Merge tag 'pci-v4.8-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46
47 unsigned int pci_pm_d3_delay;
48
49 static void pci_pme_list_scan(struct work_struct *work);
50
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55 struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58 };
59
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
69 msleep(delay);
70 }
71
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
75
76 #define DEFAULT_CARDBUS_IO_SIZE (256)
77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81
82 #define DEFAULT_HOTPLUG_IO_SIZE (256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87
88 #define DEFAULT_HOTPLUG_BUS_SIZE 1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92
93 /*
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
98 */
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
101
102 /*
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
105 */
106 unsigned int pcibios_max_latency = 255;
107
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
110
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
115
116 static int __init pcie_port_pm_setup(char *str)
117 {
118 if (!strcmp(str, "off"))
119 pci_bridge_d3_disable = true;
120 else if (!strcmp(str, "force"))
121 pci_bridge_d3_force = true;
122 return 1;
123 }
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
125
126 /**
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
129 *
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
132 */
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134 {
135 struct pci_bus *tmp;
136 unsigned char max, n;
137
138 max = bus->busn_res.end;
139 list_for_each_entry(tmp, &bus->children, node) {
140 n = pci_bus_max_busnr(tmp);
141 if (n > max)
142 max = n;
143 }
144 return max;
145 }
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150 {
151 struct resource *res = &pdev->resource[bar];
152
153 /*
154 * Make sure the BAR is actually a memory resource, not an IO resource
155 */
156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 return NULL;
159 }
160 return ioremap_nocache(res->start, resource_size(res));
161 }
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165 {
166 /*
167 * Make sure the BAR is actually a memory resource, not an IO resource
168 */
169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 WARN_ON(1);
171 return NULL;
172 }
173 return ioremap_wc(pci_resource_start(pdev, bar),
174 pci_resource_len(pdev, bar));
175 }
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
178
179
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 u8 pos, int cap, int *ttl)
182 {
183 u8 id;
184 u16 ent;
185
186 pci_bus_read_config_byte(bus, devfn, pos, &pos);
187
188 while ((*ttl)--) {
189 if (pos < 0x40)
190 break;
191 pos &= ~3;
192 pci_bus_read_config_word(bus, devfn, pos, &ent);
193
194 id = ent & 0xff;
195 if (id == 0xff)
196 break;
197 if (id == cap)
198 return pos;
199 pos = (ent >> 8);
200 }
201 return 0;
202 }
203
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 u8 pos, int cap)
206 {
207 int ttl = PCI_FIND_CAP_TTL;
208
209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210 }
211
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213 {
214 return __pci_find_next_cap(dev->bus, dev->devfn,
215 pos + PCI_CAP_LIST_NEXT, cap);
216 }
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
218
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 unsigned int devfn, u8 hdr_type)
221 {
222 u16 status;
223
224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 if (!(status & PCI_STATUS_CAP_LIST))
226 return 0;
227
228 switch (hdr_type) {
229 case PCI_HEADER_TYPE_NORMAL:
230 case PCI_HEADER_TYPE_BRIDGE:
231 return PCI_CAPABILITY_LIST;
232 case PCI_HEADER_TYPE_CARDBUS:
233 return PCI_CB_CAPABILITY_LIST;
234 }
235
236 return 0;
237 }
238
239 /**
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
243 *
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
248 *
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
257 */
258 int pci_find_capability(struct pci_dev *dev, int cap)
259 {
260 int pos;
261
262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 if (pos)
264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265
266 return pos;
267 }
268 EXPORT_SYMBOL(pci_find_capability);
269
270 /**
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
275 *
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
278 *
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
281 * support it.
282 */
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284 {
285 int pos;
286 u8 hdr_type;
287
288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289
290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 if (pos)
292 pos = __pci_find_next_cap(bus, devfn, pos, cap);
293
294 return pos;
295 }
296 EXPORT_SYMBOL(pci_bus_find_capability);
297
298 /**
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
303 *
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
308 */
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310 {
311 u32 header;
312 int ttl;
313 int pos = PCI_CFG_SPACE_SIZE;
314
315 /* minimum 8 bytes per capability */
316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317
318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 return 0;
320
321 if (start)
322 pos = start;
323
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 return 0;
326
327 /*
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
330 */
331 if (header == 0)
332 return 0;
333
334 while (ttl-- > 0) {
335 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 return pos;
337
338 pos = PCI_EXT_CAP_NEXT(header);
339 if (pos < PCI_CFG_SPACE_SIZE)
340 break;
341
342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 break;
344 }
345
346 return 0;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349
350 /**
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
354 *
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
358 *
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
363 */
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
365 {
366 return pci_find_next_ext_capability(dev, 0, cap);
367 }
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371 {
372 int rc, ttl = PCI_FIND_CAP_TTL;
373 u8 cap, mask;
374
375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 mask = HT_3BIT_CAP_MASK;
377 else
378 mask = HT_5BIT_CAP_MASK;
379
380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 PCI_CAP_ID_HT, &ttl);
382 while (pos) {
383 rc = pci_read_config_byte(dev, pos + 3, &cap);
384 if (rc != PCIBIOS_SUCCESSFUL)
385 return 0;
386
387 if ((cap & mask) == ht_cap)
388 return pos;
389
390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 pos + PCI_CAP_LIST_NEXT,
392 PCI_CAP_ID_HT, &ttl);
393 }
394
395 return 0;
396 }
397 /**
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
402 *
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
406 *
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
409 */
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411 {
412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413 }
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415
416 /**
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
420 *
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
426 */
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428 {
429 int pos;
430
431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 if (pos)
433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434
435 return pos;
436 }
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438
439 /**
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
443 *
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
446 */
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 struct resource *res)
449 {
450 const struct pci_bus *bus = dev->bus;
451 struct resource *r;
452 int i;
453
454 pci_bus_for_each_resource(bus, r, i) {
455 if (!r)
456 continue;
457 if (res->start && resource_contains(r, res)) {
458
459 /*
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
462 */
463 if (r->flags & IORESOURCE_PREFETCH &&
464 !(res->flags & IORESOURCE_PREFETCH))
465 return NULL;
466
467 /*
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
473 * first.
474 */
475 return r;
476 }
477 }
478 return NULL;
479 }
480 EXPORT_SYMBOL(pci_find_parent_resource);
481
482 /**
483 * pci_find_pcie_root_port - return PCIe Root Port
484 * @dev: PCI device to query
485 *
486 * Traverse up the parent chain and return the PCIe Root Port PCI Device
487 * for a given PCI Device.
488 */
489 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
490 {
491 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
492
493 bridge = pci_upstream_bridge(dev);
494 while (bridge && pci_is_pcie(bridge)) {
495 highest_pcie_bridge = bridge;
496 bridge = pci_upstream_bridge(bridge);
497 }
498
499 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
500 return NULL;
501
502 return highest_pcie_bridge;
503 }
504 EXPORT_SYMBOL(pci_find_pcie_root_port);
505
506 /**
507 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
508 * @dev: the PCI device to operate on
509 * @pos: config space offset of status word
510 * @mask: mask of bit(s) to care about in status word
511 *
512 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
513 */
514 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
515 {
516 int i;
517
518 /* Wait for Transaction Pending bit clean */
519 for (i = 0; i < 4; i++) {
520 u16 status;
521 if (i)
522 msleep((1 << (i - 1)) * 100);
523
524 pci_read_config_word(dev, pos, &status);
525 if (!(status & mask))
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /**
533 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
534 * @dev: PCI device to have its BARs restored
535 *
536 * Restore the BAR values for a given device, so as to make it
537 * accessible by its driver.
538 */
539 static void pci_restore_bars(struct pci_dev *dev)
540 {
541 int i;
542
543 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
544 if (dev->is_virtfn)
545 return;
546
547 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
548 pci_update_resource(dev, i);
549 }
550
551 static const struct pci_platform_pm_ops *pci_platform_pm;
552
553 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
554 {
555 if (!ops->is_manageable || !ops->set_state || !ops->choose_state ||
556 !ops->sleep_wake || !ops->run_wake || !ops->need_resume)
557 return -EINVAL;
558 pci_platform_pm = ops;
559 return 0;
560 }
561
562 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
563 {
564 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
565 }
566
567 static inline int platform_pci_set_power_state(struct pci_dev *dev,
568 pci_power_t t)
569 {
570 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
571 }
572
573 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
574 {
575 return pci_platform_pm ?
576 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
577 }
578
579 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
580 {
581 return pci_platform_pm ?
582 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
583 }
584
585 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
586 {
587 return pci_platform_pm ?
588 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
589 }
590
591 static inline bool platform_pci_need_resume(struct pci_dev *dev)
592 {
593 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
594 }
595
596 /**
597 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
598 * given PCI device
599 * @dev: PCI device to handle.
600 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
601 *
602 * RETURN VALUE:
603 * -EINVAL if the requested state is invalid.
604 * -EIO if device does not support PCI PM or its PM capabilities register has a
605 * wrong version, or device doesn't support the requested state.
606 * 0 if device already is in the requested state.
607 * 0 if device's power state has been successfully changed.
608 */
609 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
610 {
611 u16 pmcsr;
612 bool need_restore = false;
613
614 /* Check if we're already there */
615 if (dev->current_state == state)
616 return 0;
617
618 if (!dev->pm_cap)
619 return -EIO;
620
621 if (state < PCI_D0 || state > PCI_D3hot)
622 return -EINVAL;
623
624 /* Validate current state:
625 * Can enter D0 from any state, but if we can only go deeper
626 * to sleep if we're already in a low power state
627 */
628 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
629 && dev->current_state > state) {
630 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
631 dev->current_state, state);
632 return -EINVAL;
633 }
634
635 /* check if this device supports the desired state */
636 if ((state == PCI_D1 && !dev->d1_support)
637 || (state == PCI_D2 && !dev->d2_support))
638 return -EIO;
639
640 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
641
642 /* If we're (effectively) in D3, force entire word to 0.
643 * This doesn't affect PME_Status, disables PME_En, and
644 * sets PowerState to 0.
645 */
646 switch (dev->current_state) {
647 case PCI_D0:
648 case PCI_D1:
649 case PCI_D2:
650 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
651 pmcsr |= state;
652 break;
653 case PCI_D3hot:
654 case PCI_D3cold:
655 case PCI_UNKNOWN: /* Boot-up */
656 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
657 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
658 need_restore = true;
659 /* Fall-through: force to D0 */
660 default:
661 pmcsr = 0;
662 break;
663 }
664
665 /* enter specified state */
666 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
667
668 /* Mandatory power management transition delays */
669 /* see PCI PM 1.1 5.6.1 table 18 */
670 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
671 pci_dev_d3_sleep(dev);
672 else if (state == PCI_D2 || dev->current_state == PCI_D2)
673 udelay(PCI_PM_D2_DELAY);
674
675 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
676 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
677 if (dev->current_state != state && printk_ratelimit())
678 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
679 dev->current_state);
680
681 /*
682 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
683 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
684 * from D3hot to D0 _may_ perform an internal reset, thereby
685 * going to "D0 Uninitialized" rather than "D0 Initialized".
686 * For example, at least some versions of the 3c905B and the
687 * 3c556B exhibit this behaviour.
688 *
689 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
690 * devices in a D3hot state at boot. Consequently, we need to
691 * restore at least the BARs so that the device will be
692 * accessible to its driver.
693 */
694 if (need_restore)
695 pci_restore_bars(dev);
696
697 if (dev->bus->self)
698 pcie_aspm_pm_state_change(dev->bus->self);
699
700 return 0;
701 }
702
703 /**
704 * pci_update_current_state - Read PCI power state of given device from its
705 * PCI PM registers and cache it
706 * @dev: PCI device to handle.
707 * @state: State to cache in case the device doesn't have the PM capability
708 */
709 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
710 {
711 if (dev->pm_cap) {
712 u16 pmcsr;
713
714 /*
715 * Configuration space is not accessible for device in
716 * D3cold, so just keep or set D3cold for safety
717 */
718 if (dev->current_state == PCI_D3cold)
719 return;
720 if (state == PCI_D3cold) {
721 dev->current_state = PCI_D3cold;
722 return;
723 }
724 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
725 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
726 } else {
727 dev->current_state = state;
728 }
729 }
730
731 /**
732 * pci_power_up - Put the given device into D0 forcibly
733 * @dev: PCI device to power up
734 */
735 void pci_power_up(struct pci_dev *dev)
736 {
737 if (platform_pci_power_manageable(dev))
738 platform_pci_set_power_state(dev, PCI_D0);
739
740 pci_raw_set_power_state(dev, PCI_D0);
741 pci_update_current_state(dev, PCI_D0);
742 }
743
744 /**
745 * pci_platform_power_transition - Use platform to change device power state
746 * @dev: PCI device to handle.
747 * @state: State to put the device into.
748 */
749 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
750 {
751 int error;
752
753 if (platform_pci_power_manageable(dev)) {
754 error = platform_pci_set_power_state(dev, state);
755 if (!error)
756 pci_update_current_state(dev, state);
757 } else
758 error = -ENODEV;
759
760 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
761 dev->current_state = PCI_D0;
762
763 return error;
764 }
765
766 /**
767 * pci_wakeup - Wake up a PCI device
768 * @pci_dev: Device to handle.
769 * @ign: ignored parameter
770 */
771 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
772 {
773 pci_wakeup_event(pci_dev);
774 pm_request_resume(&pci_dev->dev);
775 return 0;
776 }
777
778 /**
779 * pci_wakeup_bus - Walk given bus and wake up devices on it
780 * @bus: Top bus of the subtree to walk.
781 */
782 static void pci_wakeup_bus(struct pci_bus *bus)
783 {
784 if (bus)
785 pci_walk_bus(bus, pci_wakeup, NULL);
786 }
787
788 /**
789 * __pci_start_power_transition - Start power transition of a PCI device
790 * @dev: PCI device to handle.
791 * @state: State to put the device into.
792 */
793 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
794 {
795 if (state == PCI_D0) {
796 pci_platform_power_transition(dev, PCI_D0);
797 /*
798 * Mandatory power management transition delays, see
799 * PCI Express Base Specification Revision 2.0 Section
800 * 6.6.1: Conventional Reset. Do not delay for
801 * devices powered on/off by corresponding bridge,
802 * because have already delayed for the bridge.
803 */
804 if (dev->runtime_d3cold) {
805 msleep(dev->d3cold_delay);
806 /*
807 * When powering on a bridge from D3cold, the
808 * whole hierarchy may be powered on into
809 * D0uninitialized state, resume them to give
810 * them a chance to suspend again
811 */
812 pci_wakeup_bus(dev->subordinate);
813 }
814 }
815 }
816
817 /**
818 * __pci_dev_set_current_state - Set current state of a PCI device
819 * @dev: Device to handle
820 * @data: pointer to state to be set
821 */
822 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
823 {
824 pci_power_t state = *(pci_power_t *)data;
825
826 dev->current_state = state;
827 return 0;
828 }
829
830 /**
831 * __pci_bus_set_current_state - Walk given bus and set current state of devices
832 * @bus: Top bus of the subtree to walk.
833 * @state: state to be set
834 */
835 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
836 {
837 if (bus)
838 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
839 }
840
841 /**
842 * __pci_complete_power_transition - Complete power transition of a PCI device
843 * @dev: PCI device to handle.
844 * @state: State to put the device into.
845 *
846 * This function should not be called directly by device drivers.
847 */
848 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
849 {
850 int ret;
851
852 if (state <= PCI_D0)
853 return -EINVAL;
854 ret = pci_platform_power_transition(dev, state);
855 /* Power off the bridge may power off the whole hierarchy */
856 if (!ret && state == PCI_D3cold)
857 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
858 return ret;
859 }
860 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
861
862 /**
863 * pci_set_power_state - Set the power state of a PCI device
864 * @dev: PCI device to handle.
865 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
866 *
867 * Transition a device to a new power state, using the platform firmware and/or
868 * the device's PCI PM registers.
869 *
870 * RETURN VALUE:
871 * -EINVAL if the requested state is invalid.
872 * -EIO if device does not support PCI PM or its PM capabilities register has a
873 * wrong version, or device doesn't support the requested state.
874 * 0 if device already is in the requested state.
875 * 0 if device's power state has been successfully changed.
876 */
877 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
878 {
879 int error;
880
881 /* bound the state we're entering */
882 if (state > PCI_D3cold)
883 state = PCI_D3cold;
884 else if (state < PCI_D0)
885 state = PCI_D0;
886 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
887 /*
888 * If the device or the parent bridge do not support PCI PM,
889 * ignore the request if we're doing anything other than putting
890 * it into D0 (which would only happen on boot).
891 */
892 return 0;
893
894 /* Check if we're already there */
895 if (dev->current_state == state)
896 return 0;
897
898 __pci_start_power_transition(dev, state);
899
900 /* This device is quirked not to be put into D3, so
901 don't put it in D3 */
902 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
903 return 0;
904
905 /*
906 * To put device in D3cold, we put device into D3hot in native
907 * way, then put device into D3cold with platform ops
908 */
909 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
910 PCI_D3hot : state);
911
912 if (!__pci_complete_power_transition(dev, state))
913 error = 0;
914
915 return error;
916 }
917 EXPORT_SYMBOL(pci_set_power_state);
918
919 /**
920 * pci_choose_state - Choose the power state of a PCI device
921 * @dev: PCI device to be suspended
922 * @state: target sleep state for the whole system. This is the value
923 * that is passed to suspend() function.
924 *
925 * Returns PCI power state suitable for given device and given system
926 * message.
927 */
928
929 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
930 {
931 pci_power_t ret;
932
933 if (!dev->pm_cap)
934 return PCI_D0;
935
936 ret = platform_pci_choose_state(dev);
937 if (ret != PCI_POWER_ERROR)
938 return ret;
939
940 switch (state.event) {
941 case PM_EVENT_ON:
942 return PCI_D0;
943 case PM_EVENT_FREEZE:
944 case PM_EVENT_PRETHAW:
945 /* REVISIT both freeze and pre-thaw "should" use D0 */
946 case PM_EVENT_SUSPEND:
947 case PM_EVENT_HIBERNATE:
948 return PCI_D3hot;
949 default:
950 dev_info(&dev->dev, "unrecognized suspend event %d\n",
951 state.event);
952 BUG();
953 }
954 return PCI_D0;
955 }
956 EXPORT_SYMBOL(pci_choose_state);
957
958 #define PCI_EXP_SAVE_REGS 7
959
960 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
961 u16 cap, bool extended)
962 {
963 struct pci_cap_saved_state *tmp;
964
965 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
966 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
967 return tmp;
968 }
969 return NULL;
970 }
971
972 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
973 {
974 return _pci_find_saved_cap(dev, cap, false);
975 }
976
977 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
978 {
979 return _pci_find_saved_cap(dev, cap, true);
980 }
981
982 static int pci_save_pcie_state(struct pci_dev *dev)
983 {
984 int i = 0;
985 struct pci_cap_saved_state *save_state;
986 u16 *cap;
987
988 if (!pci_is_pcie(dev))
989 return 0;
990
991 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
992 if (!save_state) {
993 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
994 return -ENOMEM;
995 }
996
997 cap = (u16 *)&save_state->cap.data[0];
998 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
999 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1000 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1001 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1002 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1003 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1004 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1005
1006 return 0;
1007 }
1008
1009 static void pci_restore_pcie_state(struct pci_dev *dev)
1010 {
1011 int i = 0;
1012 struct pci_cap_saved_state *save_state;
1013 u16 *cap;
1014
1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1016 if (!save_state)
1017 return;
1018
1019 cap = (u16 *)&save_state->cap.data[0];
1020 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1021 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1022 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1023 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1024 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1025 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1026 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1027 }
1028
1029
1030 static int pci_save_pcix_state(struct pci_dev *dev)
1031 {
1032 int pos;
1033 struct pci_cap_saved_state *save_state;
1034
1035 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1036 if (!pos)
1037 return 0;
1038
1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1040 if (!save_state) {
1041 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1042 return -ENOMEM;
1043 }
1044
1045 pci_read_config_word(dev, pos + PCI_X_CMD,
1046 (u16 *)save_state->cap.data);
1047
1048 return 0;
1049 }
1050
1051 static void pci_restore_pcix_state(struct pci_dev *dev)
1052 {
1053 int i = 0, pos;
1054 struct pci_cap_saved_state *save_state;
1055 u16 *cap;
1056
1057 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1058 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1059 if (!save_state || !pos)
1060 return;
1061 cap = (u16 *)&save_state->cap.data[0];
1062
1063 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1064 }
1065
1066
1067 /**
1068 * pci_save_state - save the PCI configuration space of a device before suspending
1069 * @dev: - PCI device that we're dealing with
1070 */
1071 int pci_save_state(struct pci_dev *dev)
1072 {
1073 int i;
1074 /* XXX: 100% dword access ok here? */
1075 for (i = 0; i < 16; i++)
1076 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1077 dev->state_saved = true;
1078
1079 i = pci_save_pcie_state(dev);
1080 if (i != 0)
1081 return i;
1082
1083 i = pci_save_pcix_state(dev);
1084 if (i != 0)
1085 return i;
1086
1087 return pci_save_vc_state(dev);
1088 }
1089 EXPORT_SYMBOL(pci_save_state);
1090
1091 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1092 u32 saved_val, int retry)
1093 {
1094 u32 val;
1095
1096 pci_read_config_dword(pdev, offset, &val);
1097 if (val == saved_val)
1098 return;
1099
1100 for (;;) {
1101 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1102 offset, val, saved_val);
1103 pci_write_config_dword(pdev, offset, saved_val);
1104 if (retry-- <= 0)
1105 return;
1106
1107 pci_read_config_dword(pdev, offset, &val);
1108 if (val == saved_val)
1109 return;
1110
1111 mdelay(1);
1112 }
1113 }
1114
1115 static void pci_restore_config_space_range(struct pci_dev *pdev,
1116 int start, int end, int retry)
1117 {
1118 int index;
1119
1120 for (index = end; index >= start; index--)
1121 pci_restore_config_dword(pdev, 4 * index,
1122 pdev->saved_config_space[index],
1123 retry);
1124 }
1125
1126 static void pci_restore_config_space(struct pci_dev *pdev)
1127 {
1128 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1129 pci_restore_config_space_range(pdev, 10, 15, 0);
1130 /* Restore BARs before the command register. */
1131 pci_restore_config_space_range(pdev, 4, 9, 10);
1132 pci_restore_config_space_range(pdev, 0, 3, 0);
1133 } else {
1134 pci_restore_config_space_range(pdev, 0, 15, 0);
1135 }
1136 }
1137
1138 /**
1139 * pci_restore_state - Restore the saved state of a PCI device
1140 * @dev: - PCI device that we're dealing with
1141 */
1142 void pci_restore_state(struct pci_dev *dev)
1143 {
1144 if (!dev->state_saved)
1145 return;
1146
1147 /* PCI Express register must be restored first */
1148 pci_restore_pcie_state(dev);
1149 pci_restore_ats_state(dev);
1150 pci_restore_vc_state(dev);
1151
1152 pci_cleanup_aer_error_status_regs(dev);
1153
1154 pci_restore_config_space(dev);
1155
1156 pci_restore_pcix_state(dev);
1157 pci_restore_msi_state(dev);
1158
1159 /* Restore ACS and IOV configuration state */
1160 pci_enable_acs(dev);
1161 pci_restore_iov_state(dev);
1162
1163 dev->state_saved = false;
1164 }
1165 EXPORT_SYMBOL(pci_restore_state);
1166
1167 struct pci_saved_state {
1168 u32 config_space[16];
1169 struct pci_cap_saved_data cap[0];
1170 };
1171
1172 /**
1173 * pci_store_saved_state - Allocate and return an opaque struct containing
1174 * the device saved state.
1175 * @dev: PCI device that we're dealing with
1176 *
1177 * Return NULL if no state or error.
1178 */
1179 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1180 {
1181 struct pci_saved_state *state;
1182 struct pci_cap_saved_state *tmp;
1183 struct pci_cap_saved_data *cap;
1184 size_t size;
1185
1186 if (!dev->state_saved)
1187 return NULL;
1188
1189 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1190
1191 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1192 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1193
1194 state = kzalloc(size, GFP_KERNEL);
1195 if (!state)
1196 return NULL;
1197
1198 memcpy(state->config_space, dev->saved_config_space,
1199 sizeof(state->config_space));
1200
1201 cap = state->cap;
1202 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1203 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1204 memcpy(cap, &tmp->cap, len);
1205 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1206 }
1207 /* Empty cap_save terminates list */
1208
1209 return state;
1210 }
1211 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1212
1213 /**
1214 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1215 * @dev: PCI device that we're dealing with
1216 * @state: Saved state returned from pci_store_saved_state()
1217 */
1218 int pci_load_saved_state(struct pci_dev *dev,
1219 struct pci_saved_state *state)
1220 {
1221 struct pci_cap_saved_data *cap;
1222
1223 dev->state_saved = false;
1224
1225 if (!state)
1226 return 0;
1227
1228 memcpy(dev->saved_config_space, state->config_space,
1229 sizeof(state->config_space));
1230
1231 cap = state->cap;
1232 while (cap->size) {
1233 struct pci_cap_saved_state *tmp;
1234
1235 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1236 if (!tmp || tmp->cap.size != cap->size)
1237 return -EINVAL;
1238
1239 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1240 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1241 sizeof(struct pci_cap_saved_data) + cap->size);
1242 }
1243
1244 dev->state_saved = true;
1245 return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1248
1249 /**
1250 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1251 * and free the memory allocated for it.
1252 * @dev: PCI device that we're dealing with
1253 * @state: Pointer to saved state returned from pci_store_saved_state()
1254 */
1255 int pci_load_and_free_saved_state(struct pci_dev *dev,
1256 struct pci_saved_state **state)
1257 {
1258 int ret = pci_load_saved_state(dev, *state);
1259 kfree(*state);
1260 *state = NULL;
1261 return ret;
1262 }
1263 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1264
1265 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1266 {
1267 return pci_enable_resources(dev, bars);
1268 }
1269
1270 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1271 {
1272 int err;
1273 struct pci_dev *bridge;
1274 u16 cmd;
1275 u8 pin;
1276
1277 err = pci_set_power_state(dev, PCI_D0);
1278 if (err < 0 && err != -EIO)
1279 return err;
1280
1281 bridge = pci_upstream_bridge(dev);
1282 if (bridge)
1283 pcie_aspm_powersave_config_link(bridge);
1284
1285 err = pcibios_enable_device(dev, bars);
1286 if (err < 0)
1287 return err;
1288 pci_fixup_device(pci_fixup_enable, dev);
1289
1290 if (dev->msi_enabled || dev->msix_enabled)
1291 return 0;
1292
1293 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1294 if (pin) {
1295 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1296 if (cmd & PCI_COMMAND_INTX_DISABLE)
1297 pci_write_config_word(dev, PCI_COMMAND,
1298 cmd & ~PCI_COMMAND_INTX_DISABLE);
1299 }
1300
1301 return 0;
1302 }
1303
1304 /**
1305 * pci_reenable_device - Resume abandoned device
1306 * @dev: PCI device to be resumed
1307 *
1308 * Note this function is a backend of pci_default_resume and is not supposed
1309 * to be called by normal code, write proper resume handler and use it instead.
1310 */
1311 int pci_reenable_device(struct pci_dev *dev)
1312 {
1313 if (pci_is_enabled(dev))
1314 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1315 return 0;
1316 }
1317 EXPORT_SYMBOL(pci_reenable_device);
1318
1319 static void pci_enable_bridge(struct pci_dev *dev)
1320 {
1321 struct pci_dev *bridge;
1322 int retval;
1323
1324 bridge = pci_upstream_bridge(dev);
1325 if (bridge)
1326 pci_enable_bridge(bridge);
1327
1328 if (pci_is_enabled(dev)) {
1329 if (!dev->is_busmaster)
1330 pci_set_master(dev);
1331 return;
1332 }
1333
1334 retval = pci_enable_device(dev);
1335 if (retval)
1336 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1337 retval);
1338 pci_set_master(dev);
1339 }
1340
1341 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1342 {
1343 struct pci_dev *bridge;
1344 int err;
1345 int i, bars = 0;
1346
1347 /*
1348 * Power state could be unknown at this point, either due to a fresh
1349 * boot or a device removal call. So get the current power state
1350 * so that things like MSI message writing will behave as expected
1351 * (e.g. if the device really is in D0 at enable time).
1352 */
1353 if (dev->pm_cap) {
1354 u16 pmcsr;
1355 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1356 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1357 }
1358
1359 if (atomic_inc_return(&dev->enable_cnt) > 1)
1360 return 0; /* already enabled */
1361
1362 bridge = pci_upstream_bridge(dev);
1363 if (bridge)
1364 pci_enable_bridge(bridge);
1365
1366 /* only skip sriov related */
1367 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1368 if (dev->resource[i].flags & flags)
1369 bars |= (1 << i);
1370 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1371 if (dev->resource[i].flags & flags)
1372 bars |= (1 << i);
1373
1374 err = do_pci_enable_device(dev, bars);
1375 if (err < 0)
1376 atomic_dec(&dev->enable_cnt);
1377 return err;
1378 }
1379
1380 /**
1381 * pci_enable_device_io - Initialize a device for use with IO space
1382 * @dev: PCI device to be initialized
1383 *
1384 * Initialize device before it's used by a driver. Ask low-level code
1385 * to enable I/O resources. Wake up the device if it was suspended.
1386 * Beware, this function can fail.
1387 */
1388 int pci_enable_device_io(struct pci_dev *dev)
1389 {
1390 return pci_enable_device_flags(dev, IORESOURCE_IO);
1391 }
1392 EXPORT_SYMBOL(pci_enable_device_io);
1393
1394 /**
1395 * pci_enable_device_mem - Initialize a device for use with Memory space
1396 * @dev: PCI device to be initialized
1397 *
1398 * Initialize device before it's used by a driver. Ask low-level code
1399 * to enable Memory resources. Wake up the device if it was suspended.
1400 * Beware, this function can fail.
1401 */
1402 int pci_enable_device_mem(struct pci_dev *dev)
1403 {
1404 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1405 }
1406 EXPORT_SYMBOL(pci_enable_device_mem);
1407
1408 /**
1409 * pci_enable_device - Initialize device before it's used by a driver.
1410 * @dev: PCI device to be initialized
1411 *
1412 * Initialize device before it's used by a driver. Ask low-level code
1413 * to enable I/O and memory. Wake up the device if it was suspended.
1414 * Beware, this function can fail.
1415 *
1416 * Note we don't actually enable the device many times if we call
1417 * this function repeatedly (we just increment the count).
1418 */
1419 int pci_enable_device(struct pci_dev *dev)
1420 {
1421 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1422 }
1423 EXPORT_SYMBOL(pci_enable_device);
1424
1425 /*
1426 * Managed PCI resources. This manages device on/off, intx/msi/msix
1427 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1428 * there's no need to track it separately. pci_devres is initialized
1429 * when a device is enabled using managed PCI device enable interface.
1430 */
1431 struct pci_devres {
1432 unsigned int enabled:1;
1433 unsigned int pinned:1;
1434 unsigned int orig_intx:1;
1435 unsigned int restore_intx:1;
1436 u32 region_mask;
1437 };
1438
1439 static void pcim_release(struct device *gendev, void *res)
1440 {
1441 struct pci_dev *dev = to_pci_dev(gendev);
1442 struct pci_devres *this = res;
1443 int i;
1444
1445 if (dev->msi_enabled)
1446 pci_disable_msi(dev);
1447 if (dev->msix_enabled)
1448 pci_disable_msix(dev);
1449
1450 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1451 if (this->region_mask & (1 << i))
1452 pci_release_region(dev, i);
1453
1454 if (this->restore_intx)
1455 pci_intx(dev, this->orig_intx);
1456
1457 if (this->enabled && !this->pinned)
1458 pci_disable_device(dev);
1459 }
1460
1461 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1462 {
1463 struct pci_devres *dr, *new_dr;
1464
1465 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1466 if (dr)
1467 return dr;
1468
1469 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1470 if (!new_dr)
1471 return NULL;
1472 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1473 }
1474
1475 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1476 {
1477 if (pci_is_managed(pdev))
1478 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1479 return NULL;
1480 }
1481
1482 /**
1483 * pcim_enable_device - Managed pci_enable_device()
1484 * @pdev: PCI device to be initialized
1485 *
1486 * Managed pci_enable_device().
1487 */
1488 int pcim_enable_device(struct pci_dev *pdev)
1489 {
1490 struct pci_devres *dr;
1491 int rc;
1492
1493 dr = get_pci_dr(pdev);
1494 if (unlikely(!dr))
1495 return -ENOMEM;
1496 if (dr->enabled)
1497 return 0;
1498
1499 rc = pci_enable_device(pdev);
1500 if (!rc) {
1501 pdev->is_managed = 1;
1502 dr->enabled = 1;
1503 }
1504 return rc;
1505 }
1506 EXPORT_SYMBOL(pcim_enable_device);
1507
1508 /**
1509 * pcim_pin_device - Pin managed PCI device
1510 * @pdev: PCI device to pin
1511 *
1512 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1513 * driver detach. @pdev must have been enabled with
1514 * pcim_enable_device().
1515 */
1516 void pcim_pin_device(struct pci_dev *pdev)
1517 {
1518 struct pci_devres *dr;
1519
1520 dr = find_pci_dr(pdev);
1521 WARN_ON(!dr || !dr->enabled);
1522 if (dr)
1523 dr->pinned = 1;
1524 }
1525 EXPORT_SYMBOL(pcim_pin_device);
1526
1527 /*
1528 * pcibios_add_device - provide arch specific hooks when adding device dev
1529 * @dev: the PCI device being added
1530 *
1531 * Permits the platform to provide architecture specific functionality when
1532 * devices are added. This is the default implementation. Architecture
1533 * implementations can override this.
1534 */
1535 int __weak pcibios_add_device(struct pci_dev *dev)
1536 {
1537 return 0;
1538 }
1539
1540 /**
1541 * pcibios_release_device - provide arch specific hooks when releasing device dev
1542 * @dev: the PCI device being released
1543 *
1544 * Permits the platform to provide architecture specific functionality when
1545 * devices are released. This is the default implementation. Architecture
1546 * implementations can override this.
1547 */
1548 void __weak pcibios_release_device(struct pci_dev *dev) {}
1549
1550 /**
1551 * pcibios_disable_device - disable arch specific PCI resources for device dev
1552 * @dev: the PCI device to disable
1553 *
1554 * Disables architecture specific PCI resources for the device. This
1555 * is the default implementation. Architecture implementations can
1556 * override this.
1557 */
1558 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1559
1560 /**
1561 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1562 * @irq: ISA IRQ to penalize
1563 * @active: IRQ active or not
1564 *
1565 * Permits the platform to provide architecture-specific functionality when
1566 * penalizing ISA IRQs. This is the default implementation. Architecture
1567 * implementations can override this.
1568 */
1569 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1570
1571 static void do_pci_disable_device(struct pci_dev *dev)
1572 {
1573 u16 pci_command;
1574
1575 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1576 if (pci_command & PCI_COMMAND_MASTER) {
1577 pci_command &= ~PCI_COMMAND_MASTER;
1578 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1579 }
1580
1581 pcibios_disable_device(dev);
1582 }
1583
1584 /**
1585 * pci_disable_enabled_device - Disable device without updating enable_cnt
1586 * @dev: PCI device to disable
1587 *
1588 * NOTE: This function is a backend of PCI power management routines and is
1589 * not supposed to be called drivers.
1590 */
1591 void pci_disable_enabled_device(struct pci_dev *dev)
1592 {
1593 if (pci_is_enabled(dev))
1594 do_pci_disable_device(dev);
1595 }
1596
1597 /**
1598 * pci_disable_device - Disable PCI device after use
1599 * @dev: PCI device to be disabled
1600 *
1601 * Signal to the system that the PCI device is not in use by the system
1602 * anymore. This only involves disabling PCI bus-mastering, if active.
1603 *
1604 * Note we don't actually disable the device until all callers of
1605 * pci_enable_device() have called pci_disable_device().
1606 */
1607 void pci_disable_device(struct pci_dev *dev)
1608 {
1609 struct pci_devres *dr;
1610
1611 dr = find_pci_dr(dev);
1612 if (dr)
1613 dr->enabled = 0;
1614
1615 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1616 "disabling already-disabled device");
1617
1618 if (atomic_dec_return(&dev->enable_cnt) != 0)
1619 return;
1620
1621 do_pci_disable_device(dev);
1622
1623 dev->is_busmaster = 0;
1624 }
1625 EXPORT_SYMBOL(pci_disable_device);
1626
1627 /**
1628 * pcibios_set_pcie_reset_state - set reset state for device dev
1629 * @dev: the PCIe device reset
1630 * @state: Reset state to enter into
1631 *
1632 *
1633 * Sets the PCIe reset state for the device. This is the default
1634 * implementation. Architecture implementations can override this.
1635 */
1636 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1637 enum pcie_reset_state state)
1638 {
1639 return -EINVAL;
1640 }
1641
1642 /**
1643 * pci_set_pcie_reset_state - set reset state for device dev
1644 * @dev: the PCIe device reset
1645 * @state: Reset state to enter into
1646 *
1647 *
1648 * Sets the PCI reset state for the device.
1649 */
1650 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1651 {
1652 return pcibios_set_pcie_reset_state(dev, state);
1653 }
1654 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1655
1656 /**
1657 * pci_check_pme_status - Check if given device has generated PME.
1658 * @dev: Device to check.
1659 *
1660 * Check the PME status of the device and if set, clear it and clear PME enable
1661 * (if set). Return 'true' if PME status and PME enable were both set or
1662 * 'false' otherwise.
1663 */
1664 bool pci_check_pme_status(struct pci_dev *dev)
1665 {
1666 int pmcsr_pos;
1667 u16 pmcsr;
1668 bool ret = false;
1669
1670 if (!dev->pm_cap)
1671 return false;
1672
1673 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1674 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1675 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1676 return false;
1677
1678 /* Clear PME status. */
1679 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1680 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1681 /* Disable PME to avoid interrupt flood. */
1682 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683 ret = true;
1684 }
1685
1686 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1687
1688 return ret;
1689 }
1690
1691 /**
1692 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1693 * @dev: Device to handle.
1694 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1695 *
1696 * Check if @dev has generated PME and queue a resume request for it in that
1697 * case.
1698 */
1699 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1700 {
1701 if (pme_poll_reset && dev->pme_poll)
1702 dev->pme_poll = false;
1703
1704 if (pci_check_pme_status(dev)) {
1705 pci_wakeup_event(dev);
1706 pm_request_resume(&dev->dev);
1707 }
1708 return 0;
1709 }
1710
1711 /**
1712 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1713 * @bus: Top bus of the subtree to walk.
1714 */
1715 void pci_pme_wakeup_bus(struct pci_bus *bus)
1716 {
1717 if (bus)
1718 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1719 }
1720
1721
1722 /**
1723 * pci_pme_capable - check the capability of PCI device to generate PME#
1724 * @dev: PCI device to handle.
1725 * @state: PCI state from which device will issue PME#.
1726 */
1727 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1728 {
1729 if (!dev->pm_cap)
1730 return false;
1731
1732 return !!(dev->pme_support & (1 << state));
1733 }
1734 EXPORT_SYMBOL(pci_pme_capable);
1735
1736 static void pci_pme_list_scan(struct work_struct *work)
1737 {
1738 struct pci_pme_device *pme_dev, *n;
1739
1740 mutex_lock(&pci_pme_list_mutex);
1741 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1742 if (pme_dev->dev->pme_poll) {
1743 struct pci_dev *bridge;
1744
1745 bridge = pme_dev->dev->bus->self;
1746 /*
1747 * If bridge is in low power state, the
1748 * configuration space of subordinate devices
1749 * may be not accessible
1750 */
1751 if (bridge && bridge->current_state != PCI_D0)
1752 continue;
1753 pci_pme_wakeup(pme_dev->dev, NULL);
1754 } else {
1755 list_del(&pme_dev->list);
1756 kfree(pme_dev);
1757 }
1758 }
1759 if (!list_empty(&pci_pme_list))
1760 schedule_delayed_work(&pci_pme_work,
1761 msecs_to_jiffies(PME_TIMEOUT));
1762 mutex_unlock(&pci_pme_list_mutex);
1763 }
1764
1765 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1766 {
1767 u16 pmcsr;
1768
1769 if (!dev->pme_support)
1770 return;
1771
1772 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1773 /* Clear PME_Status by writing 1 to it and enable PME# */
1774 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1775 if (!enable)
1776 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1777
1778 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1779 }
1780
1781 /**
1782 * pci_pme_active - enable or disable PCI device's PME# function
1783 * @dev: PCI device to handle.
1784 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1785 *
1786 * The caller must verify that the device is capable of generating PME# before
1787 * calling this function with @enable equal to 'true'.
1788 */
1789 void pci_pme_active(struct pci_dev *dev, bool enable)
1790 {
1791 __pci_pme_active(dev, enable);
1792
1793 /*
1794 * PCI (as opposed to PCIe) PME requires that the device have
1795 * its PME# line hooked up correctly. Not all hardware vendors
1796 * do this, so the PME never gets delivered and the device
1797 * remains asleep. The easiest way around this is to
1798 * periodically walk the list of suspended devices and check
1799 * whether any have their PME flag set. The assumption is that
1800 * we'll wake up often enough anyway that this won't be a huge
1801 * hit, and the power savings from the devices will still be a
1802 * win.
1803 *
1804 * Although PCIe uses in-band PME message instead of PME# line
1805 * to report PME, PME does not work for some PCIe devices in
1806 * reality. For example, there are devices that set their PME
1807 * status bits, but don't really bother to send a PME message;
1808 * there are PCI Express Root Ports that don't bother to
1809 * trigger interrupts when they receive PME messages from the
1810 * devices below. So PME poll is used for PCIe devices too.
1811 */
1812
1813 if (dev->pme_poll) {
1814 struct pci_pme_device *pme_dev;
1815 if (enable) {
1816 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1817 GFP_KERNEL);
1818 if (!pme_dev) {
1819 dev_warn(&dev->dev, "can't enable PME#\n");
1820 return;
1821 }
1822 pme_dev->dev = dev;
1823 mutex_lock(&pci_pme_list_mutex);
1824 list_add(&pme_dev->list, &pci_pme_list);
1825 if (list_is_singular(&pci_pme_list))
1826 schedule_delayed_work(&pci_pme_work,
1827 msecs_to_jiffies(PME_TIMEOUT));
1828 mutex_unlock(&pci_pme_list_mutex);
1829 } else {
1830 mutex_lock(&pci_pme_list_mutex);
1831 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1832 if (pme_dev->dev == dev) {
1833 list_del(&pme_dev->list);
1834 kfree(pme_dev);
1835 break;
1836 }
1837 }
1838 mutex_unlock(&pci_pme_list_mutex);
1839 }
1840 }
1841
1842 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1843 }
1844 EXPORT_SYMBOL(pci_pme_active);
1845
1846 /**
1847 * __pci_enable_wake - enable PCI device as wakeup event source
1848 * @dev: PCI device affected
1849 * @state: PCI state from which device will issue wakeup events
1850 * @runtime: True if the events are to be generated at run time
1851 * @enable: True to enable event generation; false to disable
1852 *
1853 * This enables the device as a wakeup event source, or disables it.
1854 * When such events involves platform-specific hooks, those hooks are
1855 * called automatically by this routine.
1856 *
1857 * Devices with legacy power management (no standard PCI PM capabilities)
1858 * always require such platform hooks.
1859 *
1860 * RETURN VALUE:
1861 * 0 is returned on success
1862 * -EINVAL is returned if device is not supposed to wake up the system
1863 * Error code depending on the platform is returned if both the platform and
1864 * the native mechanism fail to enable the generation of wake-up events
1865 */
1866 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1867 bool runtime, bool enable)
1868 {
1869 int ret = 0;
1870
1871 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1872 return -EINVAL;
1873
1874 /* Don't do the same thing twice in a row for one device. */
1875 if (!!enable == !!dev->wakeup_prepared)
1876 return 0;
1877
1878 /*
1879 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1880 * Anderson we should be doing PME# wake enable followed by ACPI wake
1881 * enable. To disable wake-up we call the platform first, for symmetry.
1882 */
1883
1884 if (enable) {
1885 int error;
1886
1887 if (pci_pme_capable(dev, state))
1888 pci_pme_active(dev, true);
1889 else
1890 ret = 1;
1891 error = runtime ? platform_pci_run_wake(dev, true) :
1892 platform_pci_sleep_wake(dev, true);
1893 if (ret)
1894 ret = error;
1895 if (!ret)
1896 dev->wakeup_prepared = true;
1897 } else {
1898 if (runtime)
1899 platform_pci_run_wake(dev, false);
1900 else
1901 platform_pci_sleep_wake(dev, false);
1902 pci_pme_active(dev, false);
1903 dev->wakeup_prepared = false;
1904 }
1905
1906 return ret;
1907 }
1908 EXPORT_SYMBOL(__pci_enable_wake);
1909
1910 /**
1911 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1912 * @dev: PCI device to prepare
1913 * @enable: True to enable wake-up event generation; false to disable
1914 *
1915 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1916 * and this function allows them to set that up cleanly - pci_enable_wake()
1917 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1918 * ordering constraints.
1919 *
1920 * This function only returns error code if the device is not capable of
1921 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1922 * enable wake-up power for it.
1923 */
1924 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1925 {
1926 return pci_pme_capable(dev, PCI_D3cold) ?
1927 pci_enable_wake(dev, PCI_D3cold, enable) :
1928 pci_enable_wake(dev, PCI_D3hot, enable);
1929 }
1930 EXPORT_SYMBOL(pci_wake_from_d3);
1931
1932 /**
1933 * pci_target_state - find an appropriate low power state for a given PCI dev
1934 * @dev: PCI device
1935 *
1936 * Use underlying platform code to find a supported low power state for @dev.
1937 * If the platform can't manage @dev, return the deepest state from which it
1938 * can generate wake events, based on any available PME info.
1939 */
1940 static pci_power_t pci_target_state(struct pci_dev *dev)
1941 {
1942 pci_power_t target_state = PCI_D3hot;
1943
1944 if (platform_pci_power_manageable(dev)) {
1945 /*
1946 * Call the platform to choose the target state of the device
1947 * and enable wake-up from this state if supported.
1948 */
1949 pci_power_t state = platform_pci_choose_state(dev);
1950
1951 switch (state) {
1952 case PCI_POWER_ERROR:
1953 case PCI_UNKNOWN:
1954 break;
1955 case PCI_D1:
1956 case PCI_D2:
1957 if (pci_no_d1d2(dev))
1958 break;
1959 default:
1960 target_state = state;
1961 }
1962 } else if (!dev->pm_cap) {
1963 target_state = PCI_D0;
1964 } else if (device_may_wakeup(&dev->dev)) {
1965 /*
1966 * Find the deepest state from which the device can generate
1967 * wake-up events, make it the target state and enable device
1968 * to generate PME#.
1969 */
1970 if (dev->pme_support) {
1971 while (target_state
1972 && !(dev->pme_support & (1 << target_state)))
1973 target_state--;
1974 }
1975 }
1976
1977 return target_state;
1978 }
1979
1980 /**
1981 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1982 * @dev: Device to handle.
1983 *
1984 * Choose the power state appropriate for the device depending on whether
1985 * it can wake up the system and/or is power manageable by the platform
1986 * (PCI_D3hot is the default) and put the device into that state.
1987 */
1988 int pci_prepare_to_sleep(struct pci_dev *dev)
1989 {
1990 pci_power_t target_state = pci_target_state(dev);
1991 int error;
1992
1993 if (target_state == PCI_POWER_ERROR)
1994 return -EIO;
1995
1996 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1997
1998 error = pci_set_power_state(dev, target_state);
1999
2000 if (error)
2001 pci_enable_wake(dev, target_state, false);
2002
2003 return error;
2004 }
2005 EXPORT_SYMBOL(pci_prepare_to_sleep);
2006
2007 /**
2008 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2009 * @dev: Device to handle.
2010 *
2011 * Disable device's system wake-up capability and put it into D0.
2012 */
2013 int pci_back_from_sleep(struct pci_dev *dev)
2014 {
2015 pci_enable_wake(dev, PCI_D0, false);
2016 return pci_set_power_state(dev, PCI_D0);
2017 }
2018 EXPORT_SYMBOL(pci_back_from_sleep);
2019
2020 /**
2021 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2022 * @dev: PCI device being suspended.
2023 *
2024 * Prepare @dev to generate wake-up events at run time and put it into a low
2025 * power state.
2026 */
2027 int pci_finish_runtime_suspend(struct pci_dev *dev)
2028 {
2029 pci_power_t target_state = pci_target_state(dev);
2030 int error;
2031
2032 if (target_state == PCI_POWER_ERROR)
2033 return -EIO;
2034
2035 dev->runtime_d3cold = target_state == PCI_D3cold;
2036
2037 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2038
2039 error = pci_set_power_state(dev, target_state);
2040
2041 if (error) {
2042 __pci_enable_wake(dev, target_state, true, false);
2043 dev->runtime_d3cold = false;
2044 }
2045
2046 return error;
2047 }
2048
2049 /**
2050 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2051 * @dev: Device to check.
2052 *
2053 * Return true if the device itself is capable of generating wake-up events
2054 * (through the platform or using the native PCIe PME) or if the device supports
2055 * PME and one of its upstream bridges can generate wake-up events.
2056 */
2057 bool pci_dev_run_wake(struct pci_dev *dev)
2058 {
2059 struct pci_bus *bus = dev->bus;
2060
2061 if (device_run_wake(&dev->dev))
2062 return true;
2063
2064 if (!dev->pme_support)
2065 return false;
2066
2067 while (bus->parent) {
2068 struct pci_dev *bridge = bus->self;
2069
2070 if (device_run_wake(&bridge->dev))
2071 return true;
2072
2073 bus = bus->parent;
2074 }
2075
2076 /* We have reached the root bus. */
2077 if (bus->bridge)
2078 return device_run_wake(bus->bridge);
2079
2080 return false;
2081 }
2082 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2083
2084 /**
2085 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2086 * @pci_dev: Device to check.
2087 *
2088 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2089 * reconfigured due to wakeup settings difference between system and runtime
2090 * suspend and the current power state of it is suitable for the upcoming
2091 * (system) transition.
2092 *
2093 * If the device is not configured for system wakeup, disable PME for it before
2094 * returning 'true' to prevent it from waking up the system unnecessarily.
2095 */
2096 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2097 {
2098 struct device *dev = &pci_dev->dev;
2099
2100 if (!pm_runtime_suspended(dev)
2101 || pci_target_state(pci_dev) != pci_dev->current_state
2102 || platform_pci_need_resume(pci_dev))
2103 return false;
2104
2105 /*
2106 * At this point the device is good to go unless it's been configured
2107 * to generate PME at the runtime suspend time, but it is not supposed
2108 * to wake up the system. In that case, simply disable PME for it
2109 * (it will have to be re-enabled on exit from system resume).
2110 *
2111 * If the device's power state is D3cold and the platform check above
2112 * hasn't triggered, the device's configuration is suitable and we don't
2113 * need to manipulate it at all.
2114 */
2115 spin_lock_irq(&dev->power.lock);
2116
2117 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2118 !device_may_wakeup(dev))
2119 __pci_pme_active(pci_dev, false);
2120
2121 spin_unlock_irq(&dev->power.lock);
2122 return true;
2123 }
2124
2125 /**
2126 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2127 * @pci_dev: Device to handle.
2128 *
2129 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2130 * it might have been disabled during the prepare phase of system suspend if
2131 * the device was not configured for system wakeup.
2132 */
2133 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2134 {
2135 struct device *dev = &pci_dev->dev;
2136
2137 if (!pci_dev_run_wake(pci_dev))
2138 return;
2139
2140 spin_lock_irq(&dev->power.lock);
2141
2142 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2143 __pci_pme_active(pci_dev, true);
2144
2145 spin_unlock_irq(&dev->power.lock);
2146 }
2147
2148 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2149 {
2150 struct device *dev = &pdev->dev;
2151 struct device *parent = dev->parent;
2152
2153 if (parent)
2154 pm_runtime_get_sync(parent);
2155 pm_runtime_get_noresume(dev);
2156 /*
2157 * pdev->current_state is set to PCI_D3cold during suspending,
2158 * so wait until suspending completes
2159 */
2160 pm_runtime_barrier(dev);
2161 /*
2162 * Only need to resume devices in D3cold, because config
2163 * registers are still accessible for devices suspended but
2164 * not in D3cold.
2165 */
2166 if (pdev->current_state == PCI_D3cold)
2167 pm_runtime_resume(dev);
2168 }
2169
2170 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2171 {
2172 struct device *dev = &pdev->dev;
2173 struct device *parent = dev->parent;
2174
2175 pm_runtime_put(dev);
2176 if (parent)
2177 pm_runtime_put_sync(parent);
2178 }
2179
2180 /**
2181 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2182 * @bridge: Bridge to check
2183 *
2184 * This function checks if it is possible to move the bridge to D3.
2185 * Currently we only allow D3 for recent enough PCIe ports.
2186 */
2187 static bool pci_bridge_d3_possible(struct pci_dev *bridge)
2188 {
2189 unsigned int year;
2190
2191 if (!pci_is_pcie(bridge))
2192 return false;
2193
2194 switch (pci_pcie_type(bridge)) {
2195 case PCI_EXP_TYPE_ROOT_PORT:
2196 case PCI_EXP_TYPE_UPSTREAM:
2197 case PCI_EXP_TYPE_DOWNSTREAM:
2198 if (pci_bridge_d3_disable)
2199 return false;
2200 if (pci_bridge_d3_force)
2201 return true;
2202
2203 /*
2204 * It should be safe to put PCIe ports from 2015 or newer
2205 * to D3.
2206 */
2207 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2208 year >= 2015) {
2209 return true;
2210 }
2211 break;
2212 }
2213
2214 return false;
2215 }
2216
2217 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2218 {
2219 bool *d3cold_ok = data;
2220 bool no_d3cold;
2221
2222 /*
2223 * The device needs to be allowed to go D3cold and if it is wake
2224 * capable to do so from D3cold.
2225 */
2226 no_d3cold = dev->no_d3cold || !dev->d3cold_allowed ||
2227 (device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) ||
2228 !pci_power_manageable(dev);
2229
2230 *d3cold_ok = !no_d3cold;
2231
2232 return no_d3cold;
2233 }
2234
2235 /*
2236 * pci_bridge_d3_update - Update bridge D3 capabilities
2237 * @dev: PCI device which is changed
2238 * @remove: Is the device being removed
2239 *
2240 * Update upstream bridge PM capabilities accordingly depending on if the
2241 * device PM configuration was changed or the device is being removed. The
2242 * change is also propagated upstream.
2243 */
2244 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove)
2245 {
2246 struct pci_dev *bridge;
2247 bool d3cold_ok = true;
2248
2249 bridge = pci_upstream_bridge(dev);
2250 if (!bridge || !pci_bridge_d3_possible(bridge))
2251 return;
2252
2253 pci_dev_get(bridge);
2254 /*
2255 * If the device is removed we do not care about its D3cold
2256 * capabilities.
2257 */
2258 if (!remove)
2259 pci_dev_check_d3cold(dev, &d3cold_ok);
2260
2261 if (d3cold_ok) {
2262 /*
2263 * We need to go through all children to find out if all of
2264 * them can still go to D3cold.
2265 */
2266 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2267 &d3cold_ok);
2268 }
2269
2270 if (bridge->bridge_d3 != d3cold_ok) {
2271 bridge->bridge_d3 = d3cold_ok;
2272 /* Propagate change to upstream bridges */
2273 pci_bridge_d3_update(bridge, false);
2274 }
2275
2276 pci_dev_put(bridge);
2277 }
2278
2279 /**
2280 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2281 * @dev: PCI device that was changed
2282 *
2283 * If a device is added or its PM configuration, such as is it allowed to
2284 * enter D3cold, is changed this function updates upstream bridge PM
2285 * capabilities accordingly.
2286 */
2287 void pci_bridge_d3_device_changed(struct pci_dev *dev)
2288 {
2289 pci_bridge_d3_update(dev, false);
2290 }
2291
2292 /**
2293 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2294 * @dev: PCI device being removed
2295 *
2296 * Function updates upstream bridge PM capabilities based on other devices
2297 * still left on the bus.
2298 */
2299 void pci_bridge_d3_device_removed(struct pci_dev *dev)
2300 {
2301 pci_bridge_d3_update(dev, true);
2302 }
2303
2304 /**
2305 * pci_d3cold_enable - Enable D3cold for device
2306 * @dev: PCI device to handle
2307 *
2308 * This function can be used in drivers to enable D3cold from the device
2309 * they handle. It also updates upstream PCI bridge PM capabilities
2310 * accordingly.
2311 */
2312 void pci_d3cold_enable(struct pci_dev *dev)
2313 {
2314 if (dev->no_d3cold) {
2315 dev->no_d3cold = false;
2316 pci_bridge_d3_device_changed(dev);
2317 }
2318 }
2319 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2320
2321 /**
2322 * pci_d3cold_disable - Disable D3cold for device
2323 * @dev: PCI device to handle
2324 *
2325 * This function can be used in drivers to disable D3cold from the device
2326 * they handle. It also updates upstream PCI bridge PM capabilities
2327 * accordingly.
2328 */
2329 void pci_d3cold_disable(struct pci_dev *dev)
2330 {
2331 if (!dev->no_d3cold) {
2332 dev->no_d3cold = true;
2333 pci_bridge_d3_device_changed(dev);
2334 }
2335 }
2336 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2337
2338 /**
2339 * pci_pm_init - Initialize PM functions of given PCI device
2340 * @dev: PCI device to handle.
2341 */
2342 void pci_pm_init(struct pci_dev *dev)
2343 {
2344 int pm;
2345 u16 pmc;
2346
2347 pm_runtime_forbid(&dev->dev);
2348 pm_runtime_set_active(&dev->dev);
2349 pm_runtime_enable(&dev->dev);
2350 device_enable_async_suspend(&dev->dev);
2351 dev->wakeup_prepared = false;
2352
2353 dev->pm_cap = 0;
2354 dev->pme_support = 0;
2355
2356 /* find PCI PM capability in list */
2357 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2358 if (!pm)
2359 return;
2360 /* Check device's ability to generate PME# */
2361 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2362
2363 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2364 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2365 pmc & PCI_PM_CAP_VER_MASK);
2366 return;
2367 }
2368
2369 dev->pm_cap = pm;
2370 dev->d3_delay = PCI_PM_D3_WAIT;
2371 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2372 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2373 dev->d3cold_allowed = true;
2374
2375 dev->d1_support = false;
2376 dev->d2_support = false;
2377 if (!pci_no_d1d2(dev)) {
2378 if (pmc & PCI_PM_CAP_D1)
2379 dev->d1_support = true;
2380 if (pmc & PCI_PM_CAP_D2)
2381 dev->d2_support = true;
2382
2383 if (dev->d1_support || dev->d2_support)
2384 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2385 dev->d1_support ? " D1" : "",
2386 dev->d2_support ? " D2" : "");
2387 }
2388
2389 pmc &= PCI_PM_CAP_PME_MASK;
2390 if (pmc) {
2391 dev_printk(KERN_DEBUG, &dev->dev,
2392 "PME# supported from%s%s%s%s%s\n",
2393 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2394 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2395 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2396 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2397 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2398 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2399 dev->pme_poll = true;
2400 /*
2401 * Make device's PM flags reflect the wake-up capability, but
2402 * let the user space enable it to wake up the system as needed.
2403 */
2404 device_set_wakeup_capable(&dev->dev, true);
2405 /* Disable the PME# generation functionality */
2406 pci_pme_active(dev, false);
2407 }
2408 }
2409
2410 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2411 {
2412 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2413
2414 switch (prop) {
2415 case PCI_EA_P_MEM:
2416 case PCI_EA_P_VF_MEM:
2417 flags |= IORESOURCE_MEM;
2418 break;
2419 case PCI_EA_P_MEM_PREFETCH:
2420 case PCI_EA_P_VF_MEM_PREFETCH:
2421 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2422 break;
2423 case PCI_EA_P_IO:
2424 flags |= IORESOURCE_IO;
2425 break;
2426 default:
2427 return 0;
2428 }
2429
2430 return flags;
2431 }
2432
2433 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2434 u8 prop)
2435 {
2436 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2437 return &dev->resource[bei];
2438 #ifdef CONFIG_PCI_IOV
2439 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2440 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2441 return &dev->resource[PCI_IOV_RESOURCES +
2442 bei - PCI_EA_BEI_VF_BAR0];
2443 #endif
2444 else if (bei == PCI_EA_BEI_ROM)
2445 return &dev->resource[PCI_ROM_RESOURCE];
2446 else
2447 return NULL;
2448 }
2449
2450 /* Read an Enhanced Allocation (EA) entry */
2451 static int pci_ea_read(struct pci_dev *dev, int offset)
2452 {
2453 struct resource *res;
2454 int ent_size, ent_offset = offset;
2455 resource_size_t start, end;
2456 unsigned long flags;
2457 u32 dw0, bei, base, max_offset;
2458 u8 prop;
2459 bool support_64 = (sizeof(resource_size_t) >= 8);
2460
2461 pci_read_config_dword(dev, ent_offset, &dw0);
2462 ent_offset += 4;
2463
2464 /* Entry size field indicates DWORDs after 1st */
2465 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2466
2467 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2468 goto out;
2469
2470 bei = (dw0 & PCI_EA_BEI) >> 4;
2471 prop = (dw0 & PCI_EA_PP) >> 8;
2472
2473 /*
2474 * If the Property is in the reserved range, try the Secondary
2475 * Property instead.
2476 */
2477 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2478 prop = (dw0 & PCI_EA_SP) >> 16;
2479 if (prop > PCI_EA_P_BRIDGE_IO)
2480 goto out;
2481
2482 res = pci_ea_get_resource(dev, bei, prop);
2483 if (!res) {
2484 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2485 goto out;
2486 }
2487
2488 flags = pci_ea_flags(dev, prop);
2489 if (!flags) {
2490 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2491 goto out;
2492 }
2493
2494 /* Read Base */
2495 pci_read_config_dword(dev, ent_offset, &base);
2496 start = (base & PCI_EA_FIELD_MASK);
2497 ent_offset += 4;
2498
2499 /* Read MaxOffset */
2500 pci_read_config_dword(dev, ent_offset, &max_offset);
2501 ent_offset += 4;
2502
2503 /* Read Base MSBs (if 64-bit entry) */
2504 if (base & PCI_EA_IS_64) {
2505 u32 base_upper;
2506
2507 pci_read_config_dword(dev, ent_offset, &base_upper);
2508 ent_offset += 4;
2509
2510 flags |= IORESOURCE_MEM_64;
2511
2512 /* entry starts above 32-bit boundary, can't use */
2513 if (!support_64 && base_upper)
2514 goto out;
2515
2516 if (support_64)
2517 start |= ((u64)base_upper << 32);
2518 }
2519
2520 end = start + (max_offset | 0x03);
2521
2522 /* Read MaxOffset MSBs (if 64-bit entry) */
2523 if (max_offset & PCI_EA_IS_64) {
2524 u32 max_offset_upper;
2525
2526 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2527 ent_offset += 4;
2528
2529 flags |= IORESOURCE_MEM_64;
2530
2531 /* entry too big, can't use */
2532 if (!support_64 && max_offset_upper)
2533 goto out;
2534
2535 if (support_64)
2536 end += ((u64)max_offset_upper << 32);
2537 }
2538
2539 if (end < start) {
2540 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2541 goto out;
2542 }
2543
2544 if (ent_size != ent_offset - offset) {
2545 dev_err(&dev->dev,
2546 "EA Entry Size (%d) does not match length read (%d)\n",
2547 ent_size, ent_offset - offset);
2548 goto out;
2549 }
2550
2551 res->name = pci_name(dev);
2552 res->start = start;
2553 res->end = end;
2554 res->flags = flags;
2555
2556 if (bei <= PCI_EA_BEI_BAR5)
2557 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2558 bei, res, prop);
2559 else if (bei == PCI_EA_BEI_ROM)
2560 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2561 res, prop);
2562 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2563 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2564 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2565 else
2566 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2567 bei, res, prop);
2568
2569 out:
2570 return offset + ent_size;
2571 }
2572
2573 /* Enhanced Allocation Initialization */
2574 void pci_ea_init(struct pci_dev *dev)
2575 {
2576 int ea;
2577 u8 num_ent;
2578 int offset;
2579 int i;
2580
2581 /* find PCI EA capability in list */
2582 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2583 if (!ea)
2584 return;
2585
2586 /* determine the number of entries */
2587 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2588 &num_ent);
2589 num_ent &= PCI_EA_NUM_ENT_MASK;
2590
2591 offset = ea + PCI_EA_FIRST_ENT;
2592
2593 /* Skip DWORD 2 for type 1 functions */
2594 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2595 offset += 4;
2596
2597 /* parse each EA entry */
2598 for (i = 0; i < num_ent; ++i)
2599 offset = pci_ea_read(dev, offset);
2600 }
2601
2602 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2603 struct pci_cap_saved_state *new_cap)
2604 {
2605 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2606 }
2607
2608 /**
2609 * _pci_add_cap_save_buffer - allocate buffer for saving given
2610 * capability registers
2611 * @dev: the PCI device
2612 * @cap: the capability to allocate the buffer for
2613 * @extended: Standard or Extended capability ID
2614 * @size: requested size of the buffer
2615 */
2616 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2617 bool extended, unsigned int size)
2618 {
2619 int pos;
2620 struct pci_cap_saved_state *save_state;
2621
2622 if (extended)
2623 pos = pci_find_ext_capability(dev, cap);
2624 else
2625 pos = pci_find_capability(dev, cap);
2626
2627 if (!pos)
2628 return 0;
2629
2630 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2631 if (!save_state)
2632 return -ENOMEM;
2633
2634 save_state->cap.cap_nr = cap;
2635 save_state->cap.cap_extended = extended;
2636 save_state->cap.size = size;
2637 pci_add_saved_cap(dev, save_state);
2638
2639 return 0;
2640 }
2641
2642 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2643 {
2644 return _pci_add_cap_save_buffer(dev, cap, false, size);
2645 }
2646
2647 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2648 {
2649 return _pci_add_cap_save_buffer(dev, cap, true, size);
2650 }
2651
2652 /**
2653 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2654 * @dev: the PCI device
2655 */
2656 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2657 {
2658 int error;
2659
2660 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2661 PCI_EXP_SAVE_REGS * sizeof(u16));
2662 if (error)
2663 dev_err(&dev->dev,
2664 "unable to preallocate PCI Express save buffer\n");
2665
2666 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2667 if (error)
2668 dev_err(&dev->dev,
2669 "unable to preallocate PCI-X save buffer\n");
2670
2671 pci_allocate_vc_save_buffers(dev);
2672 }
2673
2674 void pci_free_cap_save_buffers(struct pci_dev *dev)
2675 {
2676 struct pci_cap_saved_state *tmp;
2677 struct hlist_node *n;
2678
2679 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2680 kfree(tmp);
2681 }
2682
2683 /**
2684 * pci_configure_ari - enable or disable ARI forwarding
2685 * @dev: the PCI device
2686 *
2687 * If @dev and its upstream bridge both support ARI, enable ARI in the
2688 * bridge. Otherwise, disable ARI in the bridge.
2689 */
2690 void pci_configure_ari(struct pci_dev *dev)
2691 {
2692 u32 cap;
2693 struct pci_dev *bridge;
2694
2695 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2696 return;
2697
2698 bridge = dev->bus->self;
2699 if (!bridge)
2700 return;
2701
2702 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2703 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2704 return;
2705
2706 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2707 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2708 PCI_EXP_DEVCTL2_ARI);
2709 bridge->ari_enabled = 1;
2710 } else {
2711 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2712 PCI_EXP_DEVCTL2_ARI);
2713 bridge->ari_enabled = 0;
2714 }
2715 }
2716
2717 static int pci_acs_enable;
2718
2719 /**
2720 * pci_request_acs - ask for ACS to be enabled if supported
2721 */
2722 void pci_request_acs(void)
2723 {
2724 pci_acs_enable = 1;
2725 }
2726
2727 /**
2728 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2729 * @dev: the PCI device
2730 */
2731 static void pci_std_enable_acs(struct pci_dev *dev)
2732 {
2733 int pos;
2734 u16 cap;
2735 u16 ctrl;
2736
2737 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2738 if (!pos)
2739 return;
2740
2741 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2742 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2743
2744 /* Source Validation */
2745 ctrl |= (cap & PCI_ACS_SV);
2746
2747 /* P2P Request Redirect */
2748 ctrl |= (cap & PCI_ACS_RR);
2749
2750 /* P2P Completion Redirect */
2751 ctrl |= (cap & PCI_ACS_CR);
2752
2753 /* Upstream Forwarding */
2754 ctrl |= (cap & PCI_ACS_UF);
2755
2756 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2757 }
2758
2759 /**
2760 * pci_enable_acs - enable ACS if hardware support it
2761 * @dev: the PCI device
2762 */
2763 void pci_enable_acs(struct pci_dev *dev)
2764 {
2765 if (!pci_acs_enable)
2766 return;
2767
2768 if (!pci_dev_specific_enable_acs(dev))
2769 return;
2770
2771 pci_std_enable_acs(dev);
2772 }
2773
2774 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2775 {
2776 int pos;
2777 u16 cap, ctrl;
2778
2779 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2780 if (!pos)
2781 return false;
2782
2783 /*
2784 * Except for egress control, capabilities are either required
2785 * or only required if controllable. Features missing from the
2786 * capability field can therefore be assumed as hard-wired enabled.
2787 */
2788 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2789 acs_flags &= (cap | PCI_ACS_EC);
2790
2791 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2792 return (ctrl & acs_flags) == acs_flags;
2793 }
2794
2795 /**
2796 * pci_acs_enabled - test ACS against required flags for a given device
2797 * @pdev: device to test
2798 * @acs_flags: required PCI ACS flags
2799 *
2800 * Return true if the device supports the provided flags. Automatically
2801 * filters out flags that are not implemented on multifunction devices.
2802 *
2803 * Note that this interface checks the effective ACS capabilities of the
2804 * device rather than the actual capabilities. For instance, most single
2805 * function endpoints are not required to support ACS because they have no
2806 * opportunity for peer-to-peer access. We therefore return 'true'
2807 * regardless of whether the device exposes an ACS capability. This makes
2808 * it much easier for callers of this function to ignore the actual type
2809 * or topology of the device when testing ACS support.
2810 */
2811 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2812 {
2813 int ret;
2814
2815 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2816 if (ret >= 0)
2817 return ret > 0;
2818
2819 /*
2820 * Conventional PCI and PCI-X devices never support ACS, either
2821 * effectively or actually. The shared bus topology implies that
2822 * any device on the bus can receive or snoop DMA.
2823 */
2824 if (!pci_is_pcie(pdev))
2825 return false;
2826
2827 switch (pci_pcie_type(pdev)) {
2828 /*
2829 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2830 * but since their primary interface is PCI/X, we conservatively
2831 * handle them as we would a non-PCIe device.
2832 */
2833 case PCI_EXP_TYPE_PCIE_BRIDGE:
2834 /*
2835 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2836 * applicable... must never implement an ACS Extended Capability...".
2837 * This seems arbitrary, but we take a conservative interpretation
2838 * of this statement.
2839 */
2840 case PCI_EXP_TYPE_PCI_BRIDGE:
2841 case PCI_EXP_TYPE_RC_EC:
2842 return false;
2843 /*
2844 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2845 * implement ACS in order to indicate their peer-to-peer capabilities,
2846 * regardless of whether they are single- or multi-function devices.
2847 */
2848 case PCI_EXP_TYPE_DOWNSTREAM:
2849 case PCI_EXP_TYPE_ROOT_PORT:
2850 return pci_acs_flags_enabled(pdev, acs_flags);
2851 /*
2852 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2853 * implemented by the remaining PCIe types to indicate peer-to-peer
2854 * capabilities, but only when they are part of a multifunction
2855 * device. The footnote for section 6.12 indicates the specific
2856 * PCIe types included here.
2857 */
2858 case PCI_EXP_TYPE_ENDPOINT:
2859 case PCI_EXP_TYPE_UPSTREAM:
2860 case PCI_EXP_TYPE_LEG_END:
2861 case PCI_EXP_TYPE_RC_END:
2862 if (!pdev->multifunction)
2863 break;
2864
2865 return pci_acs_flags_enabled(pdev, acs_flags);
2866 }
2867
2868 /*
2869 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2870 * to single function devices with the exception of downstream ports.
2871 */
2872 return true;
2873 }
2874
2875 /**
2876 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2877 * @start: starting downstream device
2878 * @end: ending upstream device or NULL to search to the root bus
2879 * @acs_flags: required flags
2880 *
2881 * Walk up a device tree from start to end testing PCI ACS support. If
2882 * any step along the way does not support the required flags, return false.
2883 */
2884 bool pci_acs_path_enabled(struct pci_dev *start,
2885 struct pci_dev *end, u16 acs_flags)
2886 {
2887 struct pci_dev *pdev, *parent = start;
2888
2889 do {
2890 pdev = parent;
2891
2892 if (!pci_acs_enabled(pdev, acs_flags))
2893 return false;
2894
2895 if (pci_is_root_bus(pdev->bus))
2896 return (end == NULL);
2897
2898 parent = pdev->bus->self;
2899 } while (pdev != end);
2900
2901 return true;
2902 }
2903
2904 /**
2905 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2906 * @dev: the PCI device
2907 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2908 *
2909 * Perform INTx swizzling for a device behind one level of bridge. This is
2910 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2911 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2912 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2913 * the PCI Express Base Specification, Revision 2.1)
2914 */
2915 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2916 {
2917 int slot;
2918
2919 if (pci_ari_enabled(dev->bus))
2920 slot = 0;
2921 else
2922 slot = PCI_SLOT(dev->devfn);
2923
2924 return (((pin - 1) + slot) % 4) + 1;
2925 }
2926
2927 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2928 {
2929 u8 pin;
2930
2931 pin = dev->pin;
2932 if (!pin)
2933 return -1;
2934
2935 while (!pci_is_root_bus(dev->bus)) {
2936 pin = pci_swizzle_interrupt_pin(dev, pin);
2937 dev = dev->bus->self;
2938 }
2939 *bridge = dev;
2940 return pin;
2941 }
2942
2943 /**
2944 * pci_common_swizzle - swizzle INTx all the way to root bridge
2945 * @dev: the PCI device
2946 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2947 *
2948 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2949 * bridges all the way up to a PCI root bus.
2950 */
2951 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2952 {
2953 u8 pin = *pinp;
2954
2955 while (!pci_is_root_bus(dev->bus)) {
2956 pin = pci_swizzle_interrupt_pin(dev, pin);
2957 dev = dev->bus->self;
2958 }
2959 *pinp = pin;
2960 return PCI_SLOT(dev->devfn);
2961 }
2962 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2963
2964 /**
2965 * pci_release_region - Release a PCI bar
2966 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2967 * @bar: BAR to release
2968 *
2969 * Releases the PCI I/O and memory resources previously reserved by a
2970 * successful call to pci_request_region. Call this function only
2971 * after all use of the PCI regions has ceased.
2972 */
2973 void pci_release_region(struct pci_dev *pdev, int bar)
2974 {
2975 struct pci_devres *dr;
2976
2977 if (pci_resource_len(pdev, bar) == 0)
2978 return;
2979 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2980 release_region(pci_resource_start(pdev, bar),
2981 pci_resource_len(pdev, bar));
2982 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2983 release_mem_region(pci_resource_start(pdev, bar),
2984 pci_resource_len(pdev, bar));
2985
2986 dr = find_pci_dr(pdev);
2987 if (dr)
2988 dr->region_mask &= ~(1 << bar);
2989 }
2990 EXPORT_SYMBOL(pci_release_region);
2991
2992 /**
2993 * __pci_request_region - Reserved PCI I/O and memory resource
2994 * @pdev: PCI device whose resources are to be reserved
2995 * @bar: BAR to be reserved
2996 * @res_name: Name to be associated with resource.
2997 * @exclusive: whether the region access is exclusive or not
2998 *
2999 * Mark the PCI region associated with PCI device @pdev BR @bar as
3000 * being reserved by owner @res_name. Do not access any
3001 * address inside the PCI regions unless this call returns
3002 * successfully.
3003 *
3004 * If @exclusive is set, then the region is marked so that userspace
3005 * is explicitly not allowed to map the resource via /dev/mem or
3006 * sysfs MMIO access.
3007 *
3008 * Returns 0 on success, or %EBUSY on error. A warning
3009 * message is also printed on failure.
3010 */
3011 static int __pci_request_region(struct pci_dev *pdev, int bar,
3012 const char *res_name, int exclusive)
3013 {
3014 struct pci_devres *dr;
3015
3016 if (pci_resource_len(pdev, bar) == 0)
3017 return 0;
3018
3019 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3020 if (!request_region(pci_resource_start(pdev, bar),
3021 pci_resource_len(pdev, bar), res_name))
3022 goto err_out;
3023 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3024 if (!__request_mem_region(pci_resource_start(pdev, bar),
3025 pci_resource_len(pdev, bar), res_name,
3026 exclusive))
3027 goto err_out;
3028 }
3029
3030 dr = find_pci_dr(pdev);
3031 if (dr)
3032 dr->region_mask |= 1 << bar;
3033
3034 return 0;
3035
3036 err_out:
3037 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3038 &pdev->resource[bar]);
3039 return -EBUSY;
3040 }
3041
3042 /**
3043 * pci_request_region - Reserve PCI I/O and memory resource
3044 * @pdev: PCI device whose resources are to be reserved
3045 * @bar: BAR to be reserved
3046 * @res_name: Name to be associated with resource
3047 *
3048 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3049 * being reserved by owner @res_name. Do not access any
3050 * address inside the PCI regions unless this call returns
3051 * successfully.
3052 *
3053 * Returns 0 on success, or %EBUSY on error. A warning
3054 * message is also printed on failure.
3055 */
3056 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3057 {
3058 return __pci_request_region(pdev, bar, res_name, 0);
3059 }
3060 EXPORT_SYMBOL(pci_request_region);
3061
3062 /**
3063 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3064 * @pdev: PCI device whose resources are to be reserved
3065 * @bar: BAR to be reserved
3066 * @res_name: Name to be associated with resource.
3067 *
3068 * Mark the PCI region associated with PCI device @pdev BR @bar as
3069 * being reserved by owner @res_name. Do not access any
3070 * address inside the PCI regions unless this call returns
3071 * successfully.
3072 *
3073 * Returns 0 on success, or %EBUSY on error. A warning
3074 * message is also printed on failure.
3075 *
3076 * The key difference that _exclusive makes it that userspace is
3077 * explicitly not allowed to map the resource via /dev/mem or
3078 * sysfs.
3079 */
3080 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3081 const char *res_name)
3082 {
3083 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3084 }
3085 EXPORT_SYMBOL(pci_request_region_exclusive);
3086
3087 /**
3088 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3089 * @pdev: PCI device whose resources were previously reserved
3090 * @bars: Bitmask of BARs to be released
3091 *
3092 * Release selected PCI I/O and memory resources previously reserved.
3093 * Call this function only after all use of the PCI regions has ceased.
3094 */
3095 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3096 {
3097 int i;
3098
3099 for (i = 0; i < 6; i++)
3100 if (bars & (1 << i))
3101 pci_release_region(pdev, i);
3102 }
3103 EXPORT_SYMBOL(pci_release_selected_regions);
3104
3105 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3106 const char *res_name, int excl)
3107 {
3108 int i;
3109
3110 for (i = 0; i < 6; i++)
3111 if (bars & (1 << i))
3112 if (__pci_request_region(pdev, i, res_name, excl))
3113 goto err_out;
3114 return 0;
3115
3116 err_out:
3117 while (--i >= 0)
3118 if (bars & (1 << i))
3119 pci_release_region(pdev, i);
3120
3121 return -EBUSY;
3122 }
3123
3124
3125 /**
3126 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3127 * @pdev: PCI device whose resources are to be reserved
3128 * @bars: Bitmask of BARs to be requested
3129 * @res_name: Name to be associated with resource
3130 */
3131 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3132 const char *res_name)
3133 {
3134 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3135 }
3136 EXPORT_SYMBOL(pci_request_selected_regions);
3137
3138 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3139 const char *res_name)
3140 {
3141 return __pci_request_selected_regions(pdev, bars, res_name,
3142 IORESOURCE_EXCLUSIVE);
3143 }
3144 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3145
3146 /**
3147 * pci_release_regions - Release reserved PCI I/O and memory resources
3148 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3149 *
3150 * Releases all PCI I/O and memory resources previously reserved by a
3151 * successful call to pci_request_regions. Call this function only
3152 * after all use of the PCI regions has ceased.
3153 */
3154
3155 void pci_release_regions(struct pci_dev *pdev)
3156 {
3157 pci_release_selected_regions(pdev, (1 << 6) - 1);
3158 }
3159 EXPORT_SYMBOL(pci_release_regions);
3160
3161 /**
3162 * pci_request_regions - Reserved PCI I/O and memory resources
3163 * @pdev: PCI device whose resources are to be reserved
3164 * @res_name: Name to be associated with resource.
3165 *
3166 * Mark all PCI regions associated with PCI device @pdev as
3167 * being reserved by owner @res_name. Do not access any
3168 * address inside the PCI regions unless this call returns
3169 * successfully.
3170 *
3171 * Returns 0 on success, or %EBUSY on error. A warning
3172 * message is also printed on failure.
3173 */
3174 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3175 {
3176 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3177 }
3178 EXPORT_SYMBOL(pci_request_regions);
3179
3180 /**
3181 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3182 * @pdev: PCI device whose resources are to be reserved
3183 * @res_name: Name to be associated with resource.
3184 *
3185 * Mark all PCI regions associated with PCI device @pdev as
3186 * being reserved by owner @res_name. Do not access any
3187 * address inside the PCI regions unless this call returns
3188 * successfully.
3189 *
3190 * pci_request_regions_exclusive() will mark the region so that
3191 * /dev/mem and the sysfs MMIO access will not be allowed.
3192 *
3193 * Returns 0 on success, or %EBUSY on error. A warning
3194 * message is also printed on failure.
3195 */
3196 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3197 {
3198 return pci_request_selected_regions_exclusive(pdev,
3199 ((1 << 6) - 1), res_name);
3200 }
3201 EXPORT_SYMBOL(pci_request_regions_exclusive);
3202
3203 #ifdef PCI_IOBASE
3204 struct io_range {
3205 struct list_head list;
3206 phys_addr_t start;
3207 resource_size_t size;
3208 };
3209
3210 static LIST_HEAD(io_range_list);
3211 static DEFINE_SPINLOCK(io_range_lock);
3212 #endif
3213
3214 /*
3215 * Record the PCI IO range (expressed as CPU physical address + size).
3216 * Return a negative value if an error has occured, zero otherwise
3217 */
3218 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3219 {
3220 int err = 0;
3221
3222 #ifdef PCI_IOBASE
3223 struct io_range *range;
3224 resource_size_t allocated_size = 0;
3225
3226 /* check if the range hasn't been previously recorded */
3227 spin_lock(&io_range_lock);
3228 list_for_each_entry(range, &io_range_list, list) {
3229 if (addr >= range->start && addr + size <= range->start + size) {
3230 /* range already registered, bail out */
3231 goto end_register;
3232 }
3233 allocated_size += range->size;
3234 }
3235
3236 /* range not registed yet, check for available space */
3237 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3238 /* if it's too big check if 64K space can be reserved */
3239 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3240 err = -E2BIG;
3241 goto end_register;
3242 }
3243
3244 size = SZ_64K;
3245 pr_warn("Requested IO range too big, new size set to 64K\n");
3246 }
3247
3248 /* add the range to the list */
3249 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3250 if (!range) {
3251 err = -ENOMEM;
3252 goto end_register;
3253 }
3254
3255 range->start = addr;
3256 range->size = size;
3257
3258 list_add_tail(&range->list, &io_range_list);
3259
3260 end_register:
3261 spin_unlock(&io_range_lock);
3262 #endif
3263
3264 return err;
3265 }
3266
3267 phys_addr_t pci_pio_to_address(unsigned long pio)
3268 {
3269 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3270
3271 #ifdef PCI_IOBASE
3272 struct io_range *range;
3273 resource_size_t allocated_size = 0;
3274
3275 if (pio > IO_SPACE_LIMIT)
3276 return address;
3277
3278 spin_lock(&io_range_lock);
3279 list_for_each_entry(range, &io_range_list, list) {
3280 if (pio >= allocated_size && pio < allocated_size + range->size) {
3281 address = range->start + pio - allocated_size;
3282 break;
3283 }
3284 allocated_size += range->size;
3285 }
3286 spin_unlock(&io_range_lock);
3287 #endif
3288
3289 return address;
3290 }
3291
3292 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3293 {
3294 #ifdef PCI_IOBASE
3295 struct io_range *res;
3296 resource_size_t offset = 0;
3297 unsigned long addr = -1;
3298
3299 spin_lock(&io_range_lock);
3300 list_for_each_entry(res, &io_range_list, list) {
3301 if (address >= res->start && address < res->start + res->size) {
3302 addr = address - res->start + offset;
3303 break;
3304 }
3305 offset += res->size;
3306 }
3307 spin_unlock(&io_range_lock);
3308
3309 return addr;
3310 #else
3311 if (address > IO_SPACE_LIMIT)
3312 return (unsigned long)-1;
3313
3314 return (unsigned long) address;
3315 #endif
3316 }
3317
3318 /**
3319 * pci_remap_iospace - Remap the memory mapped I/O space
3320 * @res: Resource describing the I/O space
3321 * @phys_addr: physical address of range to be mapped
3322 *
3323 * Remap the memory mapped I/O space described by the @res
3324 * and the CPU physical address @phys_addr into virtual address space.
3325 * Only architectures that have memory mapped IO functions defined
3326 * (and the PCI_IOBASE value defined) should call this function.
3327 */
3328 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3329 {
3330 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3331 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3332
3333 if (!(res->flags & IORESOURCE_IO))
3334 return -EINVAL;
3335
3336 if (res->end > IO_SPACE_LIMIT)
3337 return -EINVAL;
3338
3339 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3340 pgprot_device(PAGE_KERNEL));
3341 #else
3342 /* this architecture does not have memory mapped I/O space,
3343 so this function should never be called */
3344 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3345 return -ENODEV;
3346 #endif
3347 }
3348
3349 /**
3350 * pci_unmap_iospace - Unmap the memory mapped I/O space
3351 * @res: resource to be unmapped
3352 *
3353 * Unmap the CPU virtual address @res from virtual address space.
3354 * Only architectures that have memory mapped IO functions defined
3355 * (and the PCI_IOBASE value defined) should call this function.
3356 */
3357 void pci_unmap_iospace(struct resource *res)
3358 {
3359 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3360 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3361
3362 unmap_kernel_range(vaddr, resource_size(res));
3363 #endif
3364 }
3365
3366 static void __pci_set_master(struct pci_dev *dev, bool enable)
3367 {
3368 u16 old_cmd, cmd;
3369
3370 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3371 if (enable)
3372 cmd = old_cmd | PCI_COMMAND_MASTER;
3373 else
3374 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3375 if (cmd != old_cmd) {
3376 dev_dbg(&dev->dev, "%s bus mastering\n",
3377 enable ? "enabling" : "disabling");
3378 pci_write_config_word(dev, PCI_COMMAND, cmd);
3379 }
3380 dev->is_busmaster = enable;
3381 }
3382
3383 /**
3384 * pcibios_setup - process "pci=" kernel boot arguments
3385 * @str: string used to pass in "pci=" kernel boot arguments
3386 *
3387 * Process kernel boot arguments. This is the default implementation.
3388 * Architecture specific implementations can override this as necessary.
3389 */
3390 char * __weak __init pcibios_setup(char *str)
3391 {
3392 return str;
3393 }
3394
3395 /**
3396 * pcibios_set_master - enable PCI bus-mastering for device dev
3397 * @dev: the PCI device to enable
3398 *
3399 * Enables PCI bus-mastering for the device. This is the default
3400 * implementation. Architecture specific implementations can override
3401 * this if necessary.
3402 */
3403 void __weak pcibios_set_master(struct pci_dev *dev)
3404 {
3405 u8 lat;
3406
3407 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3408 if (pci_is_pcie(dev))
3409 return;
3410
3411 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3412 if (lat < 16)
3413 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3414 else if (lat > pcibios_max_latency)
3415 lat = pcibios_max_latency;
3416 else
3417 return;
3418
3419 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3420 }
3421
3422 /**
3423 * pci_set_master - enables bus-mastering for device dev
3424 * @dev: the PCI device to enable
3425 *
3426 * Enables bus-mastering on the device and calls pcibios_set_master()
3427 * to do the needed arch specific settings.
3428 */
3429 void pci_set_master(struct pci_dev *dev)
3430 {
3431 __pci_set_master(dev, true);
3432 pcibios_set_master(dev);
3433 }
3434 EXPORT_SYMBOL(pci_set_master);
3435
3436 /**
3437 * pci_clear_master - disables bus-mastering for device dev
3438 * @dev: the PCI device to disable
3439 */
3440 void pci_clear_master(struct pci_dev *dev)
3441 {
3442 __pci_set_master(dev, false);
3443 }
3444 EXPORT_SYMBOL(pci_clear_master);
3445
3446 /**
3447 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3448 * @dev: the PCI device for which MWI is to be enabled
3449 *
3450 * Helper function for pci_set_mwi.
3451 * Originally copied from drivers/net/acenic.c.
3452 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3453 *
3454 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3455 */
3456 int pci_set_cacheline_size(struct pci_dev *dev)
3457 {
3458 u8 cacheline_size;
3459
3460 if (!pci_cache_line_size)
3461 return -EINVAL;
3462
3463 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3464 equal to or multiple of the right value. */
3465 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3466 if (cacheline_size >= pci_cache_line_size &&
3467 (cacheline_size % pci_cache_line_size) == 0)
3468 return 0;
3469
3470 /* Write the correct value. */
3471 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3472 /* Read it back. */
3473 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3474 if (cacheline_size == pci_cache_line_size)
3475 return 0;
3476
3477 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3478 pci_cache_line_size << 2);
3479
3480 return -EINVAL;
3481 }
3482 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3483
3484 /**
3485 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3486 * @dev: the PCI device for which MWI is enabled
3487 *
3488 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3489 *
3490 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3491 */
3492 int pci_set_mwi(struct pci_dev *dev)
3493 {
3494 #ifdef PCI_DISABLE_MWI
3495 return 0;
3496 #else
3497 int rc;
3498 u16 cmd;
3499
3500 rc = pci_set_cacheline_size(dev);
3501 if (rc)
3502 return rc;
3503
3504 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3505 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3506 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3507 cmd |= PCI_COMMAND_INVALIDATE;
3508 pci_write_config_word(dev, PCI_COMMAND, cmd);
3509 }
3510 return 0;
3511 #endif
3512 }
3513 EXPORT_SYMBOL(pci_set_mwi);
3514
3515 /**
3516 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3517 * @dev: the PCI device for which MWI is enabled
3518 *
3519 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3520 * Callers are not required to check the return value.
3521 *
3522 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3523 */
3524 int pci_try_set_mwi(struct pci_dev *dev)
3525 {
3526 #ifdef PCI_DISABLE_MWI
3527 return 0;
3528 #else
3529 return pci_set_mwi(dev);
3530 #endif
3531 }
3532 EXPORT_SYMBOL(pci_try_set_mwi);
3533
3534 /**
3535 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3536 * @dev: the PCI device to disable
3537 *
3538 * Disables PCI Memory-Write-Invalidate transaction on the device
3539 */
3540 void pci_clear_mwi(struct pci_dev *dev)
3541 {
3542 #ifndef PCI_DISABLE_MWI
3543 u16 cmd;
3544
3545 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3546 if (cmd & PCI_COMMAND_INVALIDATE) {
3547 cmd &= ~PCI_COMMAND_INVALIDATE;
3548 pci_write_config_word(dev, PCI_COMMAND, cmd);
3549 }
3550 #endif
3551 }
3552 EXPORT_SYMBOL(pci_clear_mwi);
3553
3554 /**
3555 * pci_intx - enables/disables PCI INTx for device dev
3556 * @pdev: the PCI device to operate on
3557 * @enable: boolean: whether to enable or disable PCI INTx
3558 *
3559 * Enables/disables PCI INTx for device dev
3560 */
3561 void pci_intx(struct pci_dev *pdev, int enable)
3562 {
3563 u16 pci_command, new;
3564
3565 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3566
3567 if (enable)
3568 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3569 else
3570 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3571
3572 if (new != pci_command) {
3573 struct pci_devres *dr;
3574
3575 pci_write_config_word(pdev, PCI_COMMAND, new);
3576
3577 dr = find_pci_dr(pdev);
3578 if (dr && !dr->restore_intx) {
3579 dr->restore_intx = 1;
3580 dr->orig_intx = !enable;
3581 }
3582 }
3583 }
3584 EXPORT_SYMBOL_GPL(pci_intx);
3585
3586 /**
3587 * pci_intx_mask_supported - probe for INTx masking support
3588 * @dev: the PCI device to operate on
3589 *
3590 * Check if the device dev support INTx masking via the config space
3591 * command word.
3592 */
3593 bool pci_intx_mask_supported(struct pci_dev *dev)
3594 {
3595 bool mask_supported = false;
3596 u16 orig, new;
3597
3598 if (dev->broken_intx_masking)
3599 return false;
3600
3601 pci_cfg_access_lock(dev);
3602
3603 pci_read_config_word(dev, PCI_COMMAND, &orig);
3604 pci_write_config_word(dev, PCI_COMMAND,
3605 orig ^ PCI_COMMAND_INTX_DISABLE);
3606 pci_read_config_word(dev, PCI_COMMAND, &new);
3607
3608 /*
3609 * There's no way to protect against hardware bugs or detect them
3610 * reliably, but as long as we know what the value should be, let's
3611 * go ahead and check it.
3612 */
3613 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3614 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3615 orig, new);
3616 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3617 mask_supported = true;
3618 pci_write_config_word(dev, PCI_COMMAND, orig);
3619 }
3620
3621 pci_cfg_access_unlock(dev);
3622 return mask_supported;
3623 }
3624 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3625
3626 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3627 {
3628 struct pci_bus *bus = dev->bus;
3629 bool mask_updated = true;
3630 u32 cmd_status_dword;
3631 u16 origcmd, newcmd;
3632 unsigned long flags;
3633 bool irq_pending;
3634
3635 /*
3636 * We do a single dword read to retrieve both command and status.
3637 * Document assumptions that make this possible.
3638 */
3639 BUILD_BUG_ON(PCI_COMMAND % 4);
3640 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3641
3642 raw_spin_lock_irqsave(&pci_lock, flags);
3643
3644 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3645
3646 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3647
3648 /*
3649 * Check interrupt status register to see whether our device
3650 * triggered the interrupt (when masking) or the next IRQ is
3651 * already pending (when unmasking).
3652 */
3653 if (mask != irq_pending) {
3654 mask_updated = false;
3655 goto done;
3656 }
3657
3658 origcmd = cmd_status_dword;
3659 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3660 if (mask)
3661 newcmd |= PCI_COMMAND_INTX_DISABLE;
3662 if (newcmd != origcmd)
3663 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3664
3665 done:
3666 raw_spin_unlock_irqrestore(&pci_lock, flags);
3667
3668 return mask_updated;
3669 }
3670
3671 /**
3672 * pci_check_and_mask_intx - mask INTx on pending interrupt
3673 * @dev: the PCI device to operate on
3674 *
3675 * Check if the device dev has its INTx line asserted, mask it and
3676 * return true in that case. False is returned if not interrupt was
3677 * pending.
3678 */
3679 bool pci_check_and_mask_intx(struct pci_dev *dev)
3680 {
3681 return pci_check_and_set_intx_mask(dev, true);
3682 }
3683 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3684
3685 /**
3686 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3687 * @dev: the PCI device to operate on
3688 *
3689 * Check if the device dev has its INTx line asserted, unmask it if not
3690 * and return true. False is returned and the mask remains active if
3691 * there was still an interrupt pending.
3692 */
3693 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3694 {
3695 return pci_check_and_set_intx_mask(dev, false);
3696 }
3697 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3698
3699 /**
3700 * pci_wait_for_pending_transaction - waits for pending transaction
3701 * @dev: the PCI device to operate on
3702 *
3703 * Return 0 if transaction is pending 1 otherwise.
3704 */
3705 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3706 {
3707 if (!pci_is_pcie(dev))
3708 return 1;
3709
3710 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3711 PCI_EXP_DEVSTA_TRPND);
3712 }
3713 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3714
3715 /*
3716 * We should only need to wait 100ms after FLR, but some devices take longer.
3717 * Wait for up to 1000ms for config space to return something other than -1.
3718 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3719 * dword because VFs don't implement the 1st dword.
3720 */
3721 static void pci_flr_wait(struct pci_dev *dev)
3722 {
3723 int i = 0;
3724 u32 id;
3725
3726 do {
3727 msleep(100);
3728 pci_read_config_dword(dev, PCI_COMMAND, &id);
3729 } while (i++ < 10 && id == ~0);
3730
3731 if (id == ~0)
3732 dev_warn(&dev->dev, "Failed to return from FLR\n");
3733 else if (i > 1)
3734 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3735 (i - 1) * 100);
3736 }
3737
3738 static int pcie_flr(struct pci_dev *dev, int probe)
3739 {
3740 u32 cap;
3741
3742 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3743 if (!(cap & PCI_EXP_DEVCAP_FLR))
3744 return -ENOTTY;
3745
3746 if (probe)
3747 return 0;
3748
3749 if (!pci_wait_for_pending_transaction(dev))
3750 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3751
3752 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3753 pci_flr_wait(dev);
3754 return 0;
3755 }
3756
3757 static int pci_af_flr(struct pci_dev *dev, int probe)
3758 {
3759 int pos;
3760 u8 cap;
3761
3762 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3763 if (!pos)
3764 return -ENOTTY;
3765
3766 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3767 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3768 return -ENOTTY;
3769
3770 if (probe)
3771 return 0;
3772
3773 /*
3774 * Wait for Transaction Pending bit to clear. A word-aligned test
3775 * is used, so we use the conrol offset rather than status and shift
3776 * the test bit to match.
3777 */
3778 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3779 PCI_AF_STATUS_TP << 8))
3780 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3781
3782 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3783 pci_flr_wait(dev);
3784 return 0;
3785 }
3786
3787 /**
3788 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3789 * @dev: Device to reset.
3790 * @probe: If set, only check if the device can be reset this way.
3791 *
3792 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3793 * unset, it will be reinitialized internally when going from PCI_D3hot to
3794 * PCI_D0. If that's the case and the device is not in a low-power state
3795 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3796 *
3797 * NOTE: This causes the caller to sleep for twice the device power transition
3798 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3799 * by default (i.e. unless the @dev's d3_delay field has a different value).
3800 * Moreover, only devices in D0 can be reset by this function.
3801 */
3802 static int pci_pm_reset(struct pci_dev *dev, int probe)
3803 {
3804 u16 csr;
3805
3806 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3807 return -ENOTTY;
3808
3809 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3810 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3811 return -ENOTTY;
3812
3813 if (probe)
3814 return 0;
3815
3816 if (dev->current_state != PCI_D0)
3817 return -EINVAL;
3818
3819 csr &= ~PCI_PM_CTRL_STATE_MASK;
3820 csr |= PCI_D3hot;
3821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3822 pci_dev_d3_sleep(dev);
3823
3824 csr &= ~PCI_PM_CTRL_STATE_MASK;
3825 csr |= PCI_D0;
3826 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3827 pci_dev_d3_sleep(dev);
3828
3829 return 0;
3830 }
3831
3832 void pci_reset_secondary_bus(struct pci_dev *dev)
3833 {
3834 u16 ctrl;
3835
3836 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3837 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3838 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3839 /*
3840 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3841 * this to 2ms to ensure that we meet the minimum requirement.
3842 */
3843 msleep(2);
3844
3845 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3846 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3847
3848 /*
3849 * Trhfa for conventional PCI is 2^25 clock cycles.
3850 * Assuming a minimum 33MHz clock this results in a 1s
3851 * delay before we can consider subordinate devices to
3852 * be re-initialized. PCIe has some ways to shorten this,
3853 * but we don't make use of them yet.
3854 */
3855 ssleep(1);
3856 }
3857
3858 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3859 {
3860 pci_reset_secondary_bus(dev);
3861 }
3862
3863 /**
3864 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3865 * @dev: Bridge device
3866 *
3867 * Use the bridge control register to assert reset on the secondary bus.
3868 * Devices on the secondary bus are left in power-on state.
3869 */
3870 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3871 {
3872 pcibios_reset_secondary_bus(dev);
3873 }
3874 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3875
3876 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3877 {
3878 struct pci_dev *pdev;
3879
3880 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3881 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3882 return -ENOTTY;
3883
3884 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3885 if (pdev != dev)
3886 return -ENOTTY;
3887
3888 if (probe)
3889 return 0;
3890
3891 pci_reset_bridge_secondary_bus(dev->bus->self);
3892
3893 return 0;
3894 }
3895
3896 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3897 {
3898 int rc = -ENOTTY;
3899
3900 if (!hotplug || !try_module_get(hotplug->ops->owner))
3901 return rc;
3902
3903 if (hotplug->ops->reset_slot)
3904 rc = hotplug->ops->reset_slot(hotplug, probe);
3905
3906 module_put(hotplug->ops->owner);
3907
3908 return rc;
3909 }
3910
3911 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3912 {
3913 struct pci_dev *pdev;
3914
3915 if (dev->subordinate || !dev->slot ||
3916 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3917 return -ENOTTY;
3918
3919 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3920 if (pdev != dev && pdev->slot == dev->slot)
3921 return -ENOTTY;
3922
3923 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3924 }
3925
3926 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3927 {
3928 int rc;
3929
3930 might_sleep();
3931
3932 rc = pci_dev_specific_reset(dev, probe);
3933 if (rc != -ENOTTY)
3934 goto done;
3935
3936 rc = pcie_flr(dev, probe);
3937 if (rc != -ENOTTY)
3938 goto done;
3939
3940 rc = pci_af_flr(dev, probe);
3941 if (rc != -ENOTTY)
3942 goto done;
3943
3944 rc = pci_pm_reset(dev, probe);
3945 if (rc != -ENOTTY)
3946 goto done;
3947
3948 rc = pci_dev_reset_slot_function(dev, probe);
3949 if (rc != -ENOTTY)
3950 goto done;
3951
3952 rc = pci_parent_bus_reset(dev, probe);
3953 done:
3954 return rc;
3955 }
3956
3957 static void pci_dev_lock(struct pci_dev *dev)
3958 {
3959 pci_cfg_access_lock(dev);
3960 /* block PM suspend, driver probe, etc. */
3961 device_lock(&dev->dev);
3962 }
3963
3964 /* Return 1 on successful lock, 0 on contention */
3965 static int pci_dev_trylock(struct pci_dev *dev)
3966 {
3967 if (pci_cfg_access_trylock(dev)) {
3968 if (device_trylock(&dev->dev))
3969 return 1;
3970 pci_cfg_access_unlock(dev);
3971 }
3972
3973 return 0;
3974 }
3975
3976 static void pci_dev_unlock(struct pci_dev *dev)
3977 {
3978 device_unlock(&dev->dev);
3979 pci_cfg_access_unlock(dev);
3980 }
3981
3982 /**
3983 * pci_reset_notify - notify device driver of reset
3984 * @dev: device to be notified of reset
3985 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3986 * completed
3987 *
3988 * Must be called prior to device access being disabled and after device
3989 * access is restored.
3990 */
3991 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3992 {
3993 const struct pci_error_handlers *err_handler =
3994 dev->driver ? dev->driver->err_handler : NULL;
3995 if (err_handler && err_handler->reset_notify)
3996 err_handler->reset_notify(dev, prepare);
3997 }
3998
3999 static void pci_dev_save_and_disable(struct pci_dev *dev)
4000 {
4001 pci_reset_notify(dev, true);
4002
4003 /*
4004 * Wake-up device prior to save. PM registers default to D0 after
4005 * reset and a simple register restore doesn't reliably return
4006 * to a non-D0 state anyway.
4007 */
4008 pci_set_power_state(dev, PCI_D0);
4009
4010 pci_save_state(dev);
4011 /*
4012 * Disable the device by clearing the Command register, except for
4013 * INTx-disable which is set. This not only disables MMIO and I/O port
4014 * BARs, but also prevents the device from being Bus Master, preventing
4015 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4016 * compliant devices, INTx-disable prevents legacy interrupts.
4017 */
4018 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4019 }
4020
4021 static void pci_dev_restore(struct pci_dev *dev)
4022 {
4023 pci_restore_state(dev);
4024 pci_reset_notify(dev, false);
4025 }
4026
4027 static int pci_dev_reset(struct pci_dev *dev, int probe)
4028 {
4029 int rc;
4030
4031 if (!probe)
4032 pci_dev_lock(dev);
4033
4034 rc = __pci_dev_reset(dev, probe);
4035
4036 if (!probe)
4037 pci_dev_unlock(dev);
4038
4039 return rc;
4040 }
4041
4042 /**
4043 * __pci_reset_function - reset a PCI device function
4044 * @dev: PCI device to reset
4045 *
4046 * Some devices allow an individual function to be reset without affecting
4047 * other functions in the same device. The PCI device must be responsive
4048 * to PCI config space in order to use this function.
4049 *
4050 * The device function is presumed to be unused when this function is called.
4051 * Resetting the device will make the contents of PCI configuration space
4052 * random, so any caller of this must be prepared to reinitialise the
4053 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4054 * etc.
4055 *
4056 * Returns 0 if the device function was successfully reset or negative if the
4057 * device doesn't support resetting a single function.
4058 */
4059 int __pci_reset_function(struct pci_dev *dev)
4060 {
4061 return pci_dev_reset(dev, 0);
4062 }
4063 EXPORT_SYMBOL_GPL(__pci_reset_function);
4064
4065 /**
4066 * __pci_reset_function_locked - reset a PCI device function while holding
4067 * the @dev mutex lock.
4068 * @dev: PCI device to reset
4069 *
4070 * Some devices allow an individual function to be reset without affecting
4071 * other functions in the same device. The PCI device must be responsive
4072 * to PCI config space in order to use this function.
4073 *
4074 * The device function is presumed to be unused and the caller is holding
4075 * the device mutex lock when this function is called.
4076 * Resetting the device will make the contents of PCI configuration space
4077 * random, so any caller of this must be prepared to reinitialise the
4078 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4079 * etc.
4080 *
4081 * Returns 0 if the device function was successfully reset or negative if the
4082 * device doesn't support resetting a single function.
4083 */
4084 int __pci_reset_function_locked(struct pci_dev *dev)
4085 {
4086 return __pci_dev_reset(dev, 0);
4087 }
4088 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4089
4090 /**
4091 * pci_probe_reset_function - check whether the device can be safely reset
4092 * @dev: PCI device to reset
4093 *
4094 * Some devices allow an individual function to be reset without affecting
4095 * other functions in the same device. The PCI device must be responsive
4096 * to PCI config space in order to use this function.
4097 *
4098 * Returns 0 if the device function can be reset or negative if the
4099 * device doesn't support resetting a single function.
4100 */
4101 int pci_probe_reset_function(struct pci_dev *dev)
4102 {
4103 return pci_dev_reset(dev, 1);
4104 }
4105
4106 /**
4107 * pci_reset_function - quiesce and reset a PCI device function
4108 * @dev: PCI device to reset
4109 *
4110 * Some devices allow an individual function to be reset without affecting
4111 * other functions in the same device. The PCI device must be responsive
4112 * to PCI config space in order to use this function.
4113 *
4114 * This function does not just reset the PCI portion of a device, but
4115 * clears all the state associated with the device. This function differs
4116 * from __pci_reset_function in that it saves and restores device state
4117 * over the reset.
4118 *
4119 * Returns 0 if the device function was successfully reset or negative if the
4120 * device doesn't support resetting a single function.
4121 */
4122 int pci_reset_function(struct pci_dev *dev)
4123 {
4124 int rc;
4125
4126 rc = pci_dev_reset(dev, 1);
4127 if (rc)
4128 return rc;
4129
4130 pci_dev_save_and_disable(dev);
4131
4132 rc = pci_dev_reset(dev, 0);
4133
4134 pci_dev_restore(dev);
4135
4136 return rc;
4137 }
4138 EXPORT_SYMBOL_GPL(pci_reset_function);
4139
4140 /**
4141 * pci_try_reset_function - quiesce and reset a PCI device function
4142 * @dev: PCI device to reset
4143 *
4144 * Same as above, except return -EAGAIN if unable to lock device.
4145 */
4146 int pci_try_reset_function(struct pci_dev *dev)
4147 {
4148 int rc;
4149
4150 rc = pci_dev_reset(dev, 1);
4151 if (rc)
4152 return rc;
4153
4154 pci_dev_save_and_disable(dev);
4155
4156 if (pci_dev_trylock(dev)) {
4157 rc = __pci_dev_reset(dev, 0);
4158 pci_dev_unlock(dev);
4159 } else
4160 rc = -EAGAIN;
4161
4162 pci_dev_restore(dev);
4163
4164 return rc;
4165 }
4166 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4167
4168 /* Do any devices on or below this bus prevent a bus reset? */
4169 static bool pci_bus_resetable(struct pci_bus *bus)
4170 {
4171 struct pci_dev *dev;
4172
4173 list_for_each_entry(dev, &bus->devices, bus_list) {
4174 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4175 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4176 return false;
4177 }
4178
4179 return true;
4180 }
4181
4182 /* Lock devices from the top of the tree down */
4183 static void pci_bus_lock(struct pci_bus *bus)
4184 {
4185 struct pci_dev *dev;
4186
4187 list_for_each_entry(dev, &bus->devices, bus_list) {
4188 pci_dev_lock(dev);
4189 if (dev->subordinate)
4190 pci_bus_lock(dev->subordinate);
4191 }
4192 }
4193
4194 /* Unlock devices from the bottom of the tree up */
4195 static void pci_bus_unlock(struct pci_bus *bus)
4196 {
4197 struct pci_dev *dev;
4198
4199 list_for_each_entry(dev, &bus->devices, bus_list) {
4200 if (dev->subordinate)
4201 pci_bus_unlock(dev->subordinate);
4202 pci_dev_unlock(dev);
4203 }
4204 }
4205
4206 /* Return 1 on successful lock, 0 on contention */
4207 static int pci_bus_trylock(struct pci_bus *bus)
4208 {
4209 struct pci_dev *dev;
4210
4211 list_for_each_entry(dev, &bus->devices, bus_list) {
4212 if (!pci_dev_trylock(dev))
4213 goto unlock;
4214 if (dev->subordinate) {
4215 if (!pci_bus_trylock(dev->subordinate)) {
4216 pci_dev_unlock(dev);
4217 goto unlock;
4218 }
4219 }
4220 }
4221 return 1;
4222
4223 unlock:
4224 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4225 if (dev->subordinate)
4226 pci_bus_unlock(dev->subordinate);
4227 pci_dev_unlock(dev);
4228 }
4229 return 0;
4230 }
4231
4232 /* Do any devices on or below this slot prevent a bus reset? */
4233 static bool pci_slot_resetable(struct pci_slot *slot)
4234 {
4235 struct pci_dev *dev;
4236
4237 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4238 if (!dev->slot || dev->slot != slot)
4239 continue;
4240 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4241 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4242 return false;
4243 }
4244
4245 return true;
4246 }
4247
4248 /* Lock devices from the top of the tree down */
4249 static void pci_slot_lock(struct pci_slot *slot)
4250 {
4251 struct pci_dev *dev;
4252
4253 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4254 if (!dev->slot || dev->slot != slot)
4255 continue;
4256 pci_dev_lock(dev);
4257 if (dev->subordinate)
4258 pci_bus_lock(dev->subordinate);
4259 }
4260 }
4261
4262 /* Unlock devices from the bottom of the tree up */
4263 static void pci_slot_unlock(struct pci_slot *slot)
4264 {
4265 struct pci_dev *dev;
4266
4267 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4268 if (!dev->slot || dev->slot != slot)
4269 continue;
4270 if (dev->subordinate)
4271 pci_bus_unlock(dev->subordinate);
4272 pci_dev_unlock(dev);
4273 }
4274 }
4275
4276 /* Return 1 on successful lock, 0 on contention */
4277 static int pci_slot_trylock(struct pci_slot *slot)
4278 {
4279 struct pci_dev *dev;
4280
4281 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4282 if (!dev->slot || dev->slot != slot)
4283 continue;
4284 if (!pci_dev_trylock(dev))
4285 goto unlock;
4286 if (dev->subordinate) {
4287 if (!pci_bus_trylock(dev->subordinate)) {
4288 pci_dev_unlock(dev);
4289 goto unlock;
4290 }
4291 }
4292 }
4293 return 1;
4294
4295 unlock:
4296 list_for_each_entry_continue_reverse(dev,
4297 &slot->bus->devices, bus_list) {
4298 if (!dev->slot || dev->slot != slot)
4299 continue;
4300 if (dev->subordinate)
4301 pci_bus_unlock(dev->subordinate);
4302 pci_dev_unlock(dev);
4303 }
4304 return 0;
4305 }
4306
4307 /* Save and disable devices from the top of the tree down */
4308 static void pci_bus_save_and_disable(struct pci_bus *bus)
4309 {
4310 struct pci_dev *dev;
4311
4312 list_for_each_entry(dev, &bus->devices, bus_list) {
4313 pci_dev_save_and_disable(dev);
4314 if (dev->subordinate)
4315 pci_bus_save_and_disable(dev->subordinate);
4316 }
4317 }
4318
4319 /*
4320 * Restore devices from top of the tree down - parent bridges need to be
4321 * restored before we can get to subordinate devices.
4322 */
4323 static void pci_bus_restore(struct pci_bus *bus)
4324 {
4325 struct pci_dev *dev;
4326
4327 list_for_each_entry(dev, &bus->devices, bus_list) {
4328 pci_dev_restore(dev);
4329 if (dev->subordinate)
4330 pci_bus_restore(dev->subordinate);
4331 }
4332 }
4333
4334 /* Save and disable devices from the top of the tree down */
4335 static void pci_slot_save_and_disable(struct pci_slot *slot)
4336 {
4337 struct pci_dev *dev;
4338
4339 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4340 if (!dev->slot || dev->slot != slot)
4341 continue;
4342 pci_dev_save_and_disable(dev);
4343 if (dev->subordinate)
4344 pci_bus_save_and_disable(dev->subordinate);
4345 }
4346 }
4347
4348 /*
4349 * Restore devices from top of the tree down - parent bridges need to be
4350 * restored before we can get to subordinate devices.
4351 */
4352 static void pci_slot_restore(struct pci_slot *slot)
4353 {
4354 struct pci_dev *dev;
4355
4356 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4357 if (!dev->slot || dev->slot != slot)
4358 continue;
4359 pci_dev_restore(dev);
4360 if (dev->subordinate)
4361 pci_bus_restore(dev->subordinate);
4362 }
4363 }
4364
4365 static int pci_slot_reset(struct pci_slot *slot, int probe)
4366 {
4367 int rc;
4368
4369 if (!slot || !pci_slot_resetable(slot))
4370 return -ENOTTY;
4371
4372 if (!probe)
4373 pci_slot_lock(slot);
4374
4375 might_sleep();
4376
4377 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4378
4379 if (!probe)
4380 pci_slot_unlock(slot);
4381
4382 return rc;
4383 }
4384
4385 /**
4386 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4387 * @slot: PCI slot to probe
4388 *
4389 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4390 */
4391 int pci_probe_reset_slot(struct pci_slot *slot)
4392 {
4393 return pci_slot_reset(slot, 1);
4394 }
4395 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4396
4397 /**
4398 * pci_reset_slot - reset a PCI slot
4399 * @slot: PCI slot to reset
4400 *
4401 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4402 * independent of other slots. For instance, some slots may support slot power
4403 * control. In the case of a 1:1 bus to slot architecture, this function may
4404 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4405 * Generally a slot reset should be attempted before a bus reset. All of the
4406 * function of the slot and any subordinate buses behind the slot are reset
4407 * through this function. PCI config space of all devices in the slot and
4408 * behind the slot is saved before and restored after reset.
4409 *
4410 * Return 0 on success, non-zero on error.
4411 */
4412 int pci_reset_slot(struct pci_slot *slot)
4413 {
4414 int rc;
4415
4416 rc = pci_slot_reset(slot, 1);
4417 if (rc)
4418 return rc;
4419
4420 pci_slot_save_and_disable(slot);
4421
4422 rc = pci_slot_reset(slot, 0);
4423
4424 pci_slot_restore(slot);
4425
4426 return rc;
4427 }
4428 EXPORT_SYMBOL_GPL(pci_reset_slot);
4429
4430 /**
4431 * pci_try_reset_slot - Try to reset a PCI slot
4432 * @slot: PCI slot to reset
4433 *
4434 * Same as above except return -EAGAIN if the slot cannot be locked
4435 */
4436 int pci_try_reset_slot(struct pci_slot *slot)
4437 {
4438 int rc;
4439
4440 rc = pci_slot_reset(slot, 1);
4441 if (rc)
4442 return rc;
4443
4444 pci_slot_save_and_disable(slot);
4445
4446 if (pci_slot_trylock(slot)) {
4447 might_sleep();
4448 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4449 pci_slot_unlock(slot);
4450 } else
4451 rc = -EAGAIN;
4452
4453 pci_slot_restore(slot);
4454
4455 return rc;
4456 }
4457 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4458
4459 static int pci_bus_reset(struct pci_bus *bus, int probe)
4460 {
4461 if (!bus->self || !pci_bus_resetable(bus))
4462 return -ENOTTY;
4463
4464 if (probe)
4465 return 0;
4466
4467 pci_bus_lock(bus);
4468
4469 might_sleep();
4470
4471 pci_reset_bridge_secondary_bus(bus->self);
4472
4473 pci_bus_unlock(bus);
4474
4475 return 0;
4476 }
4477
4478 /**
4479 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4480 * @bus: PCI bus to probe
4481 *
4482 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4483 */
4484 int pci_probe_reset_bus(struct pci_bus *bus)
4485 {
4486 return pci_bus_reset(bus, 1);
4487 }
4488 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4489
4490 /**
4491 * pci_reset_bus - reset a PCI bus
4492 * @bus: top level PCI bus to reset
4493 *
4494 * Do a bus reset on the given bus and any subordinate buses, saving
4495 * and restoring state of all devices.
4496 *
4497 * Return 0 on success, non-zero on error.
4498 */
4499 int pci_reset_bus(struct pci_bus *bus)
4500 {
4501 int rc;
4502
4503 rc = pci_bus_reset(bus, 1);
4504 if (rc)
4505 return rc;
4506
4507 pci_bus_save_and_disable(bus);
4508
4509 rc = pci_bus_reset(bus, 0);
4510
4511 pci_bus_restore(bus);
4512
4513 return rc;
4514 }
4515 EXPORT_SYMBOL_GPL(pci_reset_bus);
4516
4517 /**
4518 * pci_try_reset_bus - Try to reset a PCI bus
4519 * @bus: top level PCI bus to reset
4520 *
4521 * Same as above except return -EAGAIN if the bus cannot be locked
4522 */
4523 int pci_try_reset_bus(struct pci_bus *bus)
4524 {
4525 int rc;
4526
4527 rc = pci_bus_reset(bus, 1);
4528 if (rc)
4529 return rc;
4530
4531 pci_bus_save_and_disable(bus);
4532
4533 if (pci_bus_trylock(bus)) {
4534 might_sleep();
4535 pci_reset_bridge_secondary_bus(bus->self);
4536 pci_bus_unlock(bus);
4537 } else
4538 rc = -EAGAIN;
4539
4540 pci_bus_restore(bus);
4541
4542 return rc;
4543 }
4544 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4545
4546 /**
4547 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4548 * @dev: PCI device to query
4549 *
4550 * Returns mmrbc: maximum designed memory read count in bytes
4551 * or appropriate error value.
4552 */
4553 int pcix_get_max_mmrbc(struct pci_dev *dev)
4554 {
4555 int cap;
4556 u32 stat;
4557
4558 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4559 if (!cap)
4560 return -EINVAL;
4561
4562 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4563 return -EINVAL;
4564
4565 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4566 }
4567 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4568
4569 /**
4570 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4571 * @dev: PCI device to query
4572 *
4573 * Returns mmrbc: maximum memory read count in bytes
4574 * or appropriate error value.
4575 */
4576 int pcix_get_mmrbc(struct pci_dev *dev)
4577 {
4578 int cap;
4579 u16 cmd;
4580
4581 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4582 if (!cap)
4583 return -EINVAL;
4584
4585 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4586 return -EINVAL;
4587
4588 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4589 }
4590 EXPORT_SYMBOL(pcix_get_mmrbc);
4591
4592 /**
4593 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4594 * @dev: PCI device to query
4595 * @mmrbc: maximum memory read count in bytes
4596 * valid values are 512, 1024, 2048, 4096
4597 *
4598 * If possible sets maximum memory read byte count, some bridges have erratas
4599 * that prevent this.
4600 */
4601 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4602 {
4603 int cap;
4604 u32 stat, v, o;
4605 u16 cmd;
4606
4607 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4608 return -EINVAL;
4609
4610 v = ffs(mmrbc) - 10;
4611
4612 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4613 if (!cap)
4614 return -EINVAL;
4615
4616 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4617 return -EINVAL;
4618
4619 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4620 return -E2BIG;
4621
4622 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4623 return -EINVAL;
4624
4625 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4626 if (o != v) {
4627 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4628 return -EIO;
4629
4630 cmd &= ~PCI_X_CMD_MAX_READ;
4631 cmd |= v << 2;
4632 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4633 return -EIO;
4634 }
4635 return 0;
4636 }
4637 EXPORT_SYMBOL(pcix_set_mmrbc);
4638
4639 /**
4640 * pcie_get_readrq - get PCI Express read request size
4641 * @dev: PCI device to query
4642 *
4643 * Returns maximum memory read request in bytes
4644 * or appropriate error value.
4645 */
4646 int pcie_get_readrq(struct pci_dev *dev)
4647 {
4648 u16 ctl;
4649
4650 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4651
4652 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4653 }
4654 EXPORT_SYMBOL(pcie_get_readrq);
4655
4656 /**
4657 * pcie_set_readrq - set PCI Express maximum memory read request
4658 * @dev: PCI device to query
4659 * @rq: maximum memory read count in bytes
4660 * valid values are 128, 256, 512, 1024, 2048, 4096
4661 *
4662 * If possible sets maximum memory read request in bytes
4663 */
4664 int pcie_set_readrq(struct pci_dev *dev, int rq)
4665 {
4666 u16 v;
4667
4668 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4669 return -EINVAL;
4670
4671 /*
4672 * If using the "performance" PCIe config, we clamp the
4673 * read rq size to the max packet size to prevent the
4674 * host bridge generating requests larger than we can
4675 * cope with
4676 */
4677 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4678 int mps = pcie_get_mps(dev);
4679
4680 if (mps < rq)
4681 rq = mps;
4682 }
4683
4684 v = (ffs(rq) - 8) << 12;
4685
4686 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4687 PCI_EXP_DEVCTL_READRQ, v);
4688 }
4689 EXPORT_SYMBOL(pcie_set_readrq);
4690
4691 /**
4692 * pcie_get_mps - get PCI Express maximum payload size
4693 * @dev: PCI device to query
4694 *
4695 * Returns maximum payload size in bytes
4696 */
4697 int pcie_get_mps(struct pci_dev *dev)
4698 {
4699 u16 ctl;
4700
4701 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4702
4703 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4704 }
4705 EXPORT_SYMBOL(pcie_get_mps);
4706
4707 /**
4708 * pcie_set_mps - set PCI Express maximum payload size
4709 * @dev: PCI device to query
4710 * @mps: maximum payload size in bytes
4711 * valid values are 128, 256, 512, 1024, 2048, 4096
4712 *
4713 * If possible sets maximum payload size
4714 */
4715 int pcie_set_mps(struct pci_dev *dev, int mps)
4716 {
4717 u16 v;
4718
4719 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4720 return -EINVAL;
4721
4722 v = ffs(mps) - 8;
4723 if (v > dev->pcie_mpss)
4724 return -EINVAL;
4725 v <<= 5;
4726
4727 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4728 PCI_EXP_DEVCTL_PAYLOAD, v);
4729 }
4730 EXPORT_SYMBOL(pcie_set_mps);
4731
4732 /**
4733 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4734 * @dev: PCI device to query
4735 * @speed: storage for minimum speed
4736 * @width: storage for minimum width
4737 *
4738 * This function will walk up the PCI device chain and determine the minimum
4739 * link width and speed of the device.
4740 */
4741 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4742 enum pcie_link_width *width)
4743 {
4744 int ret;
4745
4746 *speed = PCI_SPEED_UNKNOWN;
4747 *width = PCIE_LNK_WIDTH_UNKNOWN;
4748
4749 while (dev) {
4750 u16 lnksta;
4751 enum pci_bus_speed next_speed;
4752 enum pcie_link_width next_width;
4753
4754 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4755 if (ret)
4756 return ret;
4757
4758 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4759 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4760 PCI_EXP_LNKSTA_NLW_SHIFT;
4761
4762 if (next_speed < *speed)
4763 *speed = next_speed;
4764
4765 if (next_width < *width)
4766 *width = next_width;
4767
4768 dev = dev->bus->self;
4769 }
4770
4771 return 0;
4772 }
4773 EXPORT_SYMBOL(pcie_get_minimum_link);
4774
4775 /**
4776 * pci_select_bars - Make BAR mask from the type of resource
4777 * @dev: the PCI device for which BAR mask is made
4778 * @flags: resource type mask to be selected
4779 *
4780 * This helper routine makes bar mask from the type of resource.
4781 */
4782 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4783 {
4784 int i, bars = 0;
4785 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4786 if (pci_resource_flags(dev, i) & flags)
4787 bars |= (1 << i);
4788 return bars;
4789 }
4790 EXPORT_SYMBOL(pci_select_bars);
4791
4792 /**
4793 * pci_resource_bar - get position of the BAR associated with a resource
4794 * @dev: the PCI device
4795 * @resno: the resource number
4796 * @type: the BAR type to be filled in
4797 *
4798 * Returns BAR position in config space, or 0 if the BAR is invalid.
4799 */
4800 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4801 {
4802 int reg;
4803
4804 if (resno < PCI_ROM_RESOURCE) {
4805 *type = pci_bar_unknown;
4806 return PCI_BASE_ADDRESS_0 + 4 * resno;
4807 } else if (resno == PCI_ROM_RESOURCE) {
4808 *type = pci_bar_mem32;
4809 return dev->rom_base_reg;
4810 } else if (resno < PCI_BRIDGE_RESOURCES) {
4811 /* device specific resource */
4812 *type = pci_bar_unknown;
4813 reg = pci_iov_resource_bar(dev, resno);
4814 if (reg)
4815 return reg;
4816 }
4817
4818 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4819 return 0;
4820 }
4821
4822 /* Some architectures require additional programming to enable VGA */
4823 static arch_set_vga_state_t arch_set_vga_state;
4824
4825 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4826 {
4827 arch_set_vga_state = func; /* NULL disables */
4828 }
4829
4830 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4831 unsigned int command_bits, u32 flags)
4832 {
4833 if (arch_set_vga_state)
4834 return arch_set_vga_state(dev, decode, command_bits,
4835 flags);
4836 return 0;
4837 }
4838
4839 /**
4840 * pci_set_vga_state - set VGA decode state on device and parents if requested
4841 * @dev: the PCI device
4842 * @decode: true = enable decoding, false = disable decoding
4843 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4844 * @flags: traverse ancestors and change bridges
4845 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4846 */
4847 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4848 unsigned int command_bits, u32 flags)
4849 {
4850 struct pci_bus *bus;
4851 struct pci_dev *bridge;
4852 u16 cmd;
4853 int rc;
4854
4855 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4856
4857 /* ARCH specific VGA enables */
4858 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4859 if (rc)
4860 return rc;
4861
4862 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4863 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4864 if (decode == true)
4865 cmd |= command_bits;
4866 else
4867 cmd &= ~command_bits;
4868 pci_write_config_word(dev, PCI_COMMAND, cmd);
4869 }
4870
4871 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4872 return 0;
4873
4874 bus = dev->bus;
4875 while (bus) {
4876 bridge = bus->self;
4877 if (bridge) {
4878 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4879 &cmd);
4880 if (decode == true)
4881 cmd |= PCI_BRIDGE_CTL_VGA;
4882 else
4883 cmd &= ~PCI_BRIDGE_CTL_VGA;
4884 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4885 cmd);
4886 }
4887 bus = bus->parent;
4888 }
4889 return 0;
4890 }
4891
4892 /**
4893 * pci_add_dma_alias - Add a DMA devfn alias for a device
4894 * @dev: the PCI device for which alias is added
4895 * @devfn: alias slot and function
4896 *
4897 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4898 * It should be called early, preferably as PCI fixup header quirk.
4899 */
4900 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4901 {
4902 if (!dev->dma_alias_mask)
4903 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4904 sizeof(long), GFP_KERNEL);
4905 if (!dev->dma_alias_mask) {
4906 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4907 return;
4908 }
4909
4910 set_bit(devfn, dev->dma_alias_mask);
4911 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4912 PCI_SLOT(devfn), PCI_FUNC(devfn));
4913 }
4914
4915 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4916 {
4917 return (dev1->dma_alias_mask &&
4918 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4919 (dev2->dma_alias_mask &&
4920 test_bit(dev1->devfn, dev2->dma_alias_mask));
4921 }
4922
4923 bool pci_device_is_present(struct pci_dev *pdev)
4924 {
4925 u32 v;
4926
4927 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4928 }
4929 EXPORT_SYMBOL_GPL(pci_device_is_present);
4930
4931 void pci_ignore_hotplug(struct pci_dev *dev)
4932 {
4933 struct pci_dev *bridge = dev->bus->self;
4934
4935 dev->ignore_hotplug = 1;
4936 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4937 if (bridge)
4938 bridge->ignore_hotplug = 1;
4939 }
4940 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4941
4942 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4943 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4944 static DEFINE_SPINLOCK(resource_alignment_lock);
4945
4946 /**
4947 * pci_specified_resource_alignment - get resource alignment specified by user.
4948 * @dev: the PCI device to get
4949 *
4950 * RETURNS: Resource alignment if it is specified.
4951 * Zero if it is not specified.
4952 */
4953 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4954 {
4955 int seg, bus, slot, func, align_order, count;
4956 unsigned short vendor, device, subsystem_vendor, subsystem_device;
4957 resource_size_t align = 0;
4958 char *p;
4959
4960 spin_lock(&resource_alignment_lock);
4961 p = resource_alignment_param;
4962 while (*p) {
4963 count = 0;
4964 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4965 p[count] == '@') {
4966 p += count + 1;
4967 } else {
4968 align_order = -1;
4969 }
4970 if (strncmp(p, "pci:", 4) == 0) {
4971 /* PCI vendor/device (subvendor/subdevice) ids are specified */
4972 p += 4;
4973 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4974 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4975 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4976 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4977 p);
4978 break;
4979 }
4980 subsystem_vendor = subsystem_device = 0;
4981 }
4982 p += count;
4983 if ((!vendor || (vendor == dev->vendor)) &&
4984 (!device || (device == dev->device)) &&
4985 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
4986 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
4987 if (align_order == -1)
4988 align = PAGE_SIZE;
4989 else
4990 align = 1 << align_order;
4991 /* Found */
4992 break;
4993 }
4994 }
4995 else {
4996 if (sscanf(p, "%x:%x:%x.%x%n",
4997 &seg, &bus, &slot, &func, &count) != 4) {
4998 seg = 0;
4999 if (sscanf(p, "%x:%x.%x%n",
5000 &bus, &slot, &func, &count) != 3) {
5001 /* Invalid format */
5002 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5003 p);
5004 break;
5005 }
5006 }
5007 p += count;
5008 if (seg == pci_domain_nr(dev->bus) &&
5009 bus == dev->bus->number &&
5010 slot == PCI_SLOT(dev->devfn) &&
5011 func == PCI_FUNC(dev->devfn)) {
5012 if (align_order == -1)
5013 align = PAGE_SIZE;
5014 else
5015 align = 1 << align_order;
5016 /* Found */
5017 break;
5018 }
5019 }
5020 if (*p != ';' && *p != ',') {
5021 /* End of param or invalid format */
5022 break;
5023 }
5024 p++;
5025 }
5026 spin_unlock(&resource_alignment_lock);
5027 return align;
5028 }
5029
5030 /*
5031 * This function disables memory decoding and releases memory resources
5032 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5033 * It also rounds up size to specified alignment.
5034 * Later on, the kernel will assign page-aligned memory resource back
5035 * to the device.
5036 */
5037 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5038 {
5039 int i;
5040 struct resource *r;
5041 resource_size_t align, size;
5042 u16 command;
5043
5044 /* check if specified PCI is target device to reassign */
5045 align = pci_specified_resource_alignment(dev);
5046 if (!align)
5047 return;
5048
5049 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5050 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5051 dev_warn(&dev->dev,
5052 "Can't reassign resources to host bridge.\n");
5053 return;
5054 }
5055
5056 dev_info(&dev->dev,
5057 "Disabling memory decoding and releasing memory resources.\n");
5058 pci_read_config_word(dev, PCI_COMMAND, &command);
5059 command &= ~PCI_COMMAND_MEMORY;
5060 pci_write_config_word(dev, PCI_COMMAND, command);
5061
5062 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5063 r = &dev->resource[i];
5064 if (!(r->flags & IORESOURCE_MEM))
5065 continue;
5066 size = resource_size(r);
5067 if (size < align) {
5068 size = align;
5069 dev_info(&dev->dev,
5070 "Rounding up size of resource #%d to %#llx.\n",
5071 i, (unsigned long long)size);
5072 }
5073 r->flags |= IORESOURCE_UNSET;
5074 r->end = size - 1;
5075 r->start = 0;
5076 }
5077 /* Need to disable bridge's resource window,
5078 * to enable the kernel to reassign new resource
5079 * window later on.
5080 */
5081 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5082 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5083 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5084 r = &dev->resource[i];
5085 if (!(r->flags & IORESOURCE_MEM))
5086 continue;
5087 r->flags |= IORESOURCE_UNSET;
5088 r->end = resource_size(r) - 1;
5089 r->start = 0;
5090 }
5091 pci_disable_bridge_window(dev);
5092 }
5093 }
5094
5095 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5096 {
5097 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5098 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5099 spin_lock(&resource_alignment_lock);
5100 strncpy(resource_alignment_param, buf, count);
5101 resource_alignment_param[count] = '\0';
5102 spin_unlock(&resource_alignment_lock);
5103 return count;
5104 }
5105
5106 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5107 {
5108 size_t count;
5109 spin_lock(&resource_alignment_lock);
5110 count = snprintf(buf, size, "%s", resource_alignment_param);
5111 spin_unlock(&resource_alignment_lock);
5112 return count;
5113 }
5114
5115 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5116 {
5117 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5118 }
5119
5120 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5121 const char *buf, size_t count)
5122 {
5123 return pci_set_resource_alignment_param(buf, count);
5124 }
5125
5126 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5127 pci_resource_alignment_store);
5128
5129 static int __init pci_resource_alignment_sysfs_init(void)
5130 {
5131 return bus_create_file(&pci_bus_type,
5132 &bus_attr_resource_alignment);
5133 }
5134 late_initcall(pci_resource_alignment_sysfs_init);
5135
5136 static void pci_no_domains(void)
5137 {
5138 #ifdef CONFIG_PCI_DOMAINS
5139 pci_domains_supported = 0;
5140 #endif
5141 }
5142
5143 #ifdef CONFIG_PCI_DOMAINS
5144 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5145
5146 int pci_get_new_domain_nr(void)
5147 {
5148 return atomic_inc_return(&__domain_nr);
5149 }
5150
5151 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5152 static int of_pci_bus_find_domain_nr(struct device *parent)
5153 {
5154 static int use_dt_domains = -1;
5155 int domain = -1;
5156
5157 if (parent)
5158 domain = of_get_pci_domain_nr(parent->of_node);
5159 /*
5160 * Check DT domain and use_dt_domains values.
5161 *
5162 * If DT domain property is valid (domain >= 0) and
5163 * use_dt_domains != 0, the DT assignment is valid since this means
5164 * we have not previously allocated a domain number by using
5165 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5166 * 1, to indicate that we have just assigned a domain number from
5167 * DT.
5168 *
5169 * If DT domain property value is not valid (ie domain < 0), and we
5170 * have not previously assigned a domain number from DT
5171 * (use_dt_domains != 1) we should assign a domain number by
5172 * using the:
5173 *
5174 * pci_get_new_domain_nr()
5175 *
5176 * API and update the use_dt_domains value to keep track of method we
5177 * are using to assign domain numbers (use_dt_domains = 0).
5178 *
5179 * All other combinations imply we have a platform that is trying
5180 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5181 * which is a recipe for domain mishandling and it is prevented by
5182 * invalidating the domain value (domain = -1) and printing a
5183 * corresponding error.
5184 */
5185 if (domain >= 0 && use_dt_domains) {
5186 use_dt_domains = 1;
5187 } else if (domain < 0 && use_dt_domains != 1) {
5188 use_dt_domains = 0;
5189 domain = pci_get_new_domain_nr();
5190 } else {
5191 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5192 parent->of_node->full_name);
5193 domain = -1;
5194 }
5195
5196 return domain;
5197 }
5198
5199 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5200 {
5201 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5202 acpi_pci_bus_find_domain_nr(bus);
5203 }
5204 #endif
5205 #endif
5206
5207 /**
5208 * pci_ext_cfg_avail - can we access extended PCI config space?
5209 *
5210 * Returns 1 if we can access PCI extended config space (offsets
5211 * greater than 0xff). This is the default implementation. Architecture
5212 * implementations can override this.
5213 */
5214 int __weak pci_ext_cfg_avail(void)
5215 {
5216 return 1;
5217 }
5218
5219 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5220 {
5221 }
5222 EXPORT_SYMBOL(pci_fixup_cardbus);
5223
5224 static int __init pci_setup(char *str)
5225 {
5226 while (str) {
5227 char *k = strchr(str, ',');
5228 if (k)
5229 *k++ = 0;
5230 if (*str && (str = pcibios_setup(str)) && *str) {
5231 if (!strcmp(str, "nomsi")) {
5232 pci_no_msi();
5233 } else if (!strcmp(str, "noaer")) {
5234 pci_no_aer();
5235 } else if (!strncmp(str, "realloc=", 8)) {
5236 pci_realloc_get_opt(str + 8);
5237 } else if (!strncmp(str, "realloc", 7)) {
5238 pci_realloc_get_opt("on");
5239 } else if (!strcmp(str, "nodomains")) {
5240 pci_no_domains();
5241 } else if (!strncmp(str, "noari", 5)) {
5242 pcie_ari_disabled = true;
5243 } else if (!strncmp(str, "cbiosize=", 9)) {
5244 pci_cardbus_io_size = memparse(str + 9, &str);
5245 } else if (!strncmp(str, "cbmemsize=", 10)) {
5246 pci_cardbus_mem_size = memparse(str + 10, &str);
5247 } else if (!strncmp(str, "resource_alignment=", 19)) {
5248 pci_set_resource_alignment_param(str + 19,
5249 strlen(str + 19));
5250 } else if (!strncmp(str, "ecrc=", 5)) {
5251 pcie_ecrc_get_policy(str + 5);
5252 } else if (!strncmp(str, "hpiosize=", 9)) {
5253 pci_hotplug_io_size = memparse(str + 9, &str);
5254 } else if (!strncmp(str, "hpmemsize=", 10)) {
5255 pci_hotplug_mem_size = memparse(str + 10, &str);
5256 } else if (!strncmp(str, "hpbussize=", 10)) {
5257 pci_hotplug_bus_size =
5258 simple_strtoul(str + 10, &str, 0);
5259 if (pci_hotplug_bus_size > 0xff)
5260 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5261 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5262 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5263 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5264 pcie_bus_config = PCIE_BUS_SAFE;
5265 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5266 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5267 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5268 pcie_bus_config = PCIE_BUS_PEER2PEER;
5269 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5270 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5271 } else {
5272 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5273 str);
5274 }
5275 }
5276 str = k;
5277 }
5278 return 0;
5279 }
5280 early_param("pci", pci_setup);
This page took 0.143169 seconds and 5 git commands to generate.