PCI: Remove __dev* markings
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28
29 const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39
40 unsigned int pci_pm_d3_delay;
41
42 static void pci_pme_list_scan(struct work_struct *work);
43
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48 struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51 };
52
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63 }
64
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83 /*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91
92 /*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96 unsigned int pcibios_max_latency = 255;
97
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100
101 /**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->busn_res.end;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138
139 #define PCI_FIND_CAP_TTL 48
140
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 u8 pos, int cap, int *ttl)
143 {
144 u8 id;
145
146 while ((*ttl)--) {
147 pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 if (pos < 0x40)
149 break;
150 pos &= ~3;
151 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 &id);
153 if (id == 0xff)
154 break;
155 if (id == cap)
156 return pos;
157 pos += PCI_CAP_LIST_NEXT;
158 }
159 return 0;
160 }
161
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 u8 pos, int cap)
164 {
165 int ttl = PCI_FIND_CAP_TTL;
166
167 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 return __pci_find_next_cap(dev->bus, dev->devfn,
173 pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 unsigned int devfn, u8 hdr_type)
179 {
180 u16 status;
181
182 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 if (!(status & PCI_STATUS_CAP_LIST))
184 return 0;
185
186 switch (hdr_type) {
187 case PCI_HEADER_TYPE_NORMAL:
188 case PCI_HEADER_TYPE_BRIDGE:
189 return PCI_CAPABILITY_LIST;
190 case PCI_HEADER_TYPE_CARDBUS:
191 return PCI_CB_CAPABILITY_LIST;
192 default:
193 return 0;
194 }
195
196 return 0;
197 }
198
199 /**
200 * pci_find_capability - query for devices' capabilities
201 * @dev: PCI device to query
202 * @cap: capability code
203 *
204 * Tell if a device supports a given PCI capability.
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it. Possible values for @cap:
208 *
209 * %PCI_CAP_ID_PM Power Management
210 * %PCI_CAP_ID_AGP Accelerated Graphics Port
211 * %PCI_CAP_ID_VPD Vital Product Data
212 * %PCI_CAP_ID_SLOTID Slot Identification
213 * %PCI_CAP_ID_MSI Message Signalled Interrupts
214 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
215 * %PCI_CAP_ID_PCIX PCI-X
216 * %PCI_CAP_ID_EXP PCI Express
217 */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 int pos;
221
222 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 if (pos)
224 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225
226 return pos;
227 }
228
229 /**
230 * pci_bus_find_capability - query for devices' capabilities
231 * @bus: the PCI bus to query
232 * @devfn: PCI device to query
233 * @cap: capability code
234 *
235 * Like pci_find_capability() but works for pci devices that do not have a
236 * pci_dev structure set up yet.
237 *
238 * Returns the address of the requested capability structure within the
239 * device's PCI configuration space or 0 in case the device does not
240 * support it.
241 */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 int pos;
245 u8 hdr_type;
246
247 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248
249 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 if (pos)
251 pos = __pci_find_next_cap(bus, devfn, pos, cap);
252
253 return pos;
254 }
255
256 /**
257 * pci_find_next_ext_capability - Find an extended capability
258 * @dev: PCI device to query
259 * @start: address at which to start looking (0 to start at beginning of list)
260 * @cap: capability code
261 *
262 * Returns the address of the next matching extended capability structure
263 * within the device's PCI configuration space or 0 if the device does
264 * not support it. Some capabilities can occur several times, e.g., the
265 * vendor-specific capability, and this provides a way to find them all.
266 */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 u32 header;
270 int ttl;
271 int pos = PCI_CFG_SPACE_SIZE;
272
273 /* minimum 8 bytes per capability */
274 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275
276 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 return 0;
278
279 if (start)
280 pos = start;
281
282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 /*
286 * If we have no capabilities, this is indicated by cap ID,
287 * cap version and next pointer all being 0.
288 */
289 if (header == 0)
290 return 0;
291
292 while (ttl-- > 0) {
293 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 return pos;
295
296 pos = PCI_EXT_CAP_NEXT(header);
297 if (pos < PCI_CFG_SPACE_SIZE)
298 break;
299
300 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 break;
302 }
303
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307
308 /**
309 * pci_find_ext_capability - Find an extended capability
310 * @dev: PCI device to query
311 * @cap: capability code
312 *
313 * Returns the address of the requested extended capability structure
314 * within the device's PCI configuration space or 0 if the device does
315 * not support it. Possible values for @cap:
316 *
317 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
318 * %PCI_EXT_CAP_ID_VC Virtual Channel
319 * %PCI_EXT_CAP_ID_DSN Device Serial Number
320 * %PCI_EXT_CAP_ID_PWR Power Budgeting
321 */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 int rc, ttl = PCI_FIND_CAP_TTL;
331 u8 cap, mask;
332
333 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 mask = HT_3BIT_CAP_MASK;
335 else
336 mask = HT_5BIT_CAP_MASK;
337
338 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 PCI_CAP_ID_HT, &ttl);
340 while (pos) {
341 rc = pci_read_config_byte(dev, pos + 3, &cap);
342 if (rc != PCIBIOS_SUCCESSFUL)
343 return 0;
344
345 if ((cap & mask) == ht_cap)
346 return pos;
347
348 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 pos + PCI_CAP_LIST_NEXT,
350 PCI_CAP_ID_HT, &ttl);
351 }
352
353 return 0;
354 }
355 /**
356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357 * @dev: PCI device to query
358 * @pos: Position from which to continue searching
359 * @ht_cap: Hypertransport capability code
360 *
361 * To be used in conjunction with pci_find_ht_capability() to search for
362 * all capabilities matching @ht_cap. @pos should always be a value returned
363 * from pci_find_ht_capability().
364 *
365 * NB. To be 100% safe against broken PCI devices, the caller should take
366 * steps to avoid an infinite loop.
367 */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373
374 /**
375 * pci_find_ht_capability - query a device's Hypertransport capabilities
376 * @dev: PCI device to query
377 * @ht_cap: Hypertransport capability code
378 *
379 * Tell if a device supports a given Hypertransport capability.
380 * Returns an address within the device's PCI configuration space
381 * or 0 in case the device does not support the request capability.
382 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383 * which has a Hypertransport capability matching @ht_cap.
384 */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 int pos;
388
389 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 if (pos)
391 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392
393 return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396
397 /**
398 * pci_find_parent_resource - return resource region of parent bus of given region
399 * @dev: PCI device structure contains resources to be searched
400 * @res: child resource record for which parent is sought
401 *
402 * For given resource region of given device, return the resource
403 * region of parent bus the given region is contained in or where
404 * it should be allocated from.
405 */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 const struct pci_bus *bus = dev->bus;
410 int i;
411 struct resource *best = NULL, *r;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && !(res->start >= r->start && res->end <= r->end))
417 continue; /* Not contained */
418 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 continue; /* Wrong type */
420 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 return r; /* Exact match */
422 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 if (r->flags & IORESOURCE_PREFETCH)
424 continue;
425 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 if (!best)
427 best = r;
428 }
429 return best;
430 }
431
432 /**
433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434 * @dev: PCI device to have its BARs restored
435 *
436 * Restore the BAR values for a given device, so as to make it
437 * accessible by its driver.
438 */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 int i;
443
444 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 pci_update_resource(dev, i);
446 }
447
448 static struct pci_platform_pm_ops *pci_platform_pm;
449
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 || !ops->sleep_wake || !ops->can_wakeup)
454 return -EINVAL;
455 pci_platform_pm = ops;
456 return 0;
457 }
458
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465 pci_power_t t)
466 {
467 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 return pci_platform_pm ?
473 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475
476 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
477 {
478 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
479 }
480
481 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
482 {
483 return pci_platform_pm ?
484 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
485 }
486
487 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
488 {
489 return pci_platform_pm ?
490 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
491 }
492
493 /**
494 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
495 * given PCI device
496 * @dev: PCI device to handle.
497 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
498 *
499 * RETURN VALUE:
500 * -EINVAL if the requested state is invalid.
501 * -EIO if device does not support PCI PM or its PM capabilities register has a
502 * wrong version, or device doesn't support the requested state.
503 * 0 if device already is in the requested state.
504 * 0 if device's power state has been successfully changed.
505 */
506 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
507 {
508 u16 pmcsr;
509 bool need_restore = false;
510
511 /* Check if we're already there */
512 if (dev->current_state == state)
513 return 0;
514
515 if (!dev->pm_cap)
516 return -EIO;
517
518 if (state < PCI_D0 || state > PCI_D3hot)
519 return -EINVAL;
520
521 /* Validate current state:
522 * Can enter D0 from any state, but if we can only go deeper
523 * to sleep if we're already in a low power state
524 */
525 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
526 && dev->current_state > state) {
527 dev_err(&dev->dev, "invalid power transition "
528 "(from state %d to %d)\n", dev->current_state, state);
529 return -EINVAL;
530 }
531
532 /* check if this device supports the desired state */
533 if ((state == PCI_D1 && !dev->d1_support)
534 || (state == PCI_D2 && !dev->d2_support))
535 return -EIO;
536
537 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
538
539 /* If we're (effectively) in D3, force entire word to 0.
540 * This doesn't affect PME_Status, disables PME_En, and
541 * sets PowerState to 0.
542 */
543 switch (dev->current_state) {
544 case PCI_D0:
545 case PCI_D1:
546 case PCI_D2:
547 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
548 pmcsr |= state;
549 break;
550 case PCI_D3hot:
551 case PCI_D3cold:
552 case PCI_UNKNOWN: /* Boot-up */
553 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
554 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
555 need_restore = true;
556 /* Fall-through: force to D0 */
557 default:
558 pmcsr = 0;
559 break;
560 }
561
562 /* enter specified state */
563 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
564
565 /* Mandatory power management transition delays */
566 /* see PCI PM 1.1 5.6.1 table 18 */
567 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
568 pci_dev_d3_sleep(dev);
569 else if (state == PCI_D2 || dev->current_state == PCI_D2)
570 udelay(PCI_PM_D2_DELAY);
571
572 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
573 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
574 if (dev->current_state != state && printk_ratelimit())
575 dev_info(&dev->dev, "Refused to change power state, "
576 "currently in D%d\n", dev->current_state);
577
578 /*
579 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
580 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
581 * from D3hot to D0 _may_ perform an internal reset, thereby
582 * going to "D0 Uninitialized" rather than "D0 Initialized".
583 * For example, at least some versions of the 3c905B and the
584 * 3c556B exhibit this behaviour.
585 *
586 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
587 * devices in a D3hot state at boot. Consequently, we need to
588 * restore at least the BARs so that the device will be
589 * accessible to its driver.
590 */
591 if (need_restore)
592 pci_restore_bars(dev);
593
594 if (dev->bus->self)
595 pcie_aspm_pm_state_change(dev->bus->self);
596
597 return 0;
598 }
599
600 /**
601 * pci_update_current_state - Read PCI power state of given device from its
602 * PCI PM registers and cache it
603 * @dev: PCI device to handle.
604 * @state: State to cache in case the device doesn't have the PM capability
605 */
606 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
607 {
608 if (dev->pm_cap) {
609 u16 pmcsr;
610
611 /*
612 * Configuration space is not accessible for device in
613 * D3cold, so just keep or set D3cold for safety
614 */
615 if (dev->current_state == PCI_D3cold)
616 return;
617 if (state == PCI_D3cold) {
618 dev->current_state = PCI_D3cold;
619 return;
620 }
621 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
622 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
623 } else {
624 dev->current_state = state;
625 }
626 }
627
628 /**
629 * pci_power_up - Put the given device into D0 forcibly
630 * @dev: PCI device to power up
631 */
632 void pci_power_up(struct pci_dev *dev)
633 {
634 if (platform_pci_power_manageable(dev))
635 platform_pci_set_power_state(dev, PCI_D0);
636
637 pci_raw_set_power_state(dev, PCI_D0);
638 pci_update_current_state(dev, PCI_D0);
639 }
640
641 /**
642 * pci_platform_power_transition - Use platform to change device power state
643 * @dev: PCI device to handle.
644 * @state: State to put the device into.
645 */
646 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
647 {
648 int error;
649
650 if (platform_pci_power_manageable(dev)) {
651 error = platform_pci_set_power_state(dev, state);
652 if (!error)
653 pci_update_current_state(dev, state);
654 /* Fall back to PCI_D0 if native PM is not supported */
655 if (!dev->pm_cap)
656 dev->current_state = PCI_D0;
657 } else {
658 error = -ENODEV;
659 /* Fall back to PCI_D0 if native PM is not supported */
660 if (!dev->pm_cap)
661 dev->current_state = PCI_D0;
662 }
663
664 return error;
665 }
666
667 /**
668 * __pci_start_power_transition - Start power transition of a PCI device
669 * @dev: PCI device to handle.
670 * @state: State to put the device into.
671 */
672 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
673 {
674 if (state == PCI_D0) {
675 pci_platform_power_transition(dev, PCI_D0);
676 /*
677 * Mandatory power management transition delays, see
678 * PCI Express Base Specification Revision 2.0 Section
679 * 6.6.1: Conventional Reset. Do not delay for
680 * devices powered on/off by corresponding bridge,
681 * because have already delayed for the bridge.
682 */
683 if (dev->runtime_d3cold) {
684 msleep(dev->d3cold_delay);
685 /*
686 * When powering on a bridge from D3cold, the
687 * whole hierarchy may be powered on into
688 * D0uninitialized state, resume them to give
689 * them a chance to suspend again
690 */
691 pci_wakeup_bus(dev->subordinate);
692 }
693 }
694 }
695
696 /**
697 * __pci_dev_set_current_state - Set current state of a PCI device
698 * @dev: Device to handle
699 * @data: pointer to state to be set
700 */
701 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
702 {
703 pci_power_t state = *(pci_power_t *)data;
704
705 dev->current_state = state;
706 return 0;
707 }
708
709 /**
710 * __pci_bus_set_current_state - Walk given bus and set current state of devices
711 * @bus: Top bus of the subtree to walk.
712 * @state: state to be set
713 */
714 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
715 {
716 if (bus)
717 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
718 }
719
720 /**
721 * __pci_complete_power_transition - Complete power transition of a PCI device
722 * @dev: PCI device to handle.
723 * @state: State to put the device into.
724 *
725 * This function should not be called directly by device drivers.
726 */
727 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
728 {
729 int ret;
730
731 if (state <= PCI_D0)
732 return -EINVAL;
733 ret = pci_platform_power_transition(dev, state);
734 /* Power off the bridge may power off the whole hierarchy */
735 if (!ret && state == PCI_D3cold)
736 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
737 return ret;
738 }
739 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
740
741 /**
742 * pci_set_power_state - Set the power state of a PCI device
743 * @dev: PCI device to handle.
744 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
745 *
746 * Transition a device to a new power state, using the platform firmware and/or
747 * the device's PCI PM registers.
748 *
749 * RETURN VALUE:
750 * -EINVAL if the requested state is invalid.
751 * -EIO if device does not support PCI PM or its PM capabilities register has a
752 * wrong version, or device doesn't support the requested state.
753 * 0 if device already is in the requested state.
754 * 0 if device's power state has been successfully changed.
755 */
756 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
757 {
758 int error;
759
760 /* bound the state we're entering */
761 if (state > PCI_D3cold)
762 state = PCI_D3cold;
763 else if (state < PCI_D0)
764 state = PCI_D0;
765 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
766 /*
767 * If the device or the parent bridge do not support PCI PM,
768 * ignore the request if we're doing anything other than putting
769 * it into D0 (which would only happen on boot).
770 */
771 return 0;
772
773 /* Check if we're already there */
774 if (dev->current_state == state)
775 return 0;
776
777 __pci_start_power_transition(dev, state);
778
779 /* This device is quirked not to be put into D3, so
780 don't put it in D3 */
781 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
782 return 0;
783
784 /*
785 * To put device in D3cold, we put device into D3hot in native
786 * way, then put device into D3cold with platform ops
787 */
788 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
789 PCI_D3hot : state);
790
791 if (!__pci_complete_power_transition(dev, state))
792 error = 0;
793 /*
794 * When aspm_policy is "powersave" this call ensures
795 * that ASPM is configured.
796 */
797 if (!error && dev->bus->self)
798 pcie_aspm_powersave_config_link(dev->bus->self);
799
800 return error;
801 }
802
803 /**
804 * pci_choose_state - Choose the power state of a PCI device
805 * @dev: PCI device to be suspended
806 * @state: target sleep state for the whole system. This is the value
807 * that is passed to suspend() function.
808 *
809 * Returns PCI power state suitable for given device and given system
810 * message.
811 */
812
813 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
814 {
815 pci_power_t ret;
816
817 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
818 return PCI_D0;
819
820 ret = platform_pci_choose_state(dev);
821 if (ret != PCI_POWER_ERROR)
822 return ret;
823
824 switch (state.event) {
825 case PM_EVENT_ON:
826 return PCI_D0;
827 case PM_EVENT_FREEZE:
828 case PM_EVENT_PRETHAW:
829 /* REVISIT both freeze and pre-thaw "should" use D0 */
830 case PM_EVENT_SUSPEND:
831 case PM_EVENT_HIBERNATE:
832 return PCI_D3hot;
833 default:
834 dev_info(&dev->dev, "unrecognized suspend event %d\n",
835 state.event);
836 BUG();
837 }
838 return PCI_D0;
839 }
840
841 EXPORT_SYMBOL(pci_choose_state);
842
843 #define PCI_EXP_SAVE_REGS 7
844
845
846 static struct pci_cap_saved_state *pci_find_saved_cap(
847 struct pci_dev *pci_dev, char cap)
848 {
849 struct pci_cap_saved_state *tmp;
850 struct hlist_node *pos;
851
852 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
853 if (tmp->cap.cap_nr == cap)
854 return tmp;
855 }
856 return NULL;
857 }
858
859 static int pci_save_pcie_state(struct pci_dev *dev)
860 {
861 int i = 0;
862 struct pci_cap_saved_state *save_state;
863 u16 *cap;
864
865 if (!pci_is_pcie(dev))
866 return 0;
867
868 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
869 if (!save_state) {
870 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
871 return -ENOMEM;
872 }
873
874 cap = (u16 *)&save_state->cap.data[0];
875 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
876 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
877 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
878 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
879 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
880 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
881 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
882
883 return 0;
884 }
885
886 static void pci_restore_pcie_state(struct pci_dev *dev)
887 {
888 int i = 0;
889 struct pci_cap_saved_state *save_state;
890 u16 *cap;
891
892 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
893 if (!save_state)
894 return;
895
896 cap = (u16 *)&save_state->cap.data[0];
897 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
898 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
899 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
900 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
901 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
902 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
903 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
904 }
905
906
907 static int pci_save_pcix_state(struct pci_dev *dev)
908 {
909 int pos;
910 struct pci_cap_saved_state *save_state;
911
912 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
913 if (pos <= 0)
914 return 0;
915
916 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917 if (!save_state) {
918 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
919 return -ENOMEM;
920 }
921
922 pci_read_config_word(dev, pos + PCI_X_CMD,
923 (u16 *)save_state->cap.data);
924
925 return 0;
926 }
927
928 static void pci_restore_pcix_state(struct pci_dev *dev)
929 {
930 int i = 0, pos;
931 struct pci_cap_saved_state *save_state;
932 u16 *cap;
933
934 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
935 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
936 if (!save_state || pos <= 0)
937 return;
938 cap = (u16 *)&save_state->cap.data[0];
939
940 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
941 }
942
943
944 /**
945 * pci_save_state - save the PCI configuration space of a device before suspending
946 * @dev: - PCI device that we're dealing with
947 */
948 int
949 pci_save_state(struct pci_dev *dev)
950 {
951 int i;
952 /* XXX: 100% dword access ok here? */
953 for (i = 0; i < 16; i++)
954 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
955 dev->state_saved = true;
956 if ((i = pci_save_pcie_state(dev)) != 0)
957 return i;
958 if ((i = pci_save_pcix_state(dev)) != 0)
959 return i;
960 return 0;
961 }
962
963 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
964 u32 saved_val, int retry)
965 {
966 u32 val;
967
968 pci_read_config_dword(pdev, offset, &val);
969 if (val == saved_val)
970 return;
971
972 for (;;) {
973 dev_dbg(&pdev->dev, "restoring config space at offset "
974 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
975 pci_write_config_dword(pdev, offset, saved_val);
976 if (retry-- <= 0)
977 return;
978
979 pci_read_config_dword(pdev, offset, &val);
980 if (val == saved_val)
981 return;
982
983 mdelay(1);
984 }
985 }
986
987 static void pci_restore_config_space_range(struct pci_dev *pdev,
988 int start, int end, int retry)
989 {
990 int index;
991
992 for (index = end; index >= start; index--)
993 pci_restore_config_dword(pdev, 4 * index,
994 pdev->saved_config_space[index],
995 retry);
996 }
997
998 static void pci_restore_config_space(struct pci_dev *pdev)
999 {
1000 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1001 pci_restore_config_space_range(pdev, 10, 15, 0);
1002 /* Restore BARs before the command register. */
1003 pci_restore_config_space_range(pdev, 4, 9, 10);
1004 pci_restore_config_space_range(pdev, 0, 3, 0);
1005 } else {
1006 pci_restore_config_space_range(pdev, 0, 15, 0);
1007 }
1008 }
1009
1010 /**
1011 * pci_restore_state - Restore the saved state of a PCI device
1012 * @dev: - PCI device that we're dealing with
1013 */
1014 void pci_restore_state(struct pci_dev *dev)
1015 {
1016 if (!dev->state_saved)
1017 return;
1018
1019 /* PCI Express register must be restored first */
1020 pci_restore_pcie_state(dev);
1021 pci_restore_ats_state(dev);
1022
1023 pci_restore_config_space(dev);
1024
1025 pci_restore_pcix_state(dev);
1026 pci_restore_msi_state(dev);
1027 pci_restore_iov_state(dev);
1028
1029 dev->state_saved = false;
1030 }
1031
1032 struct pci_saved_state {
1033 u32 config_space[16];
1034 struct pci_cap_saved_data cap[0];
1035 };
1036
1037 /**
1038 * pci_store_saved_state - Allocate and return an opaque struct containing
1039 * the device saved state.
1040 * @dev: PCI device that we're dealing with
1041 *
1042 * Rerturn NULL if no state or error.
1043 */
1044 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1045 {
1046 struct pci_saved_state *state;
1047 struct pci_cap_saved_state *tmp;
1048 struct pci_cap_saved_data *cap;
1049 struct hlist_node *pos;
1050 size_t size;
1051
1052 if (!dev->state_saved)
1053 return NULL;
1054
1055 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1056
1057 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1058 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059
1060 state = kzalloc(size, GFP_KERNEL);
1061 if (!state)
1062 return NULL;
1063
1064 memcpy(state->config_space, dev->saved_config_space,
1065 sizeof(state->config_space));
1066
1067 cap = state->cap;
1068 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1069 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1070 memcpy(cap, &tmp->cap, len);
1071 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1072 }
1073 /* Empty cap_save terminates list */
1074
1075 return state;
1076 }
1077 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1078
1079 /**
1080 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1081 * @dev: PCI device that we're dealing with
1082 * @state: Saved state returned from pci_store_saved_state()
1083 */
1084 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1085 {
1086 struct pci_cap_saved_data *cap;
1087
1088 dev->state_saved = false;
1089
1090 if (!state)
1091 return 0;
1092
1093 memcpy(dev->saved_config_space, state->config_space,
1094 sizeof(state->config_space));
1095
1096 cap = state->cap;
1097 while (cap->size) {
1098 struct pci_cap_saved_state *tmp;
1099
1100 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1101 if (!tmp || tmp->cap.size != cap->size)
1102 return -EINVAL;
1103
1104 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1105 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1106 sizeof(struct pci_cap_saved_data) + cap->size);
1107 }
1108
1109 dev->state_saved = true;
1110 return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1113
1114 /**
1115 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1116 * and free the memory allocated for it.
1117 * @dev: PCI device that we're dealing with
1118 * @state: Pointer to saved state returned from pci_store_saved_state()
1119 */
1120 int pci_load_and_free_saved_state(struct pci_dev *dev,
1121 struct pci_saved_state **state)
1122 {
1123 int ret = pci_load_saved_state(dev, *state);
1124 kfree(*state);
1125 *state = NULL;
1126 return ret;
1127 }
1128 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1129
1130 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1131 {
1132 int err;
1133
1134 err = pci_set_power_state(dev, PCI_D0);
1135 if (err < 0 && err != -EIO)
1136 return err;
1137 err = pcibios_enable_device(dev, bars);
1138 if (err < 0)
1139 return err;
1140 pci_fixup_device(pci_fixup_enable, dev);
1141
1142 return 0;
1143 }
1144
1145 /**
1146 * pci_reenable_device - Resume abandoned device
1147 * @dev: PCI device to be resumed
1148 *
1149 * Note this function is a backend of pci_default_resume and is not supposed
1150 * to be called by normal code, write proper resume handler and use it instead.
1151 */
1152 int pci_reenable_device(struct pci_dev *dev)
1153 {
1154 if (pci_is_enabled(dev))
1155 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1156 return 0;
1157 }
1158
1159 static int __pci_enable_device_flags(struct pci_dev *dev,
1160 resource_size_t flags)
1161 {
1162 int err;
1163 int i, bars = 0;
1164
1165 /*
1166 * Power state could be unknown at this point, either due to a fresh
1167 * boot or a device removal call. So get the current power state
1168 * so that things like MSI message writing will behave as expected
1169 * (e.g. if the device really is in D0 at enable time).
1170 */
1171 if (dev->pm_cap) {
1172 u16 pmcsr;
1173 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1174 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1175 }
1176
1177 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1178 return 0; /* already enabled */
1179
1180 /* only skip sriov related */
1181 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1182 if (dev->resource[i].flags & flags)
1183 bars |= (1 << i);
1184 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1185 if (dev->resource[i].flags & flags)
1186 bars |= (1 << i);
1187
1188 err = do_pci_enable_device(dev, bars);
1189 if (err < 0)
1190 atomic_dec(&dev->enable_cnt);
1191 return err;
1192 }
1193
1194 /**
1195 * pci_enable_device_io - Initialize a device for use with IO space
1196 * @dev: PCI device to be initialized
1197 *
1198 * Initialize device before it's used by a driver. Ask low-level code
1199 * to enable I/O resources. Wake up the device if it was suspended.
1200 * Beware, this function can fail.
1201 */
1202 int pci_enable_device_io(struct pci_dev *dev)
1203 {
1204 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1205 }
1206
1207 /**
1208 * pci_enable_device_mem - Initialize a device for use with Memory space
1209 * @dev: PCI device to be initialized
1210 *
1211 * Initialize device before it's used by a driver. Ask low-level code
1212 * to enable Memory resources. Wake up the device if it was suspended.
1213 * Beware, this function can fail.
1214 */
1215 int pci_enable_device_mem(struct pci_dev *dev)
1216 {
1217 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1218 }
1219
1220 /**
1221 * pci_enable_device - Initialize device before it's used by a driver.
1222 * @dev: PCI device to be initialized
1223 *
1224 * Initialize device before it's used by a driver. Ask low-level code
1225 * to enable I/O and memory. Wake up the device if it was suspended.
1226 * Beware, this function can fail.
1227 *
1228 * Note we don't actually enable the device many times if we call
1229 * this function repeatedly (we just increment the count).
1230 */
1231 int pci_enable_device(struct pci_dev *dev)
1232 {
1233 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1234 }
1235
1236 /*
1237 * Managed PCI resources. This manages device on/off, intx/msi/msix
1238 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1239 * there's no need to track it separately. pci_devres is initialized
1240 * when a device is enabled using managed PCI device enable interface.
1241 */
1242 struct pci_devres {
1243 unsigned int enabled:1;
1244 unsigned int pinned:1;
1245 unsigned int orig_intx:1;
1246 unsigned int restore_intx:1;
1247 u32 region_mask;
1248 };
1249
1250 static void pcim_release(struct device *gendev, void *res)
1251 {
1252 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1253 struct pci_devres *this = res;
1254 int i;
1255
1256 if (dev->msi_enabled)
1257 pci_disable_msi(dev);
1258 if (dev->msix_enabled)
1259 pci_disable_msix(dev);
1260
1261 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1262 if (this->region_mask & (1 << i))
1263 pci_release_region(dev, i);
1264
1265 if (this->restore_intx)
1266 pci_intx(dev, this->orig_intx);
1267
1268 if (this->enabled && !this->pinned)
1269 pci_disable_device(dev);
1270 }
1271
1272 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1273 {
1274 struct pci_devres *dr, *new_dr;
1275
1276 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1277 if (dr)
1278 return dr;
1279
1280 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1281 if (!new_dr)
1282 return NULL;
1283 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1284 }
1285
1286 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1287 {
1288 if (pci_is_managed(pdev))
1289 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1290 return NULL;
1291 }
1292
1293 /**
1294 * pcim_enable_device - Managed pci_enable_device()
1295 * @pdev: PCI device to be initialized
1296 *
1297 * Managed pci_enable_device().
1298 */
1299 int pcim_enable_device(struct pci_dev *pdev)
1300 {
1301 struct pci_devres *dr;
1302 int rc;
1303
1304 dr = get_pci_dr(pdev);
1305 if (unlikely(!dr))
1306 return -ENOMEM;
1307 if (dr->enabled)
1308 return 0;
1309
1310 rc = pci_enable_device(pdev);
1311 if (!rc) {
1312 pdev->is_managed = 1;
1313 dr->enabled = 1;
1314 }
1315 return rc;
1316 }
1317
1318 /**
1319 * pcim_pin_device - Pin managed PCI device
1320 * @pdev: PCI device to pin
1321 *
1322 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1323 * driver detach. @pdev must have been enabled with
1324 * pcim_enable_device().
1325 */
1326 void pcim_pin_device(struct pci_dev *pdev)
1327 {
1328 struct pci_devres *dr;
1329
1330 dr = find_pci_dr(pdev);
1331 WARN_ON(!dr || !dr->enabled);
1332 if (dr)
1333 dr->pinned = 1;
1334 }
1335
1336 /**
1337 * pcibios_disable_device - disable arch specific PCI resources for device dev
1338 * @dev: the PCI device to disable
1339 *
1340 * Disables architecture specific PCI resources for the device. This
1341 * is the default implementation. Architecture implementations can
1342 * override this.
1343 */
1344 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1345
1346 static void do_pci_disable_device(struct pci_dev *dev)
1347 {
1348 u16 pci_command;
1349
1350 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1351 if (pci_command & PCI_COMMAND_MASTER) {
1352 pci_command &= ~PCI_COMMAND_MASTER;
1353 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1354 }
1355
1356 pcibios_disable_device(dev);
1357 }
1358
1359 /**
1360 * pci_disable_enabled_device - Disable device without updating enable_cnt
1361 * @dev: PCI device to disable
1362 *
1363 * NOTE: This function is a backend of PCI power management routines and is
1364 * not supposed to be called drivers.
1365 */
1366 void pci_disable_enabled_device(struct pci_dev *dev)
1367 {
1368 if (pci_is_enabled(dev))
1369 do_pci_disable_device(dev);
1370 }
1371
1372 /**
1373 * pci_disable_device - Disable PCI device after use
1374 * @dev: PCI device to be disabled
1375 *
1376 * Signal to the system that the PCI device is not in use by the system
1377 * anymore. This only involves disabling PCI bus-mastering, if active.
1378 *
1379 * Note we don't actually disable the device until all callers of
1380 * pci_enable_device() have called pci_disable_device().
1381 */
1382 void
1383 pci_disable_device(struct pci_dev *dev)
1384 {
1385 struct pci_devres *dr;
1386
1387 dr = find_pci_dr(dev);
1388 if (dr)
1389 dr->enabled = 0;
1390
1391 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1392 return;
1393
1394 do_pci_disable_device(dev);
1395
1396 dev->is_busmaster = 0;
1397 }
1398
1399 /**
1400 * pcibios_set_pcie_reset_state - set reset state for device dev
1401 * @dev: the PCIe device reset
1402 * @state: Reset state to enter into
1403 *
1404 *
1405 * Sets the PCIe reset state for the device. This is the default
1406 * implementation. Architecture implementations can override this.
1407 */
1408 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1409 enum pcie_reset_state state)
1410 {
1411 return -EINVAL;
1412 }
1413
1414 /**
1415 * pci_set_pcie_reset_state - set reset state for device dev
1416 * @dev: the PCIe device reset
1417 * @state: Reset state to enter into
1418 *
1419 *
1420 * Sets the PCI reset state for the device.
1421 */
1422 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1423 {
1424 return pcibios_set_pcie_reset_state(dev, state);
1425 }
1426
1427 /**
1428 * pci_check_pme_status - Check if given device has generated PME.
1429 * @dev: Device to check.
1430 *
1431 * Check the PME status of the device and if set, clear it and clear PME enable
1432 * (if set). Return 'true' if PME status and PME enable were both set or
1433 * 'false' otherwise.
1434 */
1435 bool pci_check_pme_status(struct pci_dev *dev)
1436 {
1437 int pmcsr_pos;
1438 u16 pmcsr;
1439 bool ret = false;
1440
1441 if (!dev->pm_cap)
1442 return false;
1443
1444 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1445 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1446 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1447 return false;
1448
1449 /* Clear PME status. */
1450 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1451 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1452 /* Disable PME to avoid interrupt flood. */
1453 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1454 ret = true;
1455 }
1456
1457 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1458
1459 return ret;
1460 }
1461
1462 /**
1463 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1464 * @dev: Device to handle.
1465 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1466 *
1467 * Check if @dev has generated PME and queue a resume request for it in that
1468 * case.
1469 */
1470 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1471 {
1472 if (pme_poll_reset && dev->pme_poll)
1473 dev->pme_poll = false;
1474
1475 if (pci_check_pme_status(dev)) {
1476 pci_wakeup_event(dev);
1477 pm_request_resume(&dev->dev);
1478 }
1479 return 0;
1480 }
1481
1482 /**
1483 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1484 * @bus: Top bus of the subtree to walk.
1485 */
1486 void pci_pme_wakeup_bus(struct pci_bus *bus)
1487 {
1488 if (bus)
1489 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1490 }
1491
1492 /**
1493 * pci_wakeup - Wake up a PCI device
1494 * @pci_dev: Device to handle.
1495 * @ign: ignored parameter
1496 */
1497 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1498 {
1499 pci_wakeup_event(pci_dev);
1500 pm_request_resume(&pci_dev->dev);
1501 return 0;
1502 }
1503
1504 /**
1505 * pci_wakeup_bus - Walk given bus and wake up devices on it
1506 * @bus: Top bus of the subtree to walk.
1507 */
1508 void pci_wakeup_bus(struct pci_bus *bus)
1509 {
1510 if (bus)
1511 pci_walk_bus(bus, pci_wakeup, NULL);
1512 }
1513
1514 /**
1515 * pci_pme_capable - check the capability of PCI device to generate PME#
1516 * @dev: PCI device to handle.
1517 * @state: PCI state from which device will issue PME#.
1518 */
1519 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1520 {
1521 if (!dev->pm_cap)
1522 return false;
1523
1524 return !!(dev->pme_support & (1 << state));
1525 }
1526
1527 static void pci_pme_list_scan(struct work_struct *work)
1528 {
1529 struct pci_pme_device *pme_dev, *n;
1530
1531 mutex_lock(&pci_pme_list_mutex);
1532 if (!list_empty(&pci_pme_list)) {
1533 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1534 if (pme_dev->dev->pme_poll) {
1535 struct pci_dev *bridge;
1536
1537 bridge = pme_dev->dev->bus->self;
1538 /*
1539 * If bridge is in low power state, the
1540 * configuration space of subordinate devices
1541 * may be not accessible
1542 */
1543 if (bridge && bridge->current_state != PCI_D0)
1544 continue;
1545 pci_pme_wakeup(pme_dev->dev, NULL);
1546 } else {
1547 list_del(&pme_dev->list);
1548 kfree(pme_dev);
1549 }
1550 }
1551 if (!list_empty(&pci_pme_list))
1552 schedule_delayed_work(&pci_pme_work,
1553 msecs_to_jiffies(PME_TIMEOUT));
1554 }
1555 mutex_unlock(&pci_pme_list_mutex);
1556 }
1557
1558 /**
1559 * pci_pme_active - enable or disable PCI device's PME# function
1560 * @dev: PCI device to handle.
1561 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1562 *
1563 * The caller must verify that the device is capable of generating PME# before
1564 * calling this function with @enable equal to 'true'.
1565 */
1566 void pci_pme_active(struct pci_dev *dev, bool enable)
1567 {
1568 u16 pmcsr;
1569
1570 if (!dev->pm_cap)
1571 return;
1572
1573 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1574 /* Clear PME_Status by writing 1 to it and enable PME# */
1575 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1576 if (!enable)
1577 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1578
1579 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1580
1581 /* PCI (as opposed to PCIe) PME requires that the device have
1582 its PME# line hooked up correctly. Not all hardware vendors
1583 do this, so the PME never gets delivered and the device
1584 remains asleep. The easiest way around this is to
1585 periodically walk the list of suspended devices and check
1586 whether any have their PME flag set. The assumption is that
1587 we'll wake up often enough anyway that this won't be a huge
1588 hit, and the power savings from the devices will still be a
1589 win. */
1590
1591 if (dev->pme_poll) {
1592 struct pci_pme_device *pme_dev;
1593 if (enable) {
1594 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1595 GFP_KERNEL);
1596 if (!pme_dev)
1597 goto out;
1598 pme_dev->dev = dev;
1599 mutex_lock(&pci_pme_list_mutex);
1600 list_add(&pme_dev->list, &pci_pme_list);
1601 if (list_is_singular(&pci_pme_list))
1602 schedule_delayed_work(&pci_pme_work,
1603 msecs_to_jiffies(PME_TIMEOUT));
1604 mutex_unlock(&pci_pme_list_mutex);
1605 } else {
1606 mutex_lock(&pci_pme_list_mutex);
1607 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1608 if (pme_dev->dev == dev) {
1609 list_del(&pme_dev->list);
1610 kfree(pme_dev);
1611 break;
1612 }
1613 }
1614 mutex_unlock(&pci_pme_list_mutex);
1615 }
1616 }
1617
1618 out:
1619 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1620 }
1621
1622 /**
1623 * __pci_enable_wake - enable PCI device as wakeup event source
1624 * @dev: PCI device affected
1625 * @state: PCI state from which device will issue wakeup events
1626 * @runtime: True if the events are to be generated at run time
1627 * @enable: True to enable event generation; false to disable
1628 *
1629 * This enables the device as a wakeup event source, or disables it.
1630 * When such events involves platform-specific hooks, those hooks are
1631 * called automatically by this routine.
1632 *
1633 * Devices with legacy power management (no standard PCI PM capabilities)
1634 * always require such platform hooks.
1635 *
1636 * RETURN VALUE:
1637 * 0 is returned on success
1638 * -EINVAL is returned if device is not supposed to wake up the system
1639 * Error code depending on the platform is returned if both the platform and
1640 * the native mechanism fail to enable the generation of wake-up events
1641 */
1642 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1643 bool runtime, bool enable)
1644 {
1645 int ret = 0;
1646
1647 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1648 return -EINVAL;
1649
1650 /* Don't do the same thing twice in a row for one device. */
1651 if (!!enable == !!dev->wakeup_prepared)
1652 return 0;
1653
1654 /*
1655 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1656 * Anderson we should be doing PME# wake enable followed by ACPI wake
1657 * enable. To disable wake-up we call the platform first, for symmetry.
1658 */
1659
1660 if (enable) {
1661 int error;
1662
1663 if (pci_pme_capable(dev, state))
1664 pci_pme_active(dev, true);
1665 else
1666 ret = 1;
1667 error = runtime ? platform_pci_run_wake(dev, true) :
1668 platform_pci_sleep_wake(dev, true);
1669 if (ret)
1670 ret = error;
1671 if (!ret)
1672 dev->wakeup_prepared = true;
1673 } else {
1674 if (runtime)
1675 platform_pci_run_wake(dev, false);
1676 else
1677 platform_pci_sleep_wake(dev, false);
1678 pci_pme_active(dev, false);
1679 dev->wakeup_prepared = false;
1680 }
1681
1682 return ret;
1683 }
1684 EXPORT_SYMBOL(__pci_enable_wake);
1685
1686 /**
1687 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1688 * @dev: PCI device to prepare
1689 * @enable: True to enable wake-up event generation; false to disable
1690 *
1691 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1692 * and this function allows them to set that up cleanly - pci_enable_wake()
1693 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1694 * ordering constraints.
1695 *
1696 * This function only returns error code if the device is not capable of
1697 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1698 * enable wake-up power for it.
1699 */
1700 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1701 {
1702 return pci_pme_capable(dev, PCI_D3cold) ?
1703 pci_enable_wake(dev, PCI_D3cold, enable) :
1704 pci_enable_wake(dev, PCI_D3hot, enable);
1705 }
1706
1707 /**
1708 * pci_target_state - find an appropriate low power state for a given PCI dev
1709 * @dev: PCI device
1710 *
1711 * Use underlying platform code to find a supported low power state for @dev.
1712 * If the platform can't manage @dev, return the deepest state from which it
1713 * can generate wake events, based on any available PME info.
1714 */
1715 pci_power_t pci_target_state(struct pci_dev *dev)
1716 {
1717 pci_power_t target_state = PCI_D3hot;
1718
1719 if (platform_pci_power_manageable(dev)) {
1720 /*
1721 * Call the platform to choose the target state of the device
1722 * and enable wake-up from this state if supported.
1723 */
1724 pci_power_t state = platform_pci_choose_state(dev);
1725
1726 switch (state) {
1727 case PCI_POWER_ERROR:
1728 case PCI_UNKNOWN:
1729 break;
1730 case PCI_D1:
1731 case PCI_D2:
1732 if (pci_no_d1d2(dev))
1733 break;
1734 default:
1735 target_state = state;
1736 }
1737 } else if (!dev->pm_cap) {
1738 target_state = PCI_D0;
1739 } else if (device_may_wakeup(&dev->dev)) {
1740 /*
1741 * Find the deepest state from which the device can generate
1742 * wake-up events, make it the target state and enable device
1743 * to generate PME#.
1744 */
1745 if (dev->pme_support) {
1746 while (target_state
1747 && !(dev->pme_support & (1 << target_state)))
1748 target_state--;
1749 }
1750 }
1751
1752 return target_state;
1753 }
1754
1755 /**
1756 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1757 * @dev: Device to handle.
1758 *
1759 * Choose the power state appropriate for the device depending on whether
1760 * it can wake up the system and/or is power manageable by the platform
1761 * (PCI_D3hot is the default) and put the device into that state.
1762 */
1763 int pci_prepare_to_sleep(struct pci_dev *dev)
1764 {
1765 pci_power_t target_state = pci_target_state(dev);
1766 int error;
1767
1768 if (target_state == PCI_POWER_ERROR)
1769 return -EIO;
1770
1771 /* D3cold during system suspend/hibernate is not supported */
1772 if (target_state > PCI_D3hot)
1773 target_state = PCI_D3hot;
1774
1775 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1776
1777 error = pci_set_power_state(dev, target_state);
1778
1779 if (error)
1780 pci_enable_wake(dev, target_state, false);
1781
1782 return error;
1783 }
1784
1785 /**
1786 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1787 * @dev: Device to handle.
1788 *
1789 * Disable device's system wake-up capability and put it into D0.
1790 */
1791 int pci_back_from_sleep(struct pci_dev *dev)
1792 {
1793 pci_enable_wake(dev, PCI_D0, false);
1794 return pci_set_power_state(dev, PCI_D0);
1795 }
1796
1797 /**
1798 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1799 * @dev: PCI device being suspended.
1800 *
1801 * Prepare @dev to generate wake-up events at run time and put it into a low
1802 * power state.
1803 */
1804 int pci_finish_runtime_suspend(struct pci_dev *dev)
1805 {
1806 pci_power_t target_state = pci_target_state(dev);
1807 int error;
1808
1809 if (target_state == PCI_POWER_ERROR)
1810 return -EIO;
1811
1812 dev->runtime_d3cold = target_state == PCI_D3cold;
1813
1814 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1815
1816 error = pci_set_power_state(dev, target_state);
1817
1818 if (error) {
1819 __pci_enable_wake(dev, target_state, true, false);
1820 dev->runtime_d3cold = false;
1821 }
1822
1823 return error;
1824 }
1825
1826 /**
1827 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1828 * @dev: Device to check.
1829 *
1830 * Return true if the device itself is cabable of generating wake-up events
1831 * (through the platform or using the native PCIe PME) or if the device supports
1832 * PME and one of its upstream bridges can generate wake-up events.
1833 */
1834 bool pci_dev_run_wake(struct pci_dev *dev)
1835 {
1836 struct pci_bus *bus = dev->bus;
1837
1838 if (device_run_wake(&dev->dev))
1839 return true;
1840
1841 if (!dev->pme_support)
1842 return false;
1843
1844 while (bus->parent) {
1845 struct pci_dev *bridge = bus->self;
1846
1847 if (device_run_wake(&bridge->dev))
1848 return true;
1849
1850 bus = bus->parent;
1851 }
1852
1853 /* We have reached the root bus. */
1854 if (bus->bridge)
1855 return device_run_wake(bus->bridge);
1856
1857 return false;
1858 }
1859 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1860
1861 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1862 {
1863 struct device *dev = &pdev->dev;
1864 struct device *parent = dev->parent;
1865
1866 if (parent)
1867 pm_runtime_get_sync(parent);
1868 pm_runtime_get_noresume(dev);
1869 /*
1870 * pdev->current_state is set to PCI_D3cold during suspending,
1871 * so wait until suspending completes
1872 */
1873 pm_runtime_barrier(dev);
1874 /*
1875 * Only need to resume devices in D3cold, because config
1876 * registers are still accessible for devices suspended but
1877 * not in D3cold.
1878 */
1879 if (pdev->current_state == PCI_D3cold)
1880 pm_runtime_resume(dev);
1881 }
1882
1883 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1884 {
1885 struct device *dev = &pdev->dev;
1886 struct device *parent = dev->parent;
1887
1888 pm_runtime_put(dev);
1889 if (parent)
1890 pm_runtime_put_sync(parent);
1891 }
1892
1893 /**
1894 * pci_pm_init - Initialize PM functions of given PCI device
1895 * @dev: PCI device to handle.
1896 */
1897 void pci_pm_init(struct pci_dev *dev)
1898 {
1899 int pm;
1900 u16 pmc;
1901
1902 pm_runtime_forbid(&dev->dev);
1903 device_enable_async_suspend(&dev->dev);
1904 dev->wakeup_prepared = false;
1905
1906 dev->pm_cap = 0;
1907
1908 /* find PCI PM capability in list */
1909 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1910 if (!pm)
1911 return;
1912 /* Check device's ability to generate PME# */
1913 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1914
1915 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1916 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1917 pmc & PCI_PM_CAP_VER_MASK);
1918 return;
1919 }
1920
1921 dev->pm_cap = pm;
1922 dev->d3_delay = PCI_PM_D3_WAIT;
1923 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1924 dev->d3cold_allowed = true;
1925
1926 dev->d1_support = false;
1927 dev->d2_support = false;
1928 if (!pci_no_d1d2(dev)) {
1929 if (pmc & PCI_PM_CAP_D1)
1930 dev->d1_support = true;
1931 if (pmc & PCI_PM_CAP_D2)
1932 dev->d2_support = true;
1933
1934 if (dev->d1_support || dev->d2_support)
1935 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1936 dev->d1_support ? " D1" : "",
1937 dev->d2_support ? " D2" : "");
1938 }
1939
1940 pmc &= PCI_PM_CAP_PME_MASK;
1941 if (pmc) {
1942 dev_printk(KERN_DEBUG, &dev->dev,
1943 "PME# supported from%s%s%s%s%s\n",
1944 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1945 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1946 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1947 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1948 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1949 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1950 dev->pme_poll = true;
1951 /*
1952 * Make device's PM flags reflect the wake-up capability, but
1953 * let the user space enable it to wake up the system as needed.
1954 */
1955 device_set_wakeup_capable(&dev->dev, true);
1956 /* Disable the PME# generation functionality */
1957 pci_pme_active(dev, false);
1958 } else {
1959 dev->pme_support = 0;
1960 }
1961 }
1962
1963 /**
1964 * platform_pci_wakeup_init - init platform wakeup if present
1965 * @dev: PCI device
1966 *
1967 * Some devices don't have PCI PM caps but can still generate wakeup
1968 * events through platform methods (like ACPI events). If @dev supports
1969 * platform wakeup events, set the device flag to indicate as much. This
1970 * may be redundant if the device also supports PCI PM caps, but double
1971 * initialization should be safe in that case.
1972 */
1973 void platform_pci_wakeup_init(struct pci_dev *dev)
1974 {
1975 if (!platform_pci_can_wakeup(dev))
1976 return;
1977
1978 device_set_wakeup_capable(&dev->dev, true);
1979 platform_pci_sleep_wake(dev, false);
1980 }
1981
1982 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1983 struct pci_cap_saved_state *new_cap)
1984 {
1985 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1986 }
1987
1988 /**
1989 * pci_add_save_buffer - allocate buffer for saving given capability registers
1990 * @dev: the PCI device
1991 * @cap: the capability to allocate the buffer for
1992 * @size: requested size of the buffer
1993 */
1994 static int pci_add_cap_save_buffer(
1995 struct pci_dev *dev, char cap, unsigned int size)
1996 {
1997 int pos;
1998 struct pci_cap_saved_state *save_state;
1999
2000 pos = pci_find_capability(dev, cap);
2001 if (pos <= 0)
2002 return 0;
2003
2004 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2005 if (!save_state)
2006 return -ENOMEM;
2007
2008 save_state->cap.cap_nr = cap;
2009 save_state->cap.size = size;
2010 pci_add_saved_cap(dev, save_state);
2011
2012 return 0;
2013 }
2014
2015 /**
2016 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2017 * @dev: the PCI device
2018 */
2019 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2020 {
2021 int error;
2022
2023 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2024 PCI_EXP_SAVE_REGS * sizeof(u16));
2025 if (error)
2026 dev_err(&dev->dev,
2027 "unable to preallocate PCI Express save buffer\n");
2028
2029 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2030 if (error)
2031 dev_err(&dev->dev,
2032 "unable to preallocate PCI-X save buffer\n");
2033 }
2034
2035 void pci_free_cap_save_buffers(struct pci_dev *dev)
2036 {
2037 struct pci_cap_saved_state *tmp;
2038 struct hlist_node *pos, *n;
2039
2040 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
2041 kfree(tmp);
2042 }
2043
2044 /**
2045 * pci_enable_ari - enable ARI forwarding if hardware support it
2046 * @dev: the PCI device
2047 */
2048 void pci_enable_ari(struct pci_dev *dev)
2049 {
2050 u32 cap;
2051 struct pci_dev *bridge;
2052
2053 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2054 return;
2055
2056 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI))
2057 return;
2058
2059 bridge = dev->bus->self;
2060 if (!bridge)
2061 return;
2062
2063 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2064 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2065 return;
2066
2067 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_ARI);
2068 bridge->ari_enabled = 1;
2069 }
2070
2071 /**
2072 * pci_enable_ido - enable ID-based Ordering on a device
2073 * @dev: the PCI device
2074 * @type: which types of IDO to enable
2075 *
2076 * Enable ID-based ordering on @dev. @type can contain the bits
2077 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2078 * which types of transactions are allowed to be re-ordered.
2079 */
2080 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2081 {
2082 u16 ctrl = 0;
2083
2084 if (type & PCI_EXP_IDO_REQUEST)
2085 ctrl |= PCI_EXP_IDO_REQ_EN;
2086 if (type & PCI_EXP_IDO_COMPLETION)
2087 ctrl |= PCI_EXP_IDO_CMP_EN;
2088 if (ctrl)
2089 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2090 }
2091 EXPORT_SYMBOL(pci_enable_ido);
2092
2093 /**
2094 * pci_disable_ido - disable ID-based ordering on a device
2095 * @dev: the PCI device
2096 * @type: which types of IDO to disable
2097 */
2098 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2099 {
2100 u16 ctrl = 0;
2101
2102 if (type & PCI_EXP_IDO_REQUEST)
2103 ctrl |= PCI_EXP_IDO_REQ_EN;
2104 if (type & PCI_EXP_IDO_COMPLETION)
2105 ctrl |= PCI_EXP_IDO_CMP_EN;
2106 if (ctrl)
2107 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2108 }
2109 EXPORT_SYMBOL(pci_disable_ido);
2110
2111 /**
2112 * pci_enable_obff - enable optimized buffer flush/fill
2113 * @dev: PCI device
2114 * @type: type of signaling to use
2115 *
2116 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2117 * signaling if possible, falling back to message signaling only if
2118 * WAKE# isn't supported. @type should indicate whether the PCIe link
2119 * be brought out of L0s or L1 to send the message. It should be either
2120 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2121 *
2122 * If your device can benefit from receiving all messages, even at the
2123 * power cost of bringing the link back up from a low power state, use
2124 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2125 * preferred type).
2126 *
2127 * RETURNS:
2128 * Zero on success, appropriate error number on failure.
2129 */
2130 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2131 {
2132 u32 cap;
2133 u16 ctrl;
2134 int ret;
2135
2136 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2137 if (!(cap & PCI_EXP_OBFF_MASK))
2138 return -ENOTSUPP; /* no OBFF support at all */
2139
2140 /* Make sure the topology supports OBFF as well */
2141 if (dev->bus->self) {
2142 ret = pci_enable_obff(dev->bus->self, type);
2143 if (ret)
2144 return ret;
2145 }
2146
2147 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2148 if (cap & PCI_EXP_OBFF_WAKE)
2149 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2150 else {
2151 switch (type) {
2152 case PCI_EXP_OBFF_SIGNAL_L0:
2153 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2154 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2155 break;
2156 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2157 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2158 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2159 break;
2160 default:
2161 WARN(1, "bad OBFF signal type\n");
2162 return -ENOTSUPP;
2163 }
2164 }
2165 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2166
2167 return 0;
2168 }
2169 EXPORT_SYMBOL(pci_enable_obff);
2170
2171 /**
2172 * pci_disable_obff - disable optimized buffer flush/fill
2173 * @dev: PCI device
2174 *
2175 * Disable OBFF on @dev.
2176 */
2177 void pci_disable_obff(struct pci_dev *dev)
2178 {
2179 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2180 }
2181 EXPORT_SYMBOL(pci_disable_obff);
2182
2183 /**
2184 * pci_ltr_supported - check whether a device supports LTR
2185 * @dev: PCI device
2186 *
2187 * RETURNS:
2188 * True if @dev supports latency tolerance reporting, false otherwise.
2189 */
2190 static bool pci_ltr_supported(struct pci_dev *dev)
2191 {
2192 u32 cap;
2193
2194 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2195
2196 return cap & PCI_EXP_DEVCAP2_LTR;
2197 }
2198
2199 /**
2200 * pci_enable_ltr - enable latency tolerance reporting
2201 * @dev: PCI device
2202 *
2203 * Enable LTR on @dev if possible, which means enabling it first on
2204 * upstream ports.
2205 *
2206 * RETURNS:
2207 * Zero on success, errno on failure.
2208 */
2209 int pci_enable_ltr(struct pci_dev *dev)
2210 {
2211 int ret;
2212
2213 /* Only primary function can enable/disable LTR */
2214 if (PCI_FUNC(dev->devfn) != 0)
2215 return -EINVAL;
2216
2217 if (!pci_ltr_supported(dev))
2218 return -ENOTSUPP;
2219
2220 /* Enable upstream ports first */
2221 if (dev->bus->self) {
2222 ret = pci_enable_ltr(dev->bus->self);
2223 if (ret)
2224 return ret;
2225 }
2226
2227 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2228 }
2229 EXPORT_SYMBOL(pci_enable_ltr);
2230
2231 /**
2232 * pci_disable_ltr - disable latency tolerance reporting
2233 * @dev: PCI device
2234 */
2235 void pci_disable_ltr(struct pci_dev *dev)
2236 {
2237 /* Only primary function can enable/disable LTR */
2238 if (PCI_FUNC(dev->devfn) != 0)
2239 return;
2240
2241 if (!pci_ltr_supported(dev))
2242 return;
2243
2244 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2245 }
2246 EXPORT_SYMBOL(pci_disable_ltr);
2247
2248 static int __pci_ltr_scale(int *val)
2249 {
2250 int scale = 0;
2251
2252 while (*val > 1023) {
2253 *val = (*val + 31) / 32;
2254 scale++;
2255 }
2256 return scale;
2257 }
2258
2259 /**
2260 * pci_set_ltr - set LTR latency values
2261 * @dev: PCI device
2262 * @snoop_lat_ns: snoop latency in nanoseconds
2263 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2264 *
2265 * Figure out the scale and set the LTR values accordingly.
2266 */
2267 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2268 {
2269 int pos, ret, snoop_scale, nosnoop_scale;
2270 u16 val;
2271
2272 if (!pci_ltr_supported(dev))
2273 return -ENOTSUPP;
2274
2275 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2276 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2277
2278 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2279 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2280 return -EINVAL;
2281
2282 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2283 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2284 return -EINVAL;
2285
2286 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2287 if (!pos)
2288 return -ENOTSUPP;
2289
2290 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2291 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2292 if (ret != 4)
2293 return -EIO;
2294
2295 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2296 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2297 if (ret != 4)
2298 return -EIO;
2299
2300 return 0;
2301 }
2302 EXPORT_SYMBOL(pci_set_ltr);
2303
2304 static int pci_acs_enable;
2305
2306 /**
2307 * pci_request_acs - ask for ACS to be enabled if supported
2308 */
2309 void pci_request_acs(void)
2310 {
2311 pci_acs_enable = 1;
2312 }
2313
2314 /**
2315 * pci_enable_acs - enable ACS if hardware support it
2316 * @dev: the PCI device
2317 */
2318 void pci_enable_acs(struct pci_dev *dev)
2319 {
2320 int pos;
2321 u16 cap;
2322 u16 ctrl;
2323
2324 if (!pci_acs_enable)
2325 return;
2326
2327 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2328 if (!pos)
2329 return;
2330
2331 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2332 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2333
2334 /* Source Validation */
2335 ctrl |= (cap & PCI_ACS_SV);
2336
2337 /* P2P Request Redirect */
2338 ctrl |= (cap & PCI_ACS_RR);
2339
2340 /* P2P Completion Redirect */
2341 ctrl |= (cap & PCI_ACS_CR);
2342
2343 /* Upstream Forwarding */
2344 ctrl |= (cap & PCI_ACS_UF);
2345
2346 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2347 }
2348
2349 /**
2350 * pci_acs_enabled - test ACS against required flags for a given device
2351 * @pdev: device to test
2352 * @acs_flags: required PCI ACS flags
2353 *
2354 * Return true if the device supports the provided flags. Automatically
2355 * filters out flags that are not implemented on multifunction devices.
2356 */
2357 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2358 {
2359 int pos, ret;
2360 u16 ctrl;
2361
2362 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2363 if (ret >= 0)
2364 return ret > 0;
2365
2366 if (!pci_is_pcie(pdev))
2367 return false;
2368
2369 /* Filter out flags not applicable to multifunction */
2370 if (pdev->multifunction)
2371 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2372 PCI_ACS_EC | PCI_ACS_DT);
2373
2374 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2375 pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2376 pdev->multifunction) {
2377 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2378 if (!pos)
2379 return false;
2380
2381 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2382 if ((ctrl & acs_flags) != acs_flags)
2383 return false;
2384 }
2385
2386 return true;
2387 }
2388
2389 /**
2390 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2391 * @start: starting downstream device
2392 * @end: ending upstream device or NULL to search to the root bus
2393 * @acs_flags: required flags
2394 *
2395 * Walk up a device tree from start to end testing PCI ACS support. If
2396 * any step along the way does not support the required flags, return false.
2397 */
2398 bool pci_acs_path_enabled(struct pci_dev *start,
2399 struct pci_dev *end, u16 acs_flags)
2400 {
2401 struct pci_dev *pdev, *parent = start;
2402
2403 do {
2404 pdev = parent;
2405
2406 if (!pci_acs_enabled(pdev, acs_flags))
2407 return false;
2408
2409 if (pci_is_root_bus(pdev->bus))
2410 return (end == NULL);
2411
2412 parent = pdev->bus->self;
2413 } while (pdev != end);
2414
2415 return true;
2416 }
2417
2418 /**
2419 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2420 * @dev: the PCI device
2421 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2422 *
2423 * Perform INTx swizzling for a device behind one level of bridge. This is
2424 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2425 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2426 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2427 * the PCI Express Base Specification, Revision 2.1)
2428 */
2429 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2430 {
2431 int slot;
2432
2433 if (pci_ari_enabled(dev->bus))
2434 slot = 0;
2435 else
2436 slot = PCI_SLOT(dev->devfn);
2437
2438 return (((pin - 1) + slot) % 4) + 1;
2439 }
2440
2441 int
2442 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2443 {
2444 u8 pin;
2445
2446 pin = dev->pin;
2447 if (!pin)
2448 return -1;
2449
2450 while (!pci_is_root_bus(dev->bus)) {
2451 pin = pci_swizzle_interrupt_pin(dev, pin);
2452 dev = dev->bus->self;
2453 }
2454 *bridge = dev;
2455 return pin;
2456 }
2457
2458 /**
2459 * pci_common_swizzle - swizzle INTx all the way to root bridge
2460 * @dev: the PCI device
2461 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2462 *
2463 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2464 * bridges all the way up to a PCI root bus.
2465 */
2466 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2467 {
2468 u8 pin = *pinp;
2469
2470 while (!pci_is_root_bus(dev->bus)) {
2471 pin = pci_swizzle_interrupt_pin(dev, pin);
2472 dev = dev->bus->self;
2473 }
2474 *pinp = pin;
2475 return PCI_SLOT(dev->devfn);
2476 }
2477
2478 /**
2479 * pci_release_region - Release a PCI bar
2480 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2481 * @bar: BAR to release
2482 *
2483 * Releases the PCI I/O and memory resources previously reserved by a
2484 * successful call to pci_request_region. Call this function only
2485 * after all use of the PCI regions has ceased.
2486 */
2487 void pci_release_region(struct pci_dev *pdev, int bar)
2488 {
2489 struct pci_devres *dr;
2490
2491 if (pci_resource_len(pdev, bar) == 0)
2492 return;
2493 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2494 release_region(pci_resource_start(pdev, bar),
2495 pci_resource_len(pdev, bar));
2496 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2497 release_mem_region(pci_resource_start(pdev, bar),
2498 pci_resource_len(pdev, bar));
2499
2500 dr = find_pci_dr(pdev);
2501 if (dr)
2502 dr->region_mask &= ~(1 << bar);
2503 }
2504
2505 /**
2506 * __pci_request_region - Reserved PCI I/O and memory resource
2507 * @pdev: PCI device whose resources are to be reserved
2508 * @bar: BAR to be reserved
2509 * @res_name: Name to be associated with resource.
2510 * @exclusive: whether the region access is exclusive or not
2511 *
2512 * Mark the PCI region associated with PCI device @pdev BR @bar as
2513 * being reserved by owner @res_name. Do not access any
2514 * address inside the PCI regions unless this call returns
2515 * successfully.
2516 *
2517 * If @exclusive is set, then the region is marked so that userspace
2518 * is explicitly not allowed to map the resource via /dev/mem or
2519 * sysfs MMIO access.
2520 *
2521 * Returns 0 on success, or %EBUSY on error. A warning
2522 * message is also printed on failure.
2523 */
2524 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2525 int exclusive)
2526 {
2527 struct pci_devres *dr;
2528
2529 if (pci_resource_len(pdev, bar) == 0)
2530 return 0;
2531
2532 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2533 if (!request_region(pci_resource_start(pdev, bar),
2534 pci_resource_len(pdev, bar), res_name))
2535 goto err_out;
2536 }
2537 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2538 if (!__request_mem_region(pci_resource_start(pdev, bar),
2539 pci_resource_len(pdev, bar), res_name,
2540 exclusive))
2541 goto err_out;
2542 }
2543
2544 dr = find_pci_dr(pdev);
2545 if (dr)
2546 dr->region_mask |= 1 << bar;
2547
2548 return 0;
2549
2550 err_out:
2551 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2552 &pdev->resource[bar]);
2553 return -EBUSY;
2554 }
2555
2556 /**
2557 * pci_request_region - Reserve PCI I/O and memory resource
2558 * @pdev: PCI device whose resources are to be reserved
2559 * @bar: BAR to be reserved
2560 * @res_name: Name to be associated with resource
2561 *
2562 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2563 * being reserved by owner @res_name. Do not access any
2564 * address inside the PCI regions unless this call returns
2565 * successfully.
2566 *
2567 * Returns 0 on success, or %EBUSY on error. A warning
2568 * message is also printed on failure.
2569 */
2570 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2571 {
2572 return __pci_request_region(pdev, bar, res_name, 0);
2573 }
2574
2575 /**
2576 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2577 * @pdev: PCI device whose resources are to be reserved
2578 * @bar: BAR to be reserved
2579 * @res_name: Name to be associated with resource.
2580 *
2581 * Mark the PCI region associated with PCI device @pdev BR @bar as
2582 * being reserved by owner @res_name. Do not access any
2583 * address inside the PCI regions unless this call returns
2584 * successfully.
2585 *
2586 * Returns 0 on success, or %EBUSY on error. A warning
2587 * message is also printed on failure.
2588 *
2589 * The key difference that _exclusive makes it that userspace is
2590 * explicitly not allowed to map the resource via /dev/mem or
2591 * sysfs.
2592 */
2593 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2594 {
2595 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2596 }
2597 /**
2598 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2599 * @pdev: PCI device whose resources were previously reserved
2600 * @bars: Bitmask of BARs to be released
2601 *
2602 * Release selected PCI I/O and memory resources previously reserved.
2603 * Call this function only after all use of the PCI regions has ceased.
2604 */
2605 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2606 {
2607 int i;
2608
2609 for (i = 0; i < 6; i++)
2610 if (bars & (1 << i))
2611 pci_release_region(pdev, i);
2612 }
2613
2614 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2615 const char *res_name, int excl)
2616 {
2617 int i;
2618
2619 for (i = 0; i < 6; i++)
2620 if (bars & (1 << i))
2621 if (__pci_request_region(pdev, i, res_name, excl))
2622 goto err_out;
2623 return 0;
2624
2625 err_out:
2626 while(--i >= 0)
2627 if (bars & (1 << i))
2628 pci_release_region(pdev, i);
2629
2630 return -EBUSY;
2631 }
2632
2633
2634 /**
2635 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2636 * @pdev: PCI device whose resources are to be reserved
2637 * @bars: Bitmask of BARs to be requested
2638 * @res_name: Name to be associated with resource
2639 */
2640 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2641 const char *res_name)
2642 {
2643 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2644 }
2645
2646 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2647 int bars, const char *res_name)
2648 {
2649 return __pci_request_selected_regions(pdev, bars, res_name,
2650 IORESOURCE_EXCLUSIVE);
2651 }
2652
2653 /**
2654 * pci_release_regions - Release reserved PCI I/O and memory resources
2655 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2656 *
2657 * Releases all PCI I/O and memory resources previously reserved by a
2658 * successful call to pci_request_regions. Call this function only
2659 * after all use of the PCI regions has ceased.
2660 */
2661
2662 void pci_release_regions(struct pci_dev *pdev)
2663 {
2664 pci_release_selected_regions(pdev, (1 << 6) - 1);
2665 }
2666
2667 /**
2668 * pci_request_regions - Reserved PCI I/O and memory resources
2669 * @pdev: PCI device whose resources are to be reserved
2670 * @res_name: Name to be associated with resource.
2671 *
2672 * Mark all PCI regions associated with PCI device @pdev as
2673 * being reserved by owner @res_name. Do not access any
2674 * address inside the PCI regions unless this call returns
2675 * successfully.
2676 *
2677 * Returns 0 on success, or %EBUSY on error. A warning
2678 * message is also printed on failure.
2679 */
2680 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2681 {
2682 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2683 }
2684
2685 /**
2686 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2687 * @pdev: PCI device whose resources are to be reserved
2688 * @res_name: Name to be associated with resource.
2689 *
2690 * Mark all PCI regions associated with PCI device @pdev as
2691 * being reserved by owner @res_name. Do not access any
2692 * address inside the PCI regions unless this call returns
2693 * successfully.
2694 *
2695 * pci_request_regions_exclusive() will mark the region so that
2696 * /dev/mem and the sysfs MMIO access will not be allowed.
2697 *
2698 * Returns 0 on success, or %EBUSY on error. A warning
2699 * message is also printed on failure.
2700 */
2701 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2702 {
2703 return pci_request_selected_regions_exclusive(pdev,
2704 ((1 << 6) - 1), res_name);
2705 }
2706
2707 static void __pci_set_master(struct pci_dev *dev, bool enable)
2708 {
2709 u16 old_cmd, cmd;
2710
2711 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2712 if (enable)
2713 cmd = old_cmd | PCI_COMMAND_MASTER;
2714 else
2715 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2716 if (cmd != old_cmd) {
2717 dev_dbg(&dev->dev, "%s bus mastering\n",
2718 enable ? "enabling" : "disabling");
2719 pci_write_config_word(dev, PCI_COMMAND, cmd);
2720 }
2721 dev->is_busmaster = enable;
2722 }
2723
2724 /**
2725 * pcibios_setup - process "pci=" kernel boot arguments
2726 * @str: string used to pass in "pci=" kernel boot arguments
2727 *
2728 * Process kernel boot arguments. This is the default implementation.
2729 * Architecture specific implementations can override this as necessary.
2730 */
2731 char * __weak __init pcibios_setup(char *str)
2732 {
2733 return str;
2734 }
2735
2736 /**
2737 * pcibios_set_master - enable PCI bus-mastering for device dev
2738 * @dev: the PCI device to enable
2739 *
2740 * Enables PCI bus-mastering for the device. This is the default
2741 * implementation. Architecture specific implementations can override
2742 * this if necessary.
2743 */
2744 void __weak pcibios_set_master(struct pci_dev *dev)
2745 {
2746 u8 lat;
2747
2748 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2749 if (pci_is_pcie(dev))
2750 return;
2751
2752 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2753 if (lat < 16)
2754 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2755 else if (lat > pcibios_max_latency)
2756 lat = pcibios_max_latency;
2757 else
2758 return;
2759 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2760 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2761 }
2762
2763 /**
2764 * pci_set_master - enables bus-mastering for device dev
2765 * @dev: the PCI device to enable
2766 *
2767 * Enables bus-mastering on the device and calls pcibios_set_master()
2768 * to do the needed arch specific settings.
2769 */
2770 void pci_set_master(struct pci_dev *dev)
2771 {
2772 __pci_set_master(dev, true);
2773 pcibios_set_master(dev);
2774 }
2775
2776 /**
2777 * pci_clear_master - disables bus-mastering for device dev
2778 * @dev: the PCI device to disable
2779 */
2780 void pci_clear_master(struct pci_dev *dev)
2781 {
2782 __pci_set_master(dev, false);
2783 }
2784
2785 /**
2786 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2787 * @dev: the PCI device for which MWI is to be enabled
2788 *
2789 * Helper function for pci_set_mwi.
2790 * Originally copied from drivers/net/acenic.c.
2791 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2792 *
2793 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2794 */
2795 int pci_set_cacheline_size(struct pci_dev *dev)
2796 {
2797 u8 cacheline_size;
2798
2799 if (!pci_cache_line_size)
2800 return -EINVAL;
2801
2802 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2803 equal to or multiple of the right value. */
2804 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2805 if (cacheline_size >= pci_cache_line_size &&
2806 (cacheline_size % pci_cache_line_size) == 0)
2807 return 0;
2808
2809 /* Write the correct value. */
2810 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2811 /* Read it back. */
2812 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2813 if (cacheline_size == pci_cache_line_size)
2814 return 0;
2815
2816 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2817 "supported\n", pci_cache_line_size << 2);
2818
2819 return -EINVAL;
2820 }
2821 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2822
2823 #ifdef PCI_DISABLE_MWI
2824 int pci_set_mwi(struct pci_dev *dev)
2825 {
2826 return 0;
2827 }
2828
2829 int pci_try_set_mwi(struct pci_dev *dev)
2830 {
2831 return 0;
2832 }
2833
2834 void pci_clear_mwi(struct pci_dev *dev)
2835 {
2836 }
2837
2838 #else
2839
2840 /**
2841 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2842 * @dev: the PCI device for which MWI is enabled
2843 *
2844 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2845 *
2846 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2847 */
2848 int
2849 pci_set_mwi(struct pci_dev *dev)
2850 {
2851 int rc;
2852 u16 cmd;
2853
2854 rc = pci_set_cacheline_size(dev);
2855 if (rc)
2856 return rc;
2857
2858 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2859 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2860 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2861 cmd |= PCI_COMMAND_INVALIDATE;
2862 pci_write_config_word(dev, PCI_COMMAND, cmd);
2863 }
2864
2865 return 0;
2866 }
2867
2868 /**
2869 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2870 * @dev: the PCI device for which MWI is enabled
2871 *
2872 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2873 * Callers are not required to check the return value.
2874 *
2875 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2876 */
2877 int pci_try_set_mwi(struct pci_dev *dev)
2878 {
2879 int rc = pci_set_mwi(dev);
2880 return rc;
2881 }
2882
2883 /**
2884 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2885 * @dev: the PCI device to disable
2886 *
2887 * Disables PCI Memory-Write-Invalidate transaction on the device
2888 */
2889 void
2890 pci_clear_mwi(struct pci_dev *dev)
2891 {
2892 u16 cmd;
2893
2894 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2895 if (cmd & PCI_COMMAND_INVALIDATE) {
2896 cmd &= ~PCI_COMMAND_INVALIDATE;
2897 pci_write_config_word(dev, PCI_COMMAND, cmd);
2898 }
2899 }
2900 #endif /* ! PCI_DISABLE_MWI */
2901
2902 /**
2903 * pci_intx - enables/disables PCI INTx for device dev
2904 * @pdev: the PCI device to operate on
2905 * @enable: boolean: whether to enable or disable PCI INTx
2906 *
2907 * Enables/disables PCI INTx for device dev
2908 */
2909 void
2910 pci_intx(struct pci_dev *pdev, int enable)
2911 {
2912 u16 pci_command, new;
2913
2914 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2915
2916 if (enable) {
2917 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2918 } else {
2919 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2920 }
2921
2922 if (new != pci_command) {
2923 struct pci_devres *dr;
2924
2925 pci_write_config_word(pdev, PCI_COMMAND, new);
2926
2927 dr = find_pci_dr(pdev);
2928 if (dr && !dr->restore_intx) {
2929 dr->restore_intx = 1;
2930 dr->orig_intx = !enable;
2931 }
2932 }
2933 }
2934
2935 /**
2936 * pci_intx_mask_supported - probe for INTx masking support
2937 * @dev: the PCI device to operate on
2938 *
2939 * Check if the device dev support INTx masking via the config space
2940 * command word.
2941 */
2942 bool pci_intx_mask_supported(struct pci_dev *dev)
2943 {
2944 bool mask_supported = false;
2945 u16 orig, new;
2946
2947 if (dev->broken_intx_masking)
2948 return false;
2949
2950 pci_cfg_access_lock(dev);
2951
2952 pci_read_config_word(dev, PCI_COMMAND, &orig);
2953 pci_write_config_word(dev, PCI_COMMAND,
2954 orig ^ PCI_COMMAND_INTX_DISABLE);
2955 pci_read_config_word(dev, PCI_COMMAND, &new);
2956
2957 /*
2958 * There's no way to protect against hardware bugs or detect them
2959 * reliably, but as long as we know what the value should be, let's
2960 * go ahead and check it.
2961 */
2962 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2963 dev_err(&dev->dev, "Command register changed from "
2964 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2965 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2966 mask_supported = true;
2967 pci_write_config_word(dev, PCI_COMMAND, orig);
2968 }
2969
2970 pci_cfg_access_unlock(dev);
2971 return mask_supported;
2972 }
2973 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2974
2975 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2976 {
2977 struct pci_bus *bus = dev->bus;
2978 bool mask_updated = true;
2979 u32 cmd_status_dword;
2980 u16 origcmd, newcmd;
2981 unsigned long flags;
2982 bool irq_pending;
2983
2984 /*
2985 * We do a single dword read to retrieve both command and status.
2986 * Document assumptions that make this possible.
2987 */
2988 BUILD_BUG_ON(PCI_COMMAND % 4);
2989 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2990
2991 raw_spin_lock_irqsave(&pci_lock, flags);
2992
2993 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2994
2995 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2996
2997 /*
2998 * Check interrupt status register to see whether our device
2999 * triggered the interrupt (when masking) or the next IRQ is
3000 * already pending (when unmasking).
3001 */
3002 if (mask != irq_pending) {
3003 mask_updated = false;
3004 goto done;
3005 }
3006
3007 origcmd = cmd_status_dword;
3008 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3009 if (mask)
3010 newcmd |= PCI_COMMAND_INTX_DISABLE;
3011 if (newcmd != origcmd)
3012 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3013
3014 done:
3015 raw_spin_unlock_irqrestore(&pci_lock, flags);
3016
3017 return mask_updated;
3018 }
3019
3020 /**
3021 * pci_check_and_mask_intx - mask INTx on pending interrupt
3022 * @dev: the PCI device to operate on
3023 *
3024 * Check if the device dev has its INTx line asserted, mask it and
3025 * return true in that case. False is returned if not interrupt was
3026 * pending.
3027 */
3028 bool pci_check_and_mask_intx(struct pci_dev *dev)
3029 {
3030 return pci_check_and_set_intx_mask(dev, true);
3031 }
3032 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3033
3034 /**
3035 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3036 * @dev: the PCI device to operate on
3037 *
3038 * Check if the device dev has its INTx line asserted, unmask it if not
3039 * and return true. False is returned and the mask remains active if
3040 * there was still an interrupt pending.
3041 */
3042 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3043 {
3044 return pci_check_and_set_intx_mask(dev, false);
3045 }
3046 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3047
3048 /**
3049 * pci_msi_off - disables any msi or msix capabilities
3050 * @dev: the PCI device to operate on
3051 *
3052 * If you want to use msi see pci_enable_msi and friends.
3053 * This is a lower level primitive that allows us to disable
3054 * msi operation at the device level.
3055 */
3056 void pci_msi_off(struct pci_dev *dev)
3057 {
3058 int pos;
3059 u16 control;
3060
3061 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3062 if (pos) {
3063 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3064 control &= ~PCI_MSI_FLAGS_ENABLE;
3065 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3066 }
3067 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3068 if (pos) {
3069 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3070 control &= ~PCI_MSIX_FLAGS_ENABLE;
3071 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3072 }
3073 }
3074 EXPORT_SYMBOL_GPL(pci_msi_off);
3075
3076 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3077 {
3078 return dma_set_max_seg_size(&dev->dev, size);
3079 }
3080 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3081
3082 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3083 {
3084 return dma_set_seg_boundary(&dev->dev, mask);
3085 }
3086 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3087
3088 static int pcie_flr(struct pci_dev *dev, int probe)
3089 {
3090 int i;
3091 u32 cap;
3092 u16 status;
3093
3094 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3095 if (!(cap & PCI_EXP_DEVCAP_FLR))
3096 return -ENOTTY;
3097
3098 if (probe)
3099 return 0;
3100
3101 /* Wait for Transaction Pending bit clean */
3102 for (i = 0; i < 4; i++) {
3103 if (i)
3104 msleep((1 << (i - 1)) * 100);
3105
3106 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3107 if (!(status & PCI_EXP_DEVSTA_TRPND))
3108 goto clear;
3109 }
3110
3111 dev_err(&dev->dev, "transaction is not cleared; "
3112 "proceeding with reset anyway\n");
3113
3114 clear:
3115 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3116
3117 msleep(100);
3118
3119 return 0;
3120 }
3121
3122 static int pci_af_flr(struct pci_dev *dev, int probe)
3123 {
3124 int i;
3125 int pos;
3126 u8 cap;
3127 u8 status;
3128
3129 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3130 if (!pos)
3131 return -ENOTTY;
3132
3133 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3134 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3135 return -ENOTTY;
3136
3137 if (probe)
3138 return 0;
3139
3140 /* Wait for Transaction Pending bit clean */
3141 for (i = 0; i < 4; i++) {
3142 if (i)
3143 msleep((1 << (i - 1)) * 100);
3144
3145 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3146 if (!(status & PCI_AF_STATUS_TP))
3147 goto clear;
3148 }
3149
3150 dev_err(&dev->dev, "transaction is not cleared; "
3151 "proceeding with reset anyway\n");
3152
3153 clear:
3154 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3155 msleep(100);
3156
3157 return 0;
3158 }
3159
3160 /**
3161 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3162 * @dev: Device to reset.
3163 * @probe: If set, only check if the device can be reset this way.
3164 *
3165 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3166 * unset, it will be reinitialized internally when going from PCI_D3hot to
3167 * PCI_D0. If that's the case and the device is not in a low-power state
3168 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3169 *
3170 * NOTE: This causes the caller to sleep for twice the device power transition
3171 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3172 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3173 * Moreover, only devices in D0 can be reset by this function.
3174 */
3175 static int pci_pm_reset(struct pci_dev *dev, int probe)
3176 {
3177 u16 csr;
3178
3179 if (!dev->pm_cap)
3180 return -ENOTTY;
3181
3182 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3183 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3184 return -ENOTTY;
3185
3186 if (probe)
3187 return 0;
3188
3189 if (dev->current_state != PCI_D0)
3190 return -EINVAL;
3191
3192 csr &= ~PCI_PM_CTRL_STATE_MASK;
3193 csr |= PCI_D3hot;
3194 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3195 pci_dev_d3_sleep(dev);
3196
3197 csr &= ~PCI_PM_CTRL_STATE_MASK;
3198 csr |= PCI_D0;
3199 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3200 pci_dev_d3_sleep(dev);
3201
3202 return 0;
3203 }
3204
3205 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3206 {
3207 u16 ctrl;
3208 struct pci_dev *pdev;
3209
3210 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3211 return -ENOTTY;
3212
3213 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3214 if (pdev != dev)
3215 return -ENOTTY;
3216
3217 if (probe)
3218 return 0;
3219
3220 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3221 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3222 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3223 msleep(100);
3224
3225 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3226 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3227 msleep(100);
3228
3229 return 0;
3230 }
3231
3232 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3233 {
3234 int rc;
3235
3236 might_sleep();
3237
3238 rc = pci_dev_specific_reset(dev, probe);
3239 if (rc != -ENOTTY)
3240 goto done;
3241
3242 rc = pcie_flr(dev, probe);
3243 if (rc != -ENOTTY)
3244 goto done;
3245
3246 rc = pci_af_flr(dev, probe);
3247 if (rc != -ENOTTY)
3248 goto done;
3249
3250 rc = pci_pm_reset(dev, probe);
3251 if (rc != -ENOTTY)
3252 goto done;
3253
3254 rc = pci_parent_bus_reset(dev, probe);
3255 done:
3256 return rc;
3257 }
3258
3259 static int pci_dev_reset(struct pci_dev *dev, int probe)
3260 {
3261 int rc;
3262
3263 if (!probe) {
3264 pci_cfg_access_lock(dev);
3265 /* block PM suspend, driver probe, etc. */
3266 device_lock(&dev->dev);
3267 }
3268
3269 rc = __pci_dev_reset(dev, probe);
3270
3271 if (!probe) {
3272 device_unlock(&dev->dev);
3273 pci_cfg_access_unlock(dev);
3274 }
3275 return rc;
3276 }
3277 /**
3278 * __pci_reset_function - reset a PCI device function
3279 * @dev: PCI device to reset
3280 *
3281 * Some devices allow an individual function to be reset without affecting
3282 * other functions in the same device. The PCI device must be responsive
3283 * to PCI config space in order to use this function.
3284 *
3285 * The device function is presumed to be unused when this function is called.
3286 * Resetting the device will make the contents of PCI configuration space
3287 * random, so any caller of this must be prepared to reinitialise the
3288 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3289 * etc.
3290 *
3291 * Returns 0 if the device function was successfully reset or negative if the
3292 * device doesn't support resetting a single function.
3293 */
3294 int __pci_reset_function(struct pci_dev *dev)
3295 {
3296 return pci_dev_reset(dev, 0);
3297 }
3298 EXPORT_SYMBOL_GPL(__pci_reset_function);
3299
3300 /**
3301 * __pci_reset_function_locked - reset a PCI device function while holding
3302 * the @dev mutex lock.
3303 * @dev: PCI device to reset
3304 *
3305 * Some devices allow an individual function to be reset without affecting
3306 * other functions in the same device. The PCI device must be responsive
3307 * to PCI config space in order to use this function.
3308 *
3309 * The device function is presumed to be unused and the caller is holding
3310 * the device mutex lock when this function is called.
3311 * Resetting the device will make the contents of PCI configuration space
3312 * random, so any caller of this must be prepared to reinitialise the
3313 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3314 * etc.
3315 *
3316 * Returns 0 if the device function was successfully reset or negative if the
3317 * device doesn't support resetting a single function.
3318 */
3319 int __pci_reset_function_locked(struct pci_dev *dev)
3320 {
3321 return __pci_dev_reset(dev, 0);
3322 }
3323 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3324
3325 /**
3326 * pci_probe_reset_function - check whether the device can be safely reset
3327 * @dev: PCI device to reset
3328 *
3329 * Some devices allow an individual function to be reset without affecting
3330 * other functions in the same device. The PCI device must be responsive
3331 * to PCI config space in order to use this function.
3332 *
3333 * Returns 0 if the device function can be reset or negative if the
3334 * device doesn't support resetting a single function.
3335 */
3336 int pci_probe_reset_function(struct pci_dev *dev)
3337 {
3338 return pci_dev_reset(dev, 1);
3339 }
3340
3341 /**
3342 * pci_reset_function - quiesce and reset a PCI device function
3343 * @dev: PCI device to reset
3344 *
3345 * Some devices allow an individual function to be reset without affecting
3346 * other functions in the same device. The PCI device must be responsive
3347 * to PCI config space in order to use this function.
3348 *
3349 * This function does not just reset the PCI portion of a device, but
3350 * clears all the state associated with the device. This function differs
3351 * from __pci_reset_function in that it saves and restores device state
3352 * over the reset.
3353 *
3354 * Returns 0 if the device function was successfully reset or negative if the
3355 * device doesn't support resetting a single function.
3356 */
3357 int pci_reset_function(struct pci_dev *dev)
3358 {
3359 int rc;
3360
3361 rc = pci_dev_reset(dev, 1);
3362 if (rc)
3363 return rc;
3364
3365 pci_save_state(dev);
3366
3367 /*
3368 * both INTx and MSI are disabled after the Interrupt Disable bit
3369 * is set and the Bus Master bit is cleared.
3370 */
3371 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3372
3373 rc = pci_dev_reset(dev, 0);
3374
3375 pci_restore_state(dev);
3376
3377 return rc;
3378 }
3379 EXPORT_SYMBOL_GPL(pci_reset_function);
3380
3381 /**
3382 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3383 * @dev: PCI device to query
3384 *
3385 * Returns mmrbc: maximum designed memory read count in bytes
3386 * or appropriate error value.
3387 */
3388 int pcix_get_max_mmrbc(struct pci_dev *dev)
3389 {
3390 int cap;
3391 u32 stat;
3392
3393 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3394 if (!cap)
3395 return -EINVAL;
3396
3397 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3398 return -EINVAL;
3399
3400 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3401 }
3402 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3403
3404 /**
3405 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3406 * @dev: PCI device to query
3407 *
3408 * Returns mmrbc: maximum memory read count in bytes
3409 * or appropriate error value.
3410 */
3411 int pcix_get_mmrbc(struct pci_dev *dev)
3412 {
3413 int cap;
3414 u16 cmd;
3415
3416 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3417 if (!cap)
3418 return -EINVAL;
3419
3420 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3421 return -EINVAL;
3422
3423 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3424 }
3425 EXPORT_SYMBOL(pcix_get_mmrbc);
3426
3427 /**
3428 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3429 * @dev: PCI device to query
3430 * @mmrbc: maximum memory read count in bytes
3431 * valid values are 512, 1024, 2048, 4096
3432 *
3433 * If possible sets maximum memory read byte count, some bridges have erratas
3434 * that prevent this.
3435 */
3436 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3437 {
3438 int cap;
3439 u32 stat, v, o;
3440 u16 cmd;
3441
3442 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3443 return -EINVAL;
3444
3445 v = ffs(mmrbc) - 10;
3446
3447 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3448 if (!cap)
3449 return -EINVAL;
3450
3451 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3452 return -EINVAL;
3453
3454 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3455 return -E2BIG;
3456
3457 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3458 return -EINVAL;
3459
3460 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3461 if (o != v) {
3462 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3463 return -EIO;
3464
3465 cmd &= ~PCI_X_CMD_MAX_READ;
3466 cmd |= v << 2;
3467 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3468 return -EIO;
3469 }
3470 return 0;
3471 }
3472 EXPORT_SYMBOL(pcix_set_mmrbc);
3473
3474 /**
3475 * pcie_get_readrq - get PCI Express read request size
3476 * @dev: PCI device to query
3477 *
3478 * Returns maximum memory read request in bytes
3479 * or appropriate error value.
3480 */
3481 int pcie_get_readrq(struct pci_dev *dev)
3482 {
3483 u16 ctl;
3484
3485 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3486
3487 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3488 }
3489 EXPORT_SYMBOL(pcie_get_readrq);
3490
3491 /**
3492 * pcie_set_readrq - set PCI Express maximum memory read request
3493 * @dev: PCI device to query
3494 * @rq: maximum memory read count in bytes
3495 * valid values are 128, 256, 512, 1024, 2048, 4096
3496 *
3497 * If possible sets maximum memory read request in bytes
3498 */
3499 int pcie_set_readrq(struct pci_dev *dev, int rq)
3500 {
3501 u16 v;
3502
3503 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3504 return -EINVAL;
3505
3506 /*
3507 * If using the "performance" PCIe config, we clamp the
3508 * read rq size to the max packet size to prevent the
3509 * host bridge generating requests larger than we can
3510 * cope with
3511 */
3512 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3513 int mps = pcie_get_mps(dev);
3514
3515 if (mps < 0)
3516 return mps;
3517 if (mps < rq)
3518 rq = mps;
3519 }
3520
3521 v = (ffs(rq) - 8) << 12;
3522
3523 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3524 PCI_EXP_DEVCTL_READRQ, v);
3525 }
3526 EXPORT_SYMBOL(pcie_set_readrq);
3527
3528 /**
3529 * pcie_get_mps - get PCI Express maximum payload size
3530 * @dev: PCI device to query
3531 *
3532 * Returns maximum payload size in bytes
3533 * or appropriate error value.
3534 */
3535 int pcie_get_mps(struct pci_dev *dev)
3536 {
3537 u16 ctl;
3538
3539 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3540
3541 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3542 }
3543
3544 /**
3545 * pcie_set_mps - set PCI Express maximum payload size
3546 * @dev: PCI device to query
3547 * @mps: maximum payload size in bytes
3548 * valid values are 128, 256, 512, 1024, 2048, 4096
3549 *
3550 * If possible sets maximum payload size
3551 */
3552 int pcie_set_mps(struct pci_dev *dev, int mps)
3553 {
3554 u16 v;
3555
3556 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3557 return -EINVAL;
3558
3559 v = ffs(mps) - 8;
3560 if (v > dev->pcie_mpss)
3561 return -EINVAL;
3562 v <<= 5;
3563
3564 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3565 PCI_EXP_DEVCTL_PAYLOAD, v);
3566 }
3567
3568 /**
3569 * pci_select_bars - Make BAR mask from the type of resource
3570 * @dev: the PCI device for which BAR mask is made
3571 * @flags: resource type mask to be selected
3572 *
3573 * This helper routine makes bar mask from the type of resource.
3574 */
3575 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3576 {
3577 int i, bars = 0;
3578 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3579 if (pci_resource_flags(dev, i) & flags)
3580 bars |= (1 << i);
3581 return bars;
3582 }
3583
3584 /**
3585 * pci_resource_bar - get position of the BAR associated with a resource
3586 * @dev: the PCI device
3587 * @resno: the resource number
3588 * @type: the BAR type to be filled in
3589 *
3590 * Returns BAR position in config space, or 0 if the BAR is invalid.
3591 */
3592 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3593 {
3594 int reg;
3595
3596 if (resno < PCI_ROM_RESOURCE) {
3597 *type = pci_bar_unknown;
3598 return PCI_BASE_ADDRESS_0 + 4 * resno;
3599 } else if (resno == PCI_ROM_RESOURCE) {
3600 *type = pci_bar_mem32;
3601 return dev->rom_base_reg;
3602 } else if (resno < PCI_BRIDGE_RESOURCES) {
3603 /* device specific resource */
3604 reg = pci_iov_resource_bar(dev, resno, type);
3605 if (reg)
3606 return reg;
3607 }
3608
3609 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3610 return 0;
3611 }
3612
3613 /* Some architectures require additional programming to enable VGA */
3614 static arch_set_vga_state_t arch_set_vga_state;
3615
3616 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3617 {
3618 arch_set_vga_state = func; /* NULL disables */
3619 }
3620
3621 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3622 unsigned int command_bits, u32 flags)
3623 {
3624 if (arch_set_vga_state)
3625 return arch_set_vga_state(dev, decode, command_bits,
3626 flags);
3627 return 0;
3628 }
3629
3630 /**
3631 * pci_set_vga_state - set VGA decode state on device and parents if requested
3632 * @dev: the PCI device
3633 * @decode: true = enable decoding, false = disable decoding
3634 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3635 * @flags: traverse ancestors and change bridges
3636 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3637 */
3638 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3639 unsigned int command_bits, u32 flags)
3640 {
3641 struct pci_bus *bus;
3642 struct pci_dev *bridge;
3643 u16 cmd;
3644 int rc;
3645
3646 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3647
3648 /* ARCH specific VGA enables */
3649 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3650 if (rc)
3651 return rc;
3652
3653 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3654 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3655 if (decode == true)
3656 cmd |= command_bits;
3657 else
3658 cmd &= ~command_bits;
3659 pci_write_config_word(dev, PCI_COMMAND, cmd);
3660 }
3661
3662 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3663 return 0;
3664
3665 bus = dev->bus;
3666 while (bus) {
3667 bridge = bus->self;
3668 if (bridge) {
3669 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3670 &cmd);
3671 if (decode == true)
3672 cmd |= PCI_BRIDGE_CTL_VGA;
3673 else
3674 cmd &= ~PCI_BRIDGE_CTL_VGA;
3675 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3676 cmd);
3677 }
3678 bus = bus->parent;
3679 }
3680 return 0;
3681 }
3682
3683 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3684 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3685 static DEFINE_SPINLOCK(resource_alignment_lock);
3686
3687 /**
3688 * pci_specified_resource_alignment - get resource alignment specified by user.
3689 * @dev: the PCI device to get
3690 *
3691 * RETURNS: Resource alignment if it is specified.
3692 * Zero if it is not specified.
3693 */
3694 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3695 {
3696 int seg, bus, slot, func, align_order, count;
3697 resource_size_t align = 0;
3698 char *p;
3699
3700 spin_lock(&resource_alignment_lock);
3701 p = resource_alignment_param;
3702 while (*p) {
3703 count = 0;
3704 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3705 p[count] == '@') {
3706 p += count + 1;
3707 } else {
3708 align_order = -1;
3709 }
3710 if (sscanf(p, "%x:%x:%x.%x%n",
3711 &seg, &bus, &slot, &func, &count) != 4) {
3712 seg = 0;
3713 if (sscanf(p, "%x:%x.%x%n",
3714 &bus, &slot, &func, &count) != 3) {
3715 /* Invalid format */
3716 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3717 p);
3718 break;
3719 }
3720 }
3721 p += count;
3722 if (seg == pci_domain_nr(dev->bus) &&
3723 bus == dev->bus->number &&
3724 slot == PCI_SLOT(dev->devfn) &&
3725 func == PCI_FUNC(dev->devfn)) {
3726 if (align_order == -1) {
3727 align = PAGE_SIZE;
3728 } else {
3729 align = 1 << align_order;
3730 }
3731 /* Found */
3732 break;
3733 }
3734 if (*p != ';' && *p != ',') {
3735 /* End of param or invalid format */
3736 break;
3737 }
3738 p++;
3739 }
3740 spin_unlock(&resource_alignment_lock);
3741 return align;
3742 }
3743
3744 /**
3745 * pci_is_reassigndev - check if specified PCI is target device to reassign
3746 * @dev: the PCI device to check
3747 *
3748 * RETURNS: non-zero for PCI device is a target device to reassign,
3749 * or zero is not.
3750 */
3751 int pci_is_reassigndev(struct pci_dev *dev)
3752 {
3753 return (pci_specified_resource_alignment(dev) != 0);
3754 }
3755
3756 /*
3757 * This function disables memory decoding and releases memory resources
3758 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3759 * It also rounds up size to specified alignment.
3760 * Later on, the kernel will assign page-aligned memory resource back
3761 * to the device.
3762 */
3763 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3764 {
3765 int i;
3766 struct resource *r;
3767 resource_size_t align, size;
3768 u16 command;
3769
3770 if (!pci_is_reassigndev(dev))
3771 return;
3772
3773 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3774 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3775 dev_warn(&dev->dev,
3776 "Can't reassign resources to host bridge.\n");
3777 return;
3778 }
3779
3780 dev_info(&dev->dev,
3781 "Disabling memory decoding and releasing memory resources.\n");
3782 pci_read_config_word(dev, PCI_COMMAND, &command);
3783 command &= ~PCI_COMMAND_MEMORY;
3784 pci_write_config_word(dev, PCI_COMMAND, command);
3785
3786 align = pci_specified_resource_alignment(dev);
3787 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3788 r = &dev->resource[i];
3789 if (!(r->flags & IORESOURCE_MEM))
3790 continue;
3791 size = resource_size(r);
3792 if (size < align) {
3793 size = align;
3794 dev_info(&dev->dev,
3795 "Rounding up size of resource #%d to %#llx.\n",
3796 i, (unsigned long long)size);
3797 }
3798 r->end = size - 1;
3799 r->start = 0;
3800 }
3801 /* Need to disable bridge's resource window,
3802 * to enable the kernel to reassign new resource
3803 * window later on.
3804 */
3805 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3806 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3807 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3808 r = &dev->resource[i];
3809 if (!(r->flags & IORESOURCE_MEM))
3810 continue;
3811 r->end = resource_size(r) - 1;
3812 r->start = 0;
3813 }
3814 pci_disable_bridge_window(dev);
3815 }
3816 }
3817
3818 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3819 {
3820 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3821 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3822 spin_lock(&resource_alignment_lock);
3823 strncpy(resource_alignment_param, buf, count);
3824 resource_alignment_param[count] = '\0';
3825 spin_unlock(&resource_alignment_lock);
3826 return count;
3827 }
3828
3829 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3830 {
3831 size_t count;
3832 spin_lock(&resource_alignment_lock);
3833 count = snprintf(buf, size, "%s", resource_alignment_param);
3834 spin_unlock(&resource_alignment_lock);
3835 return count;
3836 }
3837
3838 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3839 {
3840 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3841 }
3842
3843 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3844 const char *buf, size_t count)
3845 {
3846 return pci_set_resource_alignment_param(buf, count);
3847 }
3848
3849 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3850 pci_resource_alignment_store);
3851
3852 static int __init pci_resource_alignment_sysfs_init(void)
3853 {
3854 return bus_create_file(&pci_bus_type,
3855 &bus_attr_resource_alignment);
3856 }
3857
3858 late_initcall(pci_resource_alignment_sysfs_init);
3859
3860 static void pci_no_domains(void)
3861 {
3862 #ifdef CONFIG_PCI_DOMAINS
3863 pci_domains_supported = 0;
3864 #endif
3865 }
3866
3867 /**
3868 * pci_ext_cfg_enabled - can we access extended PCI config space?
3869 * @dev: The PCI device of the root bridge.
3870 *
3871 * Returns 1 if we can access PCI extended config space (offsets
3872 * greater than 0xff). This is the default implementation. Architecture
3873 * implementations can override this.
3874 */
3875 int __weak pci_ext_cfg_avail(struct pci_dev *dev)
3876 {
3877 return 1;
3878 }
3879
3880 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3881 {
3882 }
3883 EXPORT_SYMBOL(pci_fixup_cardbus);
3884
3885 static int __init pci_setup(char *str)
3886 {
3887 while (str) {
3888 char *k = strchr(str, ',');
3889 if (k)
3890 *k++ = 0;
3891 if (*str && (str = pcibios_setup(str)) && *str) {
3892 if (!strcmp(str, "nomsi")) {
3893 pci_no_msi();
3894 } else if (!strcmp(str, "noaer")) {
3895 pci_no_aer();
3896 } else if (!strncmp(str, "realloc=", 8)) {
3897 pci_realloc_get_opt(str + 8);
3898 } else if (!strncmp(str, "realloc", 7)) {
3899 pci_realloc_get_opt("on");
3900 } else if (!strcmp(str, "nodomains")) {
3901 pci_no_domains();
3902 } else if (!strncmp(str, "noari", 5)) {
3903 pcie_ari_disabled = true;
3904 } else if (!strncmp(str, "cbiosize=", 9)) {
3905 pci_cardbus_io_size = memparse(str + 9, &str);
3906 } else if (!strncmp(str, "cbmemsize=", 10)) {
3907 pci_cardbus_mem_size = memparse(str + 10, &str);
3908 } else if (!strncmp(str, "resource_alignment=", 19)) {
3909 pci_set_resource_alignment_param(str + 19,
3910 strlen(str + 19));
3911 } else if (!strncmp(str, "ecrc=", 5)) {
3912 pcie_ecrc_get_policy(str + 5);
3913 } else if (!strncmp(str, "hpiosize=", 9)) {
3914 pci_hotplug_io_size = memparse(str + 9, &str);
3915 } else if (!strncmp(str, "hpmemsize=", 10)) {
3916 pci_hotplug_mem_size = memparse(str + 10, &str);
3917 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3918 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3919 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3920 pcie_bus_config = PCIE_BUS_SAFE;
3921 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3922 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3923 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3924 pcie_bus_config = PCIE_BUS_PEER2PEER;
3925 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3926 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3927 } else {
3928 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3929 str);
3930 }
3931 }
3932 str = k;
3933 }
3934 return 0;
3935 }
3936 early_param("pci", pci_setup);
3937
3938 EXPORT_SYMBOL(pci_reenable_device);
3939 EXPORT_SYMBOL(pci_enable_device_io);
3940 EXPORT_SYMBOL(pci_enable_device_mem);
3941 EXPORT_SYMBOL(pci_enable_device);
3942 EXPORT_SYMBOL(pcim_enable_device);
3943 EXPORT_SYMBOL(pcim_pin_device);
3944 EXPORT_SYMBOL(pci_disable_device);
3945 EXPORT_SYMBOL(pci_find_capability);
3946 EXPORT_SYMBOL(pci_bus_find_capability);
3947 EXPORT_SYMBOL(pci_release_regions);
3948 EXPORT_SYMBOL(pci_request_regions);
3949 EXPORT_SYMBOL(pci_request_regions_exclusive);
3950 EXPORT_SYMBOL(pci_release_region);
3951 EXPORT_SYMBOL(pci_request_region);
3952 EXPORT_SYMBOL(pci_request_region_exclusive);
3953 EXPORT_SYMBOL(pci_release_selected_regions);
3954 EXPORT_SYMBOL(pci_request_selected_regions);
3955 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3956 EXPORT_SYMBOL(pci_set_master);
3957 EXPORT_SYMBOL(pci_clear_master);
3958 EXPORT_SYMBOL(pci_set_mwi);
3959 EXPORT_SYMBOL(pci_try_set_mwi);
3960 EXPORT_SYMBOL(pci_clear_mwi);
3961 EXPORT_SYMBOL_GPL(pci_intx);
3962 EXPORT_SYMBOL(pci_assign_resource);
3963 EXPORT_SYMBOL(pci_find_parent_resource);
3964 EXPORT_SYMBOL(pci_select_bars);
3965
3966 EXPORT_SYMBOL(pci_set_power_state);
3967 EXPORT_SYMBOL(pci_save_state);
3968 EXPORT_SYMBOL(pci_restore_state);
3969 EXPORT_SYMBOL(pci_pme_capable);
3970 EXPORT_SYMBOL(pci_pme_active);
3971 EXPORT_SYMBOL(pci_wake_from_d3);
3972 EXPORT_SYMBOL(pci_target_state);
3973 EXPORT_SYMBOL(pci_prepare_to_sleep);
3974 EXPORT_SYMBOL(pci_back_from_sleep);
3975 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.178427 seconds and 5 git commands to generate.