PCI: Add device-specific PCI ACS enable
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40
41 unsigned int pci_pm_d3_delay;
42
43 static void pci_pme_list_scan(struct work_struct *work);
44
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52 };
53
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64 }
65
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84 /*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92
93 /*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97 unsigned int pcibios_max_latency = 255;
98
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101
102 /**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 struct list_head *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each(tmp, &bus->children) {
116 n = pci_bus_max_busnr(pci_bus_b(tmp));
117 if(n > max)
118 max = n;
119 }
120 return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139
140 #define PCI_FIND_CAP_TTL 48
141
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144 {
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161 }
162
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165 {
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180 {
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198 }
199
200 /**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228 }
229
230 /**
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 int pos;
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
255 }
256
257 /**
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
262 *
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
267 */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (start)
281 pos = start;
282
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309 /**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355 }
356 /**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375 /**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
398 /**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in or where
405 * it should be allocated from.
406 */
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
409 {
410 const struct pci_bus *bus = dev->bus;
411 int i;
412 struct resource *best = NULL, *r;
413
414 pci_bus_for_each_resource(bus, r, i) {
415 if (!r)
416 continue;
417 if (res->start && !(res->start >= r->start && res->end <= r->end))
418 continue; /* Not contained */
419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 continue; /* Wrong type */
421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 return r; /* Exact match */
423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 if (r->flags & IORESOURCE_PREFETCH)
425 continue;
426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 if (!best)
428 best = r;
429 }
430 return best;
431 }
432
433 /**
434 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
435 * @dev: the PCI device to operate on
436 * @pos: config space offset of status word
437 * @mask: mask of bit(s) to care about in status word
438 *
439 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
440 */
441 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
442 {
443 int i;
444
445 /* Wait for Transaction Pending bit clean */
446 for (i = 0; i < 4; i++) {
447 u16 status;
448 if (i)
449 msleep((1 << (i - 1)) * 100);
450
451 pci_read_config_word(dev, pos, &status);
452 if (!(status & mask))
453 return 1;
454 }
455
456 return 0;
457 }
458
459 /**
460 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
461 * @dev: PCI device to have its BARs restored
462 *
463 * Restore the BAR values for a given device, so as to make it
464 * accessible by its driver.
465 */
466 static void
467 pci_restore_bars(struct pci_dev *dev)
468 {
469 int i;
470
471 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
472 pci_update_resource(dev, i);
473 }
474
475 static struct pci_platform_pm_ops *pci_platform_pm;
476
477 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
478 {
479 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
480 || !ops->sleep_wake)
481 return -EINVAL;
482 pci_platform_pm = ops;
483 return 0;
484 }
485
486 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
487 {
488 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
489 }
490
491 static inline int platform_pci_set_power_state(struct pci_dev *dev,
492 pci_power_t t)
493 {
494 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
495 }
496
497 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
498 {
499 return pci_platform_pm ?
500 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
501 }
502
503 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
504 {
505 return pci_platform_pm ?
506 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
507 }
508
509 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
510 {
511 return pci_platform_pm ?
512 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
513 }
514
515 /**
516 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
517 * given PCI device
518 * @dev: PCI device to handle.
519 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
520 *
521 * RETURN VALUE:
522 * -EINVAL if the requested state is invalid.
523 * -EIO if device does not support PCI PM or its PM capabilities register has a
524 * wrong version, or device doesn't support the requested state.
525 * 0 if device already is in the requested state.
526 * 0 if device's power state has been successfully changed.
527 */
528 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
529 {
530 u16 pmcsr;
531 bool need_restore = false;
532
533 /* Check if we're already there */
534 if (dev->current_state == state)
535 return 0;
536
537 if (!dev->pm_cap)
538 return -EIO;
539
540 if (state < PCI_D0 || state > PCI_D3hot)
541 return -EINVAL;
542
543 /* Validate current state:
544 * Can enter D0 from any state, but if we can only go deeper
545 * to sleep if we're already in a low power state
546 */
547 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
548 && dev->current_state > state) {
549 dev_err(&dev->dev, "invalid power transition "
550 "(from state %d to %d)\n", dev->current_state, state);
551 return -EINVAL;
552 }
553
554 /* check if this device supports the desired state */
555 if ((state == PCI_D1 && !dev->d1_support)
556 || (state == PCI_D2 && !dev->d2_support))
557 return -EIO;
558
559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
560
561 /* If we're (effectively) in D3, force entire word to 0.
562 * This doesn't affect PME_Status, disables PME_En, and
563 * sets PowerState to 0.
564 */
565 switch (dev->current_state) {
566 case PCI_D0:
567 case PCI_D1:
568 case PCI_D2:
569 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
570 pmcsr |= state;
571 break;
572 case PCI_D3hot:
573 case PCI_D3cold:
574 case PCI_UNKNOWN: /* Boot-up */
575 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
576 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
577 need_restore = true;
578 /* Fall-through: force to D0 */
579 default:
580 pmcsr = 0;
581 break;
582 }
583
584 /* enter specified state */
585 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
586
587 /* Mandatory power management transition delays */
588 /* see PCI PM 1.1 5.6.1 table 18 */
589 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
590 pci_dev_d3_sleep(dev);
591 else if (state == PCI_D2 || dev->current_state == PCI_D2)
592 udelay(PCI_PM_D2_DELAY);
593
594 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
595 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
596 if (dev->current_state != state && printk_ratelimit())
597 dev_info(&dev->dev, "Refused to change power state, "
598 "currently in D%d\n", dev->current_state);
599
600 /*
601 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
602 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
603 * from D3hot to D0 _may_ perform an internal reset, thereby
604 * going to "D0 Uninitialized" rather than "D0 Initialized".
605 * For example, at least some versions of the 3c905B and the
606 * 3c556B exhibit this behaviour.
607 *
608 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
609 * devices in a D3hot state at boot. Consequently, we need to
610 * restore at least the BARs so that the device will be
611 * accessible to its driver.
612 */
613 if (need_restore)
614 pci_restore_bars(dev);
615
616 if (dev->bus->self)
617 pcie_aspm_pm_state_change(dev->bus->self);
618
619 return 0;
620 }
621
622 /**
623 * pci_update_current_state - Read PCI power state of given device from its
624 * PCI PM registers and cache it
625 * @dev: PCI device to handle.
626 * @state: State to cache in case the device doesn't have the PM capability
627 */
628 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
629 {
630 if (dev->pm_cap) {
631 u16 pmcsr;
632
633 /*
634 * Configuration space is not accessible for device in
635 * D3cold, so just keep or set D3cold for safety
636 */
637 if (dev->current_state == PCI_D3cold)
638 return;
639 if (state == PCI_D3cold) {
640 dev->current_state = PCI_D3cold;
641 return;
642 }
643 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
644 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
645 } else {
646 dev->current_state = state;
647 }
648 }
649
650 /**
651 * pci_power_up - Put the given device into D0 forcibly
652 * @dev: PCI device to power up
653 */
654 void pci_power_up(struct pci_dev *dev)
655 {
656 if (platform_pci_power_manageable(dev))
657 platform_pci_set_power_state(dev, PCI_D0);
658
659 pci_raw_set_power_state(dev, PCI_D0);
660 pci_update_current_state(dev, PCI_D0);
661 }
662
663 /**
664 * pci_platform_power_transition - Use platform to change device power state
665 * @dev: PCI device to handle.
666 * @state: State to put the device into.
667 */
668 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
669 {
670 int error;
671
672 if (platform_pci_power_manageable(dev)) {
673 error = platform_pci_set_power_state(dev, state);
674 if (!error)
675 pci_update_current_state(dev, state);
676 } else
677 error = -ENODEV;
678
679 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
680 dev->current_state = PCI_D0;
681
682 return error;
683 }
684
685 /**
686 * pci_wakeup - Wake up a PCI device
687 * @pci_dev: Device to handle.
688 * @ign: ignored parameter
689 */
690 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
691 {
692 pci_wakeup_event(pci_dev);
693 pm_request_resume(&pci_dev->dev);
694 return 0;
695 }
696
697 /**
698 * pci_wakeup_bus - Walk given bus and wake up devices on it
699 * @bus: Top bus of the subtree to walk.
700 */
701 static void pci_wakeup_bus(struct pci_bus *bus)
702 {
703 if (bus)
704 pci_walk_bus(bus, pci_wakeup, NULL);
705 }
706
707 /**
708 * __pci_start_power_transition - Start power transition of a PCI device
709 * @dev: PCI device to handle.
710 * @state: State to put the device into.
711 */
712 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
713 {
714 if (state == PCI_D0) {
715 pci_platform_power_transition(dev, PCI_D0);
716 /*
717 * Mandatory power management transition delays, see
718 * PCI Express Base Specification Revision 2.0 Section
719 * 6.6.1: Conventional Reset. Do not delay for
720 * devices powered on/off by corresponding bridge,
721 * because have already delayed for the bridge.
722 */
723 if (dev->runtime_d3cold) {
724 msleep(dev->d3cold_delay);
725 /*
726 * When powering on a bridge from D3cold, the
727 * whole hierarchy may be powered on into
728 * D0uninitialized state, resume them to give
729 * them a chance to suspend again
730 */
731 pci_wakeup_bus(dev->subordinate);
732 }
733 }
734 }
735
736 /**
737 * __pci_dev_set_current_state - Set current state of a PCI device
738 * @dev: Device to handle
739 * @data: pointer to state to be set
740 */
741 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
742 {
743 pci_power_t state = *(pci_power_t *)data;
744
745 dev->current_state = state;
746 return 0;
747 }
748
749 /**
750 * __pci_bus_set_current_state - Walk given bus and set current state of devices
751 * @bus: Top bus of the subtree to walk.
752 * @state: state to be set
753 */
754 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
755 {
756 if (bus)
757 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
758 }
759
760 /**
761 * __pci_complete_power_transition - Complete power transition of a PCI device
762 * @dev: PCI device to handle.
763 * @state: State to put the device into.
764 *
765 * This function should not be called directly by device drivers.
766 */
767 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
768 {
769 int ret;
770
771 if (state <= PCI_D0)
772 return -EINVAL;
773 ret = pci_platform_power_transition(dev, state);
774 /* Power off the bridge may power off the whole hierarchy */
775 if (!ret && state == PCI_D3cold)
776 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
777 return ret;
778 }
779 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
780
781 /**
782 * pci_set_power_state - Set the power state of a PCI device
783 * @dev: PCI device to handle.
784 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
785 *
786 * Transition a device to a new power state, using the platform firmware and/or
787 * the device's PCI PM registers.
788 *
789 * RETURN VALUE:
790 * -EINVAL if the requested state is invalid.
791 * -EIO if device does not support PCI PM or its PM capabilities register has a
792 * wrong version, or device doesn't support the requested state.
793 * 0 if device already is in the requested state.
794 * 0 if device's power state has been successfully changed.
795 */
796 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
797 {
798 int error;
799
800 /* bound the state we're entering */
801 if (state > PCI_D3cold)
802 state = PCI_D3cold;
803 else if (state < PCI_D0)
804 state = PCI_D0;
805 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
806 /*
807 * If the device or the parent bridge do not support PCI PM,
808 * ignore the request if we're doing anything other than putting
809 * it into D0 (which would only happen on boot).
810 */
811 return 0;
812
813 /* Check if we're already there */
814 if (dev->current_state == state)
815 return 0;
816
817 __pci_start_power_transition(dev, state);
818
819 /* This device is quirked not to be put into D3, so
820 don't put it in D3 */
821 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
822 return 0;
823
824 /*
825 * To put device in D3cold, we put device into D3hot in native
826 * way, then put device into D3cold with platform ops
827 */
828 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
829 PCI_D3hot : state);
830
831 if (!__pci_complete_power_transition(dev, state))
832 error = 0;
833 /*
834 * When aspm_policy is "powersave" this call ensures
835 * that ASPM is configured.
836 */
837 if (!error && dev->bus->self)
838 pcie_aspm_powersave_config_link(dev->bus->self);
839
840 return error;
841 }
842
843 /**
844 * pci_choose_state - Choose the power state of a PCI device
845 * @dev: PCI device to be suspended
846 * @state: target sleep state for the whole system. This is the value
847 * that is passed to suspend() function.
848 *
849 * Returns PCI power state suitable for given device and given system
850 * message.
851 */
852
853 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
854 {
855 pci_power_t ret;
856
857 if (!dev->pm_cap)
858 return PCI_D0;
859
860 ret = platform_pci_choose_state(dev);
861 if (ret != PCI_POWER_ERROR)
862 return ret;
863
864 switch (state.event) {
865 case PM_EVENT_ON:
866 return PCI_D0;
867 case PM_EVENT_FREEZE:
868 case PM_EVENT_PRETHAW:
869 /* REVISIT both freeze and pre-thaw "should" use D0 */
870 case PM_EVENT_SUSPEND:
871 case PM_EVENT_HIBERNATE:
872 return PCI_D3hot;
873 default:
874 dev_info(&dev->dev, "unrecognized suspend event %d\n",
875 state.event);
876 BUG();
877 }
878 return PCI_D0;
879 }
880
881 EXPORT_SYMBOL(pci_choose_state);
882
883 #define PCI_EXP_SAVE_REGS 7
884
885
886 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
887 u16 cap, bool extended)
888 {
889 struct pci_cap_saved_state *tmp;
890
891 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
892 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
893 return tmp;
894 }
895 return NULL;
896 }
897
898 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
899 {
900 return _pci_find_saved_cap(dev, cap, false);
901 }
902
903 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
904 {
905 return _pci_find_saved_cap(dev, cap, true);
906 }
907
908 static int pci_save_pcie_state(struct pci_dev *dev)
909 {
910 int i = 0;
911 struct pci_cap_saved_state *save_state;
912 u16 *cap;
913
914 if (!pci_is_pcie(dev))
915 return 0;
916
917 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
918 if (!save_state) {
919 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
920 return -ENOMEM;
921 }
922
923 cap = (u16 *)&save_state->cap.data[0];
924 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
925 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
926 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
927 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
929 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
930 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
931
932 return 0;
933 }
934
935 static void pci_restore_pcie_state(struct pci_dev *dev)
936 {
937 int i = 0;
938 struct pci_cap_saved_state *save_state;
939 u16 *cap;
940
941 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
942 if (!save_state)
943 return;
944
945 cap = (u16 *)&save_state->cap.data[0];
946 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
947 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
948 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
949 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
950 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
951 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
952 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
953 }
954
955
956 static int pci_save_pcix_state(struct pci_dev *dev)
957 {
958 int pos;
959 struct pci_cap_saved_state *save_state;
960
961 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
962 if (pos <= 0)
963 return 0;
964
965 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
966 if (!save_state) {
967 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
968 return -ENOMEM;
969 }
970
971 pci_read_config_word(dev, pos + PCI_X_CMD,
972 (u16 *)save_state->cap.data);
973
974 return 0;
975 }
976
977 static void pci_restore_pcix_state(struct pci_dev *dev)
978 {
979 int i = 0, pos;
980 struct pci_cap_saved_state *save_state;
981 u16 *cap;
982
983 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
984 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
985 if (!save_state || pos <= 0)
986 return;
987 cap = (u16 *)&save_state->cap.data[0];
988
989 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
990 }
991
992
993 /**
994 * pci_save_state - save the PCI configuration space of a device before suspending
995 * @dev: - PCI device that we're dealing with
996 */
997 int
998 pci_save_state(struct pci_dev *dev)
999 {
1000 int i;
1001 /* XXX: 100% dword access ok here? */
1002 for (i = 0; i < 16; i++)
1003 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1004 dev->state_saved = true;
1005 if ((i = pci_save_pcie_state(dev)) != 0)
1006 return i;
1007 if ((i = pci_save_pcix_state(dev)) != 0)
1008 return i;
1009 if ((i = pci_save_vc_state(dev)) != 0)
1010 return i;
1011 return 0;
1012 }
1013
1014 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1015 u32 saved_val, int retry)
1016 {
1017 u32 val;
1018
1019 pci_read_config_dword(pdev, offset, &val);
1020 if (val == saved_val)
1021 return;
1022
1023 for (;;) {
1024 dev_dbg(&pdev->dev, "restoring config space at offset "
1025 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1026 pci_write_config_dword(pdev, offset, saved_val);
1027 if (retry-- <= 0)
1028 return;
1029
1030 pci_read_config_dword(pdev, offset, &val);
1031 if (val == saved_val)
1032 return;
1033
1034 mdelay(1);
1035 }
1036 }
1037
1038 static void pci_restore_config_space_range(struct pci_dev *pdev,
1039 int start, int end, int retry)
1040 {
1041 int index;
1042
1043 for (index = end; index >= start; index--)
1044 pci_restore_config_dword(pdev, 4 * index,
1045 pdev->saved_config_space[index],
1046 retry);
1047 }
1048
1049 static void pci_restore_config_space(struct pci_dev *pdev)
1050 {
1051 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1052 pci_restore_config_space_range(pdev, 10, 15, 0);
1053 /* Restore BARs before the command register. */
1054 pci_restore_config_space_range(pdev, 4, 9, 10);
1055 pci_restore_config_space_range(pdev, 0, 3, 0);
1056 } else {
1057 pci_restore_config_space_range(pdev, 0, 15, 0);
1058 }
1059 }
1060
1061 /**
1062 * pci_restore_state - Restore the saved state of a PCI device
1063 * @dev: - PCI device that we're dealing with
1064 */
1065 void pci_restore_state(struct pci_dev *dev)
1066 {
1067 if (!dev->state_saved)
1068 return;
1069
1070 /* PCI Express register must be restored first */
1071 pci_restore_pcie_state(dev);
1072 pci_restore_ats_state(dev);
1073 pci_restore_vc_state(dev);
1074
1075 pci_restore_config_space(dev);
1076
1077 pci_restore_pcix_state(dev);
1078 pci_restore_msi_state(dev);
1079 pci_restore_iov_state(dev);
1080
1081 dev->state_saved = false;
1082 }
1083
1084 struct pci_saved_state {
1085 u32 config_space[16];
1086 struct pci_cap_saved_data cap[0];
1087 };
1088
1089 /**
1090 * pci_store_saved_state - Allocate and return an opaque struct containing
1091 * the device saved state.
1092 * @dev: PCI device that we're dealing with
1093 *
1094 * Return NULL if no state or error.
1095 */
1096 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1097 {
1098 struct pci_saved_state *state;
1099 struct pci_cap_saved_state *tmp;
1100 struct pci_cap_saved_data *cap;
1101 size_t size;
1102
1103 if (!dev->state_saved)
1104 return NULL;
1105
1106 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1107
1108 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1109 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1110
1111 state = kzalloc(size, GFP_KERNEL);
1112 if (!state)
1113 return NULL;
1114
1115 memcpy(state->config_space, dev->saved_config_space,
1116 sizeof(state->config_space));
1117
1118 cap = state->cap;
1119 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1120 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1121 memcpy(cap, &tmp->cap, len);
1122 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1123 }
1124 /* Empty cap_save terminates list */
1125
1126 return state;
1127 }
1128 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1129
1130 /**
1131 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1132 * @dev: PCI device that we're dealing with
1133 * @state: Saved state returned from pci_store_saved_state()
1134 */
1135 static int pci_load_saved_state(struct pci_dev *dev,
1136 struct pci_saved_state *state)
1137 {
1138 struct pci_cap_saved_data *cap;
1139
1140 dev->state_saved = false;
1141
1142 if (!state)
1143 return 0;
1144
1145 memcpy(dev->saved_config_space, state->config_space,
1146 sizeof(state->config_space));
1147
1148 cap = state->cap;
1149 while (cap->size) {
1150 struct pci_cap_saved_state *tmp;
1151
1152 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1153 if (!tmp || tmp->cap.size != cap->size)
1154 return -EINVAL;
1155
1156 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1157 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1158 sizeof(struct pci_cap_saved_data) + cap->size);
1159 }
1160
1161 dev->state_saved = true;
1162 return 0;
1163 }
1164
1165 /**
1166 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1167 * and free the memory allocated for it.
1168 * @dev: PCI device that we're dealing with
1169 * @state: Pointer to saved state returned from pci_store_saved_state()
1170 */
1171 int pci_load_and_free_saved_state(struct pci_dev *dev,
1172 struct pci_saved_state **state)
1173 {
1174 int ret = pci_load_saved_state(dev, *state);
1175 kfree(*state);
1176 *state = NULL;
1177 return ret;
1178 }
1179 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1180
1181 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1182 {
1183 int err;
1184
1185 err = pci_set_power_state(dev, PCI_D0);
1186 if (err < 0 && err != -EIO)
1187 return err;
1188 err = pcibios_enable_device(dev, bars);
1189 if (err < 0)
1190 return err;
1191 pci_fixup_device(pci_fixup_enable, dev);
1192
1193 return 0;
1194 }
1195
1196 /**
1197 * pci_reenable_device - Resume abandoned device
1198 * @dev: PCI device to be resumed
1199 *
1200 * Note this function is a backend of pci_default_resume and is not supposed
1201 * to be called by normal code, write proper resume handler and use it instead.
1202 */
1203 int pci_reenable_device(struct pci_dev *dev)
1204 {
1205 if (pci_is_enabled(dev))
1206 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1207 return 0;
1208 }
1209
1210 static void pci_enable_bridge(struct pci_dev *dev)
1211 {
1212 struct pci_dev *bridge;
1213 int retval;
1214
1215 bridge = pci_upstream_bridge(dev);
1216 if (bridge)
1217 pci_enable_bridge(bridge);
1218
1219 if (pci_is_enabled(dev)) {
1220 if (!dev->is_busmaster)
1221 pci_set_master(dev);
1222 return;
1223 }
1224
1225 retval = pci_enable_device(dev);
1226 if (retval)
1227 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1228 retval);
1229 pci_set_master(dev);
1230 }
1231
1232 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1233 {
1234 struct pci_dev *bridge;
1235 int err;
1236 int i, bars = 0;
1237
1238 /*
1239 * Power state could be unknown at this point, either due to a fresh
1240 * boot or a device removal call. So get the current power state
1241 * so that things like MSI message writing will behave as expected
1242 * (e.g. if the device really is in D0 at enable time).
1243 */
1244 if (dev->pm_cap) {
1245 u16 pmcsr;
1246 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1247 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1248 }
1249
1250 if (atomic_inc_return(&dev->enable_cnt) > 1)
1251 return 0; /* already enabled */
1252
1253 bridge = pci_upstream_bridge(dev);
1254 if (bridge)
1255 pci_enable_bridge(bridge);
1256
1257 /* only skip sriov related */
1258 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1259 if (dev->resource[i].flags & flags)
1260 bars |= (1 << i);
1261 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1262 if (dev->resource[i].flags & flags)
1263 bars |= (1 << i);
1264
1265 err = do_pci_enable_device(dev, bars);
1266 if (err < 0)
1267 atomic_dec(&dev->enable_cnt);
1268 return err;
1269 }
1270
1271 /**
1272 * pci_enable_device_io - Initialize a device for use with IO space
1273 * @dev: PCI device to be initialized
1274 *
1275 * Initialize device before it's used by a driver. Ask low-level code
1276 * to enable I/O resources. Wake up the device if it was suspended.
1277 * Beware, this function can fail.
1278 */
1279 int pci_enable_device_io(struct pci_dev *dev)
1280 {
1281 return pci_enable_device_flags(dev, IORESOURCE_IO);
1282 }
1283
1284 /**
1285 * pci_enable_device_mem - Initialize a device for use with Memory space
1286 * @dev: PCI device to be initialized
1287 *
1288 * Initialize device before it's used by a driver. Ask low-level code
1289 * to enable Memory resources. Wake up the device if it was suspended.
1290 * Beware, this function can fail.
1291 */
1292 int pci_enable_device_mem(struct pci_dev *dev)
1293 {
1294 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1295 }
1296
1297 /**
1298 * pci_enable_device - Initialize device before it's used by a driver.
1299 * @dev: PCI device to be initialized
1300 *
1301 * Initialize device before it's used by a driver. Ask low-level code
1302 * to enable I/O and memory. Wake up the device if it was suspended.
1303 * Beware, this function can fail.
1304 *
1305 * Note we don't actually enable the device many times if we call
1306 * this function repeatedly (we just increment the count).
1307 */
1308 int pci_enable_device(struct pci_dev *dev)
1309 {
1310 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1311 }
1312
1313 /*
1314 * Managed PCI resources. This manages device on/off, intx/msi/msix
1315 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1316 * there's no need to track it separately. pci_devres is initialized
1317 * when a device is enabled using managed PCI device enable interface.
1318 */
1319 struct pci_devres {
1320 unsigned int enabled:1;
1321 unsigned int pinned:1;
1322 unsigned int orig_intx:1;
1323 unsigned int restore_intx:1;
1324 u32 region_mask;
1325 };
1326
1327 static void pcim_release(struct device *gendev, void *res)
1328 {
1329 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1330 struct pci_devres *this = res;
1331 int i;
1332
1333 if (dev->msi_enabled)
1334 pci_disable_msi(dev);
1335 if (dev->msix_enabled)
1336 pci_disable_msix(dev);
1337
1338 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1339 if (this->region_mask & (1 << i))
1340 pci_release_region(dev, i);
1341
1342 if (this->restore_intx)
1343 pci_intx(dev, this->orig_intx);
1344
1345 if (this->enabled && !this->pinned)
1346 pci_disable_device(dev);
1347 }
1348
1349 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1350 {
1351 struct pci_devres *dr, *new_dr;
1352
1353 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1354 if (dr)
1355 return dr;
1356
1357 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1358 if (!new_dr)
1359 return NULL;
1360 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1361 }
1362
1363 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1364 {
1365 if (pci_is_managed(pdev))
1366 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1367 return NULL;
1368 }
1369
1370 /**
1371 * pcim_enable_device - Managed pci_enable_device()
1372 * @pdev: PCI device to be initialized
1373 *
1374 * Managed pci_enable_device().
1375 */
1376 int pcim_enable_device(struct pci_dev *pdev)
1377 {
1378 struct pci_devres *dr;
1379 int rc;
1380
1381 dr = get_pci_dr(pdev);
1382 if (unlikely(!dr))
1383 return -ENOMEM;
1384 if (dr->enabled)
1385 return 0;
1386
1387 rc = pci_enable_device(pdev);
1388 if (!rc) {
1389 pdev->is_managed = 1;
1390 dr->enabled = 1;
1391 }
1392 return rc;
1393 }
1394
1395 /**
1396 * pcim_pin_device - Pin managed PCI device
1397 * @pdev: PCI device to pin
1398 *
1399 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1400 * driver detach. @pdev must have been enabled with
1401 * pcim_enable_device().
1402 */
1403 void pcim_pin_device(struct pci_dev *pdev)
1404 {
1405 struct pci_devres *dr;
1406
1407 dr = find_pci_dr(pdev);
1408 WARN_ON(!dr || !dr->enabled);
1409 if (dr)
1410 dr->pinned = 1;
1411 }
1412
1413 /*
1414 * pcibios_add_device - provide arch specific hooks when adding device dev
1415 * @dev: the PCI device being added
1416 *
1417 * Permits the platform to provide architecture specific functionality when
1418 * devices are added. This is the default implementation. Architecture
1419 * implementations can override this.
1420 */
1421 int __weak pcibios_add_device (struct pci_dev *dev)
1422 {
1423 return 0;
1424 }
1425
1426 /**
1427 * pcibios_release_device - provide arch specific hooks when releasing device dev
1428 * @dev: the PCI device being released
1429 *
1430 * Permits the platform to provide architecture specific functionality when
1431 * devices are released. This is the default implementation. Architecture
1432 * implementations can override this.
1433 */
1434 void __weak pcibios_release_device(struct pci_dev *dev) {}
1435
1436 /**
1437 * pcibios_disable_device - disable arch specific PCI resources for device dev
1438 * @dev: the PCI device to disable
1439 *
1440 * Disables architecture specific PCI resources for the device. This
1441 * is the default implementation. Architecture implementations can
1442 * override this.
1443 */
1444 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1445
1446 static void do_pci_disable_device(struct pci_dev *dev)
1447 {
1448 u16 pci_command;
1449
1450 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1451 if (pci_command & PCI_COMMAND_MASTER) {
1452 pci_command &= ~PCI_COMMAND_MASTER;
1453 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1454 }
1455
1456 pcibios_disable_device(dev);
1457 }
1458
1459 /**
1460 * pci_disable_enabled_device - Disable device without updating enable_cnt
1461 * @dev: PCI device to disable
1462 *
1463 * NOTE: This function is a backend of PCI power management routines and is
1464 * not supposed to be called drivers.
1465 */
1466 void pci_disable_enabled_device(struct pci_dev *dev)
1467 {
1468 if (pci_is_enabled(dev))
1469 do_pci_disable_device(dev);
1470 }
1471
1472 /**
1473 * pci_disable_device - Disable PCI device after use
1474 * @dev: PCI device to be disabled
1475 *
1476 * Signal to the system that the PCI device is not in use by the system
1477 * anymore. This only involves disabling PCI bus-mastering, if active.
1478 *
1479 * Note we don't actually disable the device until all callers of
1480 * pci_enable_device() have called pci_disable_device().
1481 */
1482 void
1483 pci_disable_device(struct pci_dev *dev)
1484 {
1485 struct pci_devres *dr;
1486
1487 dr = find_pci_dr(dev);
1488 if (dr)
1489 dr->enabled = 0;
1490
1491 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1492 "disabling already-disabled device");
1493
1494 if (atomic_dec_return(&dev->enable_cnt) != 0)
1495 return;
1496
1497 do_pci_disable_device(dev);
1498
1499 dev->is_busmaster = 0;
1500 }
1501
1502 /**
1503 * pcibios_set_pcie_reset_state - set reset state for device dev
1504 * @dev: the PCIe device reset
1505 * @state: Reset state to enter into
1506 *
1507 *
1508 * Sets the PCIe reset state for the device. This is the default
1509 * implementation. Architecture implementations can override this.
1510 */
1511 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1512 enum pcie_reset_state state)
1513 {
1514 return -EINVAL;
1515 }
1516
1517 /**
1518 * pci_set_pcie_reset_state - set reset state for device dev
1519 * @dev: the PCIe device reset
1520 * @state: Reset state to enter into
1521 *
1522 *
1523 * Sets the PCI reset state for the device.
1524 */
1525 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1526 {
1527 return pcibios_set_pcie_reset_state(dev, state);
1528 }
1529
1530 /**
1531 * pci_check_pme_status - Check if given device has generated PME.
1532 * @dev: Device to check.
1533 *
1534 * Check the PME status of the device and if set, clear it and clear PME enable
1535 * (if set). Return 'true' if PME status and PME enable were both set or
1536 * 'false' otherwise.
1537 */
1538 bool pci_check_pme_status(struct pci_dev *dev)
1539 {
1540 int pmcsr_pos;
1541 u16 pmcsr;
1542 bool ret = false;
1543
1544 if (!dev->pm_cap)
1545 return false;
1546
1547 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1548 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1549 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1550 return false;
1551
1552 /* Clear PME status. */
1553 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1554 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1555 /* Disable PME to avoid interrupt flood. */
1556 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1557 ret = true;
1558 }
1559
1560 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1561
1562 return ret;
1563 }
1564
1565 /**
1566 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1567 * @dev: Device to handle.
1568 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1569 *
1570 * Check if @dev has generated PME and queue a resume request for it in that
1571 * case.
1572 */
1573 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1574 {
1575 if (pme_poll_reset && dev->pme_poll)
1576 dev->pme_poll = false;
1577
1578 if (pci_check_pme_status(dev)) {
1579 pci_wakeup_event(dev);
1580 pm_request_resume(&dev->dev);
1581 }
1582 return 0;
1583 }
1584
1585 /**
1586 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1587 * @bus: Top bus of the subtree to walk.
1588 */
1589 void pci_pme_wakeup_bus(struct pci_bus *bus)
1590 {
1591 if (bus)
1592 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1593 }
1594
1595
1596 /**
1597 * pci_pme_capable - check the capability of PCI device to generate PME#
1598 * @dev: PCI device to handle.
1599 * @state: PCI state from which device will issue PME#.
1600 */
1601 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1602 {
1603 if (!dev->pm_cap)
1604 return false;
1605
1606 return !!(dev->pme_support & (1 << state));
1607 }
1608
1609 static void pci_pme_list_scan(struct work_struct *work)
1610 {
1611 struct pci_pme_device *pme_dev, *n;
1612
1613 mutex_lock(&pci_pme_list_mutex);
1614 if (!list_empty(&pci_pme_list)) {
1615 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1616 if (pme_dev->dev->pme_poll) {
1617 struct pci_dev *bridge;
1618
1619 bridge = pme_dev->dev->bus->self;
1620 /*
1621 * If bridge is in low power state, the
1622 * configuration space of subordinate devices
1623 * may be not accessible
1624 */
1625 if (bridge && bridge->current_state != PCI_D0)
1626 continue;
1627 pci_pme_wakeup(pme_dev->dev, NULL);
1628 } else {
1629 list_del(&pme_dev->list);
1630 kfree(pme_dev);
1631 }
1632 }
1633 if (!list_empty(&pci_pme_list))
1634 schedule_delayed_work(&pci_pme_work,
1635 msecs_to_jiffies(PME_TIMEOUT));
1636 }
1637 mutex_unlock(&pci_pme_list_mutex);
1638 }
1639
1640 /**
1641 * pci_pme_active - enable or disable PCI device's PME# function
1642 * @dev: PCI device to handle.
1643 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1644 *
1645 * The caller must verify that the device is capable of generating PME# before
1646 * calling this function with @enable equal to 'true'.
1647 */
1648 void pci_pme_active(struct pci_dev *dev, bool enable)
1649 {
1650 u16 pmcsr;
1651
1652 if (!dev->pme_support)
1653 return;
1654
1655 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1656 /* Clear PME_Status by writing 1 to it and enable PME# */
1657 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1658 if (!enable)
1659 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1660
1661 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1662
1663 /*
1664 * PCI (as opposed to PCIe) PME requires that the device have
1665 * its PME# line hooked up correctly. Not all hardware vendors
1666 * do this, so the PME never gets delivered and the device
1667 * remains asleep. The easiest way around this is to
1668 * periodically walk the list of suspended devices and check
1669 * whether any have their PME flag set. The assumption is that
1670 * we'll wake up often enough anyway that this won't be a huge
1671 * hit, and the power savings from the devices will still be a
1672 * win.
1673 *
1674 * Although PCIe uses in-band PME message instead of PME# line
1675 * to report PME, PME does not work for some PCIe devices in
1676 * reality. For example, there are devices that set their PME
1677 * status bits, but don't really bother to send a PME message;
1678 * there are PCI Express Root Ports that don't bother to
1679 * trigger interrupts when they receive PME messages from the
1680 * devices below. So PME poll is used for PCIe devices too.
1681 */
1682
1683 if (dev->pme_poll) {
1684 struct pci_pme_device *pme_dev;
1685 if (enable) {
1686 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1687 GFP_KERNEL);
1688 if (!pme_dev) {
1689 dev_warn(&dev->dev, "can't enable PME#\n");
1690 return;
1691 }
1692 pme_dev->dev = dev;
1693 mutex_lock(&pci_pme_list_mutex);
1694 list_add(&pme_dev->list, &pci_pme_list);
1695 if (list_is_singular(&pci_pme_list))
1696 schedule_delayed_work(&pci_pme_work,
1697 msecs_to_jiffies(PME_TIMEOUT));
1698 mutex_unlock(&pci_pme_list_mutex);
1699 } else {
1700 mutex_lock(&pci_pme_list_mutex);
1701 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1702 if (pme_dev->dev == dev) {
1703 list_del(&pme_dev->list);
1704 kfree(pme_dev);
1705 break;
1706 }
1707 }
1708 mutex_unlock(&pci_pme_list_mutex);
1709 }
1710 }
1711
1712 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1713 }
1714
1715 /**
1716 * __pci_enable_wake - enable PCI device as wakeup event source
1717 * @dev: PCI device affected
1718 * @state: PCI state from which device will issue wakeup events
1719 * @runtime: True if the events are to be generated at run time
1720 * @enable: True to enable event generation; false to disable
1721 *
1722 * This enables the device as a wakeup event source, or disables it.
1723 * When such events involves platform-specific hooks, those hooks are
1724 * called automatically by this routine.
1725 *
1726 * Devices with legacy power management (no standard PCI PM capabilities)
1727 * always require such platform hooks.
1728 *
1729 * RETURN VALUE:
1730 * 0 is returned on success
1731 * -EINVAL is returned if device is not supposed to wake up the system
1732 * Error code depending on the platform is returned if both the platform and
1733 * the native mechanism fail to enable the generation of wake-up events
1734 */
1735 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1736 bool runtime, bool enable)
1737 {
1738 int ret = 0;
1739
1740 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1741 return -EINVAL;
1742
1743 /* Don't do the same thing twice in a row for one device. */
1744 if (!!enable == !!dev->wakeup_prepared)
1745 return 0;
1746
1747 /*
1748 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1749 * Anderson we should be doing PME# wake enable followed by ACPI wake
1750 * enable. To disable wake-up we call the platform first, for symmetry.
1751 */
1752
1753 if (enable) {
1754 int error;
1755
1756 if (pci_pme_capable(dev, state))
1757 pci_pme_active(dev, true);
1758 else
1759 ret = 1;
1760 error = runtime ? platform_pci_run_wake(dev, true) :
1761 platform_pci_sleep_wake(dev, true);
1762 if (ret)
1763 ret = error;
1764 if (!ret)
1765 dev->wakeup_prepared = true;
1766 } else {
1767 if (runtime)
1768 platform_pci_run_wake(dev, false);
1769 else
1770 platform_pci_sleep_wake(dev, false);
1771 pci_pme_active(dev, false);
1772 dev->wakeup_prepared = false;
1773 }
1774
1775 return ret;
1776 }
1777 EXPORT_SYMBOL(__pci_enable_wake);
1778
1779 /**
1780 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1781 * @dev: PCI device to prepare
1782 * @enable: True to enable wake-up event generation; false to disable
1783 *
1784 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1785 * and this function allows them to set that up cleanly - pci_enable_wake()
1786 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1787 * ordering constraints.
1788 *
1789 * This function only returns error code if the device is not capable of
1790 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1791 * enable wake-up power for it.
1792 */
1793 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1794 {
1795 return pci_pme_capable(dev, PCI_D3cold) ?
1796 pci_enable_wake(dev, PCI_D3cold, enable) :
1797 pci_enable_wake(dev, PCI_D3hot, enable);
1798 }
1799
1800 /**
1801 * pci_target_state - find an appropriate low power state for a given PCI dev
1802 * @dev: PCI device
1803 *
1804 * Use underlying platform code to find a supported low power state for @dev.
1805 * If the platform can't manage @dev, return the deepest state from which it
1806 * can generate wake events, based on any available PME info.
1807 */
1808 static pci_power_t pci_target_state(struct pci_dev *dev)
1809 {
1810 pci_power_t target_state = PCI_D3hot;
1811
1812 if (platform_pci_power_manageable(dev)) {
1813 /*
1814 * Call the platform to choose the target state of the device
1815 * and enable wake-up from this state if supported.
1816 */
1817 pci_power_t state = platform_pci_choose_state(dev);
1818
1819 switch (state) {
1820 case PCI_POWER_ERROR:
1821 case PCI_UNKNOWN:
1822 break;
1823 case PCI_D1:
1824 case PCI_D2:
1825 if (pci_no_d1d2(dev))
1826 break;
1827 default:
1828 target_state = state;
1829 }
1830 } else if (!dev->pm_cap) {
1831 target_state = PCI_D0;
1832 } else if (device_may_wakeup(&dev->dev)) {
1833 /*
1834 * Find the deepest state from which the device can generate
1835 * wake-up events, make it the target state and enable device
1836 * to generate PME#.
1837 */
1838 if (dev->pme_support) {
1839 while (target_state
1840 && !(dev->pme_support & (1 << target_state)))
1841 target_state--;
1842 }
1843 }
1844
1845 return target_state;
1846 }
1847
1848 /**
1849 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1850 * @dev: Device to handle.
1851 *
1852 * Choose the power state appropriate for the device depending on whether
1853 * it can wake up the system and/or is power manageable by the platform
1854 * (PCI_D3hot is the default) and put the device into that state.
1855 */
1856 int pci_prepare_to_sleep(struct pci_dev *dev)
1857 {
1858 pci_power_t target_state = pci_target_state(dev);
1859 int error;
1860
1861 if (target_state == PCI_POWER_ERROR)
1862 return -EIO;
1863
1864 /* D3cold during system suspend/hibernate is not supported */
1865 if (target_state > PCI_D3hot)
1866 target_state = PCI_D3hot;
1867
1868 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1869
1870 error = pci_set_power_state(dev, target_state);
1871
1872 if (error)
1873 pci_enable_wake(dev, target_state, false);
1874
1875 return error;
1876 }
1877
1878 /**
1879 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1880 * @dev: Device to handle.
1881 *
1882 * Disable device's system wake-up capability and put it into D0.
1883 */
1884 int pci_back_from_sleep(struct pci_dev *dev)
1885 {
1886 pci_enable_wake(dev, PCI_D0, false);
1887 return pci_set_power_state(dev, PCI_D0);
1888 }
1889
1890 /**
1891 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1892 * @dev: PCI device being suspended.
1893 *
1894 * Prepare @dev to generate wake-up events at run time and put it into a low
1895 * power state.
1896 */
1897 int pci_finish_runtime_suspend(struct pci_dev *dev)
1898 {
1899 pci_power_t target_state = pci_target_state(dev);
1900 int error;
1901
1902 if (target_state == PCI_POWER_ERROR)
1903 return -EIO;
1904
1905 dev->runtime_d3cold = target_state == PCI_D3cold;
1906
1907 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1908
1909 error = pci_set_power_state(dev, target_state);
1910
1911 if (error) {
1912 __pci_enable_wake(dev, target_state, true, false);
1913 dev->runtime_d3cold = false;
1914 }
1915
1916 return error;
1917 }
1918
1919 /**
1920 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1921 * @dev: Device to check.
1922 *
1923 * Return true if the device itself is capable of generating wake-up events
1924 * (through the platform or using the native PCIe PME) or if the device supports
1925 * PME and one of its upstream bridges can generate wake-up events.
1926 */
1927 bool pci_dev_run_wake(struct pci_dev *dev)
1928 {
1929 struct pci_bus *bus = dev->bus;
1930
1931 if (device_run_wake(&dev->dev))
1932 return true;
1933
1934 if (!dev->pme_support)
1935 return false;
1936
1937 while (bus->parent) {
1938 struct pci_dev *bridge = bus->self;
1939
1940 if (device_run_wake(&bridge->dev))
1941 return true;
1942
1943 bus = bus->parent;
1944 }
1945
1946 /* We have reached the root bus. */
1947 if (bus->bridge)
1948 return device_run_wake(bus->bridge);
1949
1950 return false;
1951 }
1952 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1953
1954 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1955 {
1956 struct device *dev = &pdev->dev;
1957 struct device *parent = dev->parent;
1958
1959 if (parent)
1960 pm_runtime_get_sync(parent);
1961 pm_runtime_get_noresume(dev);
1962 /*
1963 * pdev->current_state is set to PCI_D3cold during suspending,
1964 * so wait until suspending completes
1965 */
1966 pm_runtime_barrier(dev);
1967 /*
1968 * Only need to resume devices in D3cold, because config
1969 * registers are still accessible for devices suspended but
1970 * not in D3cold.
1971 */
1972 if (pdev->current_state == PCI_D3cold)
1973 pm_runtime_resume(dev);
1974 }
1975
1976 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1977 {
1978 struct device *dev = &pdev->dev;
1979 struct device *parent = dev->parent;
1980
1981 pm_runtime_put(dev);
1982 if (parent)
1983 pm_runtime_put_sync(parent);
1984 }
1985
1986 /**
1987 * pci_pm_init - Initialize PM functions of given PCI device
1988 * @dev: PCI device to handle.
1989 */
1990 void pci_pm_init(struct pci_dev *dev)
1991 {
1992 int pm;
1993 u16 pmc;
1994
1995 pm_runtime_forbid(&dev->dev);
1996 pm_runtime_set_active(&dev->dev);
1997 pm_runtime_enable(&dev->dev);
1998 device_enable_async_suspend(&dev->dev);
1999 dev->wakeup_prepared = false;
2000
2001 dev->pm_cap = 0;
2002 dev->pme_support = 0;
2003
2004 /* find PCI PM capability in list */
2005 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2006 if (!pm)
2007 return;
2008 /* Check device's ability to generate PME# */
2009 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2010
2011 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2012 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2013 pmc & PCI_PM_CAP_VER_MASK);
2014 return;
2015 }
2016
2017 dev->pm_cap = pm;
2018 dev->d3_delay = PCI_PM_D3_WAIT;
2019 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2020 dev->d3cold_allowed = true;
2021
2022 dev->d1_support = false;
2023 dev->d2_support = false;
2024 if (!pci_no_d1d2(dev)) {
2025 if (pmc & PCI_PM_CAP_D1)
2026 dev->d1_support = true;
2027 if (pmc & PCI_PM_CAP_D2)
2028 dev->d2_support = true;
2029
2030 if (dev->d1_support || dev->d2_support)
2031 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2032 dev->d1_support ? " D1" : "",
2033 dev->d2_support ? " D2" : "");
2034 }
2035
2036 pmc &= PCI_PM_CAP_PME_MASK;
2037 if (pmc) {
2038 dev_printk(KERN_DEBUG, &dev->dev,
2039 "PME# supported from%s%s%s%s%s\n",
2040 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2041 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2042 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2043 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2044 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2045 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2046 dev->pme_poll = true;
2047 /*
2048 * Make device's PM flags reflect the wake-up capability, but
2049 * let the user space enable it to wake up the system as needed.
2050 */
2051 device_set_wakeup_capable(&dev->dev, true);
2052 /* Disable the PME# generation functionality */
2053 pci_pme_active(dev, false);
2054 }
2055 }
2056
2057 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2058 struct pci_cap_saved_state *new_cap)
2059 {
2060 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2061 }
2062
2063 /**
2064 * _pci_add_cap_save_buffer - allocate buffer for saving given
2065 * capability registers
2066 * @dev: the PCI device
2067 * @cap: the capability to allocate the buffer for
2068 * @extended: Standard or Extended capability ID
2069 * @size: requested size of the buffer
2070 */
2071 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2072 bool extended, unsigned int size)
2073 {
2074 int pos;
2075 struct pci_cap_saved_state *save_state;
2076
2077 if (extended)
2078 pos = pci_find_ext_capability(dev, cap);
2079 else
2080 pos = pci_find_capability(dev, cap);
2081
2082 if (pos <= 0)
2083 return 0;
2084
2085 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2086 if (!save_state)
2087 return -ENOMEM;
2088
2089 save_state->cap.cap_nr = cap;
2090 save_state->cap.cap_extended = extended;
2091 save_state->cap.size = size;
2092 pci_add_saved_cap(dev, save_state);
2093
2094 return 0;
2095 }
2096
2097 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2098 {
2099 return _pci_add_cap_save_buffer(dev, cap, false, size);
2100 }
2101
2102 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2103 {
2104 return _pci_add_cap_save_buffer(dev, cap, true, size);
2105 }
2106
2107 /**
2108 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2109 * @dev: the PCI device
2110 */
2111 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2112 {
2113 int error;
2114
2115 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2116 PCI_EXP_SAVE_REGS * sizeof(u16));
2117 if (error)
2118 dev_err(&dev->dev,
2119 "unable to preallocate PCI Express save buffer\n");
2120
2121 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2122 if (error)
2123 dev_err(&dev->dev,
2124 "unable to preallocate PCI-X save buffer\n");
2125
2126 pci_allocate_vc_save_buffers(dev);
2127 }
2128
2129 void pci_free_cap_save_buffers(struct pci_dev *dev)
2130 {
2131 struct pci_cap_saved_state *tmp;
2132 struct hlist_node *n;
2133
2134 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2135 kfree(tmp);
2136 }
2137
2138 /**
2139 * pci_configure_ari - enable or disable ARI forwarding
2140 * @dev: the PCI device
2141 *
2142 * If @dev and its upstream bridge both support ARI, enable ARI in the
2143 * bridge. Otherwise, disable ARI in the bridge.
2144 */
2145 void pci_configure_ari(struct pci_dev *dev)
2146 {
2147 u32 cap;
2148 struct pci_dev *bridge;
2149
2150 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2151 return;
2152
2153 bridge = dev->bus->self;
2154 if (!bridge)
2155 return;
2156
2157 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2158 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2159 return;
2160
2161 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2162 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2163 PCI_EXP_DEVCTL2_ARI);
2164 bridge->ari_enabled = 1;
2165 } else {
2166 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2167 PCI_EXP_DEVCTL2_ARI);
2168 bridge->ari_enabled = 0;
2169 }
2170 }
2171
2172 static int pci_acs_enable;
2173
2174 /**
2175 * pci_request_acs - ask for ACS to be enabled if supported
2176 */
2177 void pci_request_acs(void)
2178 {
2179 pci_acs_enable = 1;
2180 }
2181
2182 /**
2183 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2184 * @dev: the PCI device
2185 */
2186 static int pci_std_enable_acs(struct pci_dev *dev)
2187 {
2188 int pos;
2189 u16 cap;
2190 u16 ctrl;
2191
2192 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2193 if (!pos)
2194 return -ENODEV;
2195
2196 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2197 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2198
2199 /* Source Validation */
2200 ctrl |= (cap & PCI_ACS_SV);
2201
2202 /* P2P Request Redirect */
2203 ctrl |= (cap & PCI_ACS_RR);
2204
2205 /* P2P Completion Redirect */
2206 ctrl |= (cap & PCI_ACS_CR);
2207
2208 /* Upstream Forwarding */
2209 ctrl |= (cap & PCI_ACS_UF);
2210
2211 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2212
2213 return 0;
2214 }
2215
2216 /**
2217 * pci_enable_acs - enable ACS if hardware support it
2218 * @dev: the PCI device
2219 */
2220 void pci_enable_acs(struct pci_dev *dev)
2221 {
2222 if (!pci_acs_enable)
2223 return;
2224
2225 if (!pci_std_enable_acs(dev))
2226 return;
2227
2228 pci_dev_specific_enable_acs(dev);
2229 }
2230
2231 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2232 {
2233 int pos;
2234 u16 cap, ctrl;
2235
2236 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2237 if (!pos)
2238 return false;
2239
2240 /*
2241 * Except for egress control, capabilities are either required
2242 * or only required if controllable. Features missing from the
2243 * capability field can therefore be assumed as hard-wired enabled.
2244 */
2245 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2246 acs_flags &= (cap | PCI_ACS_EC);
2247
2248 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2249 return (ctrl & acs_flags) == acs_flags;
2250 }
2251
2252 /**
2253 * pci_acs_enabled - test ACS against required flags for a given device
2254 * @pdev: device to test
2255 * @acs_flags: required PCI ACS flags
2256 *
2257 * Return true if the device supports the provided flags. Automatically
2258 * filters out flags that are not implemented on multifunction devices.
2259 *
2260 * Note that this interface checks the effective ACS capabilities of the
2261 * device rather than the actual capabilities. For instance, most single
2262 * function endpoints are not required to support ACS because they have no
2263 * opportunity for peer-to-peer access. We therefore return 'true'
2264 * regardless of whether the device exposes an ACS capability. This makes
2265 * it much easier for callers of this function to ignore the actual type
2266 * or topology of the device when testing ACS support.
2267 */
2268 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2269 {
2270 int ret;
2271
2272 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2273 if (ret >= 0)
2274 return ret > 0;
2275
2276 /*
2277 * Conventional PCI and PCI-X devices never support ACS, either
2278 * effectively or actually. The shared bus topology implies that
2279 * any device on the bus can receive or snoop DMA.
2280 */
2281 if (!pci_is_pcie(pdev))
2282 return false;
2283
2284 switch (pci_pcie_type(pdev)) {
2285 /*
2286 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2287 * but since their primary interface is PCI/X, we conservatively
2288 * handle them as we would a non-PCIe device.
2289 */
2290 case PCI_EXP_TYPE_PCIE_BRIDGE:
2291 /*
2292 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2293 * applicable... must never implement an ACS Extended Capability...".
2294 * This seems arbitrary, but we take a conservative interpretation
2295 * of this statement.
2296 */
2297 case PCI_EXP_TYPE_PCI_BRIDGE:
2298 case PCI_EXP_TYPE_RC_EC:
2299 return false;
2300 /*
2301 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2302 * implement ACS in order to indicate their peer-to-peer capabilities,
2303 * regardless of whether they are single- or multi-function devices.
2304 */
2305 case PCI_EXP_TYPE_DOWNSTREAM:
2306 case PCI_EXP_TYPE_ROOT_PORT:
2307 return pci_acs_flags_enabled(pdev, acs_flags);
2308 /*
2309 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2310 * implemented by the remaining PCIe types to indicate peer-to-peer
2311 * capabilities, but only when they are part of a multifunction
2312 * device. The footnote for section 6.12 indicates the specific
2313 * PCIe types included here.
2314 */
2315 case PCI_EXP_TYPE_ENDPOINT:
2316 case PCI_EXP_TYPE_UPSTREAM:
2317 case PCI_EXP_TYPE_LEG_END:
2318 case PCI_EXP_TYPE_RC_END:
2319 if (!pdev->multifunction)
2320 break;
2321
2322 return pci_acs_flags_enabled(pdev, acs_flags);
2323 }
2324
2325 /*
2326 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2327 * to single function devices with the exception of downstream ports.
2328 */
2329 return true;
2330 }
2331
2332 /**
2333 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2334 * @start: starting downstream device
2335 * @end: ending upstream device or NULL to search to the root bus
2336 * @acs_flags: required flags
2337 *
2338 * Walk up a device tree from start to end testing PCI ACS support. If
2339 * any step along the way does not support the required flags, return false.
2340 */
2341 bool pci_acs_path_enabled(struct pci_dev *start,
2342 struct pci_dev *end, u16 acs_flags)
2343 {
2344 struct pci_dev *pdev, *parent = start;
2345
2346 do {
2347 pdev = parent;
2348
2349 if (!pci_acs_enabled(pdev, acs_flags))
2350 return false;
2351
2352 if (pci_is_root_bus(pdev->bus))
2353 return (end == NULL);
2354
2355 parent = pdev->bus->self;
2356 } while (pdev != end);
2357
2358 return true;
2359 }
2360
2361 /**
2362 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2363 * @dev: the PCI device
2364 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2365 *
2366 * Perform INTx swizzling for a device behind one level of bridge. This is
2367 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2368 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2369 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2370 * the PCI Express Base Specification, Revision 2.1)
2371 */
2372 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2373 {
2374 int slot;
2375
2376 if (pci_ari_enabled(dev->bus))
2377 slot = 0;
2378 else
2379 slot = PCI_SLOT(dev->devfn);
2380
2381 return (((pin - 1) + slot) % 4) + 1;
2382 }
2383
2384 int
2385 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2386 {
2387 u8 pin;
2388
2389 pin = dev->pin;
2390 if (!pin)
2391 return -1;
2392
2393 while (!pci_is_root_bus(dev->bus)) {
2394 pin = pci_swizzle_interrupt_pin(dev, pin);
2395 dev = dev->bus->self;
2396 }
2397 *bridge = dev;
2398 return pin;
2399 }
2400
2401 /**
2402 * pci_common_swizzle - swizzle INTx all the way to root bridge
2403 * @dev: the PCI device
2404 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2405 *
2406 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2407 * bridges all the way up to a PCI root bus.
2408 */
2409 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2410 {
2411 u8 pin = *pinp;
2412
2413 while (!pci_is_root_bus(dev->bus)) {
2414 pin = pci_swizzle_interrupt_pin(dev, pin);
2415 dev = dev->bus->self;
2416 }
2417 *pinp = pin;
2418 return PCI_SLOT(dev->devfn);
2419 }
2420
2421 /**
2422 * pci_release_region - Release a PCI bar
2423 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2424 * @bar: BAR to release
2425 *
2426 * Releases the PCI I/O and memory resources previously reserved by a
2427 * successful call to pci_request_region. Call this function only
2428 * after all use of the PCI regions has ceased.
2429 */
2430 void pci_release_region(struct pci_dev *pdev, int bar)
2431 {
2432 struct pci_devres *dr;
2433
2434 if (pci_resource_len(pdev, bar) == 0)
2435 return;
2436 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2437 release_region(pci_resource_start(pdev, bar),
2438 pci_resource_len(pdev, bar));
2439 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2440 release_mem_region(pci_resource_start(pdev, bar),
2441 pci_resource_len(pdev, bar));
2442
2443 dr = find_pci_dr(pdev);
2444 if (dr)
2445 dr->region_mask &= ~(1 << bar);
2446 }
2447
2448 /**
2449 * __pci_request_region - Reserved PCI I/O and memory resource
2450 * @pdev: PCI device whose resources are to be reserved
2451 * @bar: BAR to be reserved
2452 * @res_name: Name to be associated with resource.
2453 * @exclusive: whether the region access is exclusive or not
2454 *
2455 * Mark the PCI region associated with PCI device @pdev BR @bar as
2456 * being reserved by owner @res_name. Do not access any
2457 * address inside the PCI regions unless this call returns
2458 * successfully.
2459 *
2460 * If @exclusive is set, then the region is marked so that userspace
2461 * is explicitly not allowed to map the resource via /dev/mem or
2462 * sysfs MMIO access.
2463 *
2464 * Returns 0 on success, or %EBUSY on error. A warning
2465 * message is also printed on failure.
2466 */
2467 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2468 int exclusive)
2469 {
2470 struct pci_devres *dr;
2471
2472 if (pci_resource_len(pdev, bar) == 0)
2473 return 0;
2474
2475 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2476 if (!request_region(pci_resource_start(pdev, bar),
2477 pci_resource_len(pdev, bar), res_name))
2478 goto err_out;
2479 }
2480 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2481 if (!__request_mem_region(pci_resource_start(pdev, bar),
2482 pci_resource_len(pdev, bar), res_name,
2483 exclusive))
2484 goto err_out;
2485 }
2486
2487 dr = find_pci_dr(pdev);
2488 if (dr)
2489 dr->region_mask |= 1 << bar;
2490
2491 return 0;
2492
2493 err_out:
2494 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2495 &pdev->resource[bar]);
2496 return -EBUSY;
2497 }
2498
2499 /**
2500 * pci_request_region - Reserve PCI I/O and memory resource
2501 * @pdev: PCI device whose resources are to be reserved
2502 * @bar: BAR to be reserved
2503 * @res_name: Name to be associated with resource
2504 *
2505 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2506 * being reserved by owner @res_name. Do not access any
2507 * address inside the PCI regions unless this call returns
2508 * successfully.
2509 *
2510 * Returns 0 on success, or %EBUSY on error. A warning
2511 * message is also printed on failure.
2512 */
2513 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2514 {
2515 return __pci_request_region(pdev, bar, res_name, 0);
2516 }
2517
2518 /**
2519 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2520 * @pdev: PCI device whose resources are to be reserved
2521 * @bar: BAR to be reserved
2522 * @res_name: Name to be associated with resource.
2523 *
2524 * Mark the PCI region associated with PCI device @pdev BR @bar as
2525 * being reserved by owner @res_name. Do not access any
2526 * address inside the PCI regions unless this call returns
2527 * successfully.
2528 *
2529 * Returns 0 on success, or %EBUSY on error. A warning
2530 * message is also printed on failure.
2531 *
2532 * The key difference that _exclusive makes it that userspace is
2533 * explicitly not allowed to map the resource via /dev/mem or
2534 * sysfs.
2535 */
2536 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2537 {
2538 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2539 }
2540 /**
2541 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2542 * @pdev: PCI device whose resources were previously reserved
2543 * @bars: Bitmask of BARs to be released
2544 *
2545 * Release selected PCI I/O and memory resources previously reserved.
2546 * Call this function only after all use of the PCI regions has ceased.
2547 */
2548 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2549 {
2550 int i;
2551
2552 for (i = 0; i < 6; i++)
2553 if (bars & (1 << i))
2554 pci_release_region(pdev, i);
2555 }
2556
2557 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2558 const char *res_name, int excl)
2559 {
2560 int i;
2561
2562 for (i = 0; i < 6; i++)
2563 if (bars & (1 << i))
2564 if (__pci_request_region(pdev, i, res_name, excl))
2565 goto err_out;
2566 return 0;
2567
2568 err_out:
2569 while(--i >= 0)
2570 if (bars & (1 << i))
2571 pci_release_region(pdev, i);
2572
2573 return -EBUSY;
2574 }
2575
2576
2577 /**
2578 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2579 * @pdev: PCI device whose resources are to be reserved
2580 * @bars: Bitmask of BARs to be requested
2581 * @res_name: Name to be associated with resource
2582 */
2583 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2584 const char *res_name)
2585 {
2586 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2587 }
2588
2589 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2590 int bars, const char *res_name)
2591 {
2592 return __pci_request_selected_regions(pdev, bars, res_name,
2593 IORESOURCE_EXCLUSIVE);
2594 }
2595
2596 /**
2597 * pci_release_regions - Release reserved PCI I/O and memory resources
2598 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2599 *
2600 * Releases all PCI I/O and memory resources previously reserved by a
2601 * successful call to pci_request_regions. Call this function only
2602 * after all use of the PCI regions has ceased.
2603 */
2604
2605 void pci_release_regions(struct pci_dev *pdev)
2606 {
2607 pci_release_selected_regions(pdev, (1 << 6) - 1);
2608 }
2609
2610 /**
2611 * pci_request_regions - Reserved PCI I/O and memory resources
2612 * @pdev: PCI device whose resources are to be reserved
2613 * @res_name: Name to be associated with resource.
2614 *
2615 * Mark all PCI regions associated with PCI device @pdev as
2616 * being reserved by owner @res_name. Do not access any
2617 * address inside the PCI regions unless this call returns
2618 * successfully.
2619 *
2620 * Returns 0 on success, or %EBUSY on error. A warning
2621 * message is also printed on failure.
2622 */
2623 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2624 {
2625 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2626 }
2627
2628 /**
2629 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2630 * @pdev: PCI device whose resources are to be reserved
2631 * @res_name: Name to be associated with resource.
2632 *
2633 * Mark all PCI regions associated with PCI device @pdev as
2634 * being reserved by owner @res_name. Do not access any
2635 * address inside the PCI regions unless this call returns
2636 * successfully.
2637 *
2638 * pci_request_regions_exclusive() will mark the region so that
2639 * /dev/mem and the sysfs MMIO access will not be allowed.
2640 *
2641 * Returns 0 on success, or %EBUSY on error. A warning
2642 * message is also printed on failure.
2643 */
2644 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2645 {
2646 return pci_request_selected_regions_exclusive(pdev,
2647 ((1 << 6) - 1), res_name);
2648 }
2649
2650 static void __pci_set_master(struct pci_dev *dev, bool enable)
2651 {
2652 u16 old_cmd, cmd;
2653
2654 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2655 if (enable)
2656 cmd = old_cmd | PCI_COMMAND_MASTER;
2657 else
2658 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2659 if (cmd != old_cmd) {
2660 dev_dbg(&dev->dev, "%s bus mastering\n",
2661 enable ? "enabling" : "disabling");
2662 pci_write_config_word(dev, PCI_COMMAND, cmd);
2663 }
2664 dev->is_busmaster = enable;
2665 }
2666
2667 /**
2668 * pcibios_setup - process "pci=" kernel boot arguments
2669 * @str: string used to pass in "pci=" kernel boot arguments
2670 *
2671 * Process kernel boot arguments. This is the default implementation.
2672 * Architecture specific implementations can override this as necessary.
2673 */
2674 char * __weak __init pcibios_setup(char *str)
2675 {
2676 return str;
2677 }
2678
2679 /**
2680 * pcibios_set_master - enable PCI bus-mastering for device dev
2681 * @dev: the PCI device to enable
2682 *
2683 * Enables PCI bus-mastering for the device. This is the default
2684 * implementation. Architecture specific implementations can override
2685 * this if necessary.
2686 */
2687 void __weak pcibios_set_master(struct pci_dev *dev)
2688 {
2689 u8 lat;
2690
2691 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2692 if (pci_is_pcie(dev))
2693 return;
2694
2695 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2696 if (lat < 16)
2697 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2698 else if (lat > pcibios_max_latency)
2699 lat = pcibios_max_latency;
2700 else
2701 return;
2702
2703 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2704 }
2705
2706 /**
2707 * pci_set_master - enables bus-mastering for device dev
2708 * @dev: the PCI device to enable
2709 *
2710 * Enables bus-mastering on the device and calls pcibios_set_master()
2711 * to do the needed arch specific settings.
2712 */
2713 void pci_set_master(struct pci_dev *dev)
2714 {
2715 __pci_set_master(dev, true);
2716 pcibios_set_master(dev);
2717 }
2718
2719 /**
2720 * pci_clear_master - disables bus-mastering for device dev
2721 * @dev: the PCI device to disable
2722 */
2723 void pci_clear_master(struct pci_dev *dev)
2724 {
2725 __pci_set_master(dev, false);
2726 }
2727
2728 /**
2729 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2730 * @dev: the PCI device for which MWI is to be enabled
2731 *
2732 * Helper function for pci_set_mwi.
2733 * Originally copied from drivers/net/acenic.c.
2734 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2735 *
2736 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2737 */
2738 int pci_set_cacheline_size(struct pci_dev *dev)
2739 {
2740 u8 cacheline_size;
2741
2742 if (!pci_cache_line_size)
2743 return -EINVAL;
2744
2745 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2746 equal to or multiple of the right value. */
2747 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2748 if (cacheline_size >= pci_cache_line_size &&
2749 (cacheline_size % pci_cache_line_size) == 0)
2750 return 0;
2751
2752 /* Write the correct value. */
2753 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2754 /* Read it back. */
2755 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2756 if (cacheline_size == pci_cache_line_size)
2757 return 0;
2758
2759 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2760 "supported\n", pci_cache_line_size << 2);
2761
2762 return -EINVAL;
2763 }
2764 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2765
2766 #ifdef PCI_DISABLE_MWI
2767 int pci_set_mwi(struct pci_dev *dev)
2768 {
2769 return 0;
2770 }
2771
2772 int pci_try_set_mwi(struct pci_dev *dev)
2773 {
2774 return 0;
2775 }
2776
2777 void pci_clear_mwi(struct pci_dev *dev)
2778 {
2779 }
2780
2781 #else
2782
2783 /**
2784 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2785 * @dev: the PCI device for which MWI is enabled
2786 *
2787 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2788 *
2789 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2790 */
2791 int
2792 pci_set_mwi(struct pci_dev *dev)
2793 {
2794 int rc;
2795 u16 cmd;
2796
2797 rc = pci_set_cacheline_size(dev);
2798 if (rc)
2799 return rc;
2800
2801 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2802 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2803 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2804 cmd |= PCI_COMMAND_INVALIDATE;
2805 pci_write_config_word(dev, PCI_COMMAND, cmd);
2806 }
2807
2808 return 0;
2809 }
2810
2811 /**
2812 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2813 * @dev: the PCI device for which MWI is enabled
2814 *
2815 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2816 * Callers are not required to check the return value.
2817 *
2818 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2819 */
2820 int pci_try_set_mwi(struct pci_dev *dev)
2821 {
2822 int rc = pci_set_mwi(dev);
2823 return rc;
2824 }
2825
2826 /**
2827 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2828 * @dev: the PCI device to disable
2829 *
2830 * Disables PCI Memory-Write-Invalidate transaction on the device
2831 */
2832 void
2833 pci_clear_mwi(struct pci_dev *dev)
2834 {
2835 u16 cmd;
2836
2837 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2838 if (cmd & PCI_COMMAND_INVALIDATE) {
2839 cmd &= ~PCI_COMMAND_INVALIDATE;
2840 pci_write_config_word(dev, PCI_COMMAND, cmd);
2841 }
2842 }
2843 #endif /* ! PCI_DISABLE_MWI */
2844
2845 /**
2846 * pci_intx - enables/disables PCI INTx for device dev
2847 * @pdev: the PCI device to operate on
2848 * @enable: boolean: whether to enable or disable PCI INTx
2849 *
2850 * Enables/disables PCI INTx for device dev
2851 */
2852 void
2853 pci_intx(struct pci_dev *pdev, int enable)
2854 {
2855 u16 pci_command, new;
2856
2857 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2858
2859 if (enable) {
2860 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2861 } else {
2862 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2863 }
2864
2865 if (new != pci_command) {
2866 struct pci_devres *dr;
2867
2868 pci_write_config_word(pdev, PCI_COMMAND, new);
2869
2870 dr = find_pci_dr(pdev);
2871 if (dr && !dr->restore_intx) {
2872 dr->restore_intx = 1;
2873 dr->orig_intx = !enable;
2874 }
2875 }
2876 }
2877
2878 /**
2879 * pci_intx_mask_supported - probe for INTx masking support
2880 * @dev: the PCI device to operate on
2881 *
2882 * Check if the device dev support INTx masking via the config space
2883 * command word.
2884 */
2885 bool pci_intx_mask_supported(struct pci_dev *dev)
2886 {
2887 bool mask_supported = false;
2888 u16 orig, new;
2889
2890 if (dev->broken_intx_masking)
2891 return false;
2892
2893 pci_cfg_access_lock(dev);
2894
2895 pci_read_config_word(dev, PCI_COMMAND, &orig);
2896 pci_write_config_word(dev, PCI_COMMAND,
2897 orig ^ PCI_COMMAND_INTX_DISABLE);
2898 pci_read_config_word(dev, PCI_COMMAND, &new);
2899
2900 /*
2901 * There's no way to protect against hardware bugs or detect them
2902 * reliably, but as long as we know what the value should be, let's
2903 * go ahead and check it.
2904 */
2905 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2906 dev_err(&dev->dev, "Command register changed from "
2907 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2908 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2909 mask_supported = true;
2910 pci_write_config_word(dev, PCI_COMMAND, orig);
2911 }
2912
2913 pci_cfg_access_unlock(dev);
2914 return mask_supported;
2915 }
2916 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2917
2918 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2919 {
2920 struct pci_bus *bus = dev->bus;
2921 bool mask_updated = true;
2922 u32 cmd_status_dword;
2923 u16 origcmd, newcmd;
2924 unsigned long flags;
2925 bool irq_pending;
2926
2927 /*
2928 * We do a single dword read to retrieve both command and status.
2929 * Document assumptions that make this possible.
2930 */
2931 BUILD_BUG_ON(PCI_COMMAND % 4);
2932 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2933
2934 raw_spin_lock_irqsave(&pci_lock, flags);
2935
2936 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2937
2938 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2939
2940 /*
2941 * Check interrupt status register to see whether our device
2942 * triggered the interrupt (when masking) or the next IRQ is
2943 * already pending (when unmasking).
2944 */
2945 if (mask != irq_pending) {
2946 mask_updated = false;
2947 goto done;
2948 }
2949
2950 origcmd = cmd_status_dword;
2951 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2952 if (mask)
2953 newcmd |= PCI_COMMAND_INTX_DISABLE;
2954 if (newcmd != origcmd)
2955 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2956
2957 done:
2958 raw_spin_unlock_irqrestore(&pci_lock, flags);
2959
2960 return mask_updated;
2961 }
2962
2963 /**
2964 * pci_check_and_mask_intx - mask INTx on pending interrupt
2965 * @dev: the PCI device to operate on
2966 *
2967 * Check if the device dev has its INTx line asserted, mask it and
2968 * return true in that case. False is returned if not interrupt was
2969 * pending.
2970 */
2971 bool pci_check_and_mask_intx(struct pci_dev *dev)
2972 {
2973 return pci_check_and_set_intx_mask(dev, true);
2974 }
2975 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2976
2977 /**
2978 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
2979 * @dev: the PCI device to operate on
2980 *
2981 * Check if the device dev has its INTx line asserted, unmask it if not
2982 * and return true. False is returned and the mask remains active if
2983 * there was still an interrupt pending.
2984 */
2985 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2986 {
2987 return pci_check_and_set_intx_mask(dev, false);
2988 }
2989 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2990
2991 /**
2992 * pci_msi_off - disables any MSI or MSI-X capabilities
2993 * @dev: the PCI device to operate on
2994 *
2995 * If you want to use MSI, see pci_enable_msi() and friends.
2996 * This is a lower-level primitive that allows us to disable
2997 * MSI operation at the device level.
2998 */
2999 void pci_msi_off(struct pci_dev *dev)
3000 {
3001 int pos;
3002 u16 control;
3003
3004 /*
3005 * This looks like it could go in msi.c, but we need it even when
3006 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3007 * dev->msi_cap or dev->msix_cap here.
3008 */
3009 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3010 if (pos) {
3011 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3012 control &= ~PCI_MSI_FLAGS_ENABLE;
3013 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3014 }
3015 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3016 if (pos) {
3017 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3018 control &= ~PCI_MSIX_FLAGS_ENABLE;
3019 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3020 }
3021 }
3022 EXPORT_SYMBOL_GPL(pci_msi_off);
3023
3024 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3025 {
3026 return dma_set_max_seg_size(&dev->dev, size);
3027 }
3028 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3029
3030 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3031 {
3032 return dma_set_seg_boundary(&dev->dev, mask);
3033 }
3034 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3035
3036 /**
3037 * pci_wait_for_pending_transaction - waits for pending transaction
3038 * @dev: the PCI device to operate on
3039 *
3040 * Return 0 if transaction is pending 1 otherwise.
3041 */
3042 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3043 {
3044 if (!pci_is_pcie(dev))
3045 return 1;
3046
3047 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND);
3048 }
3049 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3050
3051 static int pcie_flr(struct pci_dev *dev, int probe)
3052 {
3053 u32 cap;
3054
3055 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3056 if (!(cap & PCI_EXP_DEVCAP_FLR))
3057 return -ENOTTY;
3058
3059 if (probe)
3060 return 0;
3061
3062 if (!pci_wait_for_pending_transaction(dev))
3063 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3064
3065 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3066
3067 msleep(100);
3068
3069 return 0;
3070 }
3071
3072 static int pci_af_flr(struct pci_dev *dev, int probe)
3073 {
3074 int pos;
3075 u8 cap;
3076
3077 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3078 if (!pos)
3079 return -ENOTTY;
3080
3081 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3082 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3083 return -ENOTTY;
3084
3085 if (probe)
3086 return 0;
3087
3088 /* Wait for Transaction Pending bit clean */
3089 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP))
3090 goto clear;
3091
3092 dev_err(&dev->dev, "transaction is not cleared; "
3093 "proceeding with reset anyway\n");
3094
3095 clear:
3096 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3097 msleep(100);
3098
3099 return 0;
3100 }
3101
3102 /**
3103 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3104 * @dev: Device to reset.
3105 * @probe: If set, only check if the device can be reset this way.
3106 *
3107 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3108 * unset, it will be reinitialized internally when going from PCI_D3hot to
3109 * PCI_D0. If that's the case and the device is not in a low-power state
3110 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3111 *
3112 * NOTE: This causes the caller to sleep for twice the device power transition
3113 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3114 * by default (i.e. unless the @dev's d3_delay field has a different value).
3115 * Moreover, only devices in D0 can be reset by this function.
3116 */
3117 static int pci_pm_reset(struct pci_dev *dev, int probe)
3118 {
3119 u16 csr;
3120
3121 if (!dev->pm_cap)
3122 return -ENOTTY;
3123
3124 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3125 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3126 return -ENOTTY;
3127
3128 if (probe)
3129 return 0;
3130
3131 if (dev->current_state != PCI_D0)
3132 return -EINVAL;
3133
3134 csr &= ~PCI_PM_CTRL_STATE_MASK;
3135 csr |= PCI_D3hot;
3136 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3137 pci_dev_d3_sleep(dev);
3138
3139 csr &= ~PCI_PM_CTRL_STATE_MASK;
3140 csr |= PCI_D0;
3141 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3142 pci_dev_d3_sleep(dev);
3143
3144 return 0;
3145 }
3146
3147 /**
3148 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3149 * @dev: Bridge device
3150 *
3151 * Use the bridge control register to assert reset on the secondary bus.
3152 * Devices on the secondary bus are left in power-on state.
3153 */
3154 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3155 {
3156 u16 ctrl;
3157
3158 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3159 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3160 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3161 /*
3162 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3163 * this to 2ms to ensure that we meet the minimum requirement.
3164 */
3165 msleep(2);
3166
3167 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3168 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3169
3170 /*
3171 * Trhfa for conventional PCI is 2^25 clock cycles.
3172 * Assuming a minimum 33MHz clock this results in a 1s
3173 * delay before we can consider subordinate devices to
3174 * be re-initialized. PCIe has some ways to shorten this,
3175 * but we don't make use of them yet.
3176 */
3177 ssleep(1);
3178 }
3179 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3180
3181 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3182 {
3183 struct pci_dev *pdev;
3184
3185 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3186 return -ENOTTY;
3187
3188 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3189 if (pdev != dev)
3190 return -ENOTTY;
3191
3192 if (probe)
3193 return 0;
3194
3195 pci_reset_bridge_secondary_bus(dev->bus->self);
3196
3197 return 0;
3198 }
3199
3200 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3201 {
3202 int rc = -ENOTTY;
3203
3204 if (!hotplug || !try_module_get(hotplug->ops->owner))
3205 return rc;
3206
3207 if (hotplug->ops->reset_slot)
3208 rc = hotplug->ops->reset_slot(hotplug, probe);
3209
3210 module_put(hotplug->ops->owner);
3211
3212 return rc;
3213 }
3214
3215 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3216 {
3217 struct pci_dev *pdev;
3218
3219 if (dev->subordinate || !dev->slot)
3220 return -ENOTTY;
3221
3222 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3223 if (pdev != dev && pdev->slot == dev->slot)
3224 return -ENOTTY;
3225
3226 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3227 }
3228
3229 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3230 {
3231 int rc;
3232
3233 might_sleep();
3234
3235 rc = pci_dev_specific_reset(dev, probe);
3236 if (rc != -ENOTTY)
3237 goto done;
3238
3239 rc = pcie_flr(dev, probe);
3240 if (rc != -ENOTTY)
3241 goto done;
3242
3243 rc = pci_af_flr(dev, probe);
3244 if (rc != -ENOTTY)
3245 goto done;
3246
3247 rc = pci_pm_reset(dev, probe);
3248 if (rc != -ENOTTY)
3249 goto done;
3250
3251 rc = pci_dev_reset_slot_function(dev, probe);
3252 if (rc != -ENOTTY)
3253 goto done;
3254
3255 rc = pci_parent_bus_reset(dev, probe);
3256 done:
3257 return rc;
3258 }
3259
3260 static void pci_dev_lock(struct pci_dev *dev)
3261 {
3262 pci_cfg_access_lock(dev);
3263 /* block PM suspend, driver probe, etc. */
3264 device_lock(&dev->dev);
3265 }
3266
3267 /* Return 1 on successful lock, 0 on contention */
3268 static int pci_dev_trylock(struct pci_dev *dev)
3269 {
3270 if (pci_cfg_access_trylock(dev)) {
3271 if (device_trylock(&dev->dev))
3272 return 1;
3273 pci_cfg_access_unlock(dev);
3274 }
3275
3276 return 0;
3277 }
3278
3279 static void pci_dev_unlock(struct pci_dev *dev)
3280 {
3281 device_unlock(&dev->dev);
3282 pci_cfg_access_unlock(dev);
3283 }
3284
3285 static void pci_dev_save_and_disable(struct pci_dev *dev)
3286 {
3287 /*
3288 * Wake-up device prior to save. PM registers default to D0 after
3289 * reset and a simple register restore doesn't reliably return
3290 * to a non-D0 state anyway.
3291 */
3292 pci_set_power_state(dev, PCI_D0);
3293
3294 pci_save_state(dev);
3295 /*
3296 * Disable the device by clearing the Command register, except for
3297 * INTx-disable which is set. This not only disables MMIO and I/O port
3298 * BARs, but also prevents the device from being Bus Master, preventing
3299 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3300 * compliant devices, INTx-disable prevents legacy interrupts.
3301 */
3302 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3303 }
3304
3305 static void pci_dev_restore(struct pci_dev *dev)
3306 {
3307 pci_restore_state(dev);
3308 }
3309
3310 static int pci_dev_reset(struct pci_dev *dev, int probe)
3311 {
3312 int rc;
3313
3314 if (!probe)
3315 pci_dev_lock(dev);
3316
3317 rc = __pci_dev_reset(dev, probe);
3318
3319 if (!probe)
3320 pci_dev_unlock(dev);
3321
3322 return rc;
3323 }
3324 /**
3325 * __pci_reset_function - reset a PCI device function
3326 * @dev: PCI device to reset
3327 *
3328 * Some devices allow an individual function to be reset without affecting
3329 * other functions in the same device. The PCI device must be responsive
3330 * to PCI config space in order to use this function.
3331 *
3332 * The device function is presumed to be unused when this function is called.
3333 * Resetting the device will make the contents of PCI configuration space
3334 * random, so any caller of this must be prepared to reinitialise the
3335 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3336 * etc.
3337 *
3338 * Returns 0 if the device function was successfully reset or negative if the
3339 * device doesn't support resetting a single function.
3340 */
3341 int __pci_reset_function(struct pci_dev *dev)
3342 {
3343 return pci_dev_reset(dev, 0);
3344 }
3345 EXPORT_SYMBOL_GPL(__pci_reset_function);
3346
3347 /**
3348 * __pci_reset_function_locked - reset a PCI device function while holding
3349 * the @dev mutex lock.
3350 * @dev: PCI device to reset
3351 *
3352 * Some devices allow an individual function to be reset without affecting
3353 * other functions in the same device. The PCI device must be responsive
3354 * to PCI config space in order to use this function.
3355 *
3356 * The device function is presumed to be unused and the caller is holding
3357 * the device mutex lock when this function is called.
3358 * Resetting the device will make the contents of PCI configuration space
3359 * random, so any caller of this must be prepared to reinitialise the
3360 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3361 * etc.
3362 *
3363 * Returns 0 if the device function was successfully reset or negative if the
3364 * device doesn't support resetting a single function.
3365 */
3366 int __pci_reset_function_locked(struct pci_dev *dev)
3367 {
3368 return __pci_dev_reset(dev, 0);
3369 }
3370 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3371
3372 /**
3373 * pci_probe_reset_function - check whether the device can be safely reset
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device. The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * Returns 0 if the device function can be reset or negative if the
3381 * device doesn't support resetting a single function.
3382 */
3383 int pci_probe_reset_function(struct pci_dev *dev)
3384 {
3385 return pci_dev_reset(dev, 1);
3386 }
3387
3388 /**
3389 * pci_reset_function - quiesce and reset a PCI device function
3390 * @dev: PCI device to reset
3391 *
3392 * Some devices allow an individual function to be reset without affecting
3393 * other functions in the same device. The PCI device must be responsive
3394 * to PCI config space in order to use this function.
3395 *
3396 * This function does not just reset the PCI portion of a device, but
3397 * clears all the state associated with the device. This function differs
3398 * from __pci_reset_function in that it saves and restores device state
3399 * over the reset.
3400 *
3401 * Returns 0 if the device function was successfully reset or negative if the
3402 * device doesn't support resetting a single function.
3403 */
3404 int pci_reset_function(struct pci_dev *dev)
3405 {
3406 int rc;
3407
3408 rc = pci_dev_reset(dev, 1);
3409 if (rc)
3410 return rc;
3411
3412 pci_dev_save_and_disable(dev);
3413
3414 rc = pci_dev_reset(dev, 0);
3415
3416 pci_dev_restore(dev);
3417
3418 return rc;
3419 }
3420 EXPORT_SYMBOL_GPL(pci_reset_function);
3421
3422 /**
3423 * pci_try_reset_function - quiesce and reset a PCI device function
3424 * @dev: PCI device to reset
3425 *
3426 * Same as above, except return -EAGAIN if unable to lock device.
3427 */
3428 int pci_try_reset_function(struct pci_dev *dev)
3429 {
3430 int rc;
3431
3432 rc = pci_dev_reset(dev, 1);
3433 if (rc)
3434 return rc;
3435
3436 pci_dev_save_and_disable(dev);
3437
3438 if (pci_dev_trylock(dev)) {
3439 rc = __pci_dev_reset(dev, 0);
3440 pci_dev_unlock(dev);
3441 } else
3442 rc = -EAGAIN;
3443
3444 pci_dev_restore(dev);
3445
3446 return rc;
3447 }
3448 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3449
3450 /* Lock devices from the top of the tree down */
3451 static void pci_bus_lock(struct pci_bus *bus)
3452 {
3453 struct pci_dev *dev;
3454
3455 list_for_each_entry(dev, &bus->devices, bus_list) {
3456 pci_dev_lock(dev);
3457 if (dev->subordinate)
3458 pci_bus_lock(dev->subordinate);
3459 }
3460 }
3461
3462 /* Unlock devices from the bottom of the tree up */
3463 static void pci_bus_unlock(struct pci_bus *bus)
3464 {
3465 struct pci_dev *dev;
3466
3467 list_for_each_entry(dev, &bus->devices, bus_list) {
3468 if (dev->subordinate)
3469 pci_bus_unlock(dev->subordinate);
3470 pci_dev_unlock(dev);
3471 }
3472 }
3473
3474 /* Return 1 on successful lock, 0 on contention */
3475 static int pci_bus_trylock(struct pci_bus *bus)
3476 {
3477 struct pci_dev *dev;
3478
3479 list_for_each_entry(dev, &bus->devices, bus_list) {
3480 if (!pci_dev_trylock(dev))
3481 goto unlock;
3482 if (dev->subordinate) {
3483 if (!pci_bus_trylock(dev->subordinate)) {
3484 pci_dev_unlock(dev);
3485 goto unlock;
3486 }
3487 }
3488 }
3489 return 1;
3490
3491 unlock:
3492 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3493 if (dev->subordinate)
3494 pci_bus_unlock(dev->subordinate);
3495 pci_dev_unlock(dev);
3496 }
3497 return 0;
3498 }
3499
3500 /* Lock devices from the top of the tree down */
3501 static void pci_slot_lock(struct pci_slot *slot)
3502 {
3503 struct pci_dev *dev;
3504
3505 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3506 if (!dev->slot || dev->slot != slot)
3507 continue;
3508 pci_dev_lock(dev);
3509 if (dev->subordinate)
3510 pci_bus_lock(dev->subordinate);
3511 }
3512 }
3513
3514 /* Unlock devices from the bottom of the tree up */
3515 static void pci_slot_unlock(struct pci_slot *slot)
3516 {
3517 struct pci_dev *dev;
3518
3519 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3520 if (!dev->slot || dev->slot != slot)
3521 continue;
3522 if (dev->subordinate)
3523 pci_bus_unlock(dev->subordinate);
3524 pci_dev_unlock(dev);
3525 }
3526 }
3527
3528 /* Return 1 on successful lock, 0 on contention */
3529 static int pci_slot_trylock(struct pci_slot *slot)
3530 {
3531 struct pci_dev *dev;
3532
3533 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3534 if (!dev->slot || dev->slot != slot)
3535 continue;
3536 if (!pci_dev_trylock(dev))
3537 goto unlock;
3538 if (dev->subordinate) {
3539 if (!pci_bus_trylock(dev->subordinate)) {
3540 pci_dev_unlock(dev);
3541 goto unlock;
3542 }
3543 }
3544 }
3545 return 1;
3546
3547 unlock:
3548 list_for_each_entry_continue_reverse(dev,
3549 &slot->bus->devices, bus_list) {
3550 if (!dev->slot || dev->slot != slot)
3551 continue;
3552 if (dev->subordinate)
3553 pci_bus_unlock(dev->subordinate);
3554 pci_dev_unlock(dev);
3555 }
3556 return 0;
3557 }
3558
3559 /* Save and disable devices from the top of the tree down */
3560 static void pci_bus_save_and_disable(struct pci_bus *bus)
3561 {
3562 struct pci_dev *dev;
3563
3564 list_for_each_entry(dev, &bus->devices, bus_list) {
3565 pci_dev_save_and_disable(dev);
3566 if (dev->subordinate)
3567 pci_bus_save_and_disable(dev->subordinate);
3568 }
3569 }
3570
3571 /*
3572 * Restore devices from top of the tree down - parent bridges need to be
3573 * restored before we can get to subordinate devices.
3574 */
3575 static void pci_bus_restore(struct pci_bus *bus)
3576 {
3577 struct pci_dev *dev;
3578
3579 list_for_each_entry(dev, &bus->devices, bus_list) {
3580 pci_dev_restore(dev);
3581 if (dev->subordinate)
3582 pci_bus_restore(dev->subordinate);
3583 }
3584 }
3585
3586 /* Save and disable devices from the top of the tree down */
3587 static void pci_slot_save_and_disable(struct pci_slot *slot)
3588 {
3589 struct pci_dev *dev;
3590
3591 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3592 if (!dev->slot || dev->slot != slot)
3593 continue;
3594 pci_dev_save_and_disable(dev);
3595 if (dev->subordinate)
3596 pci_bus_save_and_disable(dev->subordinate);
3597 }
3598 }
3599
3600 /*
3601 * Restore devices from top of the tree down - parent bridges need to be
3602 * restored before we can get to subordinate devices.
3603 */
3604 static void pci_slot_restore(struct pci_slot *slot)
3605 {
3606 struct pci_dev *dev;
3607
3608 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3609 if (!dev->slot || dev->slot != slot)
3610 continue;
3611 pci_dev_restore(dev);
3612 if (dev->subordinate)
3613 pci_bus_restore(dev->subordinate);
3614 }
3615 }
3616
3617 static int pci_slot_reset(struct pci_slot *slot, int probe)
3618 {
3619 int rc;
3620
3621 if (!slot)
3622 return -ENOTTY;
3623
3624 if (!probe)
3625 pci_slot_lock(slot);
3626
3627 might_sleep();
3628
3629 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3630
3631 if (!probe)
3632 pci_slot_unlock(slot);
3633
3634 return rc;
3635 }
3636
3637 /**
3638 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3639 * @slot: PCI slot to probe
3640 *
3641 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3642 */
3643 int pci_probe_reset_slot(struct pci_slot *slot)
3644 {
3645 return pci_slot_reset(slot, 1);
3646 }
3647 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3648
3649 /**
3650 * pci_reset_slot - reset a PCI slot
3651 * @slot: PCI slot to reset
3652 *
3653 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3654 * independent of other slots. For instance, some slots may support slot power
3655 * control. In the case of a 1:1 bus to slot architecture, this function may
3656 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3657 * Generally a slot reset should be attempted before a bus reset. All of the
3658 * function of the slot and any subordinate buses behind the slot are reset
3659 * through this function. PCI config space of all devices in the slot and
3660 * behind the slot is saved before and restored after reset.
3661 *
3662 * Return 0 on success, non-zero on error.
3663 */
3664 int pci_reset_slot(struct pci_slot *slot)
3665 {
3666 int rc;
3667
3668 rc = pci_slot_reset(slot, 1);
3669 if (rc)
3670 return rc;
3671
3672 pci_slot_save_and_disable(slot);
3673
3674 rc = pci_slot_reset(slot, 0);
3675
3676 pci_slot_restore(slot);
3677
3678 return rc;
3679 }
3680 EXPORT_SYMBOL_GPL(pci_reset_slot);
3681
3682 /**
3683 * pci_try_reset_slot - Try to reset a PCI slot
3684 * @slot: PCI slot to reset
3685 *
3686 * Same as above except return -EAGAIN if the slot cannot be locked
3687 */
3688 int pci_try_reset_slot(struct pci_slot *slot)
3689 {
3690 int rc;
3691
3692 rc = pci_slot_reset(slot, 1);
3693 if (rc)
3694 return rc;
3695
3696 pci_slot_save_and_disable(slot);
3697
3698 if (pci_slot_trylock(slot)) {
3699 might_sleep();
3700 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3701 pci_slot_unlock(slot);
3702 } else
3703 rc = -EAGAIN;
3704
3705 pci_slot_restore(slot);
3706
3707 return rc;
3708 }
3709 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3710
3711 static int pci_bus_reset(struct pci_bus *bus, int probe)
3712 {
3713 if (!bus->self)
3714 return -ENOTTY;
3715
3716 if (probe)
3717 return 0;
3718
3719 pci_bus_lock(bus);
3720
3721 might_sleep();
3722
3723 pci_reset_bridge_secondary_bus(bus->self);
3724
3725 pci_bus_unlock(bus);
3726
3727 return 0;
3728 }
3729
3730 /**
3731 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3732 * @bus: PCI bus to probe
3733 *
3734 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3735 */
3736 int pci_probe_reset_bus(struct pci_bus *bus)
3737 {
3738 return pci_bus_reset(bus, 1);
3739 }
3740 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3741
3742 /**
3743 * pci_reset_bus - reset a PCI bus
3744 * @bus: top level PCI bus to reset
3745 *
3746 * Do a bus reset on the given bus and any subordinate buses, saving
3747 * and restoring state of all devices.
3748 *
3749 * Return 0 on success, non-zero on error.
3750 */
3751 int pci_reset_bus(struct pci_bus *bus)
3752 {
3753 int rc;
3754
3755 rc = pci_bus_reset(bus, 1);
3756 if (rc)
3757 return rc;
3758
3759 pci_bus_save_and_disable(bus);
3760
3761 rc = pci_bus_reset(bus, 0);
3762
3763 pci_bus_restore(bus);
3764
3765 return rc;
3766 }
3767 EXPORT_SYMBOL_GPL(pci_reset_bus);
3768
3769 /**
3770 * pci_try_reset_bus - Try to reset a PCI bus
3771 * @bus: top level PCI bus to reset
3772 *
3773 * Same as above except return -EAGAIN if the bus cannot be locked
3774 */
3775 int pci_try_reset_bus(struct pci_bus *bus)
3776 {
3777 int rc;
3778
3779 rc = pci_bus_reset(bus, 1);
3780 if (rc)
3781 return rc;
3782
3783 pci_bus_save_and_disable(bus);
3784
3785 if (pci_bus_trylock(bus)) {
3786 might_sleep();
3787 pci_reset_bridge_secondary_bus(bus->self);
3788 pci_bus_unlock(bus);
3789 } else
3790 rc = -EAGAIN;
3791
3792 pci_bus_restore(bus);
3793
3794 return rc;
3795 }
3796 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3797
3798 /**
3799 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3800 * @dev: PCI device to query
3801 *
3802 * Returns mmrbc: maximum designed memory read count in bytes
3803 * or appropriate error value.
3804 */
3805 int pcix_get_max_mmrbc(struct pci_dev *dev)
3806 {
3807 int cap;
3808 u32 stat;
3809
3810 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3811 if (!cap)
3812 return -EINVAL;
3813
3814 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3815 return -EINVAL;
3816
3817 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3818 }
3819 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3820
3821 /**
3822 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3823 * @dev: PCI device to query
3824 *
3825 * Returns mmrbc: maximum memory read count in bytes
3826 * or appropriate error value.
3827 */
3828 int pcix_get_mmrbc(struct pci_dev *dev)
3829 {
3830 int cap;
3831 u16 cmd;
3832
3833 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3834 if (!cap)
3835 return -EINVAL;
3836
3837 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3838 return -EINVAL;
3839
3840 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3841 }
3842 EXPORT_SYMBOL(pcix_get_mmrbc);
3843
3844 /**
3845 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3846 * @dev: PCI device to query
3847 * @mmrbc: maximum memory read count in bytes
3848 * valid values are 512, 1024, 2048, 4096
3849 *
3850 * If possible sets maximum memory read byte count, some bridges have erratas
3851 * that prevent this.
3852 */
3853 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3854 {
3855 int cap;
3856 u32 stat, v, o;
3857 u16 cmd;
3858
3859 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3860 return -EINVAL;
3861
3862 v = ffs(mmrbc) - 10;
3863
3864 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3865 if (!cap)
3866 return -EINVAL;
3867
3868 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3869 return -EINVAL;
3870
3871 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3872 return -E2BIG;
3873
3874 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3875 return -EINVAL;
3876
3877 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3878 if (o != v) {
3879 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3880 return -EIO;
3881
3882 cmd &= ~PCI_X_CMD_MAX_READ;
3883 cmd |= v << 2;
3884 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3885 return -EIO;
3886 }
3887 return 0;
3888 }
3889 EXPORT_SYMBOL(pcix_set_mmrbc);
3890
3891 /**
3892 * pcie_get_readrq - get PCI Express read request size
3893 * @dev: PCI device to query
3894 *
3895 * Returns maximum memory read request in bytes
3896 * or appropriate error value.
3897 */
3898 int pcie_get_readrq(struct pci_dev *dev)
3899 {
3900 u16 ctl;
3901
3902 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3903
3904 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3905 }
3906 EXPORT_SYMBOL(pcie_get_readrq);
3907
3908 /**
3909 * pcie_set_readrq - set PCI Express maximum memory read request
3910 * @dev: PCI device to query
3911 * @rq: maximum memory read count in bytes
3912 * valid values are 128, 256, 512, 1024, 2048, 4096
3913 *
3914 * If possible sets maximum memory read request in bytes
3915 */
3916 int pcie_set_readrq(struct pci_dev *dev, int rq)
3917 {
3918 u16 v;
3919
3920 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3921 return -EINVAL;
3922
3923 /*
3924 * If using the "performance" PCIe config, we clamp the
3925 * read rq size to the max packet size to prevent the
3926 * host bridge generating requests larger than we can
3927 * cope with
3928 */
3929 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3930 int mps = pcie_get_mps(dev);
3931
3932 if (mps < rq)
3933 rq = mps;
3934 }
3935
3936 v = (ffs(rq) - 8) << 12;
3937
3938 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3939 PCI_EXP_DEVCTL_READRQ, v);
3940 }
3941 EXPORT_SYMBOL(pcie_set_readrq);
3942
3943 /**
3944 * pcie_get_mps - get PCI Express maximum payload size
3945 * @dev: PCI device to query
3946 *
3947 * Returns maximum payload size in bytes
3948 */
3949 int pcie_get_mps(struct pci_dev *dev)
3950 {
3951 u16 ctl;
3952
3953 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3954
3955 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3956 }
3957 EXPORT_SYMBOL(pcie_get_mps);
3958
3959 /**
3960 * pcie_set_mps - set PCI Express maximum payload size
3961 * @dev: PCI device to query
3962 * @mps: maximum payload size in bytes
3963 * valid values are 128, 256, 512, 1024, 2048, 4096
3964 *
3965 * If possible sets maximum payload size
3966 */
3967 int pcie_set_mps(struct pci_dev *dev, int mps)
3968 {
3969 u16 v;
3970
3971 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3972 return -EINVAL;
3973
3974 v = ffs(mps) - 8;
3975 if (v > dev->pcie_mpss)
3976 return -EINVAL;
3977 v <<= 5;
3978
3979 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3980 PCI_EXP_DEVCTL_PAYLOAD, v);
3981 }
3982 EXPORT_SYMBOL(pcie_set_mps);
3983
3984 /**
3985 * pcie_get_minimum_link - determine minimum link settings of a PCI device
3986 * @dev: PCI device to query
3987 * @speed: storage for minimum speed
3988 * @width: storage for minimum width
3989 *
3990 * This function will walk up the PCI device chain and determine the minimum
3991 * link width and speed of the device.
3992 */
3993 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
3994 enum pcie_link_width *width)
3995 {
3996 int ret;
3997
3998 *speed = PCI_SPEED_UNKNOWN;
3999 *width = PCIE_LNK_WIDTH_UNKNOWN;
4000
4001 while (dev) {
4002 u16 lnksta;
4003 enum pci_bus_speed next_speed;
4004 enum pcie_link_width next_width;
4005
4006 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4007 if (ret)
4008 return ret;
4009
4010 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4011 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4012 PCI_EXP_LNKSTA_NLW_SHIFT;
4013
4014 if (next_speed < *speed)
4015 *speed = next_speed;
4016
4017 if (next_width < *width)
4018 *width = next_width;
4019
4020 dev = dev->bus->self;
4021 }
4022
4023 return 0;
4024 }
4025 EXPORT_SYMBOL(pcie_get_minimum_link);
4026
4027 /**
4028 * pci_select_bars - Make BAR mask from the type of resource
4029 * @dev: the PCI device for which BAR mask is made
4030 * @flags: resource type mask to be selected
4031 *
4032 * This helper routine makes bar mask from the type of resource.
4033 */
4034 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4035 {
4036 int i, bars = 0;
4037 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4038 if (pci_resource_flags(dev, i) & flags)
4039 bars |= (1 << i);
4040 return bars;
4041 }
4042
4043 /**
4044 * pci_resource_bar - get position of the BAR associated with a resource
4045 * @dev: the PCI device
4046 * @resno: the resource number
4047 * @type: the BAR type to be filled in
4048 *
4049 * Returns BAR position in config space, or 0 if the BAR is invalid.
4050 */
4051 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4052 {
4053 int reg;
4054
4055 if (resno < PCI_ROM_RESOURCE) {
4056 *type = pci_bar_unknown;
4057 return PCI_BASE_ADDRESS_0 + 4 * resno;
4058 } else if (resno == PCI_ROM_RESOURCE) {
4059 *type = pci_bar_mem32;
4060 return dev->rom_base_reg;
4061 } else if (resno < PCI_BRIDGE_RESOURCES) {
4062 /* device specific resource */
4063 reg = pci_iov_resource_bar(dev, resno, type);
4064 if (reg)
4065 return reg;
4066 }
4067
4068 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4069 return 0;
4070 }
4071
4072 /* Some architectures require additional programming to enable VGA */
4073 static arch_set_vga_state_t arch_set_vga_state;
4074
4075 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4076 {
4077 arch_set_vga_state = func; /* NULL disables */
4078 }
4079
4080 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4081 unsigned int command_bits, u32 flags)
4082 {
4083 if (arch_set_vga_state)
4084 return arch_set_vga_state(dev, decode, command_bits,
4085 flags);
4086 return 0;
4087 }
4088
4089 /**
4090 * pci_set_vga_state - set VGA decode state on device and parents if requested
4091 * @dev: the PCI device
4092 * @decode: true = enable decoding, false = disable decoding
4093 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4094 * @flags: traverse ancestors and change bridges
4095 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4096 */
4097 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4098 unsigned int command_bits, u32 flags)
4099 {
4100 struct pci_bus *bus;
4101 struct pci_dev *bridge;
4102 u16 cmd;
4103 int rc;
4104
4105 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4106
4107 /* ARCH specific VGA enables */
4108 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4109 if (rc)
4110 return rc;
4111
4112 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4113 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4114 if (decode == true)
4115 cmd |= command_bits;
4116 else
4117 cmd &= ~command_bits;
4118 pci_write_config_word(dev, PCI_COMMAND, cmd);
4119 }
4120
4121 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4122 return 0;
4123
4124 bus = dev->bus;
4125 while (bus) {
4126 bridge = bus->self;
4127 if (bridge) {
4128 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4129 &cmd);
4130 if (decode == true)
4131 cmd |= PCI_BRIDGE_CTL_VGA;
4132 else
4133 cmd &= ~PCI_BRIDGE_CTL_VGA;
4134 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4135 cmd);
4136 }
4137 bus = bus->parent;
4138 }
4139 return 0;
4140 }
4141
4142 bool pci_device_is_present(struct pci_dev *pdev)
4143 {
4144 u32 v;
4145
4146 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4147 }
4148 EXPORT_SYMBOL_GPL(pci_device_is_present);
4149
4150 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4151 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4152 static DEFINE_SPINLOCK(resource_alignment_lock);
4153
4154 /**
4155 * pci_specified_resource_alignment - get resource alignment specified by user.
4156 * @dev: the PCI device to get
4157 *
4158 * RETURNS: Resource alignment if it is specified.
4159 * Zero if it is not specified.
4160 */
4161 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4162 {
4163 int seg, bus, slot, func, align_order, count;
4164 resource_size_t align = 0;
4165 char *p;
4166
4167 spin_lock(&resource_alignment_lock);
4168 p = resource_alignment_param;
4169 while (*p) {
4170 count = 0;
4171 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4172 p[count] == '@') {
4173 p += count + 1;
4174 } else {
4175 align_order = -1;
4176 }
4177 if (sscanf(p, "%x:%x:%x.%x%n",
4178 &seg, &bus, &slot, &func, &count) != 4) {
4179 seg = 0;
4180 if (sscanf(p, "%x:%x.%x%n",
4181 &bus, &slot, &func, &count) != 3) {
4182 /* Invalid format */
4183 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4184 p);
4185 break;
4186 }
4187 }
4188 p += count;
4189 if (seg == pci_domain_nr(dev->bus) &&
4190 bus == dev->bus->number &&
4191 slot == PCI_SLOT(dev->devfn) &&
4192 func == PCI_FUNC(dev->devfn)) {
4193 if (align_order == -1) {
4194 align = PAGE_SIZE;
4195 } else {
4196 align = 1 << align_order;
4197 }
4198 /* Found */
4199 break;
4200 }
4201 if (*p != ';' && *p != ',') {
4202 /* End of param or invalid format */
4203 break;
4204 }
4205 p++;
4206 }
4207 spin_unlock(&resource_alignment_lock);
4208 return align;
4209 }
4210
4211 /*
4212 * This function disables memory decoding and releases memory resources
4213 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4214 * It also rounds up size to specified alignment.
4215 * Later on, the kernel will assign page-aligned memory resource back
4216 * to the device.
4217 */
4218 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4219 {
4220 int i;
4221 struct resource *r;
4222 resource_size_t align, size;
4223 u16 command;
4224
4225 /* check if specified PCI is target device to reassign */
4226 align = pci_specified_resource_alignment(dev);
4227 if (!align)
4228 return;
4229
4230 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4231 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4232 dev_warn(&dev->dev,
4233 "Can't reassign resources to host bridge.\n");
4234 return;
4235 }
4236
4237 dev_info(&dev->dev,
4238 "Disabling memory decoding and releasing memory resources.\n");
4239 pci_read_config_word(dev, PCI_COMMAND, &command);
4240 command &= ~PCI_COMMAND_MEMORY;
4241 pci_write_config_word(dev, PCI_COMMAND, command);
4242
4243 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4244 r = &dev->resource[i];
4245 if (!(r->flags & IORESOURCE_MEM))
4246 continue;
4247 size = resource_size(r);
4248 if (size < align) {
4249 size = align;
4250 dev_info(&dev->dev,
4251 "Rounding up size of resource #%d to %#llx.\n",
4252 i, (unsigned long long)size);
4253 }
4254 r->end = size - 1;
4255 r->start = 0;
4256 }
4257 /* Need to disable bridge's resource window,
4258 * to enable the kernel to reassign new resource
4259 * window later on.
4260 */
4261 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4262 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4263 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4264 r = &dev->resource[i];
4265 if (!(r->flags & IORESOURCE_MEM))
4266 continue;
4267 r->end = resource_size(r) - 1;
4268 r->start = 0;
4269 }
4270 pci_disable_bridge_window(dev);
4271 }
4272 }
4273
4274 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4275 {
4276 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4277 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4278 spin_lock(&resource_alignment_lock);
4279 strncpy(resource_alignment_param, buf, count);
4280 resource_alignment_param[count] = '\0';
4281 spin_unlock(&resource_alignment_lock);
4282 return count;
4283 }
4284
4285 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4286 {
4287 size_t count;
4288 spin_lock(&resource_alignment_lock);
4289 count = snprintf(buf, size, "%s", resource_alignment_param);
4290 spin_unlock(&resource_alignment_lock);
4291 return count;
4292 }
4293
4294 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4295 {
4296 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4297 }
4298
4299 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4300 const char *buf, size_t count)
4301 {
4302 return pci_set_resource_alignment_param(buf, count);
4303 }
4304
4305 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4306 pci_resource_alignment_store);
4307
4308 static int __init pci_resource_alignment_sysfs_init(void)
4309 {
4310 return bus_create_file(&pci_bus_type,
4311 &bus_attr_resource_alignment);
4312 }
4313
4314 late_initcall(pci_resource_alignment_sysfs_init);
4315
4316 static void pci_no_domains(void)
4317 {
4318 #ifdef CONFIG_PCI_DOMAINS
4319 pci_domains_supported = 0;
4320 #endif
4321 }
4322
4323 /**
4324 * pci_ext_cfg_avail - can we access extended PCI config space?
4325 *
4326 * Returns 1 if we can access PCI extended config space (offsets
4327 * greater than 0xff). This is the default implementation. Architecture
4328 * implementations can override this.
4329 */
4330 int __weak pci_ext_cfg_avail(void)
4331 {
4332 return 1;
4333 }
4334
4335 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4336 {
4337 }
4338 EXPORT_SYMBOL(pci_fixup_cardbus);
4339
4340 static int __init pci_setup(char *str)
4341 {
4342 while (str) {
4343 char *k = strchr(str, ',');
4344 if (k)
4345 *k++ = 0;
4346 if (*str && (str = pcibios_setup(str)) && *str) {
4347 if (!strcmp(str, "nomsi")) {
4348 pci_no_msi();
4349 } else if (!strcmp(str, "noaer")) {
4350 pci_no_aer();
4351 } else if (!strncmp(str, "realloc=", 8)) {
4352 pci_realloc_get_opt(str + 8);
4353 } else if (!strncmp(str, "realloc", 7)) {
4354 pci_realloc_get_opt("on");
4355 } else if (!strcmp(str, "nodomains")) {
4356 pci_no_domains();
4357 } else if (!strncmp(str, "noari", 5)) {
4358 pcie_ari_disabled = true;
4359 } else if (!strncmp(str, "cbiosize=", 9)) {
4360 pci_cardbus_io_size = memparse(str + 9, &str);
4361 } else if (!strncmp(str, "cbmemsize=", 10)) {
4362 pci_cardbus_mem_size = memparse(str + 10, &str);
4363 } else if (!strncmp(str, "resource_alignment=", 19)) {
4364 pci_set_resource_alignment_param(str + 19,
4365 strlen(str + 19));
4366 } else if (!strncmp(str, "ecrc=", 5)) {
4367 pcie_ecrc_get_policy(str + 5);
4368 } else if (!strncmp(str, "hpiosize=", 9)) {
4369 pci_hotplug_io_size = memparse(str + 9, &str);
4370 } else if (!strncmp(str, "hpmemsize=", 10)) {
4371 pci_hotplug_mem_size = memparse(str + 10, &str);
4372 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4373 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4374 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4375 pcie_bus_config = PCIE_BUS_SAFE;
4376 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4377 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4378 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4379 pcie_bus_config = PCIE_BUS_PEER2PEER;
4380 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4381 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4382 } else {
4383 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4384 str);
4385 }
4386 }
4387 str = k;
4388 }
4389 return 0;
4390 }
4391 early_param("pci", pci_setup);
4392
4393 EXPORT_SYMBOL(pci_reenable_device);
4394 EXPORT_SYMBOL(pci_enable_device_io);
4395 EXPORT_SYMBOL(pci_enable_device_mem);
4396 EXPORT_SYMBOL(pci_enable_device);
4397 EXPORT_SYMBOL(pcim_enable_device);
4398 EXPORT_SYMBOL(pcim_pin_device);
4399 EXPORT_SYMBOL(pci_disable_device);
4400 EXPORT_SYMBOL(pci_find_capability);
4401 EXPORT_SYMBOL(pci_bus_find_capability);
4402 EXPORT_SYMBOL(pci_release_regions);
4403 EXPORT_SYMBOL(pci_request_regions);
4404 EXPORT_SYMBOL(pci_request_regions_exclusive);
4405 EXPORT_SYMBOL(pci_release_region);
4406 EXPORT_SYMBOL(pci_request_region);
4407 EXPORT_SYMBOL(pci_request_region_exclusive);
4408 EXPORT_SYMBOL(pci_release_selected_regions);
4409 EXPORT_SYMBOL(pci_request_selected_regions);
4410 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4411 EXPORT_SYMBOL(pci_set_master);
4412 EXPORT_SYMBOL(pci_clear_master);
4413 EXPORT_SYMBOL(pci_set_mwi);
4414 EXPORT_SYMBOL(pci_try_set_mwi);
4415 EXPORT_SYMBOL(pci_clear_mwi);
4416 EXPORT_SYMBOL_GPL(pci_intx);
4417 EXPORT_SYMBOL(pci_assign_resource);
4418 EXPORT_SYMBOL(pci_find_parent_resource);
4419 EXPORT_SYMBOL(pci_select_bars);
4420
4421 EXPORT_SYMBOL(pci_set_power_state);
4422 EXPORT_SYMBOL(pci_save_state);
4423 EXPORT_SYMBOL(pci_restore_state);
4424 EXPORT_SYMBOL(pci_pme_capable);
4425 EXPORT_SYMBOL(pci_pme_active);
4426 EXPORT_SYMBOL(pci_wake_from_d3);
4427 EXPORT_SYMBOL(pci_prepare_to_sleep);
4428 EXPORT_SYMBOL(pci_back_from_sleep);
4429 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.123302 seconds and 5 git commands to generate.