dma-mapping: dma-mapping.h: add dma_set_coherent_mask
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <linux/device.h>
23 #include <linux/pm_runtime.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 int isa_dma_bridge_buggy;
33 EXPORT_SYMBOL(isa_dma_bridge_buggy);
34
35 int pci_pci_problems;
36 EXPORT_SYMBOL(pci_pci_problems);
37
38 unsigned int pci_pm_d3_delay;
39
40 static void pci_dev_d3_sleep(struct pci_dev *dev)
41 {
42 unsigned int delay = dev->d3_delay;
43
44 if (delay < pci_pm_d3_delay)
45 delay = pci_pm_d3_delay;
46
47 msleep(delay);
48 }
49
50 #ifdef CONFIG_PCI_DOMAINS
51 int pci_domains_supported = 1;
52 #endif
53
54 #define DEFAULT_CARDBUS_IO_SIZE (256)
55 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
56 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
57 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
58 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
59
60 #define DEFAULT_HOTPLUG_IO_SIZE (256)
61 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
62 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
63 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
64 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
65
66 /*
67 * The default CLS is used if arch didn't set CLS explicitly and not
68 * all pci devices agree on the same value. Arch can override either
69 * the dfl or actual value as it sees fit. Don't forget this is
70 * measured in 32-bit words, not bytes.
71 */
72 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
73 u8 pci_cache_line_size;
74
75 /**
76 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
77 * @bus: pointer to PCI bus structure to search
78 *
79 * Given a PCI bus, returns the highest PCI bus number present in the set
80 * including the given PCI bus and its list of child PCI buses.
81 */
82 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
83 {
84 struct list_head *tmp;
85 unsigned char max, n;
86
87 max = bus->subordinate;
88 list_for_each(tmp, &bus->children) {
89 n = pci_bus_max_busnr(pci_bus_b(tmp));
90 if(n > max)
91 max = n;
92 }
93 return max;
94 }
95 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
96
97 #ifdef CONFIG_HAS_IOMEM
98 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
99 {
100 /*
101 * Make sure the BAR is actually a memory resource, not an IO resource
102 */
103 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
104 WARN_ON(1);
105 return NULL;
106 }
107 return ioremap_nocache(pci_resource_start(pdev, bar),
108 pci_resource_len(pdev, bar));
109 }
110 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
111 #endif
112
113 #if 0
114 /**
115 * pci_max_busnr - returns maximum PCI bus number
116 *
117 * Returns the highest PCI bus number present in the system global list of
118 * PCI buses.
119 */
120 unsigned char __devinit
121 pci_max_busnr(void)
122 {
123 struct pci_bus *bus = NULL;
124 unsigned char max, n;
125
126 max = 0;
127 while ((bus = pci_find_next_bus(bus)) != NULL) {
128 n = pci_bus_max_busnr(bus);
129 if(n > max)
130 max = n;
131 }
132 return max;
133 }
134
135 #endif /* 0 */
136
137 #define PCI_FIND_CAP_TTL 48
138
139 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
140 u8 pos, int cap, int *ttl)
141 {
142 u8 id;
143
144 while ((*ttl)--) {
145 pci_bus_read_config_byte(bus, devfn, pos, &pos);
146 if (pos < 0x40)
147 break;
148 pos &= ~3;
149 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
150 &id);
151 if (id == 0xff)
152 break;
153 if (id == cap)
154 return pos;
155 pos += PCI_CAP_LIST_NEXT;
156 }
157 return 0;
158 }
159
160 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
161 u8 pos, int cap)
162 {
163 int ttl = PCI_FIND_CAP_TTL;
164
165 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
166 }
167
168 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
169 {
170 return __pci_find_next_cap(dev->bus, dev->devfn,
171 pos + PCI_CAP_LIST_NEXT, cap);
172 }
173 EXPORT_SYMBOL_GPL(pci_find_next_capability);
174
175 static int __pci_bus_find_cap_start(struct pci_bus *bus,
176 unsigned int devfn, u8 hdr_type)
177 {
178 u16 status;
179
180 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
181 if (!(status & PCI_STATUS_CAP_LIST))
182 return 0;
183
184 switch (hdr_type) {
185 case PCI_HEADER_TYPE_NORMAL:
186 case PCI_HEADER_TYPE_BRIDGE:
187 return PCI_CAPABILITY_LIST;
188 case PCI_HEADER_TYPE_CARDBUS:
189 return PCI_CB_CAPABILITY_LIST;
190 default:
191 return 0;
192 }
193
194 return 0;
195 }
196
197 /**
198 * pci_find_capability - query for devices' capabilities
199 * @dev: PCI device to query
200 * @cap: capability code
201 *
202 * Tell if a device supports a given PCI capability.
203 * Returns the address of the requested capability structure within the
204 * device's PCI configuration space or 0 in case the device does not
205 * support it. Possible values for @cap:
206 *
207 * %PCI_CAP_ID_PM Power Management
208 * %PCI_CAP_ID_AGP Accelerated Graphics Port
209 * %PCI_CAP_ID_VPD Vital Product Data
210 * %PCI_CAP_ID_SLOTID Slot Identification
211 * %PCI_CAP_ID_MSI Message Signalled Interrupts
212 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
213 * %PCI_CAP_ID_PCIX PCI-X
214 * %PCI_CAP_ID_EXP PCI Express
215 */
216 int pci_find_capability(struct pci_dev *dev, int cap)
217 {
218 int pos;
219
220 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
221 if (pos)
222 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
223
224 return pos;
225 }
226
227 /**
228 * pci_bus_find_capability - query for devices' capabilities
229 * @bus: the PCI bus to query
230 * @devfn: PCI device to query
231 * @cap: capability code
232 *
233 * Like pci_find_capability() but works for pci devices that do not have a
234 * pci_dev structure set up yet.
235 *
236 * Returns the address of the requested capability structure within the
237 * device's PCI configuration space or 0 in case the device does not
238 * support it.
239 */
240 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
241 {
242 int pos;
243 u8 hdr_type;
244
245 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
246
247 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
248 if (pos)
249 pos = __pci_find_next_cap(bus, devfn, pos, cap);
250
251 return pos;
252 }
253
254 /**
255 * pci_find_ext_capability - Find an extended capability
256 * @dev: PCI device to query
257 * @cap: capability code
258 *
259 * Returns the address of the requested extended capability structure
260 * within the device's PCI configuration space or 0 if the device does
261 * not support it. Possible values for @cap:
262 *
263 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
264 * %PCI_EXT_CAP_ID_VC Virtual Channel
265 * %PCI_EXT_CAP_ID_DSN Device Serial Number
266 * %PCI_EXT_CAP_ID_PWR Power Budgeting
267 */
268 int pci_find_ext_capability(struct pci_dev *dev, int cap)
269 {
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
281 return 0;
282
283 /*
284 * If we have no capabilities, this is indicated by cap ID,
285 * cap version and next pointer all being 0.
286 */
287 if (header == 0)
288 return 0;
289
290 while (ttl-- > 0) {
291 if (PCI_EXT_CAP_ID(header) == cap)
292 return pos;
293
294 pos = PCI_EXT_CAP_NEXT(header);
295 if (pos < PCI_CFG_SPACE_SIZE)
296 break;
297
298 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
299 break;
300 }
301
302 return 0;
303 }
304 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
305
306 /**
307 * pci_bus_find_ext_capability - find an extended capability
308 * @bus: the PCI bus to query
309 * @devfn: PCI device to query
310 * @cap: capability code
311 *
312 * Like pci_find_ext_capability() but works for pci devices that do not have a
313 * pci_dev structure set up yet.
314 *
315 * Returns the address of the requested capability structure within the
316 * device's PCI configuration space or 0 in case the device does not
317 * support it.
318 */
319 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
320 int cap)
321 {
322 u32 header;
323 int ttl;
324 int pos = PCI_CFG_SPACE_SIZE;
325
326 /* minimum 8 bytes per capability */
327 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
328
329 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
330 return 0;
331 if (header == 0xffffffff || header == 0)
332 return 0;
333
334 while (ttl-- > 0) {
335 if (PCI_EXT_CAP_ID(header) == cap)
336 return pos;
337
338 pos = PCI_EXT_CAP_NEXT(header);
339 if (pos < PCI_CFG_SPACE_SIZE)
340 break;
341
342 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
343 break;
344 }
345
346 return 0;
347 }
348
349 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
350 {
351 int rc, ttl = PCI_FIND_CAP_TTL;
352 u8 cap, mask;
353
354 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
355 mask = HT_3BIT_CAP_MASK;
356 else
357 mask = HT_5BIT_CAP_MASK;
358
359 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
360 PCI_CAP_ID_HT, &ttl);
361 while (pos) {
362 rc = pci_read_config_byte(dev, pos + 3, &cap);
363 if (rc != PCIBIOS_SUCCESSFUL)
364 return 0;
365
366 if ((cap & mask) == ht_cap)
367 return pos;
368
369 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
370 pos + PCI_CAP_LIST_NEXT,
371 PCI_CAP_ID_HT, &ttl);
372 }
373
374 return 0;
375 }
376 /**
377 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
378 * @dev: PCI device to query
379 * @pos: Position from which to continue searching
380 * @ht_cap: Hypertransport capability code
381 *
382 * To be used in conjunction with pci_find_ht_capability() to search for
383 * all capabilities matching @ht_cap. @pos should always be a value returned
384 * from pci_find_ht_capability().
385 *
386 * NB. To be 100% safe against broken PCI devices, the caller should take
387 * steps to avoid an infinite loop.
388 */
389 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
390 {
391 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
392 }
393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
394
395 /**
396 * pci_find_ht_capability - query a device's Hypertransport capabilities
397 * @dev: PCI device to query
398 * @ht_cap: Hypertransport capability code
399 *
400 * Tell if a device supports a given Hypertransport capability.
401 * Returns an address within the device's PCI configuration space
402 * or 0 in case the device does not support the request capability.
403 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
404 * which has a Hypertransport capability matching @ht_cap.
405 */
406 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
407 {
408 int pos;
409
410 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
411 if (pos)
412 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
413
414 return pos;
415 }
416 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
417
418 /**
419 * pci_find_parent_resource - return resource region of parent bus of given region
420 * @dev: PCI device structure contains resources to be searched
421 * @res: child resource record for which parent is sought
422 *
423 * For given resource region of given device, return the resource
424 * region of parent bus the given region is contained in or where
425 * it should be allocated from.
426 */
427 struct resource *
428 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
429 {
430 const struct pci_bus *bus = dev->bus;
431 int i;
432 struct resource *best = NULL, *r;
433
434 pci_bus_for_each_resource(bus, r, i) {
435 if (!r)
436 continue;
437 if (res->start && !(res->start >= r->start && res->end <= r->end))
438 continue; /* Not contained */
439 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
440 continue; /* Wrong type */
441 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
442 return r; /* Exact match */
443 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
444 if (r->flags & IORESOURCE_PREFETCH)
445 continue;
446 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
447 if (!best)
448 best = r;
449 }
450 return best;
451 }
452
453 /**
454 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
455 * @dev: PCI device to have its BARs restored
456 *
457 * Restore the BAR values for a given device, so as to make it
458 * accessible by its driver.
459 */
460 static void
461 pci_restore_bars(struct pci_dev *dev)
462 {
463 int i;
464
465 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
466 pci_update_resource(dev, i);
467 }
468
469 static struct pci_platform_pm_ops *pci_platform_pm;
470
471 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
472 {
473 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
474 || !ops->sleep_wake || !ops->can_wakeup)
475 return -EINVAL;
476 pci_platform_pm = ops;
477 return 0;
478 }
479
480 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
481 {
482 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
483 }
484
485 static inline int platform_pci_set_power_state(struct pci_dev *dev,
486 pci_power_t t)
487 {
488 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
489 }
490
491 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
492 {
493 return pci_platform_pm ?
494 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
495 }
496
497 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
498 {
499 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
500 }
501
502 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
503 {
504 return pci_platform_pm ?
505 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
506 }
507
508 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
509 {
510 return pci_platform_pm ?
511 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
512 }
513
514 /**
515 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
516 * given PCI device
517 * @dev: PCI device to handle.
518 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
519 *
520 * RETURN VALUE:
521 * -EINVAL if the requested state is invalid.
522 * -EIO if device does not support PCI PM or its PM capabilities register has a
523 * wrong version, or device doesn't support the requested state.
524 * 0 if device already is in the requested state.
525 * 0 if device's power state has been successfully changed.
526 */
527 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
528 {
529 u16 pmcsr;
530 bool need_restore = false;
531
532 /* Check if we're already there */
533 if (dev->current_state == state)
534 return 0;
535
536 if (!dev->pm_cap)
537 return -EIO;
538
539 if (state < PCI_D0 || state > PCI_D3hot)
540 return -EINVAL;
541
542 /* Validate current state:
543 * Can enter D0 from any state, but if we can only go deeper
544 * to sleep if we're already in a low power state
545 */
546 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
547 && dev->current_state > state) {
548 dev_err(&dev->dev, "invalid power transition "
549 "(from state %d to %d)\n", dev->current_state, state);
550 return -EINVAL;
551 }
552
553 /* check if this device supports the desired state */
554 if ((state == PCI_D1 && !dev->d1_support)
555 || (state == PCI_D2 && !dev->d2_support))
556 return -EIO;
557
558 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
559
560 /* If we're (effectively) in D3, force entire word to 0.
561 * This doesn't affect PME_Status, disables PME_En, and
562 * sets PowerState to 0.
563 */
564 switch (dev->current_state) {
565 case PCI_D0:
566 case PCI_D1:
567 case PCI_D2:
568 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
569 pmcsr |= state;
570 break;
571 case PCI_D3hot:
572 case PCI_D3cold:
573 case PCI_UNKNOWN: /* Boot-up */
574 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
575 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
576 need_restore = true;
577 /* Fall-through: force to D0 */
578 default:
579 pmcsr = 0;
580 break;
581 }
582
583 /* enter specified state */
584 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
585
586 /* Mandatory power management transition delays */
587 /* see PCI PM 1.1 5.6.1 table 18 */
588 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
589 pci_dev_d3_sleep(dev);
590 else if (state == PCI_D2 || dev->current_state == PCI_D2)
591 udelay(PCI_PM_D2_DELAY);
592
593 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
594 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
595 if (dev->current_state != state && printk_ratelimit())
596 dev_info(&dev->dev, "Refused to change power state, "
597 "currently in D%d\n", dev->current_state);
598
599 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
600 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
601 * from D3hot to D0 _may_ perform an internal reset, thereby
602 * going to "D0 Uninitialized" rather than "D0 Initialized".
603 * For example, at least some versions of the 3c905B and the
604 * 3c556B exhibit this behaviour.
605 *
606 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
607 * devices in a D3hot state at boot. Consequently, we need to
608 * restore at least the BARs so that the device will be
609 * accessible to its driver.
610 */
611 if (need_restore)
612 pci_restore_bars(dev);
613
614 if (dev->bus->self)
615 pcie_aspm_pm_state_change(dev->bus->self);
616
617 return 0;
618 }
619
620 /**
621 * pci_update_current_state - Read PCI power state of given device from its
622 * PCI PM registers and cache it
623 * @dev: PCI device to handle.
624 * @state: State to cache in case the device doesn't have the PM capability
625 */
626 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
627 {
628 if (dev->pm_cap) {
629 u16 pmcsr;
630
631 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
632 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
633 } else {
634 dev->current_state = state;
635 }
636 }
637
638 /**
639 * pci_platform_power_transition - Use platform to change device power state
640 * @dev: PCI device to handle.
641 * @state: State to put the device into.
642 */
643 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
644 {
645 int error;
646
647 if (platform_pci_power_manageable(dev)) {
648 error = platform_pci_set_power_state(dev, state);
649 if (!error)
650 pci_update_current_state(dev, state);
651 } else {
652 error = -ENODEV;
653 /* Fall back to PCI_D0 if native PM is not supported */
654 if (!dev->pm_cap)
655 dev->current_state = PCI_D0;
656 }
657
658 return error;
659 }
660
661 /**
662 * __pci_start_power_transition - Start power transition of a PCI device
663 * @dev: PCI device to handle.
664 * @state: State to put the device into.
665 */
666 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
667 {
668 if (state == PCI_D0)
669 pci_platform_power_transition(dev, PCI_D0);
670 }
671
672 /**
673 * __pci_complete_power_transition - Complete power transition of a PCI device
674 * @dev: PCI device to handle.
675 * @state: State to put the device into.
676 *
677 * This function should not be called directly by device drivers.
678 */
679 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
680 {
681 return state > PCI_D0 ?
682 pci_platform_power_transition(dev, state) : -EINVAL;
683 }
684 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
685
686 /**
687 * pci_set_power_state - Set the power state of a PCI device
688 * @dev: PCI device to handle.
689 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
690 *
691 * Transition a device to a new power state, using the platform firmware and/or
692 * the device's PCI PM registers.
693 *
694 * RETURN VALUE:
695 * -EINVAL if the requested state is invalid.
696 * -EIO if device does not support PCI PM or its PM capabilities register has a
697 * wrong version, or device doesn't support the requested state.
698 * 0 if device already is in the requested state.
699 * 0 if device's power state has been successfully changed.
700 */
701 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
702 {
703 int error;
704
705 /* bound the state we're entering */
706 if (state > PCI_D3hot)
707 state = PCI_D3hot;
708 else if (state < PCI_D0)
709 state = PCI_D0;
710 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
711 /*
712 * If the device or the parent bridge do not support PCI PM,
713 * ignore the request if we're doing anything other than putting
714 * it into D0 (which would only happen on boot).
715 */
716 return 0;
717
718 /* Check if we're already there */
719 if (dev->current_state == state)
720 return 0;
721
722 __pci_start_power_transition(dev, state);
723
724 /* This device is quirked not to be put into D3, so
725 don't put it in D3 */
726 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
727 return 0;
728
729 error = pci_raw_set_power_state(dev, state);
730
731 if (!__pci_complete_power_transition(dev, state))
732 error = 0;
733
734 return error;
735 }
736
737 /**
738 * pci_choose_state - Choose the power state of a PCI device
739 * @dev: PCI device to be suspended
740 * @state: target sleep state for the whole system. This is the value
741 * that is passed to suspend() function.
742 *
743 * Returns PCI power state suitable for given device and given system
744 * message.
745 */
746
747 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
748 {
749 pci_power_t ret;
750
751 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
752 return PCI_D0;
753
754 ret = platform_pci_choose_state(dev);
755 if (ret != PCI_POWER_ERROR)
756 return ret;
757
758 switch (state.event) {
759 case PM_EVENT_ON:
760 return PCI_D0;
761 case PM_EVENT_FREEZE:
762 case PM_EVENT_PRETHAW:
763 /* REVISIT both freeze and pre-thaw "should" use D0 */
764 case PM_EVENT_SUSPEND:
765 case PM_EVENT_HIBERNATE:
766 return PCI_D3hot;
767 default:
768 dev_info(&dev->dev, "unrecognized suspend event %d\n",
769 state.event);
770 BUG();
771 }
772 return PCI_D0;
773 }
774
775 EXPORT_SYMBOL(pci_choose_state);
776
777 #define PCI_EXP_SAVE_REGS 7
778
779 #define pcie_cap_has_devctl(type, flags) 1
780 #define pcie_cap_has_lnkctl(type, flags) \
781 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
782 (type == PCI_EXP_TYPE_ROOT_PORT || \
783 type == PCI_EXP_TYPE_ENDPOINT || \
784 type == PCI_EXP_TYPE_LEG_END))
785 #define pcie_cap_has_sltctl(type, flags) \
786 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
787 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
788 (type == PCI_EXP_TYPE_DOWNSTREAM && \
789 (flags & PCI_EXP_FLAGS_SLOT))))
790 #define pcie_cap_has_rtctl(type, flags) \
791 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
792 (type == PCI_EXP_TYPE_ROOT_PORT || \
793 type == PCI_EXP_TYPE_RC_EC))
794 #define pcie_cap_has_devctl2(type, flags) \
795 ((flags & PCI_EXP_FLAGS_VERS) > 1)
796 #define pcie_cap_has_lnkctl2(type, flags) \
797 ((flags & PCI_EXP_FLAGS_VERS) > 1)
798 #define pcie_cap_has_sltctl2(type, flags) \
799 ((flags & PCI_EXP_FLAGS_VERS) > 1)
800
801 static int pci_save_pcie_state(struct pci_dev *dev)
802 {
803 int pos, i = 0;
804 struct pci_cap_saved_state *save_state;
805 u16 *cap;
806 u16 flags;
807
808 pos = pci_pcie_cap(dev);
809 if (!pos)
810 return 0;
811
812 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
813 if (!save_state) {
814 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
815 return -ENOMEM;
816 }
817 cap = (u16 *)&save_state->data[0];
818
819 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
820
821 if (pcie_cap_has_devctl(dev->pcie_type, flags))
822 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
823 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
824 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
825 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
826 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
827 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
828 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
829 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
830 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
831 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
832 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
833 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
834 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
835
836 return 0;
837 }
838
839 static void pci_restore_pcie_state(struct pci_dev *dev)
840 {
841 int i = 0, pos;
842 struct pci_cap_saved_state *save_state;
843 u16 *cap;
844 u16 flags;
845
846 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
847 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
848 if (!save_state || pos <= 0)
849 return;
850 cap = (u16 *)&save_state->data[0];
851
852 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
853
854 if (pcie_cap_has_devctl(dev->pcie_type, flags))
855 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
856 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
857 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
858 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
859 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
860 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
861 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
862 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
863 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
864 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
865 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
866 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
867 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
868 }
869
870
871 static int pci_save_pcix_state(struct pci_dev *dev)
872 {
873 int pos;
874 struct pci_cap_saved_state *save_state;
875
876 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
877 if (pos <= 0)
878 return 0;
879
880 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
881 if (!save_state) {
882 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
883 return -ENOMEM;
884 }
885
886 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
887
888 return 0;
889 }
890
891 static void pci_restore_pcix_state(struct pci_dev *dev)
892 {
893 int i = 0, pos;
894 struct pci_cap_saved_state *save_state;
895 u16 *cap;
896
897 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
898 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
899 if (!save_state || pos <= 0)
900 return;
901 cap = (u16 *)&save_state->data[0];
902
903 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
904 }
905
906
907 /**
908 * pci_save_state - save the PCI configuration space of a device before suspending
909 * @dev: - PCI device that we're dealing with
910 */
911 int
912 pci_save_state(struct pci_dev *dev)
913 {
914 int i;
915 /* XXX: 100% dword access ok here? */
916 for (i = 0; i < 16; i++)
917 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
918 dev->state_saved = true;
919 if ((i = pci_save_pcie_state(dev)) != 0)
920 return i;
921 if ((i = pci_save_pcix_state(dev)) != 0)
922 return i;
923 return 0;
924 }
925
926 /**
927 * pci_restore_state - Restore the saved state of a PCI device
928 * @dev: - PCI device that we're dealing with
929 */
930 int
931 pci_restore_state(struct pci_dev *dev)
932 {
933 int i;
934 u32 val;
935
936 if (!dev->state_saved)
937 return 0;
938
939 /* PCI Express register must be restored first */
940 pci_restore_pcie_state(dev);
941
942 /*
943 * The Base Address register should be programmed before the command
944 * register(s)
945 */
946 for (i = 15; i >= 0; i--) {
947 pci_read_config_dword(dev, i * 4, &val);
948 if (val != dev->saved_config_space[i]) {
949 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
950 "space at offset %#x (was %#x, writing %#x)\n",
951 i, val, (int)dev->saved_config_space[i]);
952 pci_write_config_dword(dev,i * 4,
953 dev->saved_config_space[i]);
954 }
955 }
956 pci_restore_pcix_state(dev);
957 pci_restore_msi_state(dev);
958 pci_restore_iov_state(dev);
959
960 dev->state_saved = false;
961
962 return 0;
963 }
964
965 static int do_pci_enable_device(struct pci_dev *dev, int bars)
966 {
967 int err;
968
969 err = pci_set_power_state(dev, PCI_D0);
970 if (err < 0 && err != -EIO)
971 return err;
972 err = pcibios_enable_device(dev, bars);
973 if (err < 0)
974 return err;
975 pci_fixup_device(pci_fixup_enable, dev);
976
977 return 0;
978 }
979
980 /**
981 * pci_reenable_device - Resume abandoned device
982 * @dev: PCI device to be resumed
983 *
984 * Note this function is a backend of pci_default_resume and is not supposed
985 * to be called by normal code, write proper resume handler and use it instead.
986 */
987 int pci_reenable_device(struct pci_dev *dev)
988 {
989 if (pci_is_enabled(dev))
990 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
991 return 0;
992 }
993
994 static int __pci_enable_device_flags(struct pci_dev *dev,
995 resource_size_t flags)
996 {
997 int err;
998 int i, bars = 0;
999
1000 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1001 return 0; /* already enabled */
1002
1003 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1004 if (dev->resource[i].flags & flags)
1005 bars |= (1 << i);
1006
1007 err = do_pci_enable_device(dev, bars);
1008 if (err < 0)
1009 atomic_dec(&dev->enable_cnt);
1010 return err;
1011 }
1012
1013 /**
1014 * pci_enable_device_io - Initialize a device for use with IO space
1015 * @dev: PCI device to be initialized
1016 *
1017 * Initialize device before it's used by a driver. Ask low-level code
1018 * to enable I/O resources. Wake up the device if it was suspended.
1019 * Beware, this function can fail.
1020 */
1021 int pci_enable_device_io(struct pci_dev *dev)
1022 {
1023 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1024 }
1025
1026 /**
1027 * pci_enable_device_mem - Initialize a device for use with Memory space
1028 * @dev: PCI device to be initialized
1029 *
1030 * Initialize device before it's used by a driver. Ask low-level code
1031 * to enable Memory resources. Wake up the device if it was suspended.
1032 * Beware, this function can fail.
1033 */
1034 int pci_enable_device_mem(struct pci_dev *dev)
1035 {
1036 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1037 }
1038
1039 /**
1040 * pci_enable_device - Initialize device before it's used by a driver.
1041 * @dev: PCI device to be initialized
1042 *
1043 * Initialize device before it's used by a driver. Ask low-level code
1044 * to enable I/O and memory. Wake up the device if it was suspended.
1045 * Beware, this function can fail.
1046 *
1047 * Note we don't actually enable the device many times if we call
1048 * this function repeatedly (we just increment the count).
1049 */
1050 int pci_enable_device(struct pci_dev *dev)
1051 {
1052 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1053 }
1054
1055 /*
1056 * Managed PCI resources. This manages device on/off, intx/msi/msix
1057 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1058 * there's no need to track it separately. pci_devres is initialized
1059 * when a device is enabled using managed PCI device enable interface.
1060 */
1061 struct pci_devres {
1062 unsigned int enabled:1;
1063 unsigned int pinned:1;
1064 unsigned int orig_intx:1;
1065 unsigned int restore_intx:1;
1066 u32 region_mask;
1067 };
1068
1069 static void pcim_release(struct device *gendev, void *res)
1070 {
1071 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1072 struct pci_devres *this = res;
1073 int i;
1074
1075 if (dev->msi_enabled)
1076 pci_disable_msi(dev);
1077 if (dev->msix_enabled)
1078 pci_disable_msix(dev);
1079
1080 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1081 if (this->region_mask & (1 << i))
1082 pci_release_region(dev, i);
1083
1084 if (this->restore_intx)
1085 pci_intx(dev, this->orig_intx);
1086
1087 if (this->enabled && !this->pinned)
1088 pci_disable_device(dev);
1089 }
1090
1091 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1092 {
1093 struct pci_devres *dr, *new_dr;
1094
1095 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1096 if (dr)
1097 return dr;
1098
1099 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1100 if (!new_dr)
1101 return NULL;
1102 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1103 }
1104
1105 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1106 {
1107 if (pci_is_managed(pdev))
1108 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1109 return NULL;
1110 }
1111
1112 /**
1113 * pcim_enable_device - Managed pci_enable_device()
1114 * @pdev: PCI device to be initialized
1115 *
1116 * Managed pci_enable_device().
1117 */
1118 int pcim_enable_device(struct pci_dev *pdev)
1119 {
1120 struct pci_devres *dr;
1121 int rc;
1122
1123 dr = get_pci_dr(pdev);
1124 if (unlikely(!dr))
1125 return -ENOMEM;
1126 if (dr->enabled)
1127 return 0;
1128
1129 rc = pci_enable_device(pdev);
1130 if (!rc) {
1131 pdev->is_managed = 1;
1132 dr->enabled = 1;
1133 }
1134 return rc;
1135 }
1136
1137 /**
1138 * pcim_pin_device - Pin managed PCI device
1139 * @pdev: PCI device to pin
1140 *
1141 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1142 * driver detach. @pdev must have been enabled with
1143 * pcim_enable_device().
1144 */
1145 void pcim_pin_device(struct pci_dev *pdev)
1146 {
1147 struct pci_devres *dr;
1148
1149 dr = find_pci_dr(pdev);
1150 WARN_ON(!dr || !dr->enabled);
1151 if (dr)
1152 dr->pinned = 1;
1153 }
1154
1155 /**
1156 * pcibios_disable_device - disable arch specific PCI resources for device dev
1157 * @dev: the PCI device to disable
1158 *
1159 * Disables architecture specific PCI resources for the device. This
1160 * is the default implementation. Architecture implementations can
1161 * override this.
1162 */
1163 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1164
1165 static void do_pci_disable_device(struct pci_dev *dev)
1166 {
1167 u16 pci_command;
1168
1169 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1170 if (pci_command & PCI_COMMAND_MASTER) {
1171 pci_command &= ~PCI_COMMAND_MASTER;
1172 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1173 }
1174
1175 pcibios_disable_device(dev);
1176 }
1177
1178 /**
1179 * pci_disable_enabled_device - Disable device without updating enable_cnt
1180 * @dev: PCI device to disable
1181 *
1182 * NOTE: This function is a backend of PCI power management routines and is
1183 * not supposed to be called drivers.
1184 */
1185 void pci_disable_enabled_device(struct pci_dev *dev)
1186 {
1187 if (pci_is_enabled(dev))
1188 do_pci_disable_device(dev);
1189 }
1190
1191 /**
1192 * pci_disable_device - Disable PCI device after use
1193 * @dev: PCI device to be disabled
1194 *
1195 * Signal to the system that the PCI device is not in use by the system
1196 * anymore. This only involves disabling PCI bus-mastering, if active.
1197 *
1198 * Note we don't actually disable the device until all callers of
1199 * pci_device_enable() have called pci_device_disable().
1200 */
1201 void
1202 pci_disable_device(struct pci_dev *dev)
1203 {
1204 struct pci_devres *dr;
1205
1206 dr = find_pci_dr(dev);
1207 if (dr)
1208 dr->enabled = 0;
1209
1210 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1211 return;
1212
1213 do_pci_disable_device(dev);
1214
1215 dev->is_busmaster = 0;
1216 }
1217
1218 /**
1219 * pcibios_set_pcie_reset_state - set reset state for device dev
1220 * @dev: the PCIe device reset
1221 * @state: Reset state to enter into
1222 *
1223 *
1224 * Sets the PCIe reset state for the device. This is the default
1225 * implementation. Architecture implementations can override this.
1226 */
1227 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1228 enum pcie_reset_state state)
1229 {
1230 return -EINVAL;
1231 }
1232
1233 /**
1234 * pci_set_pcie_reset_state - set reset state for device dev
1235 * @dev: the PCIe device reset
1236 * @state: Reset state to enter into
1237 *
1238 *
1239 * Sets the PCI reset state for the device.
1240 */
1241 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1242 {
1243 return pcibios_set_pcie_reset_state(dev, state);
1244 }
1245
1246 /**
1247 * pci_check_pme_status - Check if given device has generated PME.
1248 * @dev: Device to check.
1249 *
1250 * Check the PME status of the device and if set, clear it and clear PME enable
1251 * (if set). Return 'true' if PME status and PME enable were both set or
1252 * 'false' otherwise.
1253 */
1254 bool pci_check_pme_status(struct pci_dev *dev)
1255 {
1256 int pmcsr_pos;
1257 u16 pmcsr;
1258 bool ret = false;
1259
1260 if (!dev->pm_cap)
1261 return false;
1262
1263 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1264 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1265 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1266 return false;
1267
1268 /* Clear PME status. */
1269 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1270 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1271 /* Disable PME to avoid interrupt flood. */
1272 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1273 ret = true;
1274 }
1275
1276 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1277
1278 return ret;
1279 }
1280
1281 /**
1282 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1283 * @dev: Device to handle.
1284 * @ign: Ignored.
1285 *
1286 * Check if @dev has generated PME and queue a resume request for it in that
1287 * case.
1288 */
1289 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1290 {
1291 if (pci_check_pme_status(dev))
1292 pm_request_resume(&dev->dev);
1293 return 0;
1294 }
1295
1296 /**
1297 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1298 * @bus: Top bus of the subtree to walk.
1299 */
1300 void pci_pme_wakeup_bus(struct pci_bus *bus)
1301 {
1302 if (bus)
1303 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1304 }
1305
1306 /**
1307 * pci_pme_capable - check the capability of PCI device to generate PME#
1308 * @dev: PCI device to handle.
1309 * @state: PCI state from which device will issue PME#.
1310 */
1311 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1312 {
1313 if (!dev->pm_cap)
1314 return false;
1315
1316 return !!(dev->pme_support & (1 << state));
1317 }
1318
1319 /**
1320 * pci_pme_active - enable or disable PCI device's PME# function
1321 * @dev: PCI device to handle.
1322 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1323 *
1324 * The caller must verify that the device is capable of generating PME# before
1325 * calling this function with @enable equal to 'true'.
1326 */
1327 void pci_pme_active(struct pci_dev *dev, bool enable)
1328 {
1329 u16 pmcsr;
1330
1331 if (!dev->pm_cap)
1332 return;
1333
1334 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1335 /* Clear PME_Status by writing 1 to it and enable PME# */
1336 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1337 if (!enable)
1338 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1339
1340 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1341
1342 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1343 enable ? "enabled" : "disabled");
1344 }
1345
1346 /**
1347 * __pci_enable_wake - enable PCI device as wakeup event source
1348 * @dev: PCI device affected
1349 * @state: PCI state from which device will issue wakeup events
1350 * @runtime: True if the events are to be generated at run time
1351 * @enable: True to enable event generation; false to disable
1352 *
1353 * This enables the device as a wakeup event source, or disables it.
1354 * When such events involves platform-specific hooks, those hooks are
1355 * called automatically by this routine.
1356 *
1357 * Devices with legacy power management (no standard PCI PM capabilities)
1358 * always require such platform hooks.
1359 *
1360 * RETURN VALUE:
1361 * 0 is returned on success
1362 * -EINVAL is returned if device is not supposed to wake up the system
1363 * Error code depending on the platform is returned if both the platform and
1364 * the native mechanism fail to enable the generation of wake-up events
1365 */
1366 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1367 bool runtime, bool enable)
1368 {
1369 int ret = 0;
1370
1371 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1372 return -EINVAL;
1373
1374 /* Don't do the same thing twice in a row for one device. */
1375 if (!!enable == !!dev->wakeup_prepared)
1376 return 0;
1377
1378 /*
1379 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1380 * Anderson we should be doing PME# wake enable followed by ACPI wake
1381 * enable. To disable wake-up we call the platform first, for symmetry.
1382 */
1383
1384 if (enable) {
1385 int error;
1386
1387 if (pci_pme_capable(dev, state))
1388 pci_pme_active(dev, true);
1389 else
1390 ret = 1;
1391 error = runtime ? platform_pci_run_wake(dev, true) :
1392 platform_pci_sleep_wake(dev, true);
1393 if (ret)
1394 ret = error;
1395 if (!ret)
1396 dev->wakeup_prepared = true;
1397 } else {
1398 if (runtime)
1399 platform_pci_run_wake(dev, false);
1400 else
1401 platform_pci_sleep_wake(dev, false);
1402 pci_pme_active(dev, false);
1403 dev->wakeup_prepared = false;
1404 }
1405
1406 return ret;
1407 }
1408 EXPORT_SYMBOL(__pci_enable_wake);
1409
1410 /**
1411 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1412 * @dev: PCI device to prepare
1413 * @enable: True to enable wake-up event generation; false to disable
1414 *
1415 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1416 * and this function allows them to set that up cleanly - pci_enable_wake()
1417 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1418 * ordering constraints.
1419 *
1420 * This function only returns error code if the device is not capable of
1421 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1422 * enable wake-up power for it.
1423 */
1424 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1425 {
1426 return pci_pme_capable(dev, PCI_D3cold) ?
1427 pci_enable_wake(dev, PCI_D3cold, enable) :
1428 pci_enable_wake(dev, PCI_D3hot, enable);
1429 }
1430
1431 /**
1432 * pci_target_state - find an appropriate low power state for a given PCI dev
1433 * @dev: PCI device
1434 *
1435 * Use underlying platform code to find a supported low power state for @dev.
1436 * If the platform can't manage @dev, return the deepest state from which it
1437 * can generate wake events, based on any available PME info.
1438 */
1439 pci_power_t pci_target_state(struct pci_dev *dev)
1440 {
1441 pci_power_t target_state = PCI_D3hot;
1442
1443 if (platform_pci_power_manageable(dev)) {
1444 /*
1445 * Call the platform to choose the target state of the device
1446 * and enable wake-up from this state if supported.
1447 */
1448 pci_power_t state = platform_pci_choose_state(dev);
1449
1450 switch (state) {
1451 case PCI_POWER_ERROR:
1452 case PCI_UNKNOWN:
1453 break;
1454 case PCI_D1:
1455 case PCI_D2:
1456 if (pci_no_d1d2(dev))
1457 break;
1458 default:
1459 target_state = state;
1460 }
1461 } else if (!dev->pm_cap) {
1462 target_state = PCI_D0;
1463 } else if (device_may_wakeup(&dev->dev)) {
1464 /*
1465 * Find the deepest state from which the device can generate
1466 * wake-up events, make it the target state and enable device
1467 * to generate PME#.
1468 */
1469 if (dev->pme_support) {
1470 while (target_state
1471 && !(dev->pme_support & (1 << target_state)))
1472 target_state--;
1473 }
1474 }
1475
1476 return target_state;
1477 }
1478
1479 /**
1480 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1481 * @dev: Device to handle.
1482 *
1483 * Choose the power state appropriate for the device depending on whether
1484 * it can wake up the system and/or is power manageable by the platform
1485 * (PCI_D3hot is the default) and put the device into that state.
1486 */
1487 int pci_prepare_to_sleep(struct pci_dev *dev)
1488 {
1489 pci_power_t target_state = pci_target_state(dev);
1490 int error;
1491
1492 if (target_state == PCI_POWER_ERROR)
1493 return -EIO;
1494
1495 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1496
1497 error = pci_set_power_state(dev, target_state);
1498
1499 if (error)
1500 pci_enable_wake(dev, target_state, false);
1501
1502 return error;
1503 }
1504
1505 /**
1506 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1507 * @dev: Device to handle.
1508 *
1509 * Disable device's sytem wake-up capability and put it into D0.
1510 */
1511 int pci_back_from_sleep(struct pci_dev *dev)
1512 {
1513 pci_enable_wake(dev, PCI_D0, false);
1514 return pci_set_power_state(dev, PCI_D0);
1515 }
1516
1517 /**
1518 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1519 * @dev: PCI device being suspended.
1520 *
1521 * Prepare @dev to generate wake-up events at run time and put it into a low
1522 * power state.
1523 */
1524 int pci_finish_runtime_suspend(struct pci_dev *dev)
1525 {
1526 pci_power_t target_state = pci_target_state(dev);
1527 int error;
1528
1529 if (target_state == PCI_POWER_ERROR)
1530 return -EIO;
1531
1532 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1533
1534 error = pci_set_power_state(dev, target_state);
1535
1536 if (error)
1537 __pci_enable_wake(dev, target_state, true, false);
1538
1539 return error;
1540 }
1541
1542 /**
1543 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1544 * @dev: Device to check.
1545 *
1546 * Return true if the device itself is cabable of generating wake-up events
1547 * (through the platform or using the native PCIe PME) or if the device supports
1548 * PME and one of its upstream bridges can generate wake-up events.
1549 */
1550 bool pci_dev_run_wake(struct pci_dev *dev)
1551 {
1552 struct pci_bus *bus = dev->bus;
1553
1554 if (device_run_wake(&dev->dev))
1555 return true;
1556
1557 if (!dev->pme_support)
1558 return false;
1559
1560 while (bus->parent) {
1561 struct pci_dev *bridge = bus->self;
1562
1563 if (device_run_wake(&bridge->dev))
1564 return true;
1565
1566 bus = bus->parent;
1567 }
1568
1569 /* We have reached the root bus. */
1570 if (bus->bridge)
1571 return device_run_wake(bus->bridge);
1572
1573 return false;
1574 }
1575 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1576
1577 /**
1578 * pci_pm_init - Initialize PM functions of given PCI device
1579 * @dev: PCI device to handle.
1580 */
1581 void pci_pm_init(struct pci_dev *dev)
1582 {
1583 int pm;
1584 u16 pmc;
1585
1586 pm_runtime_forbid(&dev->dev);
1587 device_enable_async_suspend(&dev->dev);
1588 dev->wakeup_prepared = false;
1589
1590 dev->pm_cap = 0;
1591
1592 /* find PCI PM capability in list */
1593 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1594 if (!pm)
1595 return;
1596 /* Check device's ability to generate PME# */
1597 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1598
1599 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1600 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1601 pmc & PCI_PM_CAP_VER_MASK);
1602 return;
1603 }
1604
1605 dev->pm_cap = pm;
1606 dev->d3_delay = PCI_PM_D3_WAIT;
1607
1608 dev->d1_support = false;
1609 dev->d2_support = false;
1610 if (!pci_no_d1d2(dev)) {
1611 if (pmc & PCI_PM_CAP_D1)
1612 dev->d1_support = true;
1613 if (pmc & PCI_PM_CAP_D2)
1614 dev->d2_support = true;
1615
1616 if (dev->d1_support || dev->d2_support)
1617 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1618 dev->d1_support ? " D1" : "",
1619 dev->d2_support ? " D2" : "");
1620 }
1621
1622 pmc &= PCI_PM_CAP_PME_MASK;
1623 if (pmc) {
1624 dev_printk(KERN_DEBUG, &dev->dev,
1625 "PME# supported from%s%s%s%s%s\n",
1626 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1627 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1628 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1629 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1630 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1631 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1632 /*
1633 * Make device's PM flags reflect the wake-up capability, but
1634 * let the user space enable it to wake up the system as needed.
1635 */
1636 device_set_wakeup_capable(&dev->dev, true);
1637 device_set_wakeup_enable(&dev->dev, false);
1638 /* Disable the PME# generation functionality */
1639 pci_pme_active(dev, false);
1640 } else {
1641 dev->pme_support = 0;
1642 }
1643 }
1644
1645 /**
1646 * platform_pci_wakeup_init - init platform wakeup if present
1647 * @dev: PCI device
1648 *
1649 * Some devices don't have PCI PM caps but can still generate wakeup
1650 * events through platform methods (like ACPI events). If @dev supports
1651 * platform wakeup events, set the device flag to indicate as much. This
1652 * may be redundant if the device also supports PCI PM caps, but double
1653 * initialization should be safe in that case.
1654 */
1655 void platform_pci_wakeup_init(struct pci_dev *dev)
1656 {
1657 if (!platform_pci_can_wakeup(dev))
1658 return;
1659
1660 device_set_wakeup_capable(&dev->dev, true);
1661 device_set_wakeup_enable(&dev->dev, false);
1662 platform_pci_sleep_wake(dev, false);
1663 }
1664
1665 /**
1666 * pci_add_save_buffer - allocate buffer for saving given capability registers
1667 * @dev: the PCI device
1668 * @cap: the capability to allocate the buffer for
1669 * @size: requested size of the buffer
1670 */
1671 static int pci_add_cap_save_buffer(
1672 struct pci_dev *dev, char cap, unsigned int size)
1673 {
1674 int pos;
1675 struct pci_cap_saved_state *save_state;
1676
1677 pos = pci_find_capability(dev, cap);
1678 if (pos <= 0)
1679 return 0;
1680
1681 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1682 if (!save_state)
1683 return -ENOMEM;
1684
1685 save_state->cap_nr = cap;
1686 pci_add_saved_cap(dev, save_state);
1687
1688 return 0;
1689 }
1690
1691 /**
1692 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1693 * @dev: the PCI device
1694 */
1695 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1696 {
1697 int error;
1698
1699 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1700 PCI_EXP_SAVE_REGS * sizeof(u16));
1701 if (error)
1702 dev_err(&dev->dev,
1703 "unable to preallocate PCI Express save buffer\n");
1704
1705 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1706 if (error)
1707 dev_err(&dev->dev,
1708 "unable to preallocate PCI-X save buffer\n");
1709 }
1710
1711 /**
1712 * pci_enable_ari - enable ARI forwarding if hardware support it
1713 * @dev: the PCI device
1714 */
1715 void pci_enable_ari(struct pci_dev *dev)
1716 {
1717 int pos;
1718 u32 cap;
1719 u16 ctrl;
1720 struct pci_dev *bridge;
1721
1722 if (!pci_is_pcie(dev) || dev->devfn)
1723 return;
1724
1725 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1726 if (!pos)
1727 return;
1728
1729 bridge = dev->bus->self;
1730 if (!bridge || !pci_is_pcie(bridge))
1731 return;
1732
1733 pos = pci_pcie_cap(bridge);
1734 if (!pos)
1735 return;
1736
1737 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1738 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1739 return;
1740
1741 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1742 ctrl |= PCI_EXP_DEVCTL2_ARI;
1743 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1744
1745 bridge->ari_enabled = 1;
1746 }
1747
1748 static int pci_acs_enable;
1749
1750 /**
1751 * pci_request_acs - ask for ACS to be enabled if supported
1752 */
1753 void pci_request_acs(void)
1754 {
1755 pci_acs_enable = 1;
1756 }
1757
1758 /**
1759 * pci_enable_acs - enable ACS if hardware support it
1760 * @dev: the PCI device
1761 */
1762 void pci_enable_acs(struct pci_dev *dev)
1763 {
1764 int pos;
1765 u16 cap;
1766 u16 ctrl;
1767
1768 if (!pci_acs_enable)
1769 return;
1770
1771 if (!pci_is_pcie(dev))
1772 return;
1773
1774 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1775 if (!pos)
1776 return;
1777
1778 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1779 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1780
1781 /* Source Validation */
1782 ctrl |= (cap & PCI_ACS_SV);
1783
1784 /* P2P Request Redirect */
1785 ctrl |= (cap & PCI_ACS_RR);
1786
1787 /* P2P Completion Redirect */
1788 ctrl |= (cap & PCI_ACS_CR);
1789
1790 /* Upstream Forwarding */
1791 ctrl |= (cap & PCI_ACS_UF);
1792
1793 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1794 }
1795
1796 /**
1797 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1798 * @dev: the PCI device
1799 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1800 *
1801 * Perform INTx swizzling for a device behind one level of bridge. This is
1802 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1803 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1804 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1805 * the PCI Express Base Specification, Revision 2.1)
1806 */
1807 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1808 {
1809 int slot;
1810
1811 if (pci_ari_enabled(dev->bus))
1812 slot = 0;
1813 else
1814 slot = PCI_SLOT(dev->devfn);
1815
1816 return (((pin - 1) + slot) % 4) + 1;
1817 }
1818
1819 int
1820 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1821 {
1822 u8 pin;
1823
1824 pin = dev->pin;
1825 if (!pin)
1826 return -1;
1827
1828 while (!pci_is_root_bus(dev->bus)) {
1829 pin = pci_swizzle_interrupt_pin(dev, pin);
1830 dev = dev->bus->self;
1831 }
1832 *bridge = dev;
1833 return pin;
1834 }
1835
1836 /**
1837 * pci_common_swizzle - swizzle INTx all the way to root bridge
1838 * @dev: the PCI device
1839 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1840 *
1841 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1842 * bridges all the way up to a PCI root bus.
1843 */
1844 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1845 {
1846 u8 pin = *pinp;
1847
1848 while (!pci_is_root_bus(dev->bus)) {
1849 pin = pci_swizzle_interrupt_pin(dev, pin);
1850 dev = dev->bus->self;
1851 }
1852 *pinp = pin;
1853 return PCI_SLOT(dev->devfn);
1854 }
1855
1856 /**
1857 * pci_release_region - Release a PCI bar
1858 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1859 * @bar: BAR to release
1860 *
1861 * Releases the PCI I/O and memory resources previously reserved by a
1862 * successful call to pci_request_region. Call this function only
1863 * after all use of the PCI regions has ceased.
1864 */
1865 void pci_release_region(struct pci_dev *pdev, int bar)
1866 {
1867 struct pci_devres *dr;
1868
1869 if (pci_resource_len(pdev, bar) == 0)
1870 return;
1871 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1872 release_region(pci_resource_start(pdev, bar),
1873 pci_resource_len(pdev, bar));
1874 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1875 release_mem_region(pci_resource_start(pdev, bar),
1876 pci_resource_len(pdev, bar));
1877
1878 dr = find_pci_dr(pdev);
1879 if (dr)
1880 dr->region_mask &= ~(1 << bar);
1881 }
1882
1883 /**
1884 * __pci_request_region - Reserved PCI I/O and memory resource
1885 * @pdev: PCI device whose resources are to be reserved
1886 * @bar: BAR to be reserved
1887 * @res_name: Name to be associated with resource.
1888 * @exclusive: whether the region access is exclusive or not
1889 *
1890 * Mark the PCI region associated with PCI device @pdev BR @bar as
1891 * being reserved by owner @res_name. Do not access any
1892 * address inside the PCI regions unless this call returns
1893 * successfully.
1894 *
1895 * If @exclusive is set, then the region is marked so that userspace
1896 * is explicitly not allowed to map the resource via /dev/mem or
1897 * sysfs MMIO access.
1898 *
1899 * Returns 0 on success, or %EBUSY on error. A warning
1900 * message is also printed on failure.
1901 */
1902 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1903 int exclusive)
1904 {
1905 struct pci_devres *dr;
1906
1907 if (pci_resource_len(pdev, bar) == 0)
1908 return 0;
1909
1910 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1911 if (!request_region(pci_resource_start(pdev, bar),
1912 pci_resource_len(pdev, bar), res_name))
1913 goto err_out;
1914 }
1915 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1916 if (!__request_mem_region(pci_resource_start(pdev, bar),
1917 pci_resource_len(pdev, bar), res_name,
1918 exclusive))
1919 goto err_out;
1920 }
1921
1922 dr = find_pci_dr(pdev);
1923 if (dr)
1924 dr->region_mask |= 1 << bar;
1925
1926 return 0;
1927
1928 err_out:
1929 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
1930 &pdev->resource[bar]);
1931 return -EBUSY;
1932 }
1933
1934 /**
1935 * pci_request_region - Reserve PCI I/O and memory resource
1936 * @pdev: PCI device whose resources are to be reserved
1937 * @bar: BAR to be reserved
1938 * @res_name: Name to be associated with resource
1939 *
1940 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1941 * being reserved by owner @res_name. Do not access any
1942 * address inside the PCI regions unless this call returns
1943 * successfully.
1944 *
1945 * Returns 0 on success, or %EBUSY on error. A warning
1946 * message is also printed on failure.
1947 */
1948 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1949 {
1950 return __pci_request_region(pdev, bar, res_name, 0);
1951 }
1952
1953 /**
1954 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1955 * @pdev: PCI device whose resources are to be reserved
1956 * @bar: BAR to be reserved
1957 * @res_name: Name to be associated with resource.
1958 *
1959 * Mark the PCI region associated with PCI device @pdev BR @bar as
1960 * being reserved by owner @res_name. Do not access any
1961 * address inside the PCI regions unless this call returns
1962 * successfully.
1963 *
1964 * Returns 0 on success, or %EBUSY on error. A warning
1965 * message is also printed on failure.
1966 *
1967 * The key difference that _exclusive makes it that userspace is
1968 * explicitly not allowed to map the resource via /dev/mem or
1969 * sysfs.
1970 */
1971 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1972 {
1973 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1974 }
1975 /**
1976 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1977 * @pdev: PCI device whose resources were previously reserved
1978 * @bars: Bitmask of BARs to be released
1979 *
1980 * Release selected PCI I/O and memory resources previously reserved.
1981 * Call this function only after all use of the PCI regions has ceased.
1982 */
1983 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1984 {
1985 int i;
1986
1987 for (i = 0; i < 6; i++)
1988 if (bars & (1 << i))
1989 pci_release_region(pdev, i);
1990 }
1991
1992 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1993 const char *res_name, int excl)
1994 {
1995 int i;
1996
1997 for (i = 0; i < 6; i++)
1998 if (bars & (1 << i))
1999 if (__pci_request_region(pdev, i, res_name, excl))
2000 goto err_out;
2001 return 0;
2002
2003 err_out:
2004 while(--i >= 0)
2005 if (bars & (1 << i))
2006 pci_release_region(pdev, i);
2007
2008 return -EBUSY;
2009 }
2010
2011
2012 /**
2013 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2014 * @pdev: PCI device whose resources are to be reserved
2015 * @bars: Bitmask of BARs to be requested
2016 * @res_name: Name to be associated with resource
2017 */
2018 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2019 const char *res_name)
2020 {
2021 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2022 }
2023
2024 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2025 int bars, const char *res_name)
2026 {
2027 return __pci_request_selected_regions(pdev, bars, res_name,
2028 IORESOURCE_EXCLUSIVE);
2029 }
2030
2031 /**
2032 * pci_release_regions - Release reserved PCI I/O and memory resources
2033 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2034 *
2035 * Releases all PCI I/O and memory resources previously reserved by a
2036 * successful call to pci_request_regions. Call this function only
2037 * after all use of the PCI regions has ceased.
2038 */
2039
2040 void pci_release_regions(struct pci_dev *pdev)
2041 {
2042 pci_release_selected_regions(pdev, (1 << 6) - 1);
2043 }
2044
2045 /**
2046 * pci_request_regions - Reserved PCI I/O and memory resources
2047 * @pdev: PCI device whose resources are to be reserved
2048 * @res_name: Name to be associated with resource.
2049 *
2050 * Mark all PCI regions associated with PCI device @pdev as
2051 * being reserved by owner @res_name. Do not access any
2052 * address inside the PCI regions unless this call returns
2053 * successfully.
2054 *
2055 * Returns 0 on success, or %EBUSY on error. A warning
2056 * message is also printed on failure.
2057 */
2058 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2059 {
2060 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2061 }
2062
2063 /**
2064 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2065 * @pdev: PCI device whose resources are to be reserved
2066 * @res_name: Name to be associated with resource.
2067 *
2068 * Mark all PCI regions associated with PCI device @pdev as
2069 * being reserved by owner @res_name. Do not access any
2070 * address inside the PCI regions unless this call returns
2071 * successfully.
2072 *
2073 * pci_request_regions_exclusive() will mark the region so that
2074 * /dev/mem and the sysfs MMIO access will not be allowed.
2075 *
2076 * Returns 0 on success, or %EBUSY on error. A warning
2077 * message is also printed on failure.
2078 */
2079 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2080 {
2081 return pci_request_selected_regions_exclusive(pdev,
2082 ((1 << 6) - 1), res_name);
2083 }
2084
2085 static void __pci_set_master(struct pci_dev *dev, bool enable)
2086 {
2087 u16 old_cmd, cmd;
2088
2089 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2090 if (enable)
2091 cmd = old_cmd | PCI_COMMAND_MASTER;
2092 else
2093 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2094 if (cmd != old_cmd) {
2095 dev_dbg(&dev->dev, "%s bus mastering\n",
2096 enable ? "enabling" : "disabling");
2097 pci_write_config_word(dev, PCI_COMMAND, cmd);
2098 }
2099 dev->is_busmaster = enable;
2100 }
2101
2102 /**
2103 * pci_set_master - enables bus-mastering for device dev
2104 * @dev: the PCI device to enable
2105 *
2106 * Enables bus-mastering on the device and calls pcibios_set_master()
2107 * to do the needed arch specific settings.
2108 */
2109 void pci_set_master(struct pci_dev *dev)
2110 {
2111 __pci_set_master(dev, true);
2112 pcibios_set_master(dev);
2113 }
2114
2115 /**
2116 * pci_clear_master - disables bus-mastering for device dev
2117 * @dev: the PCI device to disable
2118 */
2119 void pci_clear_master(struct pci_dev *dev)
2120 {
2121 __pci_set_master(dev, false);
2122 }
2123
2124 /**
2125 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2126 * @dev: the PCI device for which MWI is to be enabled
2127 *
2128 * Helper function for pci_set_mwi.
2129 * Originally copied from drivers/net/acenic.c.
2130 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2131 *
2132 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2133 */
2134 int pci_set_cacheline_size(struct pci_dev *dev)
2135 {
2136 u8 cacheline_size;
2137
2138 if (!pci_cache_line_size)
2139 return -EINVAL;
2140
2141 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2142 equal to or multiple of the right value. */
2143 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2144 if (cacheline_size >= pci_cache_line_size &&
2145 (cacheline_size % pci_cache_line_size) == 0)
2146 return 0;
2147
2148 /* Write the correct value. */
2149 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2150 /* Read it back. */
2151 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2152 if (cacheline_size == pci_cache_line_size)
2153 return 0;
2154
2155 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2156 "supported\n", pci_cache_line_size << 2);
2157
2158 return -EINVAL;
2159 }
2160 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2161
2162 #ifdef PCI_DISABLE_MWI
2163 int pci_set_mwi(struct pci_dev *dev)
2164 {
2165 return 0;
2166 }
2167
2168 int pci_try_set_mwi(struct pci_dev *dev)
2169 {
2170 return 0;
2171 }
2172
2173 void pci_clear_mwi(struct pci_dev *dev)
2174 {
2175 }
2176
2177 #else
2178
2179 /**
2180 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2181 * @dev: the PCI device for which MWI is enabled
2182 *
2183 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2184 *
2185 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2186 */
2187 int
2188 pci_set_mwi(struct pci_dev *dev)
2189 {
2190 int rc;
2191 u16 cmd;
2192
2193 rc = pci_set_cacheline_size(dev);
2194 if (rc)
2195 return rc;
2196
2197 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2198 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2199 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2200 cmd |= PCI_COMMAND_INVALIDATE;
2201 pci_write_config_word(dev, PCI_COMMAND, cmd);
2202 }
2203
2204 return 0;
2205 }
2206
2207 /**
2208 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2209 * @dev: the PCI device for which MWI is enabled
2210 *
2211 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2212 * Callers are not required to check the return value.
2213 *
2214 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2215 */
2216 int pci_try_set_mwi(struct pci_dev *dev)
2217 {
2218 int rc = pci_set_mwi(dev);
2219 return rc;
2220 }
2221
2222 /**
2223 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2224 * @dev: the PCI device to disable
2225 *
2226 * Disables PCI Memory-Write-Invalidate transaction on the device
2227 */
2228 void
2229 pci_clear_mwi(struct pci_dev *dev)
2230 {
2231 u16 cmd;
2232
2233 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2234 if (cmd & PCI_COMMAND_INVALIDATE) {
2235 cmd &= ~PCI_COMMAND_INVALIDATE;
2236 pci_write_config_word(dev, PCI_COMMAND, cmd);
2237 }
2238 }
2239 #endif /* ! PCI_DISABLE_MWI */
2240
2241 /**
2242 * pci_intx - enables/disables PCI INTx for device dev
2243 * @pdev: the PCI device to operate on
2244 * @enable: boolean: whether to enable or disable PCI INTx
2245 *
2246 * Enables/disables PCI INTx for device dev
2247 */
2248 void
2249 pci_intx(struct pci_dev *pdev, int enable)
2250 {
2251 u16 pci_command, new;
2252
2253 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2254
2255 if (enable) {
2256 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2257 } else {
2258 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2259 }
2260
2261 if (new != pci_command) {
2262 struct pci_devres *dr;
2263
2264 pci_write_config_word(pdev, PCI_COMMAND, new);
2265
2266 dr = find_pci_dr(pdev);
2267 if (dr && !dr->restore_intx) {
2268 dr->restore_intx = 1;
2269 dr->orig_intx = !enable;
2270 }
2271 }
2272 }
2273
2274 /**
2275 * pci_msi_off - disables any msi or msix capabilities
2276 * @dev: the PCI device to operate on
2277 *
2278 * If you want to use msi see pci_enable_msi and friends.
2279 * This is a lower level primitive that allows us to disable
2280 * msi operation at the device level.
2281 */
2282 void pci_msi_off(struct pci_dev *dev)
2283 {
2284 int pos;
2285 u16 control;
2286
2287 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2288 if (pos) {
2289 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2290 control &= ~PCI_MSI_FLAGS_ENABLE;
2291 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2292 }
2293 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2294 if (pos) {
2295 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2296 control &= ~PCI_MSIX_FLAGS_ENABLE;
2297 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2298 }
2299 }
2300
2301 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2302 /*
2303 * These can be overridden by arch-specific implementations
2304 */
2305 int
2306 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2307 {
2308 int ret = dma_set_mask(&dev->dev, mask);
2309 if (ret)
2310 return ret;
2311 dev_dbg(&dev->dev, "using %dbit DMA mask\n", fls64(mask));
2312 return 0;
2313 }
2314
2315 int
2316 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2317 {
2318 int ret = dma_set_coherent_mask(&dev->dev, mask);
2319 if (ret)
2320 return ret;
2321
2322 dev_dbg(&dev->dev, "using %dbit consistent DMA mask\n", fls64(mask));
2323 return 0;
2324 }
2325 #endif
2326
2327 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2328 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2329 {
2330 return dma_set_max_seg_size(&dev->dev, size);
2331 }
2332 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2333 #endif
2334
2335 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2336 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2337 {
2338 return dma_set_seg_boundary(&dev->dev, mask);
2339 }
2340 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2341 #endif
2342
2343 static int pcie_flr(struct pci_dev *dev, int probe)
2344 {
2345 int i;
2346 int pos;
2347 u32 cap;
2348 u16 status, control;
2349
2350 pos = pci_pcie_cap(dev);
2351 if (!pos)
2352 return -ENOTTY;
2353
2354 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2355 if (!(cap & PCI_EXP_DEVCAP_FLR))
2356 return -ENOTTY;
2357
2358 if (probe)
2359 return 0;
2360
2361 /* Wait for Transaction Pending bit clean */
2362 for (i = 0; i < 4; i++) {
2363 if (i)
2364 msleep((1 << (i - 1)) * 100);
2365
2366 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2367 if (!(status & PCI_EXP_DEVSTA_TRPND))
2368 goto clear;
2369 }
2370
2371 dev_err(&dev->dev, "transaction is not cleared; "
2372 "proceeding with reset anyway\n");
2373
2374 clear:
2375 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2376 control |= PCI_EXP_DEVCTL_BCR_FLR;
2377 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2378
2379 msleep(100);
2380
2381 return 0;
2382 }
2383
2384 static int pci_af_flr(struct pci_dev *dev, int probe)
2385 {
2386 int i;
2387 int pos;
2388 u8 cap;
2389 u8 status;
2390
2391 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2392 if (!pos)
2393 return -ENOTTY;
2394
2395 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2396 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2397 return -ENOTTY;
2398
2399 if (probe)
2400 return 0;
2401
2402 /* Wait for Transaction Pending bit clean */
2403 for (i = 0; i < 4; i++) {
2404 if (i)
2405 msleep((1 << (i - 1)) * 100);
2406
2407 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2408 if (!(status & PCI_AF_STATUS_TP))
2409 goto clear;
2410 }
2411
2412 dev_err(&dev->dev, "transaction is not cleared; "
2413 "proceeding with reset anyway\n");
2414
2415 clear:
2416 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2417 msleep(100);
2418
2419 return 0;
2420 }
2421
2422 static int pci_pm_reset(struct pci_dev *dev, int probe)
2423 {
2424 u16 csr;
2425
2426 if (!dev->pm_cap)
2427 return -ENOTTY;
2428
2429 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2430 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2431 return -ENOTTY;
2432
2433 if (probe)
2434 return 0;
2435
2436 if (dev->current_state != PCI_D0)
2437 return -EINVAL;
2438
2439 csr &= ~PCI_PM_CTRL_STATE_MASK;
2440 csr |= PCI_D3hot;
2441 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2442 pci_dev_d3_sleep(dev);
2443
2444 csr &= ~PCI_PM_CTRL_STATE_MASK;
2445 csr |= PCI_D0;
2446 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2447 pci_dev_d3_sleep(dev);
2448
2449 return 0;
2450 }
2451
2452 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2453 {
2454 u16 ctrl;
2455 struct pci_dev *pdev;
2456
2457 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2458 return -ENOTTY;
2459
2460 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2461 if (pdev != dev)
2462 return -ENOTTY;
2463
2464 if (probe)
2465 return 0;
2466
2467 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2468 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2469 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2470 msleep(100);
2471
2472 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2473 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2474 msleep(100);
2475
2476 return 0;
2477 }
2478
2479 static int pci_dev_reset(struct pci_dev *dev, int probe)
2480 {
2481 int rc;
2482
2483 might_sleep();
2484
2485 if (!probe) {
2486 pci_block_user_cfg_access(dev);
2487 /* block PM suspend, driver probe, etc. */
2488 device_lock(&dev->dev);
2489 }
2490
2491 rc = pci_dev_specific_reset(dev, probe);
2492 if (rc != -ENOTTY)
2493 goto done;
2494
2495 rc = pcie_flr(dev, probe);
2496 if (rc != -ENOTTY)
2497 goto done;
2498
2499 rc = pci_af_flr(dev, probe);
2500 if (rc != -ENOTTY)
2501 goto done;
2502
2503 rc = pci_pm_reset(dev, probe);
2504 if (rc != -ENOTTY)
2505 goto done;
2506
2507 rc = pci_parent_bus_reset(dev, probe);
2508 done:
2509 if (!probe) {
2510 device_unlock(&dev->dev);
2511 pci_unblock_user_cfg_access(dev);
2512 }
2513
2514 return rc;
2515 }
2516
2517 /**
2518 * __pci_reset_function - reset a PCI device function
2519 * @dev: PCI device to reset
2520 *
2521 * Some devices allow an individual function to be reset without affecting
2522 * other functions in the same device. The PCI device must be responsive
2523 * to PCI config space in order to use this function.
2524 *
2525 * The device function is presumed to be unused when this function is called.
2526 * Resetting the device will make the contents of PCI configuration space
2527 * random, so any caller of this must be prepared to reinitialise the
2528 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2529 * etc.
2530 *
2531 * Returns 0 if the device function was successfully reset or negative if the
2532 * device doesn't support resetting a single function.
2533 */
2534 int __pci_reset_function(struct pci_dev *dev)
2535 {
2536 return pci_dev_reset(dev, 0);
2537 }
2538 EXPORT_SYMBOL_GPL(__pci_reset_function);
2539
2540 /**
2541 * pci_probe_reset_function - check whether the device can be safely reset
2542 * @dev: PCI device to reset
2543 *
2544 * Some devices allow an individual function to be reset without affecting
2545 * other functions in the same device. The PCI device must be responsive
2546 * to PCI config space in order to use this function.
2547 *
2548 * Returns 0 if the device function can be reset or negative if the
2549 * device doesn't support resetting a single function.
2550 */
2551 int pci_probe_reset_function(struct pci_dev *dev)
2552 {
2553 return pci_dev_reset(dev, 1);
2554 }
2555
2556 /**
2557 * pci_reset_function - quiesce and reset a PCI device function
2558 * @dev: PCI device to reset
2559 *
2560 * Some devices allow an individual function to be reset without affecting
2561 * other functions in the same device. The PCI device must be responsive
2562 * to PCI config space in order to use this function.
2563 *
2564 * This function does not just reset the PCI portion of a device, but
2565 * clears all the state associated with the device. This function differs
2566 * from __pci_reset_function in that it saves and restores device state
2567 * over the reset.
2568 *
2569 * Returns 0 if the device function was successfully reset or negative if the
2570 * device doesn't support resetting a single function.
2571 */
2572 int pci_reset_function(struct pci_dev *dev)
2573 {
2574 int rc;
2575
2576 rc = pci_dev_reset(dev, 1);
2577 if (rc)
2578 return rc;
2579
2580 pci_save_state(dev);
2581
2582 /*
2583 * both INTx and MSI are disabled after the Interrupt Disable bit
2584 * is set and the Bus Master bit is cleared.
2585 */
2586 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2587
2588 rc = pci_dev_reset(dev, 0);
2589
2590 pci_restore_state(dev);
2591
2592 return rc;
2593 }
2594 EXPORT_SYMBOL_GPL(pci_reset_function);
2595
2596 /**
2597 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2598 * @dev: PCI device to query
2599 *
2600 * Returns mmrbc: maximum designed memory read count in bytes
2601 * or appropriate error value.
2602 */
2603 int pcix_get_max_mmrbc(struct pci_dev *dev)
2604 {
2605 int err, cap;
2606 u32 stat;
2607
2608 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2609 if (!cap)
2610 return -EINVAL;
2611
2612 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2613 if (err)
2614 return -EINVAL;
2615
2616 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2617 }
2618 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2619
2620 /**
2621 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2622 * @dev: PCI device to query
2623 *
2624 * Returns mmrbc: maximum memory read count in bytes
2625 * or appropriate error value.
2626 */
2627 int pcix_get_mmrbc(struct pci_dev *dev)
2628 {
2629 int ret, cap;
2630 u32 cmd;
2631
2632 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2633 if (!cap)
2634 return -EINVAL;
2635
2636 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2637 if (!ret)
2638 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2639
2640 return ret;
2641 }
2642 EXPORT_SYMBOL(pcix_get_mmrbc);
2643
2644 /**
2645 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2646 * @dev: PCI device to query
2647 * @mmrbc: maximum memory read count in bytes
2648 * valid values are 512, 1024, 2048, 4096
2649 *
2650 * If possible sets maximum memory read byte count, some bridges have erratas
2651 * that prevent this.
2652 */
2653 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2654 {
2655 int cap, err = -EINVAL;
2656 u32 stat, cmd, v, o;
2657
2658 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2659 goto out;
2660
2661 v = ffs(mmrbc) - 10;
2662
2663 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2664 if (!cap)
2665 goto out;
2666
2667 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2668 if (err)
2669 goto out;
2670
2671 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2672 return -E2BIG;
2673
2674 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2675 if (err)
2676 goto out;
2677
2678 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2679 if (o != v) {
2680 if (v > o && dev->bus &&
2681 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2682 return -EIO;
2683
2684 cmd &= ~PCI_X_CMD_MAX_READ;
2685 cmd |= v << 2;
2686 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2687 }
2688 out:
2689 return err;
2690 }
2691 EXPORT_SYMBOL(pcix_set_mmrbc);
2692
2693 /**
2694 * pcie_get_readrq - get PCI Express read request size
2695 * @dev: PCI device to query
2696 *
2697 * Returns maximum memory read request in bytes
2698 * or appropriate error value.
2699 */
2700 int pcie_get_readrq(struct pci_dev *dev)
2701 {
2702 int ret, cap;
2703 u16 ctl;
2704
2705 cap = pci_pcie_cap(dev);
2706 if (!cap)
2707 return -EINVAL;
2708
2709 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2710 if (!ret)
2711 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2712
2713 return ret;
2714 }
2715 EXPORT_SYMBOL(pcie_get_readrq);
2716
2717 /**
2718 * pcie_set_readrq - set PCI Express maximum memory read request
2719 * @dev: PCI device to query
2720 * @rq: maximum memory read count in bytes
2721 * valid values are 128, 256, 512, 1024, 2048, 4096
2722 *
2723 * If possible sets maximum read byte count
2724 */
2725 int pcie_set_readrq(struct pci_dev *dev, int rq)
2726 {
2727 int cap, err = -EINVAL;
2728 u16 ctl, v;
2729
2730 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2731 goto out;
2732
2733 v = (ffs(rq) - 8) << 12;
2734
2735 cap = pci_pcie_cap(dev);
2736 if (!cap)
2737 goto out;
2738
2739 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2740 if (err)
2741 goto out;
2742
2743 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2744 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2745 ctl |= v;
2746 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2747 }
2748
2749 out:
2750 return err;
2751 }
2752 EXPORT_SYMBOL(pcie_set_readrq);
2753
2754 /**
2755 * pci_select_bars - Make BAR mask from the type of resource
2756 * @dev: the PCI device for which BAR mask is made
2757 * @flags: resource type mask to be selected
2758 *
2759 * This helper routine makes bar mask from the type of resource.
2760 */
2761 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2762 {
2763 int i, bars = 0;
2764 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2765 if (pci_resource_flags(dev, i) & flags)
2766 bars |= (1 << i);
2767 return bars;
2768 }
2769
2770 /**
2771 * pci_resource_bar - get position of the BAR associated with a resource
2772 * @dev: the PCI device
2773 * @resno: the resource number
2774 * @type: the BAR type to be filled in
2775 *
2776 * Returns BAR position in config space, or 0 if the BAR is invalid.
2777 */
2778 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2779 {
2780 int reg;
2781
2782 if (resno < PCI_ROM_RESOURCE) {
2783 *type = pci_bar_unknown;
2784 return PCI_BASE_ADDRESS_0 + 4 * resno;
2785 } else if (resno == PCI_ROM_RESOURCE) {
2786 *type = pci_bar_mem32;
2787 return dev->rom_base_reg;
2788 } else if (resno < PCI_BRIDGE_RESOURCES) {
2789 /* device specific resource */
2790 reg = pci_iov_resource_bar(dev, resno, type);
2791 if (reg)
2792 return reg;
2793 }
2794
2795 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2796 return 0;
2797 }
2798
2799 /* Some architectures require additional programming to enable VGA */
2800 static arch_set_vga_state_t arch_set_vga_state;
2801
2802 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2803 {
2804 arch_set_vga_state = func; /* NULL disables */
2805 }
2806
2807 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2808 unsigned int command_bits, bool change_bridge)
2809 {
2810 if (arch_set_vga_state)
2811 return arch_set_vga_state(dev, decode, command_bits,
2812 change_bridge);
2813 return 0;
2814 }
2815
2816 /**
2817 * pci_set_vga_state - set VGA decode state on device and parents if requested
2818 * @dev: the PCI device
2819 * @decode: true = enable decoding, false = disable decoding
2820 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2821 * @change_bridge: traverse ancestors and change bridges
2822 */
2823 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2824 unsigned int command_bits, bool change_bridge)
2825 {
2826 struct pci_bus *bus;
2827 struct pci_dev *bridge;
2828 u16 cmd;
2829 int rc;
2830
2831 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2832
2833 /* ARCH specific VGA enables */
2834 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2835 if (rc)
2836 return rc;
2837
2838 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2839 if (decode == true)
2840 cmd |= command_bits;
2841 else
2842 cmd &= ~command_bits;
2843 pci_write_config_word(dev, PCI_COMMAND, cmd);
2844
2845 if (change_bridge == false)
2846 return 0;
2847
2848 bus = dev->bus;
2849 while (bus) {
2850 bridge = bus->self;
2851 if (bridge) {
2852 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2853 &cmd);
2854 if (decode == true)
2855 cmd |= PCI_BRIDGE_CTL_VGA;
2856 else
2857 cmd &= ~PCI_BRIDGE_CTL_VGA;
2858 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2859 cmd);
2860 }
2861 bus = bus->parent;
2862 }
2863 return 0;
2864 }
2865
2866 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2867 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2868 static DEFINE_SPINLOCK(resource_alignment_lock);
2869
2870 /**
2871 * pci_specified_resource_alignment - get resource alignment specified by user.
2872 * @dev: the PCI device to get
2873 *
2874 * RETURNS: Resource alignment if it is specified.
2875 * Zero if it is not specified.
2876 */
2877 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2878 {
2879 int seg, bus, slot, func, align_order, count;
2880 resource_size_t align = 0;
2881 char *p;
2882
2883 spin_lock(&resource_alignment_lock);
2884 p = resource_alignment_param;
2885 while (*p) {
2886 count = 0;
2887 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2888 p[count] == '@') {
2889 p += count + 1;
2890 } else {
2891 align_order = -1;
2892 }
2893 if (sscanf(p, "%x:%x:%x.%x%n",
2894 &seg, &bus, &slot, &func, &count) != 4) {
2895 seg = 0;
2896 if (sscanf(p, "%x:%x.%x%n",
2897 &bus, &slot, &func, &count) != 3) {
2898 /* Invalid format */
2899 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2900 p);
2901 break;
2902 }
2903 }
2904 p += count;
2905 if (seg == pci_domain_nr(dev->bus) &&
2906 bus == dev->bus->number &&
2907 slot == PCI_SLOT(dev->devfn) &&
2908 func == PCI_FUNC(dev->devfn)) {
2909 if (align_order == -1) {
2910 align = PAGE_SIZE;
2911 } else {
2912 align = 1 << align_order;
2913 }
2914 /* Found */
2915 break;
2916 }
2917 if (*p != ';' && *p != ',') {
2918 /* End of param or invalid format */
2919 break;
2920 }
2921 p++;
2922 }
2923 spin_unlock(&resource_alignment_lock);
2924 return align;
2925 }
2926
2927 /**
2928 * pci_is_reassigndev - check if specified PCI is target device to reassign
2929 * @dev: the PCI device to check
2930 *
2931 * RETURNS: non-zero for PCI device is a target device to reassign,
2932 * or zero is not.
2933 */
2934 int pci_is_reassigndev(struct pci_dev *dev)
2935 {
2936 return (pci_specified_resource_alignment(dev) != 0);
2937 }
2938
2939 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2940 {
2941 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2942 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2943 spin_lock(&resource_alignment_lock);
2944 strncpy(resource_alignment_param, buf, count);
2945 resource_alignment_param[count] = '\0';
2946 spin_unlock(&resource_alignment_lock);
2947 return count;
2948 }
2949
2950 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2951 {
2952 size_t count;
2953 spin_lock(&resource_alignment_lock);
2954 count = snprintf(buf, size, "%s", resource_alignment_param);
2955 spin_unlock(&resource_alignment_lock);
2956 return count;
2957 }
2958
2959 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2960 {
2961 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2962 }
2963
2964 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2965 const char *buf, size_t count)
2966 {
2967 return pci_set_resource_alignment_param(buf, count);
2968 }
2969
2970 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2971 pci_resource_alignment_store);
2972
2973 static int __init pci_resource_alignment_sysfs_init(void)
2974 {
2975 return bus_create_file(&pci_bus_type,
2976 &bus_attr_resource_alignment);
2977 }
2978
2979 late_initcall(pci_resource_alignment_sysfs_init);
2980
2981 static void __devinit pci_no_domains(void)
2982 {
2983 #ifdef CONFIG_PCI_DOMAINS
2984 pci_domains_supported = 0;
2985 #endif
2986 }
2987
2988 /**
2989 * pci_ext_cfg_enabled - can we access extended PCI config space?
2990 * @dev: The PCI device of the root bridge.
2991 *
2992 * Returns 1 if we can access PCI extended config space (offsets
2993 * greater than 0xff). This is the default implementation. Architecture
2994 * implementations can override this.
2995 */
2996 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2997 {
2998 return 1;
2999 }
3000
3001 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3002 {
3003 }
3004 EXPORT_SYMBOL(pci_fixup_cardbus);
3005
3006 static int __init pci_setup(char *str)
3007 {
3008 while (str) {
3009 char *k = strchr(str, ',');
3010 if (k)
3011 *k++ = 0;
3012 if (*str && (str = pcibios_setup(str)) && *str) {
3013 if (!strcmp(str, "nomsi")) {
3014 pci_no_msi();
3015 } else if (!strcmp(str, "noaer")) {
3016 pci_no_aer();
3017 } else if (!strcmp(str, "nodomains")) {
3018 pci_no_domains();
3019 } else if (!strncmp(str, "cbiosize=", 9)) {
3020 pci_cardbus_io_size = memparse(str + 9, &str);
3021 } else if (!strncmp(str, "cbmemsize=", 10)) {
3022 pci_cardbus_mem_size = memparse(str + 10, &str);
3023 } else if (!strncmp(str, "resource_alignment=", 19)) {
3024 pci_set_resource_alignment_param(str + 19,
3025 strlen(str + 19));
3026 } else if (!strncmp(str, "ecrc=", 5)) {
3027 pcie_ecrc_get_policy(str + 5);
3028 } else if (!strncmp(str, "hpiosize=", 9)) {
3029 pci_hotplug_io_size = memparse(str + 9, &str);
3030 } else if (!strncmp(str, "hpmemsize=", 10)) {
3031 pci_hotplug_mem_size = memparse(str + 10, &str);
3032 } else {
3033 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3034 str);
3035 }
3036 }
3037 str = k;
3038 }
3039 return 0;
3040 }
3041 early_param("pci", pci_setup);
3042
3043 EXPORT_SYMBOL(pci_reenable_device);
3044 EXPORT_SYMBOL(pci_enable_device_io);
3045 EXPORT_SYMBOL(pci_enable_device_mem);
3046 EXPORT_SYMBOL(pci_enable_device);
3047 EXPORT_SYMBOL(pcim_enable_device);
3048 EXPORT_SYMBOL(pcim_pin_device);
3049 EXPORT_SYMBOL(pci_disable_device);
3050 EXPORT_SYMBOL(pci_find_capability);
3051 EXPORT_SYMBOL(pci_bus_find_capability);
3052 EXPORT_SYMBOL(pci_register_set_vga_state);
3053 EXPORT_SYMBOL(pci_release_regions);
3054 EXPORT_SYMBOL(pci_request_regions);
3055 EXPORT_SYMBOL(pci_request_regions_exclusive);
3056 EXPORT_SYMBOL(pci_release_region);
3057 EXPORT_SYMBOL(pci_request_region);
3058 EXPORT_SYMBOL(pci_request_region_exclusive);
3059 EXPORT_SYMBOL(pci_release_selected_regions);
3060 EXPORT_SYMBOL(pci_request_selected_regions);
3061 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3062 EXPORT_SYMBOL(pci_set_master);
3063 EXPORT_SYMBOL(pci_clear_master);
3064 EXPORT_SYMBOL(pci_set_mwi);
3065 EXPORT_SYMBOL(pci_try_set_mwi);
3066 EXPORT_SYMBOL(pci_clear_mwi);
3067 EXPORT_SYMBOL_GPL(pci_intx);
3068 EXPORT_SYMBOL(pci_set_dma_mask);
3069 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
3070 EXPORT_SYMBOL(pci_assign_resource);
3071 EXPORT_SYMBOL(pci_find_parent_resource);
3072 EXPORT_SYMBOL(pci_select_bars);
3073
3074 EXPORT_SYMBOL(pci_set_power_state);
3075 EXPORT_SYMBOL(pci_save_state);
3076 EXPORT_SYMBOL(pci_restore_state);
3077 EXPORT_SYMBOL(pci_pme_capable);
3078 EXPORT_SYMBOL(pci_pme_active);
3079 EXPORT_SYMBOL(pci_wake_from_d3);
3080 EXPORT_SYMBOL(pci_target_state);
3081 EXPORT_SYMBOL(pci_prepare_to_sleep);
3082 EXPORT_SYMBOL(pci_back_from_sleep);
3083 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.10052 seconds and 5 git commands to generate.