PCI PM: Make pci_set_power_state() handle devices with no PM support
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include "pci.h"
24
25 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
26
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30
31 #define DEFAULT_CARDBUS_IO_SIZE (256)
32 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36
37 /**
38 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39 * @bus: pointer to PCI bus structure to search
40 *
41 * Given a PCI bus, returns the highest PCI bus number present in the set
42 * including the given PCI bus and its list of child PCI buses.
43 */
44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 struct list_head *tmp;
47 unsigned char max, n;
48
49 max = bus->subordinate;
50 list_for_each(tmp, &bus->children) {
51 n = pci_bus_max_busnr(pci_bus_b(tmp));
52 if(n > max)
53 max = n;
54 }
55 return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58
59 #ifdef CONFIG_HAS_IOMEM
60 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
61 {
62 /*
63 * Make sure the BAR is actually a memory resource, not an IO resource
64 */
65 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
66 WARN_ON(1);
67 return NULL;
68 }
69 return ioremap_nocache(pci_resource_start(pdev, bar),
70 pci_resource_len(pdev, bar));
71 }
72 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
73 #endif
74
75 #if 0
76 /**
77 * pci_max_busnr - returns maximum PCI bus number
78 *
79 * Returns the highest PCI bus number present in the system global list of
80 * PCI buses.
81 */
82 unsigned char __devinit
83 pci_max_busnr(void)
84 {
85 struct pci_bus *bus = NULL;
86 unsigned char max, n;
87
88 max = 0;
89 while ((bus = pci_find_next_bus(bus)) != NULL) {
90 n = pci_bus_max_busnr(bus);
91 if(n > max)
92 max = n;
93 }
94 return max;
95 }
96
97 #endif /* 0 */
98
99 #define PCI_FIND_CAP_TTL 48
100
101 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
102 u8 pos, int cap, int *ttl)
103 {
104 u8 id;
105
106 while ((*ttl)--) {
107 pci_bus_read_config_byte(bus, devfn, pos, &pos);
108 if (pos < 0x40)
109 break;
110 pos &= ~3;
111 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
112 &id);
113 if (id == 0xff)
114 break;
115 if (id == cap)
116 return pos;
117 pos += PCI_CAP_LIST_NEXT;
118 }
119 return 0;
120 }
121
122 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
123 u8 pos, int cap)
124 {
125 int ttl = PCI_FIND_CAP_TTL;
126
127 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
128 }
129
130 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
131 {
132 return __pci_find_next_cap(dev->bus, dev->devfn,
133 pos + PCI_CAP_LIST_NEXT, cap);
134 }
135 EXPORT_SYMBOL_GPL(pci_find_next_capability);
136
137 static int __pci_bus_find_cap_start(struct pci_bus *bus,
138 unsigned int devfn, u8 hdr_type)
139 {
140 u16 status;
141
142 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
143 if (!(status & PCI_STATUS_CAP_LIST))
144 return 0;
145
146 switch (hdr_type) {
147 case PCI_HEADER_TYPE_NORMAL:
148 case PCI_HEADER_TYPE_BRIDGE:
149 return PCI_CAPABILITY_LIST;
150 case PCI_HEADER_TYPE_CARDBUS:
151 return PCI_CB_CAPABILITY_LIST;
152 default:
153 return 0;
154 }
155
156 return 0;
157 }
158
159 /**
160 * pci_find_capability - query for devices' capabilities
161 * @dev: PCI device to query
162 * @cap: capability code
163 *
164 * Tell if a device supports a given PCI capability.
165 * Returns the address of the requested capability structure within the
166 * device's PCI configuration space or 0 in case the device does not
167 * support it. Possible values for @cap:
168 *
169 * %PCI_CAP_ID_PM Power Management
170 * %PCI_CAP_ID_AGP Accelerated Graphics Port
171 * %PCI_CAP_ID_VPD Vital Product Data
172 * %PCI_CAP_ID_SLOTID Slot Identification
173 * %PCI_CAP_ID_MSI Message Signalled Interrupts
174 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
175 * %PCI_CAP_ID_PCIX PCI-X
176 * %PCI_CAP_ID_EXP PCI Express
177 */
178 int pci_find_capability(struct pci_dev *dev, int cap)
179 {
180 int pos;
181
182 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
183 if (pos)
184 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
185
186 return pos;
187 }
188
189 /**
190 * pci_bus_find_capability - query for devices' capabilities
191 * @bus: the PCI bus to query
192 * @devfn: PCI device to query
193 * @cap: capability code
194 *
195 * Like pci_find_capability() but works for pci devices that do not have a
196 * pci_dev structure set up yet.
197 *
198 * Returns the address of the requested capability structure within the
199 * device's PCI configuration space or 0 in case the device does not
200 * support it.
201 */
202 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
203 {
204 int pos;
205 u8 hdr_type;
206
207 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
208
209 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
210 if (pos)
211 pos = __pci_find_next_cap(bus, devfn, pos, cap);
212
213 return pos;
214 }
215
216 /**
217 * pci_find_ext_capability - Find an extended capability
218 * @dev: PCI device to query
219 * @cap: capability code
220 *
221 * Returns the address of the requested extended capability structure
222 * within the device's PCI configuration space or 0 if the device does
223 * not support it. Possible values for @cap:
224 *
225 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
226 * %PCI_EXT_CAP_ID_VC Virtual Channel
227 * %PCI_EXT_CAP_ID_DSN Device Serial Number
228 * %PCI_EXT_CAP_ID_PWR Power Budgeting
229 */
230 int pci_find_ext_capability(struct pci_dev *dev, int cap)
231 {
232 u32 header;
233 int ttl;
234 int pos = PCI_CFG_SPACE_SIZE;
235
236 /* minimum 8 bytes per capability */
237 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
238
239 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
240 return 0;
241
242 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
243 return 0;
244
245 /*
246 * If we have no capabilities, this is indicated by cap ID,
247 * cap version and next pointer all being 0.
248 */
249 if (header == 0)
250 return 0;
251
252 while (ttl-- > 0) {
253 if (PCI_EXT_CAP_ID(header) == cap)
254 return pos;
255
256 pos = PCI_EXT_CAP_NEXT(header);
257 if (pos < PCI_CFG_SPACE_SIZE)
258 break;
259
260 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
261 break;
262 }
263
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
267
268 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
269 {
270 int rc, ttl = PCI_FIND_CAP_TTL;
271 u8 cap, mask;
272
273 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
274 mask = HT_3BIT_CAP_MASK;
275 else
276 mask = HT_5BIT_CAP_MASK;
277
278 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
279 PCI_CAP_ID_HT, &ttl);
280 while (pos) {
281 rc = pci_read_config_byte(dev, pos + 3, &cap);
282 if (rc != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 if ((cap & mask) == ht_cap)
286 return pos;
287
288 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
289 pos + PCI_CAP_LIST_NEXT,
290 PCI_CAP_ID_HT, &ttl);
291 }
292
293 return 0;
294 }
295 /**
296 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
297 * @dev: PCI device to query
298 * @pos: Position from which to continue searching
299 * @ht_cap: Hypertransport capability code
300 *
301 * To be used in conjunction with pci_find_ht_capability() to search for
302 * all capabilities matching @ht_cap. @pos should always be a value returned
303 * from pci_find_ht_capability().
304 *
305 * NB. To be 100% safe against broken PCI devices, the caller should take
306 * steps to avoid an infinite loop.
307 */
308 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
309 {
310 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
311 }
312 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
313
314 /**
315 * pci_find_ht_capability - query a device's Hypertransport capabilities
316 * @dev: PCI device to query
317 * @ht_cap: Hypertransport capability code
318 *
319 * Tell if a device supports a given Hypertransport capability.
320 * Returns an address within the device's PCI configuration space
321 * or 0 in case the device does not support the request capability.
322 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
323 * which has a Hypertransport capability matching @ht_cap.
324 */
325 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
326 {
327 int pos;
328
329 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
330 if (pos)
331 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
332
333 return pos;
334 }
335 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
336
337 /**
338 * pci_find_parent_resource - return resource region of parent bus of given region
339 * @dev: PCI device structure contains resources to be searched
340 * @res: child resource record for which parent is sought
341 *
342 * For given resource region of given device, return the resource
343 * region of parent bus the given region is contained in or where
344 * it should be allocated from.
345 */
346 struct resource *
347 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
348 {
349 const struct pci_bus *bus = dev->bus;
350 int i;
351 struct resource *best = NULL;
352
353 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
354 struct resource *r = bus->resource[i];
355 if (!r)
356 continue;
357 if (res->start && !(res->start >= r->start && res->end <= r->end))
358 continue; /* Not contained */
359 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
360 continue; /* Wrong type */
361 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
362 return r; /* Exact match */
363 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
364 best = r; /* Approximating prefetchable by non-prefetchable */
365 }
366 return best;
367 }
368
369 /**
370 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
371 * @dev: PCI device to have its BARs restored
372 *
373 * Restore the BAR values for a given device, so as to make it
374 * accessible by its driver.
375 */
376 static void
377 pci_restore_bars(struct pci_dev *dev)
378 {
379 int i;
380
381 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
382 pci_update_resource(dev, i);
383 }
384
385 static struct pci_platform_pm_ops *pci_platform_pm;
386
387 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
388 {
389 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
390 || !ops->sleep_wake || !ops->can_wakeup)
391 return -EINVAL;
392 pci_platform_pm = ops;
393 return 0;
394 }
395
396 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
397 {
398 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
399 }
400
401 static inline int platform_pci_set_power_state(struct pci_dev *dev,
402 pci_power_t t)
403 {
404 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
405 }
406
407 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
408 {
409 return pci_platform_pm ?
410 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
411 }
412
413 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
414 {
415 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
416 }
417
418 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
419 {
420 return pci_platform_pm ?
421 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
422 }
423
424 /**
425 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
426 * given PCI device
427 * @dev: PCI device to handle.
428 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
429 *
430 * RETURN VALUE:
431 * -EINVAL if the requested state is invalid.
432 * -EIO if device does not support PCI PM or its PM capabilities register has a
433 * wrong version, or device doesn't support the requested state.
434 * 0 if device already is in the requested state.
435 * 0 if device's power state has been successfully changed.
436 */
437 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
438 {
439 u16 pmcsr;
440 bool need_restore = false;
441
442 /* Check if we're already there */
443 if (dev->current_state == state)
444 return 0;
445
446 if (!dev->pm_cap)
447 return -EIO;
448
449 if (state < PCI_D0 || state > PCI_D3hot)
450 return -EINVAL;
451
452 /* Validate current state:
453 * Can enter D0 from any state, but if we can only go deeper
454 * to sleep if we're already in a low power state
455 */
456 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
457 && dev->current_state > state) {
458 dev_err(&dev->dev, "invalid power transition "
459 "(from state %d to %d)\n", dev->current_state, state);
460 return -EINVAL;
461 }
462
463 /* check if this device supports the desired state */
464 if ((state == PCI_D1 && !dev->d1_support)
465 || (state == PCI_D2 && !dev->d2_support))
466 return -EIO;
467
468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
469
470 /* If we're (effectively) in D3, force entire word to 0.
471 * This doesn't affect PME_Status, disables PME_En, and
472 * sets PowerState to 0.
473 */
474 switch (dev->current_state) {
475 case PCI_D0:
476 case PCI_D1:
477 case PCI_D2:
478 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
479 pmcsr |= state;
480 break;
481 case PCI_UNKNOWN: /* Boot-up */
482 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
483 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
484 need_restore = true;
485 /* Fall-through: force to D0 */
486 default:
487 pmcsr = 0;
488 break;
489 }
490
491 /* enter specified state */
492 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
493
494 /* Mandatory power management transition delays */
495 /* see PCI PM 1.1 5.6.1 table 18 */
496 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
497 msleep(pci_pm_d3_delay);
498 else if (state == PCI_D2 || dev->current_state == PCI_D2)
499 udelay(PCI_PM_D2_DELAY);
500
501 dev->current_state = state;
502
503 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
504 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
505 * from D3hot to D0 _may_ perform an internal reset, thereby
506 * going to "D0 Uninitialized" rather than "D0 Initialized".
507 * For example, at least some versions of the 3c905B and the
508 * 3c556B exhibit this behaviour.
509 *
510 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
511 * devices in a D3hot state at boot. Consequently, we need to
512 * restore at least the BARs so that the device will be
513 * accessible to its driver.
514 */
515 if (need_restore)
516 pci_restore_bars(dev);
517
518 if (dev->bus->self)
519 pcie_aspm_pm_state_change(dev->bus->self);
520
521 return 0;
522 }
523
524 /**
525 * pci_update_current_state - Read PCI power state of given device from its
526 * PCI PM registers and cache it
527 * @dev: PCI device to handle.
528 * @state: State to cache in case the device doesn't have the PM capability
529 */
530 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
531 {
532 if (dev->pm_cap) {
533 u16 pmcsr;
534
535 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
536 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
537 } else {
538 dev->current_state = state;
539 }
540 }
541
542 /**
543 * pci_set_power_state - Set the power state of a PCI device
544 * @dev: PCI device to handle.
545 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
546 *
547 * Transition a device to a new power state, using the platform formware and/or
548 * the device's PCI PM registers.
549 *
550 * RETURN VALUE:
551 * -EINVAL if the requested state is invalid.
552 * -EIO if device does not support PCI PM or its PM capabilities register has a
553 * wrong version, or device doesn't support the requested state.
554 * 0 if device already is in the requested state.
555 * 0 if device's power state has been successfully changed.
556 */
557 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
558 {
559 int error;
560
561 /* bound the state we're entering */
562 if (state > PCI_D3hot)
563 state = PCI_D3hot;
564 else if (state < PCI_D0)
565 state = PCI_D0;
566 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
567 /*
568 * If the device or the parent bridge do not support PCI PM,
569 * ignore the request if we're doing anything other than putting
570 * it into D0 (which would only happen on boot).
571 */
572 return 0;
573
574 /* Check if we're already there */
575 if (dev->current_state == state)
576 return 0;
577
578 if (state == PCI_D0) {
579 /*
580 * Allow the platform to change the state, for example via ACPI
581 * _PR0, _PS0 and some such, but do not trust it.
582 */
583 int ret = platform_pci_power_manageable(dev) ?
584 platform_pci_set_power_state(dev, PCI_D0) : 0;
585 if (!ret)
586 pci_update_current_state(dev, PCI_D0);
587 }
588 /* This device is quirked not to be put into D3, so
589 don't put it in D3 */
590 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
591 return 0;
592
593 error = pci_raw_set_power_state(dev, state);
594
595 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
596 /* Allow the platform to finalize the transition */
597 int ret = platform_pci_set_power_state(dev, state);
598 if (!ret) {
599 pci_update_current_state(dev, state);
600 error = 0;
601 }
602 }
603
604 return error;
605 }
606
607 /**
608 * pci_choose_state - Choose the power state of a PCI device
609 * @dev: PCI device to be suspended
610 * @state: target sleep state for the whole system. This is the value
611 * that is passed to suspend() function.
612 *
613 * Returns PCI power state suitable for given device and given system
614 * message.
615 */
616
617 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
618 {
619 pci_power_t ret;
620
621 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
622 return PCI_D0;
623
624 ret = platform_pci_choose_state(dev);
625 if (ret != PCI_POWER_ERROR)
626 return ret;
627
628 switch (state.event) {
629 case PM_EVENT_ON:
630 return PCI_D0;
631 case PM_EVENT_FREEZE:
632 case PM_EVENT_PRETHAW:
633 /* REVISIT both freeze and pre-thaw "should" use D0 */
634 case PM_EVENT_SUSPEND:
635 case PM_EVENT_HIBERNATE:
636 return PCI_D3hot;
637 default:
638 dev_info(&dev->dev, "unrecognized suspend event %d\n",
639 state.event);
640 BUG();
641 }
642 return PCI_D0;
643 }
644
645 EXPORT_SYMBOL(pci_choose_state);
646
647 static int pci_save_pcie_state(struct pci_dev *dev)
648 {
649 int pos, i = 0;
650 struct pci_cap_saved_state *save_state;
651 u16 *cap;
652
653 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
654 if (pos <= 0)
655 return 0;
656
657 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
658 if (!save_state) {
659 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
660 return -ENOMEM;
661 }
662 cap = (u16 *)&save_state->data[0];
663
664 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
665 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
666 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
667 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
668
669 return 0;
670 }
671
672 static void pci_restore_pcie_state(struct pci_dev *dev)
673 {
674 int i = 0, pos;
675 struct pci_cap_saved_state *save_state;
676 u16 *cap;
677
678 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
679 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
680 if (!save_state || pos <= 0)
681 return;
682 cap = (u16 *)&save_state->data[0];
683
684 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
685 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
686 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
687 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
688 }
689
690
691 static int pci_save_pcix_state(struct pci_dev *dev)
692 {
693 int pos;
694 struct pci_cap_saved_state *save_state;
695
696 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
697 if (pos <= 0)
698 return 0;
699
700 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
701 if (!save_state) {
702 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
703 return -ENOMEM;
704 }
705
706 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
707
708 return 0;
709 }
710
711 static void pci_restore_pcix_state(struct pci_dev *dev)
712 {
713 int i = 0, pos;
714 struct pci_cap_saved_state *save_state;
715 u16 *cap;
716
717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
718 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
719 if (!save_state || pos <= 0)
720 return;
721 cap = (u16 *)&save_state->data[0];
722
723 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
724 }
725
726
727 /**
728 * pci_save_state - save the PCI configuration space of a device before suspending
729 * @dev: - PCI device that we're dealing with
730 */
731 int
732 pci_save_state(struct pci_dev *dev)
733 {
734 int i;
735 /* XXX: 100% dword access ok here? */
736 for (i = 0; i < 16; i++)
737 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
738 dev->state_saved = true;
739 if ((i = pci_save_pcie_state(dev)) != 0)
740 return i;
741 if ((i = pci_save_pcix_state(dev)) != 0)
742 return i;
743 return 0;
744 }
745
746 /**
747 * pci_restore_state - Restore the saved state of a PCI device
748 * @dev: - PCI device that we're dealing with
749 */
750 int
751 pci_restore_state(struct pci_dev *dev)
752 {
753 int i;
754 u32 val;
755
756 /* PCI Express register must be restored first */
757 pci_restore_pcie_state(dev);
758
759 /*
760 * The Base Address register should be programmed before the command
761 * register(s)
762 */
763 for (i = 15; i >= 0; i--) {
764 pci_read_config_dword(dev, i * 4, &val);
765 if (val != dev->saved_config_space[i]) {
766 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
767 "space at offset %#x (was %#x, writing %#x)\n",
768 i, val, (int)dev->saved_config_space[i]);
769 pci_write_config_dword(dev,i * 4,
770 dev->saved_config_space[i]);
771 }
772 }
773 pci_restore_pcix_state(dev);
774 pci_restore_msi_state(dev);
775
776 return 0;
777 }
778
779 static int do_pci_enable_device(struct pci_dev *dev, int bars)
780 {
781 int err;
782
783 err = pci_set_power_state(dev, PCI_D0);
784 if (err < 0 && err != -EIO)
785 return err;
786 err = pcibios_enable_device(dev, bars);
787 if (err < 0)
788 return err;
789 pci_fixup_device(pci_fixup_enable, dev);
790
791 return 0;
792 }
793
794 /**
795 * pci_reenable_device - Resume abandoned device
796 * @dev: PCI device to be resumed
797 *
798 * Note this function is a backend of pci_default_resume and is not supposed
799 * to be called by normal code, write proper resume handler and use it instead.
800 */
801 int pci_reenable_device(struct pci_dev *dev)
802 {
803 if (atomic_read(&dev->enable_cnt))
804 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
805 return 0;
806 }
807
808 static int __pci_enable_device_flags(struct pci_dev *dev,
809 resource_size_t flags)
810 {
811 int err;
812 int i, bars = 0;
813
814 if (atomic_add_return(1, &dev->enable_cnt) > 1)
815 return 0; /* already enabled */
816
817 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
818 if (dev->resource[i].flags & flags)
819 bars |= (1 << i);
820
821 err = do_pci_enable_device(dev, bars);
822 if (err < 0)
823 atomic_dec(&dev->enable_cnt);
824 return err;
825 }
826
827 /**
828 * pci_enable_device_io - Initialize a device for use with IO space
829 * @dev: PCI device to be initialized
830 *
831 * Initialize device before it's used by a driver. Ask low-level code
832 * to enable I/O resources. Wake up the device if it was suspended.
833 * Beware, this function can fail.
834 */
835 int pci_enable_device_io(struct pci_dev *dev)
836 {
837 return __pci_enable_device_flags(dev, IORESOURCE_IO);
838 }
839
840 /**
841 * pci_enable_device_mem - Initialize a device for use with Memory space
842 * @dev: PCI device to be initialized
843 *
844 * Initialize device before it's used by a driver. Ask low-level code
845 * to enable Memory resources. Wake up the device if it was suspended.
846 * Beware, this function can fail.
847 */
848 int pci_enable_device_mem(struct pci_dev *dev)
849 {
850 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
851 }
852
853 /**
854 * pci_enable_device - Initialize device before it's used by a driver.
855 * @dev: PCI device to be initialized
856 *
857 * Initialize device before it's used by a driver. Ask low-level code
858 * to enable I/O and memory. Wake up the device if it was suspended.
859 * Beware, this function can fail.
860 *
861 * Note we don't actually enable the device many times if we call
862 * this function repeatedly (we just increment the count).
863 */
864 int pci_enable_device(struct pci_dev *dev)
865 {
866 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
867 }
868
869 /*
870 * Managed PCI resources. This manages device on/off, intx/msi/msix
871 * on/off and BAR regions. pci_dev itself records msi/msix status, so
872 * there's no need to track it separately. pci_devres is initialized
873 * when a device is enabled using managed PCI device enable interface.
874 */
875 struct pci_devres {
876 unsigned int enabled:1;
877 unsigned int pinned:1;
878 unsigned int orig_intx:1;
879 unsigned int restore_intx:1;
880 u32 region_mask;
881 };
882
883 static void pcim_release(struct device *gendev, void *res)
884 {
885 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
886 struct pci_devres *this = res;
887 int i;
888
889 if (dev->msi_enabled)
890 pci_disable_msi(dev);
891 if (dev->msix_enabled)
892 pci_disable_msix(dev);
893
894 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
895 if (this->region_mask & (1 << i))
896 pci_release_region(dev, i);
897
898 if (this->restore_intx)
899 pci_intx(dev, this->orig_intx);
900
901 if (this->enabled && !this->pinned)
902 pci_disable_device(dev);
903 }
904
905 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
906 {
907 struct pci_devres *dr, *new_dr;
908
909 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
910 if (dr)
911 return dr;
912
913 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
914 if (!new_dr)
915 return NULL;
916 return devres_get(&pdev->dev, new_dr, NULL, NULL);
917 }
918
919 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
920 {
921 if (pci_is_managed(pdev))
922 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
923 return NULL;
924 }
925
926 /**
927 * pcim_enable_device - Managed pci_enable_device()
928 * @pdev: PCI device to be initialized
929 *
930 * Managed pci_enable_device().
931 */
932 int pcim_enable_device(struct pci_dev *pdev)
933 {
934 struct pci_devres *dr;
935 int rc;
936
937 dr = get_pci_dr(pdev);
938 if (unlikely(!dr))
939 return -ENOMEM;
940 if (dr->enabled)
941 return 0;
942
943 rc = pci_enable_device(pdev);
944 if (!rc) {
945 pdev->is_managed = 1;
946 dr->enabled = 1;
947 }
948 return rc;
949 }
950
951 /**
952 * pcim_pin_device - Pin managed PCI device
953 * @pdev: PCI device to pin
954 *
955 * Pin managed PCI device @pdev. Pinned device won't be disabled on
956 * driver detach. @pdev must have been enabled with
957 * pcim_enable_device().
958 */
959 void pcim_pin_device(struct pci_dev *pdev)
960 {
961 struct pci_devres *dr;
962
963 dr = find_pci_dr(pdev);
964 WARN_ON(!dr || !dr->enabled);
965 if (dr)
966 dr->pinned = 1;
967 }
968
969 /**
970 * pcibios_disable_device - disable arch specific PCI resources for device dev
971 * @dev: the PCI device to disable
972 *
973 * Disables architecture specific PCI resources for the device. This
974 * is the default implementation. Architecture implementations can
975 * override this.
976 */
977 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
978
979 static void do_pci_disable_device(struct pci_dev *dev)
980 {
981 u16 pci_command;
982
983 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
984 if (pci_command & PCI_COMMAND_MASTER) {
985 pci_command &= ~PCI_COMMAND_MASTER;
986 pci_write_config_word(dev, PCI_COMMAND, pci_command);
987 }
988
989 pcibios_disable_device(dev);
990 }
991
992 /**
993 * pci_disable_enabled_device - Disable device without updating enable_cnt
994 * @dev: PCI device to disable
995 *
996 * NOTE: This function is a backend of PCI power management routines and is
997 * not supposed to be called drivers.
998 */
999 void pci_disable_enabled_device(struct pci_dev *dev)
1000 {
1001 if (atomic_read(&dev->enable_cnt))
1002 do_pci_disable_device(dev);
1003 }
1004
1005 /**
1006 * pci_disable_device - Disable PCI device after use
1007 * @dev: PCI device to be disabled
1008 *
1009 * Signal to the system that the PCI device is not in use by the system
1010 * anymore. This only involves disabling PCI bus-mastering, if active.
1011 *
1012 * Note we don't actually disable the device until all callers of
1013 * pci_device_enable() have called pci_device_disable().
1014 */
1015 void
1016 pci_disable_device(struct pci_dev *dev)
1017 {
1018 struct pci_devres *dr;
1019
1020 dr = find_pci_dr(dev);
1021 if (dr)
1022 dr->enabled = 0;
1023
1024 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1025 return;
1026
1027 do_pci_disable_device(dev);
1028
1029 dev->is_busmaster = 0;
1030 }
1031
1032 /**
1033 * pcibios_set_pcie_reset_state - set reset state for device dev
1034 * @dev: the PCI-E device reset
1035 * @state: Reset state to enter into
1036 *
1037 *
1038 * Sets the PCI-E reset state for the device. This is the default
1039 * implementation. Architecture implementations can override this.
1040 */
1041 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1042 enum pcie_reset_state state)
1043 {
1044 return -EINVAL;
1045 }
1046
1047 /**
1048 * pci_set_pcie_reset_state - set reset state for device dev
1049 * @dev: the PCI-E device reset
1050 * @state: Reset state to enter into
1051 *
1052 *
1053 * Sets the PCI reset state for the device.
1054 */
1055 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1056 {
1057 return pcibios_set_pcie_reset_state(dev, state);
1058 }
1059
1060 /**
1061 * pci_pme_capable - check the capability of PCI device to generate PME#
1062 * @dev: PCI device to handle.
1063 * @state: PCI state from which device will issue PME#.
1064 */
1065 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1066 {
1067 if (!dev->pm_cap)
1068 return false;
1069
1070 return !!(dev->pme_support & (1 << state));
1071 }
1072
1073 /**
1074 * pci_pme_active - enable or disable PCI device's PME# function
1075 * @dev: PCI device to handle.
1076 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1077 *
1078 * The caller must verify that the device is capable of generating PME# before
1079 * calling this function with @enable equal to 'true'.
1080 */
1081 void pci_pme_active(struct pci_dev *dev, bool enable)
1082 {
1083 u16 pmcsr;
1084
1085 if (!dev->pm_cap)
1086 return;
1087
1088 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1089 /* Clear PME_Status by writing 1 to it and enable PME# */
1090 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1091 if (!enable)
1092 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1093
1094 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1095
1096 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1097 enable ? "enabled" : "disabled");
1098 }
1099
1100 /**
1101 * pci_enable_wake - enable PCI device as wakeup event source
1102 * @dev: PCI device affected
1103 * @state: PCI state from which device will issue wakeup events
1104 * @enable: True to enable event generation; false to disable
1105 *
1106 * This enables the device as a wakeup event source, or disables it.
1107 * When such events involves platform-specific hooks, those hooks are
1108 * called automatically by this routine.
1109 *
1110 * Devices with legacy power management (no standard PCI PM capabilities)
1111 * always require such platform hooks.
1112 *
1113 * RETURN VALUE:
1114 * 0 is returned on success
1115 * -EINVAL is returned if device is not supposed to wake up the system
1116 * Error code depending on the platform is returned if both the platform and
1117 * the native mechanism fail to enable the generation of wake-up events
1118 */
1119 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1120 {
1121 int error = 0;
1122 bool pme_done = false;
1123
1124 if (enable && !device_may_wakeup(&dev->dev))
1125 return -EINVAL;
1126
1127 /*
1128 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1129 * Anderson we should be doing PME# wake enable followed by ACPI wake
1130 * enable. To disable wake-up we call the platform first, for symmetry.
1131 */
1132
1133 if (!enable && platform_pci_can_wakeup(dev))
1134 error = platform_pci_sleep_wake(dev, false);
1135
1136 if (!enable || pci_pme_capable(dev, state)) {
1137 pci_pme_active(dev, enable);
1138 pme_done = true;
1139 }
1140
1141 if (enable && platform_pci_can_wakeup(dev))
1142 error = platform_pci_sleep_wake(dev, true);
1143
1144 return pme_done ? 0 : error;
1145 }
1146
1147 /**
1148 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1149 * @dev: PCI device to prepare
1150 * @enable: True to enable wake-up event generation; false to disable
1151 *
1152 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1153 * and this function allows them to set that up cleanly - pci_enable_wake()
1154 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1155 * ordering constraints.
1156 *
1157 * This function only returns error code if the device is not capable of
1158 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1159 * enable wake-up power for it.
1160 */
1161 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1162 {
1163 return pci_pme_capable(dev, PCI_D3cold) ?
1164 pci_enable_wake(dev, PCI_D3cold, enable) :
1165 pci_enable_wake(dev, PCI_D3hot, enable);
1166 }
1167
1168 /**
1169 * pci_target_state - find an appropriate low power state for a given PCI dev
1170 * @dev: PCI device
1171 *
1172 * Use underlying platform code to find a supported low power state for @dev.
1173 * If the platform can't manage @dev, return the deepest state from which it
1174 * can generate wake events, based on any available PME info.
1175 */
1176 pci_power_t pci_target_state(struct pci_dev *dev)
1177 {
1178 pci_power_t target_state = PCI_D3hot;
1179
1180 if (platform_pci_power_manageable(dev)) {
1181 /*
1182 * Call the platform to choose the target state of the device
1183 * and enable wake-up from this state if supported.
1184 */
1185 pci_power_t state = platform_pci_choose_state(dev);
1186
1187 switch (state) {
1188 case PCI_POWER_ERROR:
1189 case PCI_UNKNOWN:
1190 break;
1191 case PCI_D1:
1192 case PCI_D2:
1193 if (pci_no_d1d2(dev))
1194 break;
1195 default:
1196 target_state = state;
1197 }
1198 } else if (device_may_wakeup(&dev->dev)) {
1199 /*
1200 * Find the deepest state from which the device can generate
1201 * wake-up events, make it the target state and enable device
1202 * to generate PME#.
1203 */
1204 if (!dev->pm_cap)
1205 return PCI_POWER_ERROR;
1206
1207 if (dev->pme_support) {
1208 while (target_state
1209 && !(dev->pme_support & (1 << target_state)))
1210 target_state--;
1211 }
1212 }
1213
1214 return target_state;
1215 }
1216
1217 /**
1218 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1219 * @dev: Device to handle.
1220 *
1221 * Choose the power state appropriate for the device depending on whether
1222 * it can wake up the system and/or is power manageable by the platform
1223 * (PCI_D3hot is the default) and put the device into that state.
1224 */
1225 int pci_prepare_to_sleep(struct pci_dev *dev)
1226 {
1227 pci_power_t target_state = pci_target_state(dev);
1228 int error;
1229
1230 if (target_state == PCI_POWER_ERROR)
1231 return -EIO;
1232
1233 pci_enable_wake(dev, target_state, true);
1234
1235 error = pci_set_power_state(dev, target_state);
1236
1237 if (error)
1238 pci_enable_wake(dev, target_state, false);
1239
1240 return error;
1241 }
1242
1243 /**
1244 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1245 * @dev: Device to handle.
1246 *
1247 * Disable device's sytem wake-up capability and put it into D0.
1248 */
1249 int pci_back_from_sleep(struct pci_dev *dev)
1250 {
1251 pci_enable_wake(dev, PCI_D0, false);
1252 return pci_set_power_state(dev, PCI_D0);
1253 }
1254
1255 /**
1256 * pci_pm_init - Initialize PM functions of given PCI device
1257 * @dev: PCI device to handle.
1258 */
1259 void pci_pm_init(struct pci_dev *dev)
1260 {
1261 int pm;
1262 u16 pmc;
1263
1264 dev->pm_cap = 0;
1265
1266 /* find PCI PM capability in list */
1267 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1268 if (!pm)
1269 return;
1270 /* Check device's ability to generate PME# */
1271 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1272
1273 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1274 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1275 pmc & PCI_PM_CAP_VER_MASK);
1276 return;
1277 }
1278
1279 dev->pm_cap = pm;
1280
1281 dev->d1_support = false;
1282 dev->d2_support = false;
1283 if (!pci_no_d1d2(dev)) {
1284 if (pmc & PCI_PM_CAP_D1)
1285 dev->d1_support = true;
1286 if (pmc & PCI_PM_CAP_D2)
1287 dev->d2_support = true;
1288
1289 if (dev->d1_support || dev->d2_support)
1290 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1291 dev->d1_support ? " D1" : "",
1292 dev->d2_support ? " D2" : "");
1293 }
1294
1295 pmc &= PCI_PM_CAP_PME_MASK;
1296 if (pmc) {
1297 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1298 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1299 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1300 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1301 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1302 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1303 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1304 /*
1305 * Make device's PM flags reflect the wake-up capability, but
1306 * let the user space enable it to wake up the system as needed.
1307 */
1308 device_set_wakeup_capable(&dev->dev, true);
1309 device_set_wakeup_enable(&dev->dev, false);
1310 /* Disable the PME# generation functionality */
1311 pci_pme_active(dev, false);
1312 } else {
1313 dev->pme_support = 0;
1314 }
1315 }
1316
1317 /**
1318 * platform_pci_wakeup_init - init platform wakeup if present
1319 * @dev: PCI device
1320 *
1321 * Some devices don't have PCI PM caps but can still generate wakeup
1322 * events through platform methods (like ACPI events). If @dev supports
1323 * platform wakeup events, set the device flag to indicate as much. This
1324 * may be redundant if the device also supports PCI PM caps, but double
1325 * initialization should be safe in that case.
1326 */
1327 void platform_pci_wakeup_init(struct pci_dev *dev)
1328 {
1329 if (!platform_pci_can_wakeup(dev))
1330 return;
1331
1332 device_set_wakeup_capable(&dev->dev, true);
1333 device_set_wakeup_enable(&dev->dev, false);
1334 platform_pci_sleep_wake(dev, false);
1335 }
1336
1337 /**
1338 * pci_add_save_buffer - allocate buffer for saving given capability registers
1339 * @dev: the PCI device
1340 * @cap: the capability to allocate the buffer for
1341 * @size: requested size of the buffer
1342 */
1343 static int pci_add_cap_save_buffer(
1344 struct pci_dev *dev, char cap, unsigned int size)
1345 {
1346 int pos;
1347 struct pci_cap_saved_state *save_state;
1348
1349 pos = pci_find_capability(dev, cap);
1350 if (pos <= 0)
1351 return 0;
1352
1353 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1354 if (!save_state)
1355 return -ENOMEM;
1356
1357 save_state->cap_nr = cap;
1358 pci_add_saved_cap(dev, save_state);
1359
1360 return 0;
1361 }
1362
1363 /**
1364 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1365 * @dev: the PCI device
1366 */
1367 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1368 {
1369 int error;
1370
1371 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1372 if (error)
1373 dev_err(&dev->dev,
1374 "unable to preallocate PCI Express save buffer\n");
1375
1376 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1377 if (error)
1378 dev_err(&dev->dev,
1379 "unable to preallocate PCI-X save buffer\n");
1380 }
1381
1382 /**
1383 * pci_enable_ari - enable ARI forwarding if hardware support it
1384 * @dev: the PCI device
1385 */
1386 void pci_enable_ari(struct pci_dev *dev)
1387 {
1388 int pos;
1389 u32 cap;
1390 u16 ctrl;
1391 struct pci_dev *bridge;
1392
1393 if (!dev->is_pcie || dev->devfn)
1394 return;
1395
1396 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1397 if (!pos)
1398 return;
1399
1400 bridge = dev->bus->self;
1401 if (!bridge || !bridge->is_pcie)
1402 return;
1403
1404 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1405 if (!pos)
1406 return;
1407
1408 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1409 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1410 return;
1411
1412 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1413 ctrl |= PCI_EXP_DEVCTL2_ARI;
1414 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1415
1416 bridge->ari_enabled = 1;
1417 }
1418
1419 /**
1420 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1421 * @dev: the PCI device
1422 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1423 *
1424 * Perform INTx swizzling for a device behind one level of bridge. This is
1425 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1426 * behind bridges on add-in cards.
1427 */
1428 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1429 {
1430 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1431 }
1432
1433 int
1434 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1435 {
1436 u8 pin;
1437
1438 pin = dev->pin;
1439 if (!pin)
1440 return -1;
1441
1442 while (dev->bus->self) {
1443 pin = pci_swizzle_interrupt_pin(dev, pin);
1444 dev = dev->bus->self;
1445 }
1446 *bridge = dev;
1447 return pin;
1448 }
1449
1450 /**
1451 * pci_common_swizzle - swizzle INTx all the way to root bridge
1452 * @dev: the PCI device
1453 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1454 *
1455 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1456 * bridges all the way up to a PCI root bus.
1457 */
1458 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1459 {
1460 u8 pin = *pinp;
1461
1462 while (dev->bus->self) {
1463 pin = pci_swizzle_interrupt_pin(dev, pin);
1464 dev = dev->bus->self;
1465 }
1466 *pinp = pin;
1467 return PCI_SLOT(dev->devfn);
1468 }
1469
1470 /**
1471 * pci_release_region - Release a PCI bar
1472 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1473 * @bar: BAR to release
1474 *
1475 * Releases the PCI I/O and memory resources previously reserved by a
1476 * successful call to pci_request_region. Call this function only
1477 * after all use of the PCI regions has ceased.
1478 */
1479 void pci_release_region(struct pci_dev *pdev, int bar)
1480 {
1481 struct pci_devres *dr;
1482
1483 if (pci_resource_len(pdev, bar) == 0)
1484 return;
1485 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1486 release_region(pci_resource_start(pdev, bar),
1487 pci_resource_len(pdev, bar));
1488 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1489 release_mem_region(pci_resource_start(pdev, bar),
1490 pci_resource_len(pdev, bar));
1491
1492 dr = find_pci_dr(pdev);
1493 if (dr)
1494 dr->region_mask &= ~(1 << bar);
1495 }
1496
1497 /**
1498 * __pci_request_region - Reserved PCI I/O and memory resource
1499 * @pdev: PCI device whose resources are to be reserved
1500 * @bar: BAR to be reserved
1501 * @res_name: Name to be associated with resource.
1502 * @exclusive: whether the region access is exclusive or not
1503 *
1504 * Mark the PCI region associated with PCI device @pdev BR @bar as
1505 * being reserved by owner @res_name. Do not access any
1506 * address inside the PCI regions unless this call returns
1507 * successfully.
1508 *
1509 * If @exclusive is set, then the region is marked so that userspace
1510 * is explicitly not allowed to map the resource via /dev/mem or
1511 * sysfs MMIO access.
1512 *
1513 * Returns 0 on success, or %EBUSY on error. A warning
1514 * message is also printed on failure.
1515 */
1516 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1517 int exclusive)
1518 {
1519 struct pci_devres *dr;
1520
1521 if (pci_resource_len(pdev, bar) == 0)
1522 return 0;
1523
1524 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1525 if (!request_region(pci_resource_start(pdev, bar),
1526 pci_resource_len(pdev, bar), res_name))
1527 goto err_out;
1528 }
1529 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1530 if (!__request_mem_region(pci_resource_start(pdev, bar),
1531 pci_resource_len(pdev, bar), res_name,
1532 exclusive))
1533 goto err_out;
1534 }
1535
1536 dr = find_pci_dr(pdev);
1537 if (dr)
1538 dr->region_mask |= 1 << bar;
1539
1540 return 0;
1541
1542 err_out:
1543 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1544 bar,
1545 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1546 &pdev->resource[bar]);
1547 return -EBUSY;
1548 }
1549
1550 /**
1551 * pci_request_region - Reserve PCI I/O and memory resource
1552 * @pdev: PCI device whose resources are to be reserved
1553 * @bar: BAR to be reserved
1554 * @res_name: Name to be associated with resource
1555 *
1556 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1557 * being reserved by owner @res_name. Do not access any
1558 * address inside the PCI regions unless this call returns
1559 * successfully.
1560 *
1561 * Returns 0 on success, or %EBUSY on error. A warning
1562 * message is also printed on failure.
1563 */
1564 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1565 {
1566 return __pci_request_region(pdev, bar, res_name, 0);
1567 }
1568
1569 /**
1570 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1571 * @pdev: PCI device whose resources are to be reserved
1572 * @bar: BAR to be reserved
1573 * @res_name: Name to be associated with resource.
1574 *
1575 * Mark the PCI region associated with PCI device @pdev BR @bar as
1576 * being reserved by owner @res_name. Do not access any
1577 * address inside the PCI regions unless this call returns
1578 * successfully.
1579 *
1580 * Returns 0 on success, or %EBUSY on error. A warning
1581 * message is also printed on failure.
1582 *
1583 * The key difference that _exclusive makes it that userspace is
1584 * explicitly not allowed to map the resource via /dev/mem or
1585 * sysfs.
1586 */
1587 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1588 {
1589 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1590 }
1591 /**
1592 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1593 * @pdev: PCI device whose resources were previously reserved
1594 * @bars: Bitmask of BARs to be released
1595 *
1596 * Release selected PCI I/O and memory resources previously reserved.
1597 * Call this function only after all use of the PCI regions has ceased.
1598 */
1599 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1600 {
1601 int i;
1602
1603 for (i = 0; i < 6; i++)
1604 if (bars & (1 << i))
1605 pci_release_region(pdev, i);
1606 }
1607
1608 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1609 const char *res_name, int excl)
1610 {
1611 int i;
1612
1613 for (i = 0; i < 6; i++)
1614 if (bars & (1 << i))
1615 if (__pci_request_region(pdev, i, res_name, excl))
1616 goto err_out;
1617 return 0;
1618
1619 err_out:
1620 while(--i >= 0)
1621 if (bars & (1 << i))
1622 pci_release_region(pdev, i);
1623
1624 return -EBUSY;
1625 }
1626
1627
1628 /**
1629 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1630 * @pdev: PCI device whose resources are to be reserved
1631 * @bars: Bitmask of BARs to be requested
1632 * @res_name: Name to be associated with resource
1633 */
1634 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1635 const char *res_name)
1636 {
1637 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1638 }
1639
1640 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1641 int bars, const char *res_name)
1642 {
1643 return __pci_request_selected_regions(pdev, bars, res_name,
1644 IORESOURCE_EXCLUSIVE);
1645 }
1646
1647 /**
1648 * pci_release_regions - Release reserved PCI I/O and memory resources
1649 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1650 *
1651 * Releases all PCI I/O and memory resources previously reserved by a
1652 * successful call to pci_request_regions. Call this function only
1653 * after all use of the PCI regions has ceased.
1654 */
1655
1656 void pci_release_regions(struct pci_dev *pdev)
1657 {
1658 pci_release_selected_regions(pdev, (1 << 6) - 1);
1659 }
1660
1661 /**
1662 * pci_request_regions - Reserved PCI I/O and memory resources
1663 * @pdev: PCI device whose resources are to be reserved
1664 * @res_name: Name to be associated with resource.
1665 *
1666 * Mark all PCI regions associated with PCI device @pdev as
1667 * being reserved by owner @res_name. Do not access any
1668 * address inside the PCI regions unless this call returns
1669 * successfully.
1670 *
1671 * Returns 0 on success, or %EBUSY on error. A warning
1672 * message is also printed on failure.
1673 */
1674 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1675 {
1676 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1677 }
1678
1679 /**
1680 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1681 * @pdev: PCI device whose resources are to be reserved
1682 * @res_name: Name to be associated with resource.
1683 *
1684 * Mark all PCI regions associated with PCI device @pdev as
1685 * being reserved by owner @res_name. Do not access any
1686 * address inside the PCI regions unless this call returns
1687 * successfully.
1688 *
1689 * pci_request_regions_exclusive() will mark the region so that
1690 * /dev/mem and the sysfs MMIO access will not be allowed.
1691 *
1692 * Returns 0 on success, or %EBUSY on error. A warning
1693 * message is also printed on failure.
1694 */
1695 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1696 {
1697 return pci_request_selected_regions_exclusive(pdev,
1698 ((1 << 6) - 1), res_name);
1699 }
1700
1701 static void __pci_set_master(struct pci_dev *dev, bool enable)
1702 {
1703 u16 old_cmd, cmd;
1704
1705 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1706 if (enable)
1707 cmd = old_cmd | PCI_COMMAND_MASTER;
1708 else
1709 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1710 if (cmd != old_cmd) {
1711 dev_dbg(&dev->dev, "%s bus mastering\n",
1712 enable ? "enabling" : "disabling");
1713 pci_write_config_word(dev, PCI_COMMAND, cmd);
1714 }
1715 dev->is_busmaster = enable;
1716 }
1717
1718 /**
1719 * pci_set_master - enables bus-mastering for device dev
1720 * @dev: the PCI device to enable
1721 *
1722 * Enables bus-mastering on the device and calls pcibios_set_master()
1723 * to do the needed arch specific settings.
1724 */
1725 void pci_set_master(struct pci_dev *dev)
1726 {
1727 __pci_set_master(dev, true);
1728 pcibios_set_master(dev);
1729 }
1730
1731 /**
1732 * pci_clear_master - disables bus-mastering for device dev
1733 * @dev: the PCI device to disable
1734 */
1735 void pci_clear_master(struct pci_dev *dev)
1736 {
1737 __pci_set_master(dev, false);
1738 }
1739
1740 #ifdef PCI_DISABLE_MWI
1741 int pci_set_mwi(struct pci_dev *dev)
1742 {
1743 return 0;
1744 }
1745
1746 int pci_try_set_mwi(struct pci_dev *dev)
1747 {
1748 return 0;
1749 }
1750
1751 void pci_clear_mwi(struct pci_dev *dev)
1752 {
1753 }
1754
1755 #else
1756
1757 #ifndef PCI_CACHE_LINE_BYTES
1758 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1759 #endif
1760
1761 /* This can be overridden by arch code. */
1762 /* Don't forget this is measured in 32-bit words, not bytes */
1763 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1764
1765 /**
1766 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1767 * @dev: the PCI device for which MWI is to be enabled
1768 *
1769 * Helper function for pci_set_mwi.
1770 * Originally copied from drivers/net/acenic.c.
1771 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1772 *
1773 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1774 */
1775 static int
1776 pci_set_cacheline_size(struct pci_dev *dev)
1777 {
1778 u8 cacheline_size;
1779
1780 if (!pci_cache_line_size)
1781 return -EINVAL; /* The system doesn't support MWI. */
1782
1783 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1784 equal to or multiple of the right value. */
1785 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1786 if (cacheline_size >= pci_cache_line_size &&
1787 (cacheline_size % pci_cache_line_size) == 0)
1788 return 0;
1789
1790 /* Write the correct value. */
1791 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1792 /* Read it back. */
1793 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1794 if (cacheline_size == pci_cache_line_size)
1795 return 0;
1796
1797 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1798 "supported\n", pci_cache_line_size << 2);
1799
1800 return -EINVAL;
1801 }
1802
1803 /**
1804 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1805 * @dev: the PCI device for which MWI is enabled
1806 *
1807 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1808 *
1809 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1810 */
1811 int
1812 pci_set_mwi(struct pci_dev *dev)
1813 {
1814 int rc;
1815 u16 cmd;
1816
1817 rc = pci_set_cacheline_size(dev);
1818 if (rc)
1819 return rc;
1820
1821 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1822 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1823 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1824 cmd |= PCI_COMMAND_INVALIDATE;
1825 pci_write_config_word(dev, PCI_COMMAND, cmd);
1826 }
1827
1828 return 0;
1829 }
1830
1831 /**
1832 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1833 * @dev: the PCI device for which MWI is enabled
1834 *
1835 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1836 * Callers are not required to check the return value.
1837 *
1838 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1839 */
1840 int pci_try_set_mwi(struct pci_dev *dev)
1841 {
1842 int rc = pci_set_mwi(dev);
1843 return rc;
1844 }
1845
1846 /**
1847 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1848 * @dev: the PCI device to disable
1849 *
1850 * Disables PCI Memory-Write-Invalidate transaction on the device
1851 */
1852 void
1853 pci_clear_mwi(struct pci_dev *dev)
1854 {
1855 u16 cmd;
1856
1857 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1858 if (cmd & PCI_COMMAND_INVALIDATE) {
1859 cmd &= ~PCI_COMMAND_INVALIDATE;
1860 pci_write_config_word(dev, PCI_COMMAND, cmd);
1861 }
1862 }
1863 #endif /* ! PCI_DISABLE_MWI */
1864
1865 /**
1866 * pci_intx - enables/disables PCI INTx for device dev
1867 * @pdev: the PCI device to operate on
1868 * @enable: boolean: whether to enable or disable PCI INTx
1869 *
1870 * Enables/disables PCI INTx for device dev
1871 */
1872 void
1873 pci_intx(struct pci_dev *pdev, int enable)
1874 {
1875 u16 pci_command, new;
1876
1877 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1878
1879 if (enable) {
1880 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1881 } else {
1882 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1883 }
1884
1885 if (new != pci_command) {
1886 struct pci_devres *dr;
1887
1888 pci_write_config_word(pdev, PCI_COMMAND, new);
1889
1890 dr = find_pci_dr(pdev);
1891 if (dr && !dr->restore_intx) {
1892 dr->restore_intx = 1;
1893 dr->orig_intx = !enable;
1894 }
1895 }
1896 }
1897
1898 /**
1899 * pci_msi_off - disables any msi or msix capabilities
1900 * @dev: the PCI device to operate on
1901 *
1902 * If you want to use msi see pci_enable_msi and friends.
1903 * This is a lower level primitive that allows us to disable
1904 * msi operation at the device level.
1905 */
1906 void pci_msi_off(struct pci_dev *dev)
1907 {
1908 int pos;
1909 u16 control;
1910
1911 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1912 if (pos) {
1913 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1914 control &= ~PCI_MSI_FLAGS_ENABLE;
1915 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1916 }
1917 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1918 if (pos) {
1919 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1920 control &= ~PCI_MSIX_FLAGS_ENABLE;
1921 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1922 }
1923 }
1924
1925 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1926 /*
1927 * These can be overridden by arch-specific implementations
1928 */
1929 int
1930 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1931 {
1932 if (!pci_dma_supported(dev, mask))
1933 return -EIO;
1934
1935 dev->dma_mask = mask;
1936
1937 return 0;
1938 }
1939
1940 int
1941 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1942 {
1943 if (!pci_dma_supported(dev, mask))
1944 return -EIO;
1945
1946 dev->dev.coherent_dma_mask = mask;
1947
1948 return 0;
1949 }
1950 #endif
1951
1952 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1953 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1954 {
1955 return dma_set_max_seg_size(&dev->dev, size);
1956 }
1957 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1958 #endif
1959
1960 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1961 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1962 {
1963 return dma_set_seg_boundary(&dev->dev, mask);
1964 }
1965 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1966 #endif
1967
1968 static int __pcie_flr(struct pci_dev *dev, int probe)
1969 {
1970 u16 status;
1971 u32 cap;
1972 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
1973
1974 if (!exppos)
1975 return -ENOTTY;
1976 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
1977 if (!(cap & PCI_EXP_DEVCAP_FLR))
1978 return -ENOTTY;
1979
1980 if (probe)
1981 return 0;
1982
1983 pci_block_user_cfg_access(dev);
1984
1985 /* Wait for Transaction Pending bit clean */
1986 msleep(100);
1987 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1988 if (status & PCI_EXP_DEVSTA_TRPND) {
1989 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
1990 "sleeping for 1 second\n");
1991 ssleep(1);
1992 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1993 if (status & PCI_EXP_DEVSTA_TRPND)
1994 dev_info(&dev->dev, "Still busy after 1s; "
1995 "proceeding with reset anyway\n");
1996 }
1997
1998 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
1999 PCI_EXP_DEVCTL_BCR_FLR);
2000 mdelay(100);
2001
2002 pci_unblock_user_cfg_access(dev);
2003 return 0;
2004 }
2005
2006 static int __pci_af_flr(struct pci_dev *dev, int probe)
2007 {
2008 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2009 u8 status;
2010 u8 cap;
2011
2012 if (!cappos)
2013 return -ENOTTY;
2014 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2015 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2016 return -ENOTTY;
2017
2018 if (probe)
2019 return 0;
2020
2021 pci_block_user_cfg_access(dev);
2022
2023 /* Wait for Transaction Pending bit clean */
2024 msleep(100);
2025 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2026 if (status & PCI_AF_STATUS_TP) {
2027 dev_info(&dev->dev, "Busy after 100ms while trying to"
2028 " reset; sleeping for 1 second\n");
2029 ssleep(1);
2030 pci_read_config_byte(dev,
2031 cappos + PCI_AF_STATUS, &status);
2032 if (status & PCI_AF_STATUS_TP)
2033 dev_info(&dev->dev, "Still busy after 1s; "
2034 "proceeding with reset anyway\n");
2035 }
2036 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2037 mdelay(100);
2038
2039 pci_unblock_user_cfg_access(dev);
2040 return 0;
2041 }
2042
2043 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2044 {
2045 int res;
2046
2047 res = __pcie_flr(pdev, probe);
2048 if (res != -ENOTTY)
2049 return res;
2050
2051 res = __pci_af_flr(pdev, probe);
2052 if (res != -ENOTTY)
2053 return res;
2054
2055 return res;
2056 }
2057
2058 /**
2059 * pci_execute_reset_function() - Reset a PCI device function
2060 * @dev: Device function to reset
2061 *
2062 * Some devices allow an individual function to be reset without affecting
2063 * other functions in the same device. The PCI device must be responsive
2064 * to PCI config space in order to use this function.
2065 *
2066 * The device function is presumed to be unused when this function is called.
2067 * Resetting the device will make the contents of PCI configuration space
2068 * random, so any caller of this must be prepared to reinitialise the
2069 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2070 * etc.
2071 *
2072 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2073 * device doesn't support resetting a single function.
2074 */
2075 int pci_execute_reset_function(struct pci_dev *dev)
2076 {
2077 return __pci_reset_function(dev, 0);
2078 }
2079 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2080
2081 /**
2082 * pci_reset_function() - quiesce and reset a PCI device function
2083 * @dev: Device function to reset
2084 *
2085 * Some devices allow an individual function to be reset without affecting
2086 * other functions in the same device. The PCI device must be responsive
2087 * to PCI config space in order to use this function.
2088 *
2089 * This function does not just reset the PCI portion of a device, but
2090 * clears all the state associated with the device. This function differs
2091 * from pci_execute_reset_function in that it saves and restores device state
2092 * over the reset.
2093 *
2094 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2095 * device doesn't support resetting a single function.
2096 */
2097 int pci_reset_function(struct pci_dev *dev)
2098 {
2099 int r = __pci_reset_function(dev, 1);
2100
2101 if (r < 0)
2102 return r;
2103
2104 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2105 disable_irq(dev->irq);
2106 pci_save_state(dev);
2107
2108 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2109
2110 r = pci_execute_reset_function(dev);
2111
2112 pci_restore_state(dev);
2113 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2114 enable_irq(dev->irq);
2115
2116 return r;
2117 }
2118 EXPORT_SYMBOL_GPL(pci_reset_function);
2119
2120 /**
2121 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2122 * @dev: PCI device to query
2123 *
2124 * Returns mmrbc: maximum designed memory read count in bytes
2125 * or appropriate error value.
2126 */
2127 int pcix_get_max_mmrbc(struct pci_dev *dev)
2128 {
2129 int err, cap;
2130 u32 stat;
2131
2132 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2133 if (!cap)
2134 return -EINVAL;
2135
2136 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2137 if (err)
2138 return -EINVAL;
2139
2140 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2141 }
2142 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2143
2144 /**
2145 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2146 * @dev: PCI device to query
2147 *
2148 * Returns mmrbc: maximum memory read count in bytes
2149 * or appropriate error value.
2150 */
2151 int pcix_get_mmrbc(struct pci_dev *dev)
2152 {
2153 int ret, cap;
2154 u32 cmd;
2155
2156 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2157 if (!cap)
2158 return -EINVAL;
2159
2160 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2161 if (!ret)
2162 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2163
2164 return ret;
2165 }
2166 EXPORT_SYMBOL(pcix_get_mmrbc);
2167
2168 /**
2169 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2170 * @dev: PCI device to query
2171 * @mmrbc: maximum memory read count in bytes
2172 * valid values are 512, 1024, 2048, 4096
2173 *
2174 * If possible sets maximum memory read byte count, some bridges have erratas
2175 * that prevent this.
2176 */
2177 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2178 {
2179 int cap, err = -EINVAL;
2180 u32 stat, cmd, v, o;
2181
2182 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2183 goto out;
2184
2185 v = ffs(mmrbc) - 10;
2186
2187 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2188 if (!cap)
2189 goto out;
2190
2191 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2192 if (err)
2193 goto out;
2194
2195 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2196 return -E2BIG;
2197
2198 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2199 if (err)
2200 goto out;
2201
2202 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2203 if (o != v) {
2204 if (v > o && dev->bus &&
2205 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2206 return -EIO;
2207
2208 cmd &= ~PCI_X_CMD_MAX_READ;
2209 cmd |= v << 2;
2210 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2211 }
2212 out:
2213 return err;
2214 }
2215 EXPORT_SYMBOL(pcix_set_mmrbc);
2216
2217 /**
2218 * pcie_get_readrq - get PCI Express read request size
2219 * @dev: PCI device to query
2220 *
2221 * Returns maximum memory read request in bytes
2222 * or appropriate error value.
2223 */
2224 int pcie_get_readrq(struct pci_dev *dev)
2225 {
2226 int ret, cap;
2227 u16 ctl;
2228
2229 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2230 if (!cap)
2231 return -EINVAL;
2232
2233 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2234 if (!ret)
2235 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL(pcie_get_readrq);
2240
2241 /**
2242 * pcie_set_readrq - set PCI Express maximum memory read request
2243 * @dev: PCI device to query
2244 * @rq: maximum memory read count in bytes
2245 * valid values are 128, 256, 512, 1024, 2048, 4096
2246 *
2247 * If possible sets maximum read byte count
2248 */
2249 int pcie_set_readrq(struct pci_dev *dev, int rq)
2250 {
2251 int cap, err = -EINVAL;
2252 u16 ctl, v;
2253
2254 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2255 goto out;
2256
2257 v = (ffs(rq) - 8) << 12;
2258
2259 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2260 if (!cap)
2261 goto out;
2262
2263 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2264 if (err)
2265 goto out;
2266
2267 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2268 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2269 ctl |= v;
2270 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2271 }
2272
2273 out:
2274 return err;
2275 }
2276 EXPORT_SYMBOL(pcie_set_readrq);
2277
2278 /**
2279 * pci_select_bars - Make BAR mask from the type of resource
2280 * @dev: the PCI device for which BAR mask is made
2281 * @flags: resource type mask to be selected
2282 *
2283 * This helper routine makes bar mask from the type of resource.
2284 */
2285 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2286 {
2287 int i, bars = 0;
2288 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2289 if (pci_resource_flags(dev, i) & flags)
2290 bars |= (1 << i);
2291 return bars;
2292 }
2293
2294 /**
2295 * pci_resource_bar - get position of the BAR associated with a resource
2296 * @dev: the PCI device
2297 * @resno: the resource number
2298 * @type: the BAR type to be filled in
2299 *
2300 * Returns BAR position in config space, or 0 if the BAR is invalid.
2301 */
2302 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2303 {
2304 if (resno < PCI_ROM_RESOURCE) {
2305 *type = pci_bar_unknown;
2306 return PCI_BASE_ADDRESS_0 + 4 * resno;
2307 } else if (resno == PCI_ROM_RESOURCE) {
2308 *type = pci_bar_mem32;
2309 return dev->rom_base_reg;
2310 }
2311
2312 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2313 return 0;
2314 }
2315
2316 static void __devinit pci_no_domains(void)
2317 {
2318 #ifdef CONFIG_PCI_DOMAINS
2319 pci_domains_supported = 0;
2320 #endif
2321 }
2322
2323 /**
2324 * pci_ext_cfg_enabled - can we access extended PCI config space?
2325 * @dev: The PCI device of the root bridge.
2326 *
2327 * Returns 1 if we can access PCI extended config space (offsets
2328 * greater than 0xff). This is the default implementation. Architecture
2329 * implementations can override this.
2330 */
2331 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2332 {
2333 return 1;
2334 }
2335
2336 static int __devinit pci_init(void)
2337 {
2338 struct pci_dev *dev = NULL;
2339
2340 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2341 pci_fixup_device(pci_fixup_final, dev);
2342 }
2343
2344 return 0;
2345 }
2346
2347 static int __init pci_setup(char *str)
2348 {
2349 while (str) {
2350 char *k = strchr(str, ',');
2351 if (k)
2352 *k++ = 0;
2353 if (*str && (str = pcibios_setup(str)) && *str) {
2354 if (!strcmp(str, "nomsi")) {
2355 pci_no_msi();
2356 } else if (!strcmp(str, "noaer")) {
2357 pci_no_aer();
2358 } else if (!strcmp(str, "nodomains")) {
2359 pci_no_domains();
2360 } else if (!strncmp(str, "cbiosize=", 9)) {
2361 pci_cardbus_io_size = memparse(str + 9, &str);
2362 } else if (!strncmp(str, "cbmemsize=", 10)) {
2363 pci_cardbus_mem_size = memparse(str + 10, &str);
2364 } else {
2365 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2366 str);
2367 }
2368 }
2369 str = k;
2370 }
2371 return 0;
2372 }
2373 early_param("pci", pci_setup);
2374
2375 device_initcall(pci_init);
2376
2377 EXPORT_SYMBOL(pci_reenable_device);
2378 EXPORT_SYMBOL(pci_enable_device_io);
2379 EXPORT_SYMBOL(pci_enable_device_mem);
2380 EXPORT_SYMBOL(pci_enable_device);
2381 EXPORT_SYMBOL(pcim_enable_device);
2382 EXPORT_SYMBOL(pcim_pin_device);
2383 EXPORT_SYMBOL(pci_disable_device);
2384 EXPORT_SYMBOL(pci_find_capability);
2385 EXPORT_SYMBOL(pci_bus_find_capability);
2386 EXPORT_SYMBOL(pci_release_regions);
2387 EXPORT_SYMBOL(pci_request_regions);
2388 EXPORT_SYMBOL(pci_request_regions_exclusive);
2389 EXPORT_SYMBOL(pci_release_region);
2390 EXPORT_SYMBOL(pci_request_region);
2391 EXPORT_SYMBOL(pci_request_region_exclusive);
2392 EXPORT_SYMBOL(pci_release_selected_regions);
2393 EXPORT_SYMBOL(pci_request_selected_regions);
2394 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2395 EXPORT_SYMBOL(pci_set_master);
2396 EXPORT_SYMBOL(pci_clear_master);
2397 EXPORT_SYMBOL(pci_set_mwi);
2398 EXPORT_SYMBOL(pci_try_set_mwi);
2399 EXPORT_SYMBOL(pci_clear_mwi);
2400 EXPORT_SYMBOL_GPL(pci_intx);
2401 EXPORT_SYMBOL(pci_set_dma_mask);
2402 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2403 EXPORT_SYMBOL(pci_assign_resource);
2404 EXPORT_SYMBOL(pci_find_parent_resource);
2405 EXPORT_SYMBOL(pci_select_bars);
2406
2407 EXPORT_SYMBOL(pci_set_power_state);
2408 EXPORT_SYMBOL(pci_save_state);
2409 EXPORT_SYMBOL(pci_restore_state);
2410 EXPORT_SYMBOL(pci_pme_capable);
2411 EXPORT_SYMBOL(pci_pme_active);
2412 EXPORT_SYMBOL(pci_enable_wake);
2413 EXPORT_SYMBOL(pci_wake_from_d3);
2414 EXPORT_SYMBOL(pci_target_state);
2415 EXPORT_SYMBOL(pci_prepare_to_sleep);
2416 EXPORT_SYMBOL(pci_back_from_sleep);
2417 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2418
This page took 0.200573 seconds and 5 git commands to generate.