can
4097 * cope with
4098 */
4099 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4100 int mps = pcie_get_mps(dev);
4101
4102 if (mps < rq)
4103 rq = mps;
4104 }
4105
4106 v = (ffs(rq) - 8) << 12;
4107
4108 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4109 PCI_EXP_DEVCTL_READRQ, v);
4110 }
4111 EXPORT_SYMBOL(pcie_set_readrq);
4112
4113 /**
4114 * pcie_get_mps - get PCI Express maximum payload size
4115 * @dev: PCI device to query
4116 *
4117 * Returns maximum payload size in bytes
4118 */
4119 int pcie_get_mps(struct pci_dev *dev)
4120 {
4121 u16 ctl;
4122
4123 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4124
4125 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4126 }
4127 EXPORT_SYMBOL(pcie_get_mps);
4128
4129 /**
4130 * pcie_set_mps - set PCI Express maximum payload size
4131 * @dev: PCI device to query
4132 * @mps: maximum payload size in bytes
4133 * valid values are 128, 256, 512, 1024, 2048, 4096
4134 *
4135 * If possible sets maximum payload size
4136 */
4137 int pcie_set_mps(struct pci_dev *dev, int mps)
4138 {
4139 u16 v;
4140
4141 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4142 return -EINVAL;
4143
4144 v = ffs(mps) - 8;
4145 if (v > dev->pcie_mpss)
4146 return -EINVAL;
4147 v <<= 5;
4148
4149 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4150 PCI_EXP_DEVCTL_PAYLOAD, v);
4151 }
4152 EXPORT_SYMBOL(pcie_set_mps);
4153
4154 /**
4155 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4156 * @dev: PCI device to query
4157 * @speed: storage for minimum speed
4158 * @width: storage for minimum width
4159 *
4160 * This function will walk up the PCI device chain and determine the minimum
4161 * link width and speed of the device.
4162 */
4163 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4164 enum pcie_link_width *width)
4165 {
4166 int ret;
4167
4168 *speed = PCI_SPEED_UNKNOWN;
4169 *width = PCIE_LNK_WIDTH_UNKNOWN;
4170
4171 while (dev) {
4172 u16 lnksta;
4173 enum pci_bus_speed next_speed;
4174 enum pcie_link_width next_width;
4175
4176 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4177 if (ret)
4178 return ret;
4179
4180 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4181 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4182 PCI_EXP_LNKSTA_NLW_SHIFT;
4183
4184 if (next_speed < *speed)
4185 *speed = next_speed;
4186
4187 if (next_width < *width)
4188 *width = next_width;
4189
4190 dev = dev->bus->self;
4191 }
4192
4193 return 0;
4194 }
4195 EXPORT_SYMBOL(pcie_get_minimum_link);
4196
4197 /**
4198 * pci_select_bars - Make BAR mask from the type of resource
4199 * @dev: the PCI device for which BAR mask is made
4200 * @flags: resource type mask to be selected
4201 *
4202 * This helper routine makes bar mask from the type of resource.
4203 */
4204 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4205 {
4206 int i, bars = 0;
4207 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4208 if (pci_resource_flags(dev, i) & flags)
4209 bars |= (1 << i);
4210 return bars;
4211 }
4212 EXPORT_SYMBOL(pci_select_bars);
4213
4214 /**
4215 * pci_resource_bar - get position of the BAR associated with a resource
4216 * @dev: the PCI device
4217 * @resno: the resource number
4218 * @type: the BAR type to be filled in
4219 *
4220 * Returns BAR position in config space, or 0 if the BAR is invalid.
4221 */
4222 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4223 {
4224 int reg;
4225
4226 if (resno < PCI_ROM_RESOURCE) {
4227 *type = pci_bar_unknown;
4228 return PCI_BASE_ADDRESS_0 + 4 * resno;
4229 } else if (resno == PCI_ROM_RESOURCE) {
4230 *type = pci_bar_mem32;
4231 return dev->rom_base_reg;
4232 } else if (resno < PCI_BRIDGE_RESOURCES) {
4233 /* device specific resource */
4234 *type = pci_bar_unknown;
4235 reg = pci_iov_resource_bar(dev, resno);
4236 if (reg)
4237 return reg;
4238 }
4239
4240 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4241 return 0;
4242 }
4243
4244 /* Some architectures require additional programming to enable VGA */
4245 static arch_set_vga_state_t arch_set_vga_state;
4246
4247 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4248 {
4249 arch_set_vga_state = func; /* NULL disables */
4250 }
4251
4252 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4253 unsigned int command_bits, u32 flags)
4254 {
4255 if (arch_set_vga_state)
4256 return arch_set_vga_state(dev, decode, command_bits,
4257 flags);
4258 return 0;
4259 }
4260
4261 /**
4262 * pci_set_vga_state - set VGA decode state on device and parents if requested
4263 * @dev: the PCI device
4264 * @decode: true = enable decoding, false = disable decoding
4265 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4266 * @flags: traverse ancestors and change bridges
4267 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4268 */
4269 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4270 unsigned int command_bits, u32 flags)
4271 {
4272 struct pci_bus *bus;
4273 struct pci_dev *bridge;
4274 u16 cmd;
4275 int rc;
4276
4277 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4278
4279 /* ARCH specific VGA enables */
4280 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4281 if (rc)
4282 return rc;
4283
4284 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4285 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4286 if (decode == true)
4287 cmd |= command_bits;
4288 else
4289 cmd &= ~command_bits;
4290 pci_write_config_word(dev, PCI_COMMAND, cmd);
4291 }
4292
4293 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4294 return 0;
4295
4296 bus = dev->bus;
4297 while (bus) {
4298 bridge = bus->self;
4299 if (bridge) {
4300 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4301 &cmd);
4302 if (decode == true)
4303 cmd |= PCI_BRIDGE_CTL_VGA;
4304 else
4305 cmd &= ~PCI_BRIDGE_CTL_VGA;
4306 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4307 cmd);
4308 }
4309 bus = bus->parent;
4310 }
4311 return 0;
4312 }
4313
4314 bool pci_device_is_present(struct pci_dev *pdev)
4315 {
4316 u32 v;
4317
4318 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4319 }
4320 EXPORT_SYMBOL_GPL(pci_device_is_present);
4321
4322 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4323 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4324 static DEFINE_SPINLOCK(resource_alignment_lock);
4325
4326 /**
4327 * pci_specified_resource_alignment - get resource alignment specified by user.
4328 * @dev: the PCI device to get
4329 *
4330 * RETURNS: Resource alignment if it is specified.
4331 * Zero if it is not specified.
4332 */
4333 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4334 {
4335 int seg, bus, slot, func, align_order, count;
4336 resource_size_t align = 0;
4337 char *p;
4338
4339 spin_lock(&resource_alignment_lock);
4340 p = resource_alignment_param;
4341 while (*p) {
4342 count = 0;
4343 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4344 p[count] == '@') {
4345 p += count + 1;
4346 } else {
4347 align_order = -1;
4348 }
4349 if (sscanf(p, "%x:%x:%x.%x%n",
4350 &seg, &bus, &slot, &func, &count) != 4) {
4351 seg = 0;
4352 if (sscanf(p, "%x:%x.%x%n",
4353 &bus, &slot, &func, &count) != 3) {
4354 /* Invalid format */
4355 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4356 p);
4357 break;
4358 }
4359 }
4360 p += count;
4361 if (seg == pci_domain_nr(dev->bus) &&
4362 bus == dev->bus->number &&
4363 slot == PCI_SLOT(dev->devfn) &&
4364 func == PCI_FUNC(dev->devfn)) {
4365 if (align_order == -1)
4366 align = PAGE_SIZE;
4367 else
4368 align = 1 << align_order;
4369 /* Found */
4370 break;
4371 }
4372 if (*p != ';' && *p != ',') {
4373 /* End of param or invalid format */
4374 break;
4375 }
4376 p++;
4377 }
4378 spin_unlock(&resource_alignment_lock);
4379 return align;
4380 }
4381
4382 /*
4383 * This function disables memory decoding and releases memory resources
4384 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4385 * It also rounds up size to specified alignment.
4386 * Later on, the kernel will assign page-aligned memory resource back
4387 * to the device.
4388 */
4389 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4390 {
4391 int i;
4392 struct resource *r;
4393 resource_size_t align, size;
4394 u16 command;
4395
4396 /* check if specified PCI is target device to reassign */
4397 align = pci_specified_resource_alignment(dev);
4398 if (!align)
4399 return;
4400
4401 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4402 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4403 dev_warn(&dev->dev,
4404 "Can't reassign resources to host bridge.\n");
4405 return;
4406 }
4407
4408 dev_info(&dev->dev,
4409 "Disabling memory decoding and releasing memory resources.\n");
4410 pci_read_config_word(dev, PCI_COMMAND, &command);
4411 command &= ~PCI_COMMAND_MEMORY;
4412 pci_write_config_word(dev, PCI_COMMAND, command);
4413
4414 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4415 r = &dev->resource[i];
4416 if (!(r->flags & IORESOURCE_MEM))
4417 continue;
4418 size = resource_size(r);
4419 if (size < align) {
4420 size = align;
4421 dev_info(&dev->dev,
4422 "Rounding up size of resource #%d to %#llx.\n",
4423 i, (unsigned long long)size);
4424 }
4425 r->flags |= IORESOURCE_UNSET;
4426 r->end = size - 1;
4427 r->start = 0;
4428 }
4429 /* Need to disable bridge's resource window,
4430 * to enable the kernel to reassign new resource
4431 * window later on.
4432 */
4433 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4434 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4435 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4436 r = &dev->resource[i];
4437 if (!(r->flags & IORESOURCE_MEM))
4438 continue;
4439 r->flags |= IORESOURCE_UNSET;
4440 r->end = resource_size(r) - 1;
4441 r->start = 0;
4442 }
4443 pci_disable_bridge_window(dev);
4444 }
4445 }
4446
4447 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4448 {
4449 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4450 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4451 spin_lock(&resource_alignment_lock);
4452 strncpy(resource_alignment_param, buf, count);
4453 resource_alignment_param[count] = '\0';
4454 spin_unlock(&resource_alignment_lock);
4455 return count;
4456 }
4457
4458 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4459 {
4460 size_t count;
4461 spin_lock(&resource_alignment_lock);
4462 count = snprintf(buf, size, "%s", resource_alignment_param);
4463 spin_unlock(&resource_alignment_lock);
4464 return count;
4465 }
4466
4467 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4468 {
4469 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4470 }
4471
4472 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4473 const char *buf, size_t count)
4474 {
4475 return pci_set_resource_alignment_param(buf, count);
4476 }
4477
4478 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4479 pci_resource_alignment_store);
4480
4481 static int __init pci_resource_alignment_sysfs_init(void)
4482 {
4483 return bus_create_file(&pci_bus_type,
4484 &bus_attr_resource_alignment);
4485 }
4486 late_initcall(pci_resource_alignment_sysfs_init);
4487
4488 static void pci_no_domains(void)
4489 {
4490 #ifdef CONFIG_PCI_DOMAINS
4491 pci_domains_supported = 0;
4492 #endif
4493 }
4494
4495 #ifdef CONFIG_PCI_DOMAINS
4496 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4497
4498 int pci_get_new_domain_nr(void)
4499 {
4500 return atomic_inc_return(&__domain_nr);
4501 }
4502
4503 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4504 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4505 {
4506 static int use_dt_domains = -1;
4507 int domain = of_get_pci_domain_nr(parent->of_node);
4508
4509 /*
4510 * Check DT domain and use_dt_domains values.
4511 *
4512 * If DT domain property is valid (domain >= 0) and
4513 * use_dt_domains != 0, the DT assignment is valid since this means
4514 * we have not previously allocated a domain number by using
4515 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4516 * 1, to indicate that we have just assigned a domain number from
4517 * DT.
4518 *
4519 * If DT domain property value is not valid (ie domain < 0), and we
4520 * have not previously assigned a domain number from DT
4521 * (use_dt_domains != 1) we should assign a domain number by
4522 * using the:
4523 *
4524 * pci_get_new_domain_nr()
4525 *
4526 * API and update the use_dt_domains value to keep track of method we
4527 * are using to assign domain numbers (use_dt_domains = 0).
4528 *
4529 * All other combinations imply we have a platform that is trying
4530 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4531 * which is a recipe for domain mishandling and it is prevented by
4532 * invalidating the domain value (domain = -1) and printing a
4533 * corresponding error.
4534 */
4535 if (domain >= 0 && use_dt_domains) {
4536 use_dt_domains = 1;
4537 } else if (domain < 0 && use_dt_domains != 1) {
4538 use_dt_domains = 0;
4539 domain = pci_get_new_domain_nr();
4540 } else {
4541 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4542 parent->of_node->full_name);
4543 domain = -1;
4544 }
4545
4546 bus->domain_nr = domain;
4547 }
4548 #endif
4549 #endif
4550
4551 /**
4552 * pci_ext_cfg_avail - can we access extended PCI config space?
4553 *
4554 * Returns 1 if we can access PCI extended config space (offsets
4555 * greater than 0xff). This is the default implementation. Architecture
4556 * implementations can override this.
4557 */
4558 int __weak pci_ext_cfg_avail(void)
4559 {
4560 return 1;
4561 }
4562
4563 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4564 {
4565 }
4566 EXPORT_SYMBOL(pci_fixup_cardbus);
4567
4568 static int __init pci_setup(char *str)
4569 {
4570 while (str) {
4571 char *k = strchr(str, ',');
4572 if (k)
4573 *k++ = 0;
4574 if (*str && (str = pcibios_setup(str)) && *str) {
4575 if (!strcmp(str, "nomsi")) {
4576 pci_no_msi();
4577 } else if (!strcmp(str, "noaer")) {
4578 pci_no_aer();
4579 } else if (!strncmp(str, "realloc=", 8)) {
4580 pci_realloc_get_opt(str + 8);
4581 } else if (!strncmp(str, "realloc", 7)) {
4582 pci_realloc_get_opt("on");
4583 } else if (!strcmp(str, "nodomains")) {
4584 pci_no_domains();
4585 } else if (!strncmp(str, "noari", 5)) {
4586 pcie_ari_disabled = true;
4587 } else if (!strncmp(str, "cbiosize=", 9)) {
4588 pci_cardbus_io_size = memparse(str + 9, &str);
4589 } else if (!strncmp(str, "cbmemsize=", 10)) {
4590 pci_cardbus_mem_size = memparse(str + 10, &str);
4591 } else if (!strncmp(str, "resource_alignment=", 19)) {
4592 pci_set_resource_alignment_param(str + 19,
4593 strlen(str + 19));
4594 } else if (!strncmp(str, "ecrc=", 5)) {
4595 pcie_ecrc_get_policy(str + 5);
4596 } else if (!strncmp(str, "hpiosize=", 9)) {
4597 pci_hotplug_io_size = memparse(str + 9, &str);
4598 } else if (!strncmp(str, "hpmemsize=", 10)) {
4599 pci_hotplug_mem_size = memparse(str + 10, &str);
4600 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4601 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4602 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4603 pcie_bus_config = PCIE_BUS_SAFE;
4604 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4605 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4606 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4607 pcie_bus_config = PCIE_BUS_PEER2PEER;
4608 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4609 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4610 } else {
4611 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4612 str);
4613 }
4614 }
4615 str = k;
4616 }
4617 return 0;
4618 }
4619 early_param("pci", pci_setup);
This page took 0.128259 seconds and 5 git commands to generate.