drm/i915: report Gen5+ CPU and PCH FIFO underruns
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28
29 const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39
40 unsigned int pci_pm_d3_delay;
41
42 static void pci_pme_list_scan(struct work_struct *work);
43
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48 struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51 };
52
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63 }
64
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83 /*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91
92 /*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96 unsigned int pcibios_max_latency = 255;
97
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100
101 /**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->busn_res.end;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138
139 #define PCI_FIND_CAP_TTL 48
140
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 u8 pos, int cap, int *ttl)
143 {
144 u8 id;
145
146 while ((*ttl)--) {
147 pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 if (pos < 0x40)
149 break;
150 pos &= ~3;
151 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 &id);
153 if (id == 0xff)
154 break;
155 if (id == cap)
156 return pos;
157 pos += PCI_CAP_LIST_NEXT;
158 }
159 return 0;
160 }
161
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 u8 pos, int cap)
164 {
165 int ttl = PCI_FIND_CAP_TTL;
166
167 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 return __pci_find_next_cap(dev->bus, dev->devfn,
173 pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 unsigned int devfn, u8 hdr_type)
179 {
180 u16 status;
181
182 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 if (!(status & PCI_STATUS_CAP_LIST))
184 return 0;
185
186 switch (hdr_type) {
187 case PCI_HEADER_TYPE_NORMAL:
188 case PCI_HEADER_TYPE_BRIDGE:
189 return PCI_CAPABILITY_LIST;
190 case PCI_HEADER_TYPE_CARDBUS:
191 return PCI_CB_CAPABILITY_LIST;
192 default:
193 return 0;
194 }
195
196 return 0;
197 }
198
199 /**
200 * pci_find_capability - query for devices' capabilities
201 * @dev: PCI device to query
202 * @cap: capability code
203 *
204 * Tell if a device supports a given PCI capability.
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it. Possible values for @cap:
208 *
209 * %PCI_CAP_ID_PM Power Management
210 * %PCI_CAP_ID_AGP Accelerated Graphics Port
211 * %PCI_CAP_ID_VPD Vital Product Data
212 * %PCI_CAP_ID_SLOTID Slot Identification
213 * %PCI_CAP_ID_MSI Message Signalled Interrupts
214 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
215 * %PCI_CAP_ID_PCIX PCI-X
216 * %PCI_CAP_ID_EXP PCI Express
217 */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 int pos;
221
222 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 if (pos)
224 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225
226 return pos;
227 }
228
229 /**
230 * pci_bus_find_capability - query for devices' capabilities
231 * @bus: the PCI bus to query
232 * @devfn: PCI device to query
233 * @cap: capability code
234 *
235 * Like pci_find_capability() but works for pci devices that do not have a
236 * pci_dev structure set up yet.
237 *
238 * Returns the address of the requested capability structure within the
239 * device's PCI configuration space or 0 in case the device does not
240 * support it.
241 */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 int pos;
245 u8 hdr_type;
246
247 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248
249 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 if (pos)
251 pos = __pci_find_next_cap(bus, devfn, pos, cap);
252
253 return pos;
254 }
255
256 /**
257 * pci_find_next_ext_capability - Find an extended capability
258 * @dev: PCI device to query
259 * @start: address at which to start looking (0 to start at beginning of list)
260 * @cap: capability code
261 *
262 * Returns the address of the next matching extended capability structure
263 * within the device's PCI configuration space or 0 if the device does
264 * not support it. Some capabilities can occur several times, e.g., the
265 * vendor-specific capability, and this provides a way to find them all.
266 */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 u32 header;
270 int ttl;
271 int pos = PCI_CFG_SPACE_SIZE;
272
273 /* minimum 8 bytes per capability */
274 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275
276 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 return 0;
278
279 if (start)
280 pos = start;
281
282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 /*
286 * If we have no capabilities, this is indicated by cap ID,
287 * cap version and next pointer all being 0.
288 */
289 if (header == 0)
290 return 0;
291
292 while (ttl-- > 0) {
293 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 return pos;
295
296 pos = PCI_EXT_CAP_NEXT(header);
297 if (pos < PCI_CFG_SPACE_SIZE)
298 break;
299
300 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 break;
302 }
303
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307
308 /**
309 * pci_find_ext_capability - Find an extended capability
310 * @dev: PCI device to query
311 * @cap: capability code
312 *
313 * Returns the address of the requested extended capability structure
314 * within the device's PCI configuration space or 0 if the device does
315 * not support it. Possible values for @cap:
316 *
317 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
318 * %PCI_EXT_CAP_ID_VC Virtual Channel
319 * %PCI_EXT_CAP_ID_DSN Device Serial Number
320 * %PCI_EXT_CAP_ID_PWR Power Budgeting
321 */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 int rc, ttl = PCI_FIND_CAP_TTL;
331 u8 cap, mask;
332
333 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 mask = HT_3BIT_CAP_MASK;
335 else
336 mask = HT_5BIT_CAP_MASK;
337
338 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 PCI_CAP_ID_HT, &ttl);
340 while (pos) {
341 rc = pci_read_config_byte(dev, pos + 3, &cap);
342 if (rc != PCIBIOS_SUCCESSFUL)
343 return 0;
344
345 if ((cap & mask) == ht_cap)
346 return pos;
347
348 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 pos + PCI_CAP_LIST_NEXT,
350 PCI_CAP_ID_HT, &ttl);
351 }
352
353 return 0;
354 }
355 /**
356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357 * @dev: PCI device to query
358 * @pos: Position from which to continue searching
359 * @ht_cap: Hypertransport capability code
360 *
361 * To be used in conjunction with pci_find_ht_capability() to search for
362 * all capabilities matching @ht_cap. @pos should always be a value returned
363 * from pci_find_ht_capability().
364 *
365 * NB. To be 100% safe against broken PCI devices, the caller should take
366 * steps to avoid an infinite loop.
367 */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373
374 /**
375 * pci_find_ht_capability - query a device's Hypertransport capabilities
376 * @dev: PCI device to query
377 * @ht_cap: Hypertransport capability code
378 *
379 * Tell if a device supports a given Hypertransport capability.
380 * Returns an address within the device's PCI configuration space
381 * or 0 in case the device does not support the request capability.
382 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383 * which has a Hypertransport capability matching @ht_cap.
384 */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 int pos;
388
389 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 if (pos)
391 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392
393 return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396
397 /**
398 * pci_find_parent_resource - return resource region of parent bus of given region
399 * @dev: PCI device structure contains resources to be searched
400 * @res: child resource record for which parent is sought
401 *
402 * For given resource region of given device, return the resource
403 * region of parent bus the given region is contained in or where
404 * it should be allocated from.
405 */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 const struct pci_bus *bus = dev->bus;
410 int i;
411 struct resource *best = NULL, *r;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && !(res->start >= r->start && res->end <= r->end))
417 continue; /* Not contained */
418 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 continue; /* Wrong type */
420 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 return r; /* Exact match */
422 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 if (r->flags & IORESOURCE_PREFETCH)
424 continue;
425 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 if (!best)
427 best = r;
428 }
429 return best;
430 }
431
432 /**
433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434 * @dev: PCI device to have its BARs restored
435 *
436 * Restore the BAR values for a given device, so as to make it
437 * accessible by its driver.
438 */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 int i;
443
444 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 pci_update_resource(dev, i);
446 }
447
448 static struct pci_platform_pm_ops *pci_platform_pm;
449
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 || !ops->sleep_wake)
454 return -EINVAL;
455 pci_platform_pm = ops;
456 return 0;
457 }
458
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465 pci_power_t t)
466 {
467 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 return pci_platform_pm ?
473 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475
476 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
477 {
478 return pci_platform_pm ?
479 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
480 }
481
482 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
483 {
484 return pci_platform_pm ?
485 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
486 }
487
488 /**
489 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
490 * given PCI device
491 * @dev: PCI device to handle.
492 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
493 *
494 * RETURN VALUE:
495 * -EINVAL if the requested state is invalid.
496 * -EIO if device does not support PCI PM or its PM capabilities register has a
497 * wrong version, or device doesn't support the requested state.
498 * 0 if device already is in the requested state.
499 * 0 if device's power state has been successfully changed.
500 */
501 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
502 {
503 u16 pmcsr;
504 bool need_restore = false;
505
506 /* Check if we're already there */
507 if (dev->current_state == state)
508 return 0;
509
510 if (!dev->pm_cap)
511 return -EIO;
512
513 if (state < PCI_D0 || state > PCI_D3hot)
514 return -EINVAL;
515
516 /* Validate current state:
517 * Can enter D0 from any state, but if we can only go deeper
518 * to sleep if we're already in a low power state
519 */
520 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
521 && dev->current_state > state) {
522 dev_err(&dev->dev, "invalid power transition "
523 "(from state %d to %d)\n", dev->current_state, state);
524 return -EINVAL;
525 }
526
527 /* check if this device supports the desired state */
528 if ((state == PCI_D1 && !dev->d1_support)
529 || (state == PCI_D2 && !dev->d2_support))
530 return -EIO;
531
532 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
533
534 /* If we're (effectively) in D3, force entire word to 0.
535 * This doesn't affect PME_Status, disables PME_En, and
536 * sets PowerState to 0.
537 */
538 switch (dev->current_state) {
539 case PCI_D0:
540 case PCI_D1:
541 case PCI_D2:
542 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
543 pmcsr |= state;
544 break;
545 case PCI_D3hot:
546 case PCI_D3cold:
547 case PCI_UNKNOWN: /* Boot-up */
548 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
549 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
550 need_restore = true;
551 /* Fall-through: force to D0 */
552 default:
553 pmcsr = 0;
554 break;
555 }
556
557 /* enter specified state */
558 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
559
560 /* Mandatory power management transition delays */
561 /* see PCI PM 1.1 5.6.1 table 18 */
562 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
563 pci_dev_d3_sleep(dev);
564 else if (state == PCI_D2 || dev->current_state == PCI_D2)
565 udelay(PCI_PM_D2_DELAY);
566
567 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 if (dev->current_state != state && printk_ratelimit())
570 dev_info(&dev->dev, "Refused to change power state, "
571 "currently in D%d\n", dev->current_state);
572
573 /*
574 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
575 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
576 * from D3hot to D0 _may_ perform an internal reset, thereby
577 * going to "D0 Uninitialized" rather than "D0 Initialized".
578 * For example, at least some versions of the 3c905B and the
579 * 3c556B exhibit this behaviour.
580 *
581 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
582 * devices in a D3hot state at boot. Consequently, we need to
583 * restore at least the BARs so that the device will be
584 * accessible to its driver.
585 */
586 if (need_restore)
587 pci_restore_bars(dev);
588
589 if (dev->bus->self)
590 pcie_aspm_pm_state_change(dev->bus->self);
591
592 return 0;
593 }
594
595 /**
596 * pci_update_current_state - Read PCI power state of given device from its
597 * PCI PM registers and cache it
598 * @dev: PCI device to handle.
599 * @state: State to cache in case the device doesn't have the PM capability
600 */
601 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
602 {
603 if (dev->pm_cap) {
604 u16 pmcsr;
605
606 /*
607 * Configuration space is not accessible for device in
608 * D3cold, so just keep or set D3cold for safety
609 */
610 if (dev->current_state == PCI_D3cold)
611 return;
612 if (state == PCI_D3cold) {
613 dev->current_state = PCI_D3cold;
614 return;
615 }
616 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
617 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
618 } else {
619 dev->current_state = state;
620 }
621 }
622
623 /**
624 * pci_power_up - Put the given device into D0 forcibly
625 * @dev: PCI device to power up
626 */
627 void pci_power_up(struct pci_dev *dev)
628 {
629 if (platform_pci_power_manageable(dev))
630 platform_pci_set_power_state(dev, PCI_D0);
631
632 pci_raw_set_power_state(dev, PCI_D0);
633 pci_update_current_state(dev, PCI_D0);
634 }
635
636 /**
637 * pci_platform_power_transition - Use platform to change device power state
638 * @dev: PCI device to handle.
639 * @state: State to put the device into.
640 */
641 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
642 {
643 int error;
644
645 if (platform_pci_power_manageable(dev)) {
646 error = platform_pci_set_power_state(dev, state);
647 if (!error)
648 pci_update_current_state(dev, state);
649 /* Fall back to PCI_D0 if native PM is not supported */
650 if (!dev->pm_cap)
651 dev->current_state = PCI_D0;
652 } else {
653 error = -ENODEV;
654 /* Fall back to PCI_D0 if native PM is not supported */
655 if (!dev->pm_cap)
656 dev->current_state = PCI_D0;
657 }
658
659 return error;
660 }
661
662 /**
663 * __pci_start_power_transition - Start power transition of a PCI device
664 * @dev: PCI device to handle.
665 * @state: State to put the device into.
666 */
667 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
668 {
669 if (state == PCI_D0) {
670 pci_platform_power_transition(dev, PCI_D0);
671 /*
672 * Mandatory power management transition delays, see
673 * PCI Express Base Specification Revision 2.0 Section
674 * 6.6.1: Conventional Reset. Do not delay for
675 * devices powered on/off by corresponding bridge,
676 * because have already delayed for the bridge.
677 */
678 if (dev->runtime_d3cold) {
679 msleep(dev->d3cold_delay);
680 /*
681 * When powering on a bridge from D3cold, the
682 * whole hierarchy may be powered on into
683 * D0uninitialized state, resume them to give
684 * them a chance to suspend again
685 */
686 pci_wakeup_bus(dev->subordinate);
687 }
688 }
689 }
690
691 /**
692 * __pci_dev_set_current_state - Set current state of a PCI device
693 * @dev: Device to handle
694 * @data: pointer to state to be set
695 */
696 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
697 {
698 pci_power_t state = *(pci_power_t *)data;
699
700 dev->current_state = state;
701 return 0;
702 }
703
704 /**
705 * __pci_bus_set_current_state - Walk given bus and set current state of devices
706 * @bus: Top bus of the subtree to walk.
707 * @state: state to be set
708 */
709 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
710 {
711 if (bus)
712 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
713 }
714
715 /**
716 * __pci_complete_power_transition - Complete power transition of a PCI device
717 * @dev: PCI device to handle.
718 * @state: State to put the device into.
719 *
720 * This function should not be called directly by device drivers.
721 */
722 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
723 {
724 int ret;
725
726 if (state <= PCI_D0)
727 return -EINVAL;
728 ret = pci_platform_power_transition(dev, state);
729 /* Power off the bridge may power off the whole hierarchy */
730 if (!ret && state == PCI_D3cold)
731 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
732 return ret;
733 }
734 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
735
736 /**
737 * pci_set_power_state - Set the power state of a PCI device
738 * @dev: PCI device to handle.
739 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
740 *
741 * Transition a device to a new power state, using the platform firmware and/or
742 * the device's PCI PM registers.
743 *
744 * RETURN VALUE:
745 * -EINVAL if the requested state is invalid.
746 * -EIO if device does not support PCI PM or its PM capabilities register has a
747 * wrong version, or device doesn't support the requested state.
748 * 0 if device already is in the requested state.
749 * 0 if device's power state has been successfully changed.
750 */
751 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
752 {
753 int error;
754
755 /* bound the state we're entering */
756 if (state > PCI_D3cold)
757 state = PCI_D3cold;
758 else if (state < PCI_D0)
759 state = PCI_D0;
760 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
761 /*
762 * If the device or the parent bridge do not support PCI PM,
763 * ignore the request if we're doing anything other than putting
764 * it into D0 (which would only happen on boot).
765 */
766 return 0;
767
768 /* Check if we're already there */
769 if (dev->current_state == state)
770 return 0;
771
772 __pci_start_power_transition(dev, state);
773
774 /* This device is quirked not to be put into D3, so
775 don't put it in D3 */
776 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
777 return 0;
778
779 /*
780 * To put device in D3cold, we put device into D3hot in native
781 * way, then put device into D3cold with platform ops
782 */
783 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
784 PCI_D3hot : state);
785
786 if (!__pci_complete_power_transition(dev, state))
787 error = 0;
788 /*
789 * When aspm_policy is "powersave" this call ensures
790 * that ASPM is configured.
791 */
792 if (!error && dev->bus->self)
793 pcie_aspm_powersave_config_link(dev->bus->self);
794
795 return error;
796 }
797
798 /**
799 * pci_choose_state - Choose the power state of a PCI device
800 * @dev: PCI device to be suspended
801 * @state: target sleep state for the whole system. This is the value
802 * that is passed to suspend() function.
803 *
804 * Returns PCI power state suitable for given device and given system
805 * message.
806 */
807
808 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
809 {
810 pci_power_t ret;
811
812 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
813 return PCI_D0;
814
815 ret = platform_pci_choose_state(dev);
816 if (ret != PCI_POWER_ERROR)
817 return ret;
818
819 switch (state.event) {
820 case PM_EVENT_ON:
821 return PCI_D0;
822 case PM_EVENT_FREEZE:
823 case PM_EVENT_PRETHAW:
824 /* REVISIT both freeze and pre-thaw "should" use D0 */
825 case PM_EVENT_SUSPEND:
826 case PM_EVENT_HIBERNATE:
827 return PCI_D3hot;
828 default:
829 dev_info(&dev->dev, "unrecognized suspend event %d\n",
830 state.event);
831 BUG();
832 }
833 return PCI_D0;
834 }
835
836 EXPORT_SYMBOL(pci_choose_state);
837
838 #define PCI_EXP_SAVE_REGS 7
839
840
841 static struct pci_cap_saved_state *pci_find_saved_cap(
842 struct pci_dev *pci_dev, char cap)
843 {
844 struct pci_cap_saved_state *tmp;
845
846 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
847 if (tmp->cap.cap_nr == cap)
848 return tmp;
849 }
850 return NULL;
851 }
852
853 static int pci_save_pcie_state(struct pci_dev *dev)
854 {
855 int i = 0;
856 struct pci_cap_saved_state *save_state;
857 u16 *cap;
858
859 if (!pci_is_pcie(dev))
860 return 0;
861
862 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
863 if (!save_state) {
864 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
865 return -ENOMEM;
866 }
867
868 cap = (u16 *)&save_state->cap.data[0];
869 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
870 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
871 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
872 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
873 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
874 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
875 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
876
877 return 0;
878 }
879
880 static void pci_restore_pcie_state(struct pci_dev *dev)
881 {
882 int i = 0;
883 struct pci_cap_saved_state *save_state;
884 u16 *cap;
885
886 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
887 if (!save_state)
888 return;
889
890 cap = (u16 *)&save_state->cap.data[0];
891 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
892 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
893 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
894 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
895 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
896 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
897 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
898 }
899
900
901 static int pci_save_pcix_state(struct pci_dev *dev)
902 {
903 int pos;
904 struct pci_cap_saved_state *save_state;
905
906 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
907 if (pos <= 0)
908 return 0;
909
910 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
911 if (!save_state) {
912 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
913 return -ENOMEM;
914 }
915
916 pci_read_config_word(dev, pos + PCI_X_CMD,
917 (u16 *)save_state->cap.data);
918
919 return 0;
920 }
921
922 static void pci_restore_pcix_state(struct pci_dev *dev)
923 {
924 int i = 0, pos;
925 struct pci_cap_saved_state *save_state;
926 u16 *cap;
927
928 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
929 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
930 if (!save_state || pos <= 0)
931 return;
932 cap = (u16 *)&save_state->cap.data[0];
933
934 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
935 }
936
937
938 /**
939 * pci_save_state - save the PCI configuration space of a device before suspending
940 * @dev: - PCI device that we're dealing with
941 */
942 int
943 pci_save_state(struct pci_dev *dev)
944 {
945 int i;
946 /* XXX: 100% dword access ok here? */
947 for (i = 0; i < 16; i++)
948 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
949 dev->state_saved = true;
950 if ((i = pci_save_pcie_state(dev)) != 0)
951 return i;
952 if ((i = pci_save_pcix_state(dev)) != 0)
953 return i;
954 return 0;
955 }
956
957 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
958 u32 saved_val, int retry)
959 {
960 u32 val;
961
962 pci_read_config_dword(pdev, offset, &val);
963 if (val == saved_val)
964 return;
965
966 for (;;) {
967 dev_dbg(&pdev->dev, "restoring config space at offset "
968 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
969 pci_write_config_dword(pdev, offset, saved_val);
970 if (retry-- <= 0)
971 return;
972
973 pci_read_config_dword(pdev, offset, &val);
974 if (val == saved_val)
975 return;
976
977 mdelay(1);
978 }
979 }
980
981 static void pci_restore_config_space_range(struct pci_dev *pdev,
982 int start, int end, int retry)
983 {
984 int index;
985
986 for (index = end; index >= start; index--)
987 pci_restore_config_dword(pdev, 4 * index,
988 pdev->saved_config_space[index],
989 retry);
990 }
991
992 static void pci_restore_config_space(struct pci_dev *pdev)
993 {
994 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
995 pci_restore_config_space_range(pdev, 10, 15, 0);
996 /* Restore BARs before the command register. */
997 pci_restore_config_space_range(pdev, 4, 9, 10);
998 pci_restore_config_space_range(pdev, 0, 3, 0);
999 } else {
1000 pci_restore_config_space_range(pdev, 0, 15, 0);
1001 }
1002 }
1003
1004 /**
1005 * pci_restore_state - Restore the saved state of a PCI device
1006 * @dev: - PCI device that we're dealing with
1007 */
1008 void pci_restore_state(struct pci_dev *dev)
1009 {
1010 if (!dev->state_saved)
1011 return;
1012
1013 /* PCI Express register must be restored first */
1014 pci_restore_pcie_state(dev);
1015 pci_restore_ats_state(dev);
1016
1017 pci_restore_config_space(dev);
1018
1019 pci_restore_pcix_state(dev);
1020 pci_restore_msi_state(dev);
1021 pci_restore_iov_state(dev);
1022
1023 dev->state_saved = false;
1024 }
1025
1026 struct pci_saved_state {
1027 u32 config_space[16];
1028 struct pci_cap_saved_data cap[0];
1029 };
1030
1031 /**
1032 * pci_store_saved_state - Allocate and return an opaque struct containing
1033 * the device saved state.
1034 * @dev: PCI device that we're dealing with
1035 *
1036 * Rerturn NULL if no state or error.
1037 */
1038 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1039 {
1040 struct pci_saved_state *state;
1041 struct pci_cap_saved_state *tmp;
1042 struct pci_cap_saved_data *cap;
1043 size_t size;
1044
1045 if (!dev->state_saved)
1046 return NULL;
1047
1048 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1049
1050 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1051 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1052
1053 state = kzalloc(size, GFP_KERNEL);
1054 if (!state)
1055 return NULL;
1056
1057 memcpy(state->config_space, dev->saved_config_space,
1058 sizeof(state->config_space));
1059
1060 cap = state->cap;
1061 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1062 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1063 memcpy(cap, &tmp->cap, len);
1064 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1065 }
1066 /* Empty cap_save terminates list */
1067
1068 return state;
1069 }
1070 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1071
1072 /**
1073 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1074 * @dev: PCI device that we're dealing with
1075 * @state: Saved state returned from pci_store_saved_state()
1076 */
1077 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1078 {
1079 struct pci_cap_saved_data *cap;
1080
1081 dev->state_saved = false;
1082
1083 if (!state)
1084 return 0;
1085
1086 memcpy(dev->saved_config_space, state->config_space,
1087 sizeof(state->config_space));
1088
1089 cap = state->cap;
1090 while (cap->size) {
1091 struct pci_cap_saved_state *tmp;
1092
1093 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1094 if (!tmp || tmp->cap.size != cap->size)
1095 return -EINVAL;
1096
1097 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1098 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1099 sizeof(struct pci_cap_saved_data) + cap->size);
1100 }
1101
1102 dev->state_saved = true;
1103 return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1106
1107 /**
1108 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1109 * and free the memory allocated for it.
1110 * @dev: PCI device that we're dealing with
1111 * @state: Pointer to saved state returned from pci_store_saved_state()
1112 */
1113 int pci_load_and_free_saved_state(struct pci_dev *dev,
1114 struct pci_saved_state **state)
1115 {
1116 int ret = pci_load_saved_state(dev, *state);
1117 kfree(*state);
1118 *state = NULL;
1119 return ret;
1120 }
1121 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1122
1123 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1124 {
1125 int err;
1126
1127 err = pci_set_power_state(dev, PCI_D0);
1128 if (err < 0 && err != -EIO)
1129 return err;
1130 err = pcibios_enable_device(dev, bars);
1131 if (err < 0)
1132 return err;
1133 pci_fixup_device(pci_fixup_enable, dev);
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * pci_reenable_device - Resume abandoned device
1140 * @dev: PCI device to be resumed
1141 *
1142 * Note this function is a backend of pci_default_resume and is not supposed
1143 * to be called by normal code, write proper resume handler and use it instead.
1144 */
1145 int pci_reenable_device(struct pci_dev *dev)
1146 {
1147 if (pci_is_enabled(dev))
1148 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1149 return 0;
1150 }
1151
1152 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1153 {
1154 int err;
1155 int i, bars = 0;
1156
1157 /*
1158 * Power state could be unknown at this point, either due to a fresh
1159 * boot or a device removal call. So get the current power state
1160 * so that things like MSI message writing will behave as expected
1161 * (e.g. if the device really is in D0 at enable time).
1162 */
1163 if (dev->pm_cap) {
1164 u16 pmcsr;
1165 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1166 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1167 }
1168
1169 if (atomic_inc_return(&dev->enable_cnt) > 1)
1170 return 0; /* already enabled */
1171
1172 /* only skip sriov related */
1173 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1174 if (dev->resource[i].flags & flags)
1175 bars |= (1 << i);
1176 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1177 if (dev->resource[i].flags & flags)
1178 bars |= (1 << i);
1179
1180 err = do_pci_enable_device(dev, bars);
1181 if (err < 0)
1182 atomic_dec(&dev->enable_cnt);
1183 return err;
1184 }
1185
1186 /**
1187 * pci_enable_device_io - Initialize a device for use with IO space
1188 * @dev: PCI device to be initialized
1189 *
1190 * Initialize device before it's used by a driver. Ask low-level code
1191 * to enable I/O resources. Wake up the device if it was suspended.
1192 * Beware, this function can fail.
1193 */
1194 int pci_enable_device_io(struct pci_dev *dev)
1195 {
1196 return pci_enable_device_flags(dev, IORESOURCE_IO);
1197 }
1198
1199 /**
1200 * pci_enable_device_mem - Initialize a device for use with Memory space
1201 * @dev: PCI device to be initialized
1202 *
1203 * Initialize device before it's used by a driver. Ask low-level code
1204 * to enable Memory resources. Wake up the device if it was suspended.
1205 * Beware, this function can fail.
1206 */
1207 int pci_enable_device_mem(struct pci_dev *dev)
1208 {
1209 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1210 }
1211
1212 /**
1213 * pci_enable_device - Initialize device before it's used by a driver.
1214 * @dev: PCI device to be initialized
1215 *
1216 * Initialize device before it's used by a driver. Ask low-level code
1217 * to enable I/O and memory. Wake up the device if it was suspended.
1218 * Beware, this function can fail.
1219 *
1220 * Note we don't actually enable the device many times if we call
1221 * this function repeatedly (we just increment the count).
1222 */
1223 int pci_enable_device(struct pci_dev *dev)
1224 {
1225 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1226 }
1227
1228 /*
1229 * Managed PCI resources. This manages device on/off, intx/msi/msix
1230 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1231 * there's no need to track it separately. pci_devres is initialized
1232 * when a device is enabled using managed PCI device enable interface.
1233 */
1234 struct pci_devres {
1235 unsigned int enabled:1;
1236 unsigned int pinned:1;
1237 unsigned int orig_intx:1;
1238 unsigned int restore_intx:1;
1239 u32 region_mask;
1240 };
1241
1242 static void pcim_release(struct device *gendev, void *res)
1243 {
1244 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1245 struct pci_devres *this = res;
1246 int i;
1247
1248 if (dev->msi_enabled)
1249 pci_disable_msi(dev);
1250 if (dev->msix_enabled)
1251 pci_disable_msix(dev);
1252
1253 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1254 if (this->region_mask & (1 << i))
1255 pci_release_region(dev, i);
1256
1257 if (this->restore_intx)
1258 pci_intx(dev, this->orig_intx);
1259
1260 if (this->enabled && !this->pinned)
1261 pci_disable_device(dev);
1262 }
1263
1264 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1265 {
1266 struct pci_devres *dr, *new_dr;
1267
1268 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1269 if (dr)
1270 return dr;
1271
1272 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1273 if (!new_dr)
1274 return NULL;
1275 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1276 }
1277
1278 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1279 {
1280 if (pci_is_managed(pdev))
1281 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1282 return NULL;
1283 }
1284
1285 /**
1286 * pcim_enable_device - Managed pci_enable_device()
1287 * @pdev: PCI device to be initialized
1288 *
1289 * Managed pci_enable_device().
1290 */
1291 int pcim_enable_device(struct pci_dev *pdev)
1292 {
1293 struct pci_devres *dr;
1294 int rc;
1295
1296 dr = get_pci_dr(pdev);
1297 if (unlikely(!dr))
1298 return -ENOMEM;
1299 if (dr->enabled)
1300 return 0;
1301
1302 rc = pci_enable_device(pdev);
1303 if (!rc) {
1304 pdev->is_managed = 1;
1305 dr->enabled = 1;
1306 }
1307 return rc;
1308 }
1309
1310 /**
1311 * pcim_pin_device - Pin managed PCI device
1312 * @pdev: PCI device to pin
1313 *
1314 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1315 * driver detach. @pdev must have been enabled with
1316 * pcim_enable_device().
1317 */
1318 void pcim_pin_device(struct pci_dev *pdev)
1319 {
1320 struct pci_devres *dr;
1321
1322 dr = find_pci_dr(pdev);
1323 WARN_ON(!dr || !dr->enabled);
1324 if (dr)
1325 dr->pinned = 1;
1326 }
1327
1328 /*
1329 * pcibios_add_device - provide arch specific hooks when adding device dev
1330 * @dev: the PCI device being added
1331 *
1332 * Permits the platform to provide architecture specific functionality when
1333 * devices are added. This is the default implementation. Architecture
1334 * implementations can override this.
1335 */
1336 int __weak pcibios_add_device (struct pci_dev *dev)
1337 {
1338 return 0;
1339 }
1340
1341 /**
1342 * pcibios_disable_device - disable arch specific PCI resources for device dev
1343 * @dev: the PCI device to disable
1344 *
1345 * Disables architecture specific PCI resources for the device. This
1346 * is the default implementation. Architecture implementations can
1347 * override this.
1348 */
1349 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1350
1351 static void do_pci_disable_device(struct pci_dev *dev)
1352 {
1353 u16 pci_command;
1354
1355 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1356 if (pci_command & PCI_COMMAND_MASTER) {
1357 pci_command &= ~PCI_COMMAND_MASTER;
1358 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1359 }
1360
1361 pcibios_disable_device(dev);
1362 }
1363
1364 /**
1365 * pci_disable_enabled_device - Disable device without updating enable_cnt
1366 * @dev: PCI device to disable
1367 *
1368 * NOTE: This function is a backend of PCI power management routines and is
1369 * not supposed to be called drivers.
1370 */
1371 void pci_disable_enabled_device(struct pci_dev *dev)
1372 {
1373 if (pci_is_enabled(dev))
1374 do_pci_disable_device(dev);
1375 }
1376
1377 /**
1378 * pci_disable_device - Disable PCI device after use
1379 * @dev: PCI device to be disabled
1380 *
1381 * Signal to the system that the PCI device is not in use by the system
1382 * anymore. This only involves disabling PCI bus-mastering, if active.
1383 *
1384 * Note we don't actually disable the device until all callers of
1385 * pci_enable_device() have called pci_disable_device().
1386 */
1387 void
1388 pci_disable_device(struct pci_dev *dev)
1389 {
1390 struct pci_devres *dr;
1391
1392 dr = find_pci_dr(dev);
1393 if (dr)
1394 dr->enabled = 0;
1395
1396 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1397 "disabling already-disabled device");
1398
1399 if (atomic_dec_return(&dev->enable_cnt) != 0)
1400 return;
1401
1402 do_pci_disable_device(dev);
1403
1404 dev->is_busmaster = 0;
1405 }
1406
1407 /**
1408 * pcibios_set_pcie_reset_state - set reset state for device dev
1409 * @dev: the PCIe device reset
1410 * @state: Reset state to enter into
1411 *
1412 *
1413 * Sets the PCIe reset state for the device. This is the default
1414 * implementation. Architecture implementations can override this.
1415 */
1416 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417 enum pcie_reset_state state)
1418 {
1419 return -EINVAL;
1420 }
1421
1422 /**
1423 * pci_set_pcie_reset_state - set reset state for device dev
1424 * @dev: the PCIe device reset
1425 * @state: Reset state to enter into
1426 *
1427 *
1428 * Sets the PCI reset state for the device.
1429 */
1430 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1431 {
1432 return pcibios_set_pcie_reset_state(dev, state);
1433 }
1434
1435 /**
1436 * pci_check_pme_status - Check if given device has generated PME.
1437 * @dev: Device to check.
1438 *
1439 * Check the PME status of the device and if set, clear it and clear PME enable
1440 * (if set). Return 'true' if PME status and PME enable were both set or
1441 * 'false' otherwise.
1442 */
1443 bool pci_check_pme_status(struct pci_dev *dev)
1444 {
1445 int pmcsr_pos;
1446 u16 pmcsr;
1447 bool ret = false;
1448
1449 if (!dev->pm_cap)
1450 return false;
1451
1452 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455 return false;
1456
1457 /* Clear PME status. */
1458 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460 /* Disable PME to avoid interrupt flood. */
1461 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462 ret = true;
1463 }
1464
1465 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1466
1467 return ret;
1468 }
1469
1470 /**
1471 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472 * @dev: Device to handle.
1473 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1474 *
1475 * Check if @dev has generated PME and queue a resume request for it in that
1476 * case.
1477 */
1478 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1479 {
1480 if (pme_poll_reset && dev->pme_poll)
1481 dev->pme_poll = false;
1482
1483 if (pci_check_pme_status(dev)) {
1484 pci_wakeup_event(dev);
1485 pm_request_resume(&dev->dev);
1486 }
1487 return 0;
1488 }
1489
1490 /**
1491 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492 * @bus: Top bus of the subtree to walk.
1493 */
1494 void pci_pme_wakeup_bus(struct pci_bus *bus)
1495 {
1496 if (bus)
1497 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1498 }
1499
1500 /**
1501 * pci_wakeup - Wake up a PCI device
1502 * @pci_dev: Device to handle.
1503 * @ign: ignored parameter
1504 */
1505 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1506 {
1507 pci_wakeup_event(pci_dev);
1508 pm_request_resume(&pci_dev->dev);
1509 return 0;
1510 }
1511
1512 /**
1513 * pci_wakeup_bus - Walk given bus and wake up devices on it
1514 * @bus: Top bus of the subtree to walk.
1515 */
1516 void pci_wakeup_bus(struct pci_bus *bus)
1517 {
1518 if (bus)
1519 pci_walk_bus(bus, pci_wakeup, NULL);
1520 }
1521
1522 /**
1523 * pci_pme_capable - check the capability of PCI device to generate PME#
1524 * @dev: PCI device to handle.
1525 * @state: PCI state from which device will issue PME#.
1526 */
1527 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1528 {
1529 if (!dev->pm_cap)
1530 return false;
1531
1532 return !!(dev->pme_support & (1 << state));
1533 }
1534
1535 static void pci_pme_list_scan(struct work_struct *work)
1536 {
1537 struct pci_pme_device *pme_dev, *n;
1538
1539 mutex_lock(&pci_pme_list_mutex);
1540 if (!list_empty(&pci_pme_list)) {
1541 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1542 if (pme_dev->dev->pme_poll) {
1543 struct pci_dev *bridge;
1544
1545 bridge = pme_dev->dev->bus->self;
1546 /*
1547 * If bridge is in low power state, the
1548 * configuration space of subordinate devices
1549 * may be not accessible
1550 */
1551 if (bridge && bridge->current_state != PCI_D0)
1552 continue;
1553 pci_pme_wakeup(pme_dev->dev, NULL);
1554 } else {
1555 list_del(&pme_dev->list);
1556 kfree(pme_dev);
1557 }
1558 }
1559 if (!list_empty(&pci_pme_list))
1560 schedule_delayed_work(&pci_pme_work,
1561 msecs_to_jiffies(PME_TIMEOUT));
1562 }
1563 mutex_unlock(&pci_pme_list_mutex);
1564 }
1565
1566 /**
1567 * pci_pme_active - enable or disable PCI device's PME# function
1568 * @dev: PCI device to handle.
1569 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1570 *
1571 * The caller must verify that the device is capable of generating PME# before
1572 * calling this function with @enable equal to 'true'.
1573 */
1574 void pci_pme_active(struct pci_dev *dev, bool enable)
1575 {
1576 u16 pmcsr;
1577
1578 if (!dev->pm_cap)
1579 return;
1580
1581 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1582 /* Clear PME_Status by writing 1 to it and enable PME# */
1583 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1584 if (!enable)
1585 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1586
1587 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1588
1589 /*
1590 * PCI (as opposed to PCIe) PME requires that the device have
1591 * its PME# line hooked up correctly. Not all hardware vendors
1592 * do this, so the PME never gets delivered and the device
1593 * remains asleep. The easiest way around this is to
1594 * periodically walk the list of suspended devices and check
1595 * whether any have their PME flag set. The assumption is that
1596 * we'll wake up often enough anyway that this won't be a huge
1597 * hit, and the power savings from the devices will still be a
1598 * win.
1599 *
1600 * Although PCIe uses in-band PME message instead of PME# line
1601 * to report PME, PME does not work for some PCIe devices in
1602 * reality. For example, there are devices that set their PME
1603 * status bits, but don't really bother to send a PME message;
1604 * there are PCI Express Root Ports that don't bother to
1605 * trigger interrupts when they receive PME messages from the
1606 * devices below. So PME poll is used for PCIe devices too.
1607 */
1608
1609 if (dev->pme_poll) {
1610 struct pci_pme_device *pme_dev;
1611 if (enable) {
1612 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1613 GFP_KERNEL);
1614 if (!pme_dev)
1615 goto out;
1616 pme_dev->dev = dev;
1617 mutex_lock(&pci_pme_list_mutex);
1618 list_add(&pme_dev->list, &pci_pme_list);
1619 if (list_is_singular(&pci_pme_list))
1620 schedule_delayed_work(&pci_pme_work,
1621 msecs_to_jiffies(PME_TIMEOUT));
1622 mutex_unlock(&pci_pme_list_mutex);
1623 } else {
1624 mutex_lock(&pci_pme_list_mutex);
1625 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1626 if (pme_dev->dev == dev) {
1627 list_del(&pme_dev->list);
1628 kfree(pme_dev);
1629 break;
1630 }
1631 }
1632 mutex_unlock(&pci_pme_list_mutex);
1633 }
1634 }
1635
1636 out:
1637 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1638 }
1639
1640 /**
1641 * __pci_enable_wake - enable PCI device as wakeup event source
1642 * @dev: PCI device affected
1643 * @state: PCI state from which device will issue wakeup events
1644 * @runtime: True if the events are to be generated at run time
1645 * @enable: True to enable event generation; false to disable
1646 *
1647 * This enables the device as a wakeup event source, or disables it.
1648 * When such events involves platform-specific hooks, those hooks are
1649 * called automatically by this routine.
1650 *
1651 * Devices with legacy power management (no standard PCI PM capabilities)
1652 * always require such platform hooks.
1653 *
1654 * RETURN VALUE:
1655 * 0 is returned on success
1656 * -EINVAL is returned if device is not supposed to wake up the system
1657 * Error code depending on the platform is returned if both the platform and
1658 * the native mechanism fail to enable the generation of wake-up events
1659 */
1660 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1661 bool runtime, bool enable)
1662 {
1663 int ret = 0;
1664
1665 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1666 return -EINVAL;
1667
1668 /* Don't do the same thing twice in a row for one device. */
1669 if (!!enable == !!dev->wakeup_prepared)
1670 return 0;
1671
1672 /*
1673 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1674 * Anderson we should be doing PME# wake enable followed by ACPI wake
1675 * enable. To disable wake-up we call the platform first, for symmetry.
1676 */
1677
1678 if (enable) {
1679 int error;
1680
1681 if (pci_pme_capable(dev, state))
1682 pci_pme_active(dev, true);
1683 else
1684 ret = 1;
1685 error = runtime ? platform_pci_run_wake(dev, true) :
1686 platform_pci_sleep_wake(dev, true);
1687 if (ret)
1688 ret = error;
1689 if (!ret)
1690 dev->wakeup_prepared = true;
1691 } else {
1692 if (runtime)
1693 platform_pci_run_wake(dev, false);
1694 else
1695 platform_pci_sleep_wake(dev, false);
1696 pci_pme_active(dev, false);
1697 dev->wakeup_prepared = false;
1698 }
1699
1700 return ret;
1701 }
1702 EXPORT_SYMBOL(__pci_enable_wake);
1703
1704 /**
1705 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1706 * @dev: PCI device to prepare
1707 * @enable: True to enable wake-up event generation; false to disable
1708 *
1709 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1710 * and this function allows them to set that up cleanly - pci_enable_wake()
1711 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1712 * ordering constraints.
1713 *
1714 * This function only returns error code if the device is not capable of
1715 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1716 * enable wake-up power for it.
1717 */
1718 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1719 {
1720 return pci_pme_capable(dev, PCI_D3cold) ?
1721 pci_enable_wake(dev, PCI_D3cold, enable) :
1722 pci_enable_wake(dev, PCI_D3hot, enable);
1723 }
1724
1725 /**
1726 * pci_target_state - find an appropriate low power state for a given PCI dev
1727 * @dev: PCI device
1728 *
1729 * Use underlying platform code to find a supported low power state for @dev.
1730 * If the platform can't manage @dev, return the deepest state from which it
1731 * can generate wake events, based on any available PME info.
1732 */
1733 pci_power_t pci_target_state(struct pci_dev *dev)
1734 {
1735 pci_power_t target_state = PCI_D3hot;
1736
1737 if (platform_pci_power_manageable(dev)) {
1738 /*
1739 * Call the platform to choose the target state of the device
1740 * and enable wake-up from this state if supported.
1741 */
1742 pci_power_t state = platform_pci_choose_state(dev);
1743
1744 switch (state) {
1745 case PCI_POWER_ERROR:
1746 case PCI_UNKNOWN:
1747 break;
1748 case PCI_D1:
1749 case PCI_D2:
1750 if (pci_no_d1d2(dev))
1751 break;
1752 default:
1753 target_state = state;
1754 }
1755 } else if (!dev->pm_cap) {
1756 target_state = PCI_D0;
1757 } else if (device_may_wakeup(&dev->dev)) {
1758 /*
1759 * Find the deepest state from which the device can generate
1760 * wake-up events, make it the target state and enable device
1761 * to generate PME#.
1762 */
1763 if (dev->pme_support) {
1764 while (target_state
1765 && !(dev->pme_support & (1 << target_state)))
1766 target_state--;
1767 }
1768 }
1769
1770 return target_state;
1771 }
1772
1773 /**
1774 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1775 * @dev: Device to handle.
1776 *
1777 * Choose the power state appropriate for the device depending on whether
1778 * it can wake up the system and/or is power manageable by the platform
1779 * (PCI_D3hot is the default) and put the device into that state.
1780 */
1781 int pci_prepare_to_sleep(struct pci_dev *dev)
1782 {
1783 pci_power_t target_state = pci_target_state(dev);
1784 int error;
1785
1786 if (target_state == PCI_POWER_ERROR)
1787 return -EIO;
1788
1789 /* D3cold during system suspend/hibernate is not supported */
1790 if (target_state > PCI_D3hot)
1791 target_state = PCI_D3hot;
1792
1793 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1794
1795 error = pci_set_power_state(dev, target_state);
1796
1797 if (error)
1798 pci_enable_wake(dev, target_state, false);
1799
1800 return error;
1801 }
1802
1803 /**
1804 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1805 * @dev: Device to handle.
1806 *
1807 * Disable device's system wake-up capability and put it into D0.
1808 */
1809 int pci_back_from_sleep(struct pci_dev *dev)
1810 {
1811 pci_enable_wake(dev, PCI_D0, false);
1812 return pci_set_power_state(dev, PCI_D0);
1813 }
1814
1815 /**
1816 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1817 * @dev: PCI device being suspended.
1818 *
1819 * Prepare @dev to generate wake-up events at run time and put it into a low
1820 * power state.
1821 */
1822 int pci_finish_runtime_suspend(struct pci_dev *dev)
1823 {
1824 pci_power_t target_state = pci_target_state(dev);
1825 int error;
1826
1827 if (target_state == PCI_POWER_ERROR)
1828 return -EIO;
1829
1830 dev->runtime_d3cold = target_state == PCI_D3cold;
1831
1832 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1833
1834 error = pci_set_power_state(dev, target_state);
1835
1836 if (error) {
1837 __pci_enable_wake(dev, target_state, true, false);
1838 dev->runtime_d3cold = false;
1839 }
1840
1841 return error;
1842 }
1843
1844 /**
1845 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1846 * @dev: Device to check.
1847 *
1848 * Return true if the device itself is cabable of generating wake-up events
1849 * (through the platform or using the native PCIe PME) or if the device supports
1850 * PME and one of its upstream bridges can generate wake-up events.
1851 */
1852 bool pci_dev_run_wake(struct pci_dev *dev)
1853 {
1854 struct pci_bus *bus = dev->bus;
1855
1856 if (device_run_wake(&dev->dev))
1857 return true;
1858
1859 if (!dev->pme_support)
1860 return false;
1861
1862 while (bus->parent) {
1863 struct pci_dev *bridge = bus->self;
1864
1865 if (device_run_wake(&bridge->dev))
1866 return true;
1867
1868 bus = bus->parent;
1869 }
1870
1871 /* We have reached the root bus. */
1872 if (bus->bridge)
1873 return device_run_wake(bus->bridge);
1874
1875 return false;
1876 }
1877 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1878
1879 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1880 {
1881 struct device *dev = &pdev->dev;
1882 struct device *parent = dev->parent;
1883
1884 if (parent)
1885 pm_runtime_get_sync(parent);
1886 pm_runtime_get_noresume(dev);
1887 /*
1888 * pdev->current_state is set to PCI_D3cold during suspending,
1889 * so wait until suspending completes
1890 */
1891 pm_runtime_barrier(dev);
1892 /*
1893 * Only need to resume devices in D3cold, because config
1894 * registers are still accessible for devices suspended but
1895 * not in D3cold.
1896 */
1897 if (pdev->current_state == PCI_D3cold)
1898 pm_runtime_resume(dev);
1899 }
1900
1901 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1902 {
1903 struct device *dev = &pdev->dev;
1904 struct device *parent = dev->parent;
1905
1906 pm_runtime_put(dev);
1907 if (parent)
1908 pm_runtime_put_sync(parent);
1909 }
1910
1911 /**
1912 * pci_pm_init - Initialize PM functions of given PCI device
1913 * @dev: PCI device to handle.
1914 */
1915 void pci_pm_init(struct pci_dev *dev)
1916 {
1917 int pm;
1918 u16 pmc;
1919
1920 pm_runtime_forbid(&dev->dev);
1921 pm_runtime_set_active(&dev->dev);
1922 pm_runtime_enable(&dev->dev);
1923 device_enable_async_suspend(&dev->dev);
1924 dev->wakeup_prepared = false;
1925
1926 dev->pm_cap = 0;
1927
1928 /* find PCI PM capability in list */
1929 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1930 if (!pm)
1931 return;
1932 /* Check device's ability to generate PME# */
1933 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1934
1935 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1936 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1937 pmc & PCI_PM_CAP_VER_MASK);
1938 return;
1939 }
1940
1941 dev->pm_cap = pm;
1942 dev->d3_delay = PCI_PM_D3_WAIT;
1943 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1944 dev->d3cold_allowed = true;
1945
1946 dev->d1_support = false;
1947 dev->d2_support = false;
1948 if (!pci_no_d1d2(dev)) {
1949 if (pmc & PCI_PM_CAP_D1)
1950 dev->d1_support = true;
1951 if (pmc & PCI_PM_CAP_D2)
1952 dev->d2_support = true;
1953
1954 if (dev->d1_support || dev->d2_support)
1955 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1956 dev->d1_support ? " D1" : "",
1957 dev->d2_support ? " D2" : "");
1958 }
1959
1960 pmc &= PCI_PM_CAP_PME_MASK;
1961 if (pmc) {
1962 dev_printk(KERN_DEBUG, &dev->dev,
1963 "PME# supported from%s%s%s%s%s\n",
1964 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1965 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1966 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1967 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1968 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1969 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1970 dev->pme_poll = true;
1971 /*
1972 * Make device's PM flags reflect the wake-up capability, but
1973 * let the user space enable it to wake up the system as needed.
1974 */
1975 device_set_wakeup_capable(&dev->dev, true);
1976 /* Disable the PME# generation functionality */
1977 pci_pme_active(dev, false);
1978 } else {
1979 dev->pme_support = 0;
1980 }
1981 }
1982
1983 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1984 struct pci_cap_saved_state *new_cap)
1985 {
1986 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1987 }
1988
1989 /**
1990 * pci_add_save_buffer - allocate buffer for saving given capability registers
1991 * @dev: the PCI device
1992 * @cap: the capability to allocate the buffer for
1993 * @size: requested size of the buffer
1994 */
1995 static int pci_add_cap_save_buffer(
1996 struct pci_dev *dev, char cap, unsigned int size)
1997 {
1998 int pos;
1999 struct pci_cap_saved_state *save_state;
2000
2001 pos = pci_find_capability(dev, cap);
2002 if (pos <= 0)
2003 return 0;
2004
2005 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2006 if (!save_state)
2007 return -ENOMEM;
2008
2009 save_state->cap.cap_nr = cap;
2010 save_state->cap.size = size;
2011 pci_add_saved_cap(dev, save_state);
2012
2013 return 0;
2014 }
2015
2016 /**
2017 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2018 * @dev: the PCI device
2019 */
2020 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2021 {
2022 int error;
2023
2024 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2025 PCI_EXP_SAVE_REGS * sizeof(u16));
2026 if (error)
2027 dev_err(&dev->dev,
2028 "unable to preallocate PCI Express save buffer\n");
2029
2030 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2031 if (error)
2032 dev_err(&dev->dev,
2033 "unable to preallocate PCI-X save buffer\n");
2034 }
2035
2036 void pci_free_cap_save_buffers(struct pci_dev *dev)
2037 {
2038 struct pci_cap_saved_state *tmp;
2039 struct hlist_node *n;
2040
2041 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2042 kfree(tmp);
2043 }
2044
2045 /**
2046 * pci_configure_ari - enable or disable ARI forwarding
2047 * @dev: the PCI device
2048 *
2049 * If @dev and its upstream bridge both support ARI, enable ARI in the
2050 * bridge. Otherwise, disable ARI in the bridge.
2051 */
2052 void pci_configure_ari(struct pci_dev *dev)
2053 {
2054 u32 cap;
2055 struct pci_dev *bridge;
2056
2057 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2058 return;
2059
2060 bridge = dev->bus->self;
2061 if (!bridge)
2062 return;
2063
2064 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2065 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2066 return;
2067
2068 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2069 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2070 PCI_EXP_DEVCTL2_ARI);
2071 bridge->ari_enabled = 1;
2072 } else {
2073 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2074 PCI_EXP_DEVCTL2_ARI);
2075 bridge->ari_enabled = 0;
2076 }
2077 }
2078
2079 /**
2080 * pci_enable_ido - enable ID-based Ordering on a device
2081 * @dev: the PCI device
2082 * @type: which types of IDO to enable
2083 *
2084 * Enable ID-based ordering on @dev. @type can contain the bits
2085 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2086 * which types of transactions are allowed to be re-ordered.
2087 */
2088 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2089 {
2090 u16 ctrl = 0;
2091
2092 if (type & PCI_EXP_IDO_REQUEST)
2093 ctrl |= PCI_EXP_IDO_REQ_EN;
2094 if (type & PCI_EXP_IDO_COMPLETION)
2095 ctrl |= PCI_EXP_IDO_CMP_EN;
2096 if (ctrl)
2097 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2098 }
2099 EXPORT_SYMBOL(pci_enable_ido);
2100
2101 /**
2102 * pci_disable_ido - disable ID-based ordering on a device
2103 * @dev: the PCI device
2104 * @type: which types of IDO to disable
2105 */
2106 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2107 {
2108 u16 ctrl = 0;
2109
2110 if (type & PCI_EXP_IDO_REQUEST)
2111 ctrl |= PCI_EXP_IDO_REQ_EN;
2112 if (type & PCI_EXP_IDO_COMPLETION)
2113 ctrl |= PCI_EXP_IDO_CMP_EN;
2114 if (ctrl)
2115 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2116 }
2117 EXPORT_SYMBOL(pci_disable_ido);
2118
2119 /**
2120 * pci_enable_obff - enable optimized buffer flush/fill
2121 * @dev: PCI device
2122 * @type: type of signaling to use
2123 *
2124 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2125 * signaling if possible, falling back to message signaling only if
2126 * WAKE# isn't supported. @type should indicate whether the PCIe link
2127 * be brought out of L0s or L1 to send the message. It should be either
2128 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2129 *
2130 * If your device can benefit from receiving all messages, even at the
2131 * power cost of bringing the link back up from a low power state, use
2132 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2133 * preferred type).
2134 *
2135 * RETURNS:
2136 * Zero on success, appropriate error number on failure.
2137 */
2138 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2139 {
2140 u32 cap;
2141 u16 ctrl;
2142 int ret;
2143
2144 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2145 if (!(cap & PCI_EXP_OBFF_MASK))
2146 return -ENOTSUPP; /* no OBFF support at all */
2147
2148 /* Make sure the topology supports OBFF as well */
2149 if (dev->bus->self) {
2150 ret = pci_enable_obff(dev->bus->self, type);
2151 if (ret)
2152 return ret;
2153 }
2154
2155 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2156 if (cap & PCI_EXP_OBFF_WAKE)
2157 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2158 else {
2159 switch (type) {
2160 case PCI_EXP_OBFF_SIGNAL_L0:
2161 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2162 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2163 break;
2164 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2165 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2166 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2167 break;
2168 default:
2169 WARN(1, "bad OBFF signal type\n");
2170 return -ENOTSUPP;
2171 }
2172 }
2173 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2174
2175 return 0;
2176 }
2177 EXPORT_SYMBOL(pci_enable_obff);
2178
2179 /**
2180 * pci_disable_obff - disable optimized buffer flush/fill
2181 * @dev: PCI device
2182 *
2183 * Disable OBFF on @dev.
2184 */
2185 void pci_disable_obff(struct pci_dev *dev)
2186 {
2187 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2188 }
2189 EXPORT_SYMBOL(pci_disable_obff);
2190
2191 /**
2192 * pci_ltr_supported - check whether a device supports LTR
2193 * @dev: PCI device
2194 *
2195 * RETURNS:
2196 * True if @dev supports latency tolerance reporting, false otherwise.
2197 */
2198 static bool pci_ltr_supported(struct pci_dev *dev)
2199 {
2200 u32 cap;
2201
2202 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2203
2204 return cap & PCI_EXP_DEVCAP2_LTR;
2205 }
2206
2207 /**
2208 * pci_enable_ltr - enable latency tolerance reporting
2209 * @dev: PCI device
2210 *
2211 * Enable LTR on @dev if possible, which means enabling it first on
2212 * upstream ports.
2213 *
2214 * RETURNS:
2215 * Zero on success, errno on failure.
2216 */
2217 int pci_enable_ltr(struct pci_dev *dev)
2218 {
2219 int ret;
2220
2221 /* Only primary function can enable/disable LTR */
2222 if (PCI_FUNC(dev->devfn) != 0)
2223 return -EINVAL;
2224
2225 if (!pci_ltr_supported(dev))
2226 return -ENOTSUPP;
2227
2228 /* Enable upstream ports first */
2229 if (dev->bus->self) {
2230 ret = pci_enable_ltr(dev->bus->self);
2231 if (ret)
2232 return ret;
2233 }
2234
2235 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2236 }
2237 EXPORT_SYMBOL(pci_enable_ltr);
2238
2239 /**
2240 * pci_disable_ltr - disable latency tolerance reporting
2241 * @dev: PCI device
2242 */
2243 void pci_disable_ltr(struct pci_dev *dev)
2244 {
2245 /* Only primary function can enable/disable LTR */
2246 if (PCI_FUNC(dev->devfn) != 0)
2247 return;
2248
2249 if (!pci_ltr_supported(dev))
2250 return;
2251
2252 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2253 }
2254 EXPORT_SYMBOL(pci_disable_ltr);
2255
2256 static int __pci_ltr_scale(int *val)
2257 {
2258 int scale = 0;
2259
2260 while (*val > 1023) {
2261 *val = (*val + 31) / 32;
2262 scale++;
2263 }
2264 return scale;
2265 }
2266
2267 /**
2268 * pci_set_ltr - set LTR latency values
2269 * @dev: PCI device
2270 * @snoop_lat_ns: snoop latency in nanoseconds
2271 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2272 *
2273 * Figure out the scale and set the LTR values accordingly.
2274 */
2275 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2276 {
2277 int pos, ret, snoop_scale, nosnoop_scale;
2278 u16 val;
2279
2280 if (!pci_ltr_supported(dev))
2281 return -ENOTSUPP;
2282
2283 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2284 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2285
2286 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2287 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2288 return -EINVAL;
2289
2290 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2291 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2292 return -EINVAL;
2293
2294 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2295 if (!pos)
2296 return -ENOTSUPP;
2297
2298 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2299 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2300 if (ret != 4)
2301 return -EIO;
2302
2303 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2304 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2305 if (ret != 4)
2306 return -EIO;
2307
2308 return 0;
2309 }
2310 EXPORT_SYMBOL(pci_set_ltr);
2311
2312 static int pci_acs_enable;
2313
2314 /**
2315 * pci_request_acs - ask for ACS to be enabled if supported
2316 */
2317 void pci_request_acs(void)
2318 {
2319 pci_acs_enable = 1;
2320 }
2321
2322 /**
2323 * pci_enable_acs - enable ACS if hardware support it
2324 * @dev: the PCI device
2325 */
2326 void pci_enable_acs(struct pci_dev *dev)
2327 {
2328 int pos;
2329 u16 cap;
2330 u16 ctrl;
2331
2332 if (!pci_acs_enable)
2333 return;
2334
2335 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2336 if (!pos)
2337 return;
2338
2339 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2340 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2341
2342 /* Source Validation */
2343 ctrl |= (cap & PCI_ACS_SV);
2344
2345 /* P2P Request Redirect */
2346 ctrl |= (cap & PCI_ACS_RR);
2347
2348 /* P2P Completion Redirect */
2349 ctrl |= (cap & PCI_ACS_CR);
2350
2351 /* Upstream Forwarding */
2352 ctrl |= (cap & PCI_ACS_UF);
2353
2354 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2355 }
2356
2357 /**
2358 * pci_acs_enabled - test ACS against required flags for a given device
2359 * @pdev: device to test
2360 * @acs_flags: required PCI ACS flags
2361 *
2362 * Return true if the device supports the provided flags. Automatically
2363 * filters out flags that are not implemented on multifunction devices.
2364 */
2365 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2366 {
2367 int pos, ret;
2368 u16 ctrl;
2369
2370 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2371 if (ret >= 0)
2372 return ret > 0;
2373
2374 if (!pci_is_pcie(pdev))
2375 return false;
2376
2377 /* Filter out flags not applicable to multifunction */
2378 if (pdev->multifunction)
2379 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2380 PCI_ACS_EC | PCI_ACS_DT);
2381
2382 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2383 pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2384 pdev->multifunction) {
2385 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2386 if (!pos)
2387 return false;
2388
2389 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2390 if ((ctrl & acs_flags) != acs_flags)
2391 return false;
2392 }
2393
2394 return true;
2395 }
2396
2397 /**
2398 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2399 * @start: starting downstream device
2400 * @end: ending upstream device or NULL to search to the root bus
2401 * @acs_flags: required flags
2402 *
2403 * Walk up a device tree from start to end testing PCI ACS support. If
2404 * any step along the way does not support the required flags, return false.
2405 */
2406 bool pci_acs_path_enabled(struct pci_dev *start,
2407 struct pci_dev *end, u16 acs_flags)
2408 {
2409 struct pci_dev *pdev, *parent = start;
2410
2411 do {
2412 pdev = parent;
2413
2414 if (!pci_acs_enabled(pdev, acs_flags))
2415 return false;
2416
2417 if (pci_is_root_bus(pdev->bus))
2418 return (end == NULL);
2419
2420 parent = pdev->bus->self;
2421 } while (pdev != end);
2422
2423 return true;
2424 }
2425
2426 /**
2427 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2428 * @dev: the PCI device
2429 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2430 *
2431 * Perform INTx swizzling for a device behind one level of bridge. This is
2432 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2433 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2434 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2435 * the PCI Express Base Specification, Revision 2.1)
2436 */
2437 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2438 {
2439 int slot;
2440
2441 if (pci_ari_enabled(dev->bus))
2442 slot = 0;
2443 else
2444 slot = PCI_SLOT(dev->devfn);
2445
2446 return (((pin - 1) + slot) % 4) + 1;
2447 }
2448
2449 int
2450 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2451 {
2452 u8 pin;
2453
2454 pin = dev->pin;
2455 if (!pin)
2456 return -1;
2457
2458 while (!pci_is_root_bus(dev->bus)) {
2459 pin = pci_swizzle_interrupt_pin(dev, pin);
2460 dev = dev->bus->self;
2461 }
2462 *bridge = dev;
2463 return pin;
2464 }
2465
2466 /**
2467 * pci_common_swizzle - swizzle INTx all the way to root bridge
2468 * @dev: the PCI device
2469 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2470 *
2471 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2472 * bridges all the way up to a PCI root bus.
2473 */
2474 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2475 {
2476 u8 pin = *pinp;
2477
2478 while (!pci_is_root_bus(dev->bus)) {
2479 pin = pci_swizzle_interrupt_pin(dev, pin);
2480 dev = dev->bus->self;
2481 }
2482 *pinp = pin;
2483 return PCI_SLOT(dev->devfn);
2484 }
2485
2486 /**
2487 * pci_release_region - Release a PCI bar
2488 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2489 * @bar: BAR to release
2490 *
2491 * Releases the PCI I/O and memory resources previously reserved by a
2492 * successful call to pci_request_region. Call this function only
2493 * after all use of the PCI regions has ceased.
2494 */
2495 void pci_release_region(struct pci_dev *pdev, int bar)
2496 {
2497 struct pci_devres *dr;
2498
2499 if (pci_resource_len(pdev, bar) == 0)
2500 return;
2501 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2502 release_region(pci_resource_start(pdev, bar),
2503 pci_resource_len(pdev, bar));
2504 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2505 release_mem_region(pci_resource_start(pdev, bar),
2506 pci_resource_len(pdev, bar));
2507
2508 dr = find_pci_dr(pdev);
2509 if (dr)
2510 dr->region_mask &= ~(1 << bar);
2511 }
2512
2513 /**
2514 * __pci_request_region - Reserved PCI I/O and memory resource
2515 * @pdev: PCI device whose resources are to be reserved
2516 * @bar: BAR to be reserved
2517 * @res_name: Name to be associated with resource.
2518 * @exclusive: whether the region access is exclusive or not
2519 *
2520 * Mark the PCI region associated with PCI device @pdev BR @bar as
2521 * being reserved by owner @res_name. Do not access any
2522 * address inside the PCI regions unless this call returns
2523 * successfully.
2524 *
2525 * If @exclusive is set, then the region is marked so that userspace
2526 * is explicitly not allowed to map the resource via /dev/mem or
2527 * sysfs MMIO access.
2528 *
2529 * Returns 0 on success, or %EBUSY on error. A warning
2530 * message is also printed on failure.
2531 */
2532 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2533 int exclusive)
2534 {
2535 struct pci_devres *dr;
2536
2537 if (pci_resource_len(pdev, bar) == 0)
2538 return 0;
2539
2540 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2541 if (!request_region(pci_resource_start(pdev, bar),
2542 pci_resource_len(pdev, bar), res_name))
2543 goto err_out;
2544 }
2545 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2546 if (!__request_mem_region(pci_resource_start(pdev, bar),
2547 pci_resource_len(pdev, bar), res_name,
2548 exclusive))
2549 goto err_out;
2550 }
2551
2552 dr = find_pci_dr(pdev);
2553 if (dr)
2554 dr->region_mask |= 1 << bar;
2555
2556 return 0;
2557
2558 err_out:
2559 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2560 &pdev->resource[bar]);
2561 return -EBUSY;
2562 }
2563
2564 /**
2565 * pci_request_region - Reserve PCI I/O and memory resource
2566 * @pdev: PCI device whose resources are to be reserved
2567 * @bar: BAR to be reserved
2568 * @res_name: Name to be associated with resource
2569 *
2570 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2571 * being reserved by owner @res_name. Do not access any
2572 * address inside the PCI regions unless this call returns
2573 * successfully.
2574 *
2575 * Returns 0 on success, or %EBUSY on error. A warning
2576 * message is also printed on failure.
2577 */
2578 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2579 {
2580 return __pci_request_region(pdev, bar, res_name, 0);
2581 }
2582
2583 /**
2584 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2585 * @pdev: PCI device whose resources are to be reserved
2586 * @bar: BAR to be reserved
2587 * @res_name: Name to be associated with resource.
2588 *
2589 * Mark the PCI region associated with PCI device @pdev BR @bar as
2590 * being reserved by owner @res_name. Do not access any
2591 * address inside the PCI regions unless this call returns
2592 * successfully.
2593 *
2594 * Returns 0 on success, or %EBUSY on error. A warning
2595 * message is also printed on failure.
2596 *
2597 * The key difference that _exclusive makes it that userspace is
2598 * explicitly not allowed to map the resource via /dev/mem or
2599 * sysfs.
2600 */
2601 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2602 {
2603 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2604 }
2605 /**
2606 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2607 * @pdev: PCI device whose resources were previously reserved
2608 * @bars: Bitmask of BARs to be released
2609 *
2610 * Release selected PCI I/O and memory resources previously reserved.
2611 * Call this function only after all use of the PCI regions has ceased.
2612 */
2613 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2614 {
2615 int i;
2616
2617 for (i = 0; i < 6; i++)
2618 if (bars & (1 << i))
2619 pci_release_region(pdev, i);
2620 }
2621
2622 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2623 const char *res_name, int excl)
2624 {
2625 int i;
2626
2627 for (i = 0; i < 6; i++)
2628 if (bars & (1 << i))
2629 if (__pci_request_region(pdev, i, res_name, excl))
2630 goto err_out;
2631 return 0;
2632
2633 err_out:
2634 while(--i >= 0)
2635 if (bars & (1 << i))
2636 pci_release_region(pdev, i);
2637
2638 return -EBUSY;
2639 }
2640
2641
2642 /**
2643 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2644 * @pdev: PCI device whose resources are to be reserved
2645 * @bars: Bitmask of BARs to be requested
2646 * @res_name: Name to be associated with resource
2647 */
2648 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2649 const char *res_name)
2650 {
2651 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2652 }
2653
2654 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2655 int bars, const char *res_name)
2656 {
2657 return __pci_request_selected_regions(pdev, bars, res_name,
2658 IORESOURCE_EXCLUSIVE);
2659 }
2660
2661 /**
2662 * pci_release_regions - Release reserved PCI I/O and memory resources
2663 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2664 *
2665 * Releases all PCI I/O and memory resources previously reserved by a
2666 * successful call to pci_request_regions. Call this function only
2667 * after all use of the PCI regions has ceased.
2668 */
2669
2670 void pci_release_regions(struct pci_dev *pdev)
2671 {
2672 pci_release_selected_regions(pdev, (1 << 6) - 1);
2673 }
2674
2675 /**
2676 * pci_request_regions - Reserved PCI I/O and memory resources
2677 * @pdev: PCI device whose resources are to be reserved
2678 * @res_name: Name to be associated with resource.
2679 *
2680 * Mark all PCI regions associated with PCI device @pdev as
2681 * being reserved by owner @res_name. Do not access any
2682 * address inside the PCI regions unless this call returns
2683 * successfully.
2684 *
2685 * Returns 0 on success, or %EBUSY on error. A warning
2686 * message is also printed on failure.
2687 */
2688 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2689 {
2690 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2691 }
2692
2693 /**
2694 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2695 * @pdev: PCI device whose resources are to be reserved
2696 * @res_name: Name to be associated with resource.
2697 *
2698 * Mark all PCI regions associated with PCI device @pdev as
2699 * being reserved by owner @res_name. Do not access any
2700 * address inside the PCI regions unless this call returns
2701 * successfully.
2702 *
2703 * pci_request_regions_exclusive() will mark the region so that
2704 * /dev/mem and the sysfs MMIO access will not be allowed.
2705 *
2706 * Returns 0 on success, or %EBUSY on error. A warning
2707 * message is also printed on failure.
2708 */
2709 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2710 {
2711 return pci_request_selected_regions_exclusive(pdev,
2712 ((1 << 6) - 1), res_name);
2713 }
2714
2715 static void __pci_set_master(struct pci_dev *dev, bool enable)
2716 {
2717 u16 old_cmd, cmd;
2718
2719 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2720 if (enable)
2721 cmd = old_cmd | PCI_COMMAND_MASTER;
2722 else
2723 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2724 if (cmd != old_cmd) {
2725 dev_dbg(&dev->dev, "%s bus mastering\n",
2726 enable ? "enabling" : "disabling");
2727 pci_write_config_word(dev, PCI_COMMAND, cmd);
2728 }
2729 dev->is_busmaster = enable;
2730 }
2731
2732 /**
2733 * pcibios_setup - process "pci=" kernel boot arguments
2734 * @str: string used to pass in "pci=" kernel boot arguments
2735 *
2736 * Process kernel boot arguments. This is the default implementation.
2737 * Architecture specific implementations can override this as necessary.
2738 */
2739 char * __weak __init pcibios_setup(char *str)
2740 {
2741 return str;
2742 }
2743
2744 /**
2745 * pcibios_set_master - enable PCI bus-mastering for device dev
2746 * @dev: the PCI device to enable
2747 *
2748 * Enables PCI bus-mastering for the device. This is the default
2749 * implementation. Architecture specific implementations can override
2750 * this if necessary.
2751 */
2752 void __weak pcibios_set_master(struct pci_dev *dev)
2753 {
2754 u8 lat;
2755
2756 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2757 if (pci_is_pcie(dev))
2758 return;
2759
2760 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2761 if (lat < 16)
2762 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2763 else if (lat > pcibios_max_latency)
2764 lat = pcibios_max_latency;
2765 else
2766 return;
2767 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2768 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2769 }
2770
2771 /**
2772 * pci_set_master - enables bus-mastering for device dev
2773 * @dev: the PCI device to enable
2774 *
2775 * Enables bus-mastering on the device and calls pcibios_set_master()
2776 * to do the needed arch specific settings.
2777 */
2778 void pci_set_master(struct pci_dev *dev)
2779 {
2780 __pci_set_master(dev, true);
2781 pcibios_set_master(dev);
2782 }
2783
2784 /**
2785 * pci_clear_master - disables bus-mastering for device dev
2786 * @dev: the PCI device to disable
2787 */
2788 void pci_clear_master(struct pci_dev *dev)
2789 {
2790 __pci_set_master(dev, false);
2791 }
2792
2793 /**
2794 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2795 * @dev: the PCI device for which MWI is to be enabled
2796 *
2797 * Helper function for pci_set_mwi.
2798 * Originally copied from drivers/net/acenic.c.
2799 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2800 *
2801 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2802 */
2803 int pci_set_cacheline_size(struct pci_dev *dev)
2804 {
2805 u8 cacheline_size;
2806
2807 if (!pci_cache_line_size)
2808 return -EINVAL;
2809
2810 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2811 equal to or multiple of the right value. */
2812 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2813 if (cacheline_size >= pci_cache_line_size &&
2814 (cacheline_size % pci_cache_line_size) == 0)
2815 return 0;
2816
2817 /* Write the correct value. */
2818 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2819 /* Read it back. */
2820 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2821 if (cacheline_size == pci_cache_line_size)
2822 return 0;
2823
2824 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2825 "supported\n", pci_cache_line_size << 2);
2826
2827 return -EINVAL;
2828 }
2829 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2830
2831 #ifdef PCI_DISABLE_MWI
2832 int pci_set_mwi(struct pci_dev *dev)
2833 {
2834 return 0;
2835 }
2836
2837 int pci_try_set_mwi(struct pci_dev *dev)
2838 {
2839 return 0;
2840 }
2841
2842 void pci_clear_mwi(struct pci_dev *dev)
2843 {
2844 }
2845
2846 #else
2847
2848 /**
2849 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2850 * @dev: the PCI device for which MWI is enabled
2851 *
2852 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2853 *
2854 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2855 */
2856 int
2857 pci_set_mwi(struct pci_dev *dev)
2858 {
2859 int rc;
2860 u16 cmd;
2861
2862 rc = pci_set_cacheline_size(dev);
2863 if (rc)
2864 return rc;
2865
2866 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2867 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2868 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2869 cmd |= PCI_COMMAND_INVALIDATE;
2870 pci_write_config_word(dev, PCI_COMMAND, cmd);
2871 }
2872
2873 return 0;
2874 }
2875
2876 /**
2877 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2878 * @dev: the PCI device for which MWI is enabled
2879 *
2880 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2881 * Callers are not required to check the return value.
2882 *
2883 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2884 */
2885 int pci_try_set_mwi(struct pci_dev *dev)
2886 {
2887 int rc = pci_set_mwi(dev);
2888 return rc;
2889 }
2890
2891 /**
2892 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2893 * @dev: the PCI device to disable
2894 *
2895 * Disables PCI Memory-Write-Invalidate transaction on the device
2896 */
2897 void
2898 pci_clear_mwi(struct pci_dev *dev)
2899 {
2900 u16 cmd;
2901
2902 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2903 if (cmd & PCI_COMMAND_INVALIDATE) {
2904 cmd &= ~PCI_COMMAND_INVALIDATE;
2905 pci_write_config_word(dev, PCI_COMMAND, cmd);
2906 }
2907 }
2908 #endif /* ! PCI_DISABLE_MWI */
2909
2910 /**
2911 * pci_intx - enables/disables PCI INTx for device dev
2912 * @pdev: the PCI device to operate on
2913 * @enable: boolean: whether to enable or disable PCI INTx
2914 *
2915 * Enables/disables PCI INTx for device dev
2916 */
2917 void
2918 pci_intx(struct pci_dev *pdev, int enable)
2919 {
2920 u16 pci_command, new;
2921
2922 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2923
2924 if (enable) {
2925 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2926 } else {
2927 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2928 }
2929
2930 if (new != pci_command) {
2931 struct pci_devres *dr;
2932
2933 pci_write_config_word(pdev, PCI_COMMAND, new);
2934
2935 dr = find_pci_dr(pdev);
2936 if (dr && !dr->restore_intx) {
2937 dr->restore_intx = 1;
2938 dr->orig_intx = !enable;
2939 }
2940 }
2941 }
2942
2943 /**
2944 * pci_intx_mask_supported - probe for INTx masking support
2945 * @dev: the PCI device to operate on
2946 *
2947 * Check if the device dev support INTx masking via the config space
2948 * command word.
2949 */
2950 bool pci_intx_mask_supported(struct pci_dev *dev)
2951 {
2952 bool mask_supported = false;
2953 u16 orig, new;
2954
2955 if (dev->broken_intx_masking)
2956 return false;
2957
2958 pci_cfg_access_lock(dev);
2959
2960 pci_read_config_word(dev, PCI_COMMAND, &orig);
2961 pci_write_config_word(dev, PCI_COMMAND,
2962 orig ^ PCI_COMMAND_INTX_DISABLE);
2963 pci_read_config_word(dev, PCI_COMMAND, &new);
2964
2965 /*
2966 * There's no way to protect against hardware bugs or detect them
2967 * reliably, but as long as we know what the value should be, let's
2968 * go ahead and check it.
2969 */
2970 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2971 dev_err(&dev->dev, "Command register changed from "
2972 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2973 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2974 mask_supported = true;
2975 pci_write_config_word(dev, PCI_COMMAND, orig);
2976 }
2977
2978 pci_cfg_access_unlock(dev);
2979 return mask_supported;
2980 }
2981 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2982
2983 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2984 {
2985 struct pci_bus *bus = dev->bus;
2986 bool mask_updated = true;
2987 u32 cmd_status_dword;
2988 u16 origcmd, newcmd;
2989 unsigned long flags;
2990 bool irq_pending;
2991
2992 /*
2993 * We do a single dword read to retrieve both command and status.
2994 * Document assumptions that make this possible.
2995 */
2996 BUILD_BUG_ON(PCI_COMMAND % 4);
2997 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2998
2999 raw_spin_lock_irqsave(&pci_lock, flags);
3000
3001 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3002
3003 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3004
3005 /*
3006 * Check interrupt status register to see whether our device
3007 * triggered the interrupt (when masking) or the next IRQ is
3008 * already pending (when unmasking).
3009 */
3010 if (mask != irq_pending) {
3011 mask_updated = false;
3012 goto done;
3013 }
3014
3015 origcmd = cmd_status_dword;
3016 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3017 if (mask)
3018 newcmd |= PCI_COMMAND_INTX_DISABLE;
3019 if (newcmd != origcmd)
3020 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3021
3022 done:
3023 raw_spin_unlock_irqrestore(&pci_lock, flags);
3024
3025 return mask_updated;
3026 }
3027
3028 /**
3029 * pci_check_and_mask_intx - mask INTx on pending interrupt
3030 * @dev: the PCI device to operate on
3031 *
3032 * Check if the device dev has its INTx line asserted, mask it and
3033 * return true in that case. False is returned if not interrupt was
3034 * pending.
3035 */
3036 bool pci_check_and_mask_intx(struct pci_dev *dev)
3037 {
3038 return pci_check_and_set_intx_mask(dev, true);
3039 }
3040 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3041
3042 /**
3043 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3044 * @dev: the PCI device to operate on
3045 *
3046 * Check if the device dev has its INTx line asserted, unmask it if not
3047 * and return true. False is returned and the mask remains active if
3048 * there was still an interrupt pending.
3049 */
3050 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3051 {
3052 return pci_check_and_set_intx_mask(dev, false);
3053 }
3054 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3055
3056 /**
3057 * pci_msi_off - disables any msi or msix capabilities
3058 * @dev: the PCI device to operate on
3059 *
3060 * If you want to use msi see pci_enable_msi and friends.
3061 * This is a lower level primitive that allows us to disable
3062 * msi operation at the device level.
3063 */
3064 void pci_msi_off(struct pci_dev *dev)
3065 {
3066 int pos;
3067 u16 control;
3068
3069 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3070 if (pos) {
3071 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3072 control &= ~PCI_MSI_FLAGS_ENABLE;
3073 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3074 }
3075 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3076 if (pos) {
3077 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3078 control &= ~PCI_MSIX_FLAGS_ENABLE;
3079 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3080 }
3081 }
3082 EXPORT_SYMBOL_GPL(pci_msi_off);
3083
3084 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3085 {
3086 return dma_set_max_seg_size(&dev->dev, size);
3087 }
3088 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3089
3090 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3091 {
3092 return dma_set_seg_boundary(&dev->dev, mask);
3093 }
3094 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3095
3096 static int pcie_flr(struct pci_dev *dev, int probe)
3097 {
3098 int i;
3099 u32 cap;
3100 u16 status;
3101
3102 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3103 if (!(cap & PCI_EXP_DEVCAP_FLR))
3104 return -ENOTTY;
3105
3106 if (probe)
3107 return 0;
3108
3109 /* Wait for Transaction Pending bit clean */
3110 for (i = 0; i < 4; i++) {
3111 if (i)
3112 msleep((1 << (i - 1)) * 100);
3113
3114 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3115 if (!(status & PCI_EXP_DEVSTA_TRPND))
3116 goto clear;
3117 }
3118
3119 dev_err(&dev->dev, "transaction is not cleared; "
3120 "proceeding with reset anyway\n");
3121
3122 clear:
3123 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3124
3125 msleep(100);
3126
3127 return 0;
3128 }
3129
3130 static int pci_af_flr(struct pci_dev *dev, int probe)
3131 {
3132 int i;
3133 int pos;
3134 u8 cap;
3135 u8 status;
3136
3137 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3138 if (!pos)
3139 return -ENOTTY;
3140
3141 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3142 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3143 return -ENOTTY;
3144
3145 if (probe)
3146 return 0;
3147
3148 /* Wait for Transaction Pending bit clean */
3149 for (i = 0; i < 4; i++) {
3150 if (i)
3151 msleep((1 << (i - 1)) * 100);
3152
3153 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3154 if (!(status & PCI_AF_STATUS_TP))
3155 goto clear;
3156 }
3157
3158 dev_err(&dev->dev, "transaction is not cleared; "
3159 "proceeding with reset anyway\n");
3160
3161 clear:
3162 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3163 msleep(100);
3164
3165 return 0;
3166 }
3167
3168 /**
3169 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3170 * @dev: Device to reset.
3171 * @probe: If set, only check if the device can be reset this way.
3172 *
3173 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3174 * unset, it will be reinitialized internally when going from PCI_D3hot to
3175 * PCI_D0. If that's the case and the device is not in a low-power state
3176 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3177 *
3178 * NOTE: This causes the caller to sleep for twice the device power transition
3179 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3180 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3181 * Moreover, only devices in D0 can be reset by this function.
3182 */
3183 static int pci_pm_reset(struct pci_dev *dev, int probe)
3184 {
3185 u16 csr;
3186
3187 if (!dev->pm_cap)
3188 return -ENOTTY;
3189
3190 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3191 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3192 return -ENOTTY;
3193
3194 if (probe)
3195 return 0;
3196
3197 if (dev->current_state != PCI_D0)
3198 return -EINVAL;
3199
3200 csr &= ~PCI_PM_CTRL_STATE_MASK;
3201 csr |= PCI_D3hot;
3202 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3203 pci_dev_d3_sleep(dev);
3204
3205 csr &= ~PCI_PM_CTRL_STATE_MASK;
3206 csr |= PCI_D0;
3207 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3208 pci_dev_d3_sleep(dev);
3209
3210 return 0;
3211 }
3212
3213 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3214 {
3215 u16 ctrl;
3216 struct pci_dev *pdev;
3217
3218 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3219 return -ENOTTY;
3220
3221 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3222 if (pdev != dev)
3223 return -ENOTTY;
3224
3225 if (probe)
3226 return 0;
3227
3228 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3229 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3230 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3231 msleep(100);
3232
3233 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3234 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3235 msleep(100);
3236
3237 return 0;
3238 }
3239
3240 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3241 {
3242 int rc;
3243
3244 might_sleep();
3245
3246 rc = pci_dev_specific_reset(dev, probe);
3247 if (rc != -ENOTTY)
3248 goto done;
3249
3250 rc = pcie_flr(dev, probe);
3251 if (rc != -ENOTTY)
3252 goto done;
3253
3254 rc = pci_af_flr(dev, probe);
3255 if (rc != -ENOTTY)
3256 goto done;
3257
3258 rc = pci_pm_reset(dev, probe);
3259 if (rc != -ENOTTY)
3260 goto done;
3261
3262 rc = pci_parent_bus_reset(dev, probe);
3263 done:
3264 return rc;
3265 }
3266
3267 static int pci_dev_reset(struct pci_dev *dev, int probe)
3268 {
3269 int rc;
3270
3271 if (!probe) {
3272 pci_cfg_access_lock(dev);
3273 /* block PM suspend, driver probe, etc. */
3274 device_lock(&dev->dev);
3275 }
3276
3277 rc = __pci_dev_reset(dev, probe);
3278
3279 if (!probe) {
3280 device_unlock(&dev->dev);
3281 pci_cfg_access_unlock(dev);
3282 }
3283 return rc;
3284 }
3285 /**
3286 * __pci_reset_function - reset a PCI device function
3287 * @dev: PCI device to reset
3288 *
3289 * Some devices allow an individual function to be reset without affecting
3290 * other functions in the same device. The PCI device must be responsive
3291 * to PCI config space in order to use this function.
3292 *
3293 * The device function is presumed to be unused when this function is called.
3294 * Resetting the device will make the contents of PCI configuration space
3295 * random, so any caller of this must be prepared to reinitialise the
3296 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3297 * etc.
3298 *
3299 * Returns 0 if the device function was successfully reset or negative if the
3300 * device doesn't support resetting a single function.
3301 */
3302 int __pci_reset_function(struct pci_dev *dev)
3303 {
3304 return pci_dev_reset(dev, 0);
3305 }
3306 EXPORT_SYMBOL_GPL(__pci_reset_function);
3307
3308 /**
3309 * __pci_reset_function_locked - reset a PCI device function while holding
3310 * the @dev mutex lock.
3311 * @dev: PCI device to reset
3312 *
3313 * Some devices allow an individual function to be reset without affecting
3314 * other functions in the same device. The PCI device must be responsive
3315 * to PCI config space in order to use this function.
3316 *
3317 * The device function is presumed to be unused and the caller is holding
3318 * the device mutex lock when this function is called.
3319 * Resetting the device will make the contents of PCI configuration space
3320 * random, so any caller of this must be prepared to reinitialise the
3321 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3322 * etc.
3323 *
3324 * Returns 0 if the device function was successfully reset or negative if the
3325 * device doesn't support resetting a single function.
3326 */
3327 int __pci_reset_function_locked(struct pci_dev *dev)
3328 {
3329 return __pci_dev_reset(dev, 0);
3330 }
3331 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3332
3333 /**
3334 * pci_probe_reset_function - check whether the device can be safely reset
3335 * @dev: PCI device to reset
3336 *
3337 * Some devices allow an individual function to be reset without affecting
3338 * other functions in the same device. The PCI device must be responsive
3339 * to PCI config space in order to use this function.
3340 *
3341 * Returns 0 if the device function can be reset or negative if the
3342 * device doesn't support resetting a single function.
3343 */
3344 int pci_probe_reset_function(struct pci_dev *dev)
3345 {
3346 return pci_dev_reset(dev, 1);
3347 }
3348
3349 /**
3350 * pci_reset_function - quiesce and reset a PCI device function
3351 * @dev: PCI device to reset
3352 *
3353 * Some devices allow an individual function to be reset without affecting
3354 * other functions in the same device. The PCI device must be responsive
3355 * to PCI config space in order to use this function.
3356 *
3357 * This function does not just reset the PCI portion of a device, but
3358 * clears all the state associated with the device. This function differs
3359 * from __pci_reset_function in that it saves and restores device state
3360 * over the reset.
3361 *
3362 * Returns 0 if the device function was successfully reset or negative if the
3363 * device doesn't support resetting a single function.
3364 */
3365 int pci_reset_function(struct pci_dev *dev)
3366 {
3367 int rc;
3368
3369 rc = pci_dev_reset(dev, 1);
3370 if (rc)
3371 return rc;
3372
3373 pci_save_state(dev);
3374
3375 /*
3376 * both INTx and MSI are disabled after the Interrupt Disable bit
3377 * is set and the Bus Master bit is cleared.
3378 */
3379 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3380
3381 rc = pci_dev_reset(dev, 0);
3382
3383 pci_restore_state(dev);
3384
3385 return rc;
3386 }
3387 EXPORT_SYMBOL_GPL(pci_reset_function);
3388
3389 /**
3390 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3391 * @dev: PCI device to query
3392 *
3393 * Returns mmrbc: maximum designed memory read count in bytes
3394 * or appropriate error value.
3395 */
3396 int pcix_get_max_mmrbc(struct pci_dev *dev)
3397 {
3398 int cap;
3399 u32 stat;
3400
3401 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3402 if (!cap)
3403 return -EINVAL;
3404
3405 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3406 return -EINVAL;
3407
3408 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3409 }
3410 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3411
3412 /**
3413 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3414 * @dev: PCI device to query
3415 *
3416 * Returns mmrbc: maximum memory read count in bytes
3417 * or appropriate error value.
3418 */
3419 int pcix_get_mmrbc(struct pci_dev *dev)
3420 {
3421 int cap;
3422 u16 cmd;
3423
3424 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3425 if (!cap)
3426 return -EINVAL;
3427
3428 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3429 return -EINVAL;
3430
3431 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3432 }
3433 EXPORT_SYMBOL(pcix_get_mmrbc);
3434
3435 /**
3436 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3437 * @dev: PCI device to query
3438 * @mmrbc: maximum memory read count in bytes
3439 * valid values are 512, 1024, 2048, 4096
3440 *
3441 * If possible sets maximum memory read byte count, some bridges have erratas
3442 * that prevent this.
3443 */
3444 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3445 {
3446 int cap;
3447 u32 stat, v, o;
3448 u16 cmd;
3449
3450 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3451 return -EINVAL;
3452
3453 v = ffs(mmrbc) - 10;
3454
3455 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3456 if (!cap)
3457 return -EINVAL;
3458
3459 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3460 return -EINVAL;
3461
3462 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3463 return -E2BIG;
3464
3465 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3466 return -EINVAL;
3467
3468 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3469 if (o != v) {
3470 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3471 return -EIO;
3472
3473 cmd &= ~PCI_X_CMD_MAX_READ;
3474 cmd |= v << 2;
3475 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3476 return -EIO;
3477 }
3478 return 0;
3479 }
3480 EXPORT_SYMBOL(pcix_set_mmrbc);
3481
3482 /**
3483 * pcie_get_readrq - get PCI Express read request size
3484 * @dev: PCI device to query
3485 *
3486 * Returns maximum memory read request in bytes
3487 * or appropriate error value.
3488 */
3489 int pcie_get_readrq(struct pci_dev *dev)
3490 {
3491 u16 ctl;
3492
3493 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3494
3495 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3496 }
3497 EXPORT_SYMBOL(pcie_get_readrq);
3498
3499 /**
3500 * pcie_set_readrq - set PCI Express maximum memory read request
3501 * @dev: PCI device to query
3502 * @rq: maximum memory read count in bytes
3503 * valid values are 128, 256, 512, 1024, 2048, 4096
3504 *
3505 * If possible sets maximum memory read request in bytes
3506 */
3507 int pcie_set_readrq(struct pci_dev *dev, int rq)
3508 {
3509 u16 v;
3510
3511 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3512 return -EINVAL;
3513
3514 /*
3515 * If using the "performance" PCIe config, we clamp the
3516 * read rq size to the max packet size to prevent the
3517 * host bridge generating requests larger than we can
3518 * cope with
3519 */
3520 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3521 int mps = pcie_get_mps(dev);
3522
3523 if (mps < 0)
3524 return mps;
3525 if (mps < rq)
3526 rq = mps;
3527 }
3528
3529 v = (ffs(rq) - 8) << 12;
3530
3531 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3532 PCI_EXP_DEVCTL_READRQ, v);
3533 }
3534 EXPORT_SYMBOL(pcie_set_readrq);
3535
3536 /**
3537 * pcie_get_mps - get PCI Express maximum payload size
3538 * @dev: PCI device to query
3539 *
3540 * Returns maximum payload size in bytes
3541 * or appropriate error value.
3542 */
3543 int pcie_get_mps(struct pci_dev *dev)
3544 {
3545 u16 ctl;
3546
3547 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3548
3549 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3550 }
3551
3552 /**
3553 * pcie_set_mps - set PCI Express maximum payload size
3554 * @dev: PCI device to query
3555 * @mps: maximum payload size in bytes
3556 * valid values are 128, 256, 512, 1024, 2048, 4096
3557 *
3558 * If possible sets maximum payload size
3559 */
3560 int pcie_set_mps(struct pci_dev *dev, int mps)
3561 {
3562 u16 v;
3563
3564 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3565 return -EINVAL;
3566
3567 v = ffs(mps) - 8;
3568 if (v > dev->pcie_mpss)
3569 return -EINVAL;
3570 v <<= 5;
3571
3572 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3573 PCI_EXP_DEVCTL_PAYLOAD, v);
3574 }
3575
3576 /**
3577 * pci_select_bars - Make BAR mask from the type of resource
3578 * @dev: the PCI device for which BAR mask is made
3579 * @flags: resource type mask to be selected
3580 *
3581 * This helper routine makes bar mask from the type of resource.
3582 */
3583 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3584 {
3585 int i, bars = 0;
3586 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3587 if (pci_resource_flags(dev, i) & flags)
3588 bars |= (1 << i);
3589 return bars;
3590 }
3591
3592 /**
3593 * pci_resource_bar - get position of the BAR associated with a resource
3594 * @dev: the PCI device
3595 * @resno: the resource number
3596 * @type: the BAR type to be filled in
3597 *
3598 * Returns BAR position in config space, or 0 if the BAR is invalid.
3599 */
3600 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3601 {
3602 int reg;
3603
3604 if (resno < PCI_ROM_RESOURCE) {
3605 *type = pci_bar_unknown;
3606 return PCI_BASE_ADDRESS_0 + 4 * resno;
3607 } else if (resno == PCI_ROM_RESOURCE) {
3608 *type = pci_bar_mem32;
3609 return dev->rom_base_reg;
3610 } else if (resno < PCI_BRIDGE_RESOURCES) {
3611 /* device specific resource */
3612 reg = pci_iov_resource_bar(dev, resno, type);
3613 if (reg)
3614 return reg;
3615 }
3616
3617 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3618 return 0;
3619 }
3620
3621 /* Some architectures require additional programming to enable VGA */
3622 static arch_set_vga_state_t arch_set_vga_state;
3623
3624 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3625 {
3626 arch_set_vga_state = func; /* NULL disables */
3627 }
3628
3629 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3630 unsigned int command_bits, u32 flags)
3631 {
3632 if (arch_set_vga_state)
3633 return arch_set_vga_state(dev, decode, command_bits,
3634 flags);
3635 return 0;
3636 }
3637
3638 /**
3639 * pci_set_vga_state - set VGA decode state on device and parents if requested
3640 * @dev: the PCI device
3641 * @decode: true = enable decoding, false = disable decoding
3642 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3643 * @flags: traverse ancestors and change bridges
3644 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3645 */
3646 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3647 unsigned int command_bits, u32 flags)
3648 {
3649 struct pci_bus *bus;
3650 struct pci_dev *bridge;
3651 u16 cmd;
3652 int rc;
3653
3654 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3655
3656 /* ARCH specific VGA enables */
3657 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3658 if (rc)
3659 return rc;
3660
3661 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3662 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3663 if (decode == true)
3664 cmd |= command_bits;
3665 else
3666 cmd &= ~command_bits;
3667 pci_write_config_word(dev, PCI_COMMAND, cmd);
3668 }
3669
3670 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3671 return 0;
3672
3673 bus = dev->bus;
3674 while (bus) {
3675 bridge = bus->self;
3676 if (bridge) {
3677 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3678 &cmd);
3679 if (decode == true)
3680 cmd |= PCI_BRIDGE_CTL_VGA;
3681 else
3682 cmd &= ~PCI_BRIDGE_CTL_VGA;
3683 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3684 cmd);
3685 }
3686 bus = bus->parent;
3687 }
3688 return 0;
3689 }
3690
3691 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3692 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3693 static DEFINE_SPINLOCK(resource_alignment_lock);
3694
3695 /**
3696 * pci_specified_resource_alignment - get resource alignment specified by user.
3697 * @dev: the PCI device to get
3698 *
3699 * RETURNS: Resource alignment if it is specified.
3700 * Zero if it is not specified.
3701 */
3702 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3703 {
3704 int seg, bus, slot, func, align_order, count;
3705 resource_size_t align = 0;
3706 char *p;
3707
3708 spin_lock(&resource_alignment_lock);
3709 p = resource_alignment_param;
3710 while (*p) {
3711 count = 0;
3712 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3713 p[count] == '@') {
3714 p += count + 1;
3715 } else {
3716 align_order = -1;
3717 }
3718 if (sscanf(p, "%x:%x:%x.%x%n",
3719 &seg, &bus, &slot, &func, &count) != 4) {
3720 seg = 0;
3721 if (sscanf(p, "%x:%x.%x%n",
3722 &bus, &slot, &func, &count) != 3) {
3723 /* Invalid format */
3724 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3725 p);
3726 break;
3727 }
3728 }
3729 p += count;
3730 if (seg == pci_domain_nr(dev->bus) &&
3731 bus == dev->bus->number &&
3732 slot == PCI_SLOT(dev->devfn) &&
3733 func == PCI_FUNC(dev->devfn)) {
3734 if (align_order == -1) {
3735 align = PAGE_SIZE;
3736 } else {
3737 align = 1 << align_order;
3738 }
3739 /* Found */
3740 break;
3741 }
3742 if (*p != ';' && *p != ',') {
3743 /* End of param or invalid format */
3744 break;
3745 }
3746 p++;
3747 }
3748 spin_unlock(&resource_alignment_lock);
3749 return align;
3750 }
3751
3752 /*
3753 * This function disables memory decoding and releases memory resources
3754 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3755 * It also rounds up size to specified alignment.
3756 * Later on, the kernel will assign page-aligned memory resource back
3757 * to the device.
3758 */
3759 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3760 {
3761 int i;
3762 struct resource *r;
3763 resource_size_t align, size;
3764 u16 command;
3765
3766 /* check if specified PCI is target device to reassign */
3767 align = pci_specified_resource_alignment(dev);
3768 if (!align)
3769 return;
3770
3771 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3772 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3773 dev_warn(&dev->dev,
3774 "Can't reassign resources to host bridge.\n");
3775 return;
3776 }
3777
3778 dev_info(&dev->dev,
3779 "Disabling memory decoding and releasing memory resources.\n");
3780 pci_read_config_word(dev, PCI_COMMAND, &command);
3781 command &= ~PCI_COMMAND_MEMORY;
3782 pci_write_config_word(dev, PCI_COMMAND, command);
3783
3784 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3785 r = &dev->resource[i];
3786 if (!(r->flags & IORESOURCE_MEM))
3787 continue;
3788 size = resource_size(r);
3789 if (size < align) {
3790 size = align;
3791 dev_info(&dev->dev,
3792 "Rounding up size of resource #%d to %#llx.\n",
3793 i, (unsigned long long)size);
3794 }
3795 r->end = size - 1;
3796 r->start = 0;
3797 }
3798 /* Need to disable bridge's resource window,
3799 * to enable the kernel to reassign new resource
3800 * window later on.
3801 */
3802 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3803 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3804 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3805 r = &dev->resource[i];
3806 if (!(r->flags & IORESOURCE_MEM))
3807 continue;
3808 r->end = resource_size(r) - 1;
3809 r->start = 0;
3810 }
3811 pci_disable_bridge_window(dev);
3812 }
3813 }
3814
3815 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3816 {
3817 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3818 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3819 spin_lock(&resource_alignment_lock);
3820 strncpy(resource_alignment_param, buf, count);
3821 resource_alignment_param[count] = '\0';
3822 spin_unlock(&resource_alignment_lock);
3823 return count;
3824 }
3825
3826 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3827 {
3828 size_t count;
3829 spin_lock(&resource_alignment_lock);
3830 count = snprintf(buf, size, "%s", resource_alignment_param);
3831 spin_unlock(&resource_alignment_lock);
3832 return count;
3833 }
3834
3835 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3836 {
3837 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3838 }
3839
3840 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3841 const char *buf, size_t count)
3842 {
3843 return pci_set_resource_alignment_param(buf, count);
3844 }
3845
3846 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3847 pci_resource_alignment_store);
3848
3849 static int __init pci_resource_alignment_sysfs_init(void)
3850 {
3851 return bus_create_file(&pci_bus_type,
3852 &bus_attr_resource_alignment);
3853 }
3854
3855 late_initcall(pci_resource_alignment_sysfs_init);
3856
3857 static void pci_no_domains(void)
3858 {
3859 #ifdef CONFIG_PCI_DOMAINS
3860 pci_domains_supported = 0;
3861 #endif
3862 }
3863
3864 /**
3865 * pci_ext_cfg_avail - can we access extended PCI config space?
3866 *
3867 * Returns 1 if we can access PCI extended config space (offsets
3868 * greater than 0xff). This is the default implementation. Architecture
3869 * implementations can override this.
3870 */
3871 int __weak pci_ext_cfg_avail(void)
3872 {
3873 return 1;
3874 }
3875
3876 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3877 {
3878 }
3879 EXPORT_SYMBOL(pci_fixup_cardbus);
3880
3881 static int __init pci_setup(char *str)
3882 {
3883 while (str) {
3884 char *k = strchr(str, ',');
3885 if (k)
3886 *k++ = 0;
3887 if (*str && (str = pcibios_setup(str)) && *str) {
3888 if (!strcmp(str, "nomsi")) {
3889 pci_no_msi();
3890 } else if (!strcmp(str, "noaer")) {
3891 pci_no_aer();
3892 } else if (!strncmp(str, "realloc=", 8)) {
3893 pci_realloc_get_opt(str + 8);
3894 } else if (!strncmp(str, "realloc", 7)) {
3895 pci_realloc_get_opt("on");
3896 } else if (!strcmp(str, "nodomains")) {
3897 pci_no_domains();
3898 } else if (!strncmp(str, "noari", 5)) {
3899 pcie_ari_disabled = true;
3900 } else if (!strncmp(str, "cbiosize=", 9)) {
3901 pci_cardbus_io_size = memparse(str + 9, &str);
3902 } else if (!strncmp(str, "cbmemsize=", 10)) {
3903 pci_cardbus_mem_size = memparse(str + 10, &str);
3904 } else if (!strncmp(str, "resource_alignment=", 19)) {
3905 pci_set_resource_alignment_param(str + 19,
3906 strlen(str + 19));
3907 } else if (!strncmp(str, "ecrc=", 5)) {
3908 pcie_ecrc_get_policy(str + 5);
3909 } else if (!strncmp(str, "hpiosize=", 9)) {
3910 pci_hotplug_io_size = memparse(str + 9, &str);
3911 } else if (!strncmp(str, "hpmemsize=", 10)) {
3912 pci_hotplug_mem_size = memparse(str + 10, &str);
3913 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3914 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3915 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3916 pcie_bus_config = PCIE_BUS_SAFE;
3917 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3918 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3919 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3920 pcie_bus_config = PCIE_BUS_PEER2PEER;
3921 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3922 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3923 } else {
3924 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3925 str);
3926 }
3927 }
3928 str = k;
3929 }
3930 return 0;
3931 }
3932 early_param("pci", pci_setup);
3933
3934 EXPORT_SYMBOL(pci_reenable_device);
3935 EXPORT_SYMBOL(pci_enable_device_io);
3936 EXPORT_SYMBOL(pci_enable_device_mem);
3937 EXPORT_SYMBOL(pci_enable_device);
3938 EXPORT_SYMBOL(pcim_enable_device);
3939 EXPORT_SYMBOL(pcim_pin_device);
3940 EXPORT_SYMBOL(pci_disable_device);
3941 EXPORT_SYMBOL(pci_find_capability);
3942 EXPORT_SYMBOL(pci_bus_find_capability);
3943 EXPORT_SYMBOL(pci_release_regions);
3944 EXPORT_SYMBOL(pci_request_regions);
3945 EXPORT_SYMBOL(pci_request_regions_exclusive);
3946 EXPORT_SYMBOL(pci_release_region);
3947 EXPORT_SYMBOL(pci_request_region);
3948 EXPORT_SYMBOL(pci_request_region_exclusive);
3949 EXPORT_SYMBOL(pci_release_selected_regions);
3950 EXPORT_SYMBOL(pci_request_selected_regions);
3951 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3952 EXPORT_SYMBOL(pci_set_master);
3953 EXPORT_SYMBOL(pci_clear_master);
3954 EXPORT_SYMBOL(pci_set_mwi);
3955 EXPORT_SYMBOL(pci_try_set_mwi);
3956 EXPORT_SYMBOL(pci_clear_mwi);
3957 EXPORT_SYMBOL_GPL(pci_intx);
3958 EXPORT_SYMBOL(pci_assign_resource);
3959 EXPORT_SYMBOL(pci_find_parent_resource);
3960 EXPORT_SYMBOL(pci_select_bars);
3961
3962 EXPORT_SYMBOL(pci_set_power_state);
3963 EXPORT_SYMBOL(pci_save_state);
3964 EXPORT_SYMBOL(pci_restore_state);
3965 EXPORT_SYMBOL(pci_pme_capable);
3966 EXPORT_SYMBOL(pci_pme_active);
3967 EXPORT_SYMBOL(pci_wake_from_d3);
3968 EXPORT_SYMBOL(pci_target_state);
3969 EXPORT_SYMBOL(pci_prepare_to_sleep);
3970 EXPORT_SYMBOL(pci_back_from_sleep);
3971 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.120053 seconds and 5 git commands to generate.