PCI: remove unnecessary arg of pci_update_resource()
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include "pci.h"
24
25 unsigned int pci_pm_d3_delay = 10;
26
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30
31 #define DEFAULT_CARDBUS_IO_SIZE (256)
32 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36
37 /**
38 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39 * @bus: pointer to PCI bus structure to search
40 *
41 * Given a PCI bus, returns the highest PCI bus number present in the set
42 * including the given PCI bus and its list of child PCI buses.
43 */
44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 struct list_head *tmp;
47 unsigned char max, n;
48
49 max = bus->subordinate;
50 list_for_each(tmp, &bus->children) {
51 n = pci_bus_max_busnr(pci_bus_b(tmp));
52 if(n > max)
53 max = n;
54 }
55 return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58
59 #ifdef CONFIG_HAS_IOMEM
60 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
61 {
62 /*
63 * Make sure the BAR is actually a memory resource, not an IO resource
64 */
65 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
66 WARN_ON(1);
67 return NULL;
68 }
69 return ioremap_nocache(pci_resource_start(pdev, bar),
70 pci_resource_len(pdev, bar));
71 }
72 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
73 #endif
74
75 #if 0
76 /**
77 * pci_max_busnr - returns maximum PCI bus number
78 *
79 * Returns the highest PCI bus number present in the system global list of
80 * PCI buses.
81 */
82 unsigned char __devinit
83 pci_max_busnr(void)
84 {
85 struct pci_bus *bus = NULL;
86 unsigned char max, n;
87
88 max = 0;
89 while ((bus = pci_find_next_bus(bus)) != NULL) {
90 n = pci_bus_max_busnr(bus);
91 if(n > max)
92 max = n;
93 }
94 return max;
95 }
96
97 #endif /* 0 */
98
99 #define PCI_FIND_CAP_TTL 48
100
101 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
102 u8 pos, int cap, int *ttl)
103 {
104 u8 id;
105
106 while ((*ttl)--) {
107 pci_bus_read_config_byte(bus, devfn, pos, &pos);
108 if (pos < 0x40)
109 break;
110 pos &= ~3;
111 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
112 &id);
113 if (id == 0xff)
114 break;
115 if (id == cap)
116 return pos;
117 pos += PCI_CAP_LIST_NEXT;
118 }
119 return 0;
120 }
121
122 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
123 u8 pos, int cap)
124 {
125 int ttl = PCI_FIND_CAP_TTL;
126
127 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
128 }
129
130 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
131 {
132 return __pci_find_next_cap(dev->bus, dev->devfn,
133 pos + PCI_CAP_LIST_NEXT, cap);
134 }
135 EXPORT_SYMBOL_GPL(pci_find_next_capability);
136
137 static int __pci_bus_find_cap_start(struct pci_bus *bus,
138 unsigned int devfn, u8 hdr_type)
139 {
140 u16 status;
141
142 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
143 if (!(status & PCI_STATUS_CAP_LIST))
144 return 0;
145
146 switch (hdr_type) {
147 case PCI_HEADER_TYPE_NORMAL:
148 case PCI_HEADER_TYPE_BRIDGE:
149 return PCI_CAPABILITY_LIST;
150 case PCI_HEADER_TYPE_CARDBUS:
151 return PCI_CB_CAPABILITY_LIST;
152 default:
153 return 0;
154 }
155
156 return 0;
157 }
158
159 /**
160 * pci_find_capability - query for devices' capabilities
161 * @dev: PCI device to query
162 * @cap: capability code
163 *
164 * Tell if a device supports a given PCI capability.
165 * Returns the address of the requested capability structure within the
166 * device's PCI configuration space or 0 in case the device does not
167 * support it. Possible values for @cap:
168 *
169 * %PCI_CAP_ID_PM Power Management
170 * %PCI_CAP_ID_AGP Accelerated Graphics Port
171 * %PCI_CAP_ID_VPD Vital Product Data
172 * %PCI_CAP_ID_SLOTID Slot Identification
173 * %PCI_CAP_ID_MSI Message Signalled Interrupts
174 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
175 * %PCI_CAP_ID_PCIX PCI-X
176 * %PCI_CAP_ID_EXP PCI Express
177 */
178 int pci_find_capability(struct pci_dev *dev, int cap)
179 {
180 int pos;
181
182 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
183 if (pos)
184 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
185
186 return pos;
187 }
188
189 /**
190 * pci_bus_find_capability - query for devices' capabilities
191 * @bus: the PCI bus to query
192 * @devfn: PCI device to query
193 * @cap: capability code
194 *
195 * Like pci_find_capability() but works for pci devices that do not have a
196 * pci_dev structure set up yet.
197 *
198 * Returns the address of the requested capability structure within the
199 * device's PCI configuration space or 0 in case the device does not
200 * support it.
201 */
202 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
203 {
204 int pos;
205 u8 hdr_type;
206
207 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
208
209 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
210 if (pos)
211 pos = __pci_find_next_cap(bus, devfn, pos, cap);
212
213 return pos;
214 }
215
216 /**
217 * pci_find_ext_capability - Find an extended capability
218 * @dev: PCI device to query
219 * @cap: capability code
220 *
221 * Returns the address of the requested extended capability structure
222 * within the device's PCI configuration space or 0 if the device does
223 * not support it. Possible values for @cap:
224 *
225 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
226 * %PCI_EXT_CAP_ID_VC Virtual Channel
227 * %PCI_EXT_CAP_ID_DSN Device Serial Number
228 * %PCI_EXT_CAP_ID_PWR Power Budgeting
229 */
230 int pci_find_ext_capability(struct pci_dev *dev, int cap)
231 {
232 u32 header;
233 int ttl;
234 int pos = PCI_CFG_SPACE_SIZE;
235
236 /* minimum 8 bytes per capability */
237 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
238
239 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
240 return 0;
241
242 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
243 return 0;
244
245 /*
246 * If we have no capabilities, this is indicated by cap ID,
247 * cap version and next pointer all being 0.
248 */
249 if (header == 0)
250 return 0;
251
252 while (ttl-- > 0) {
253 if (PCI_EXT_CAP_ID(header) == cap)
254 return pos;
255
256 pos = PCI_EXT_CAP_NEXT(header);
257 if (pos < PCI_CFG_SPACE_SIZE)
258 break;
259
260 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
261 break;
262 }
263
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
267
268 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
269 {
270 int rc, ttl = PCI_FIND_CAP_TTL;
271 u8 cap, mask;
272
273 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
274 mask = HT_3BIT_CAP_MASK;
275 else
276 mask = HT_5BIT_CAP_MASK;
277
278 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
279 PCI_CAP_ID_HT, &ttl);
280 while (pos) {
281 rc = pci_read_config_byte(dev, pos + 3, &cap);
282 if (rc != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 if ((cap & mask) == ht_cap)
286 return pos;
287
288 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
289 pos + PCI_CAP_LIST_NEXT,
290 PCI_CAP_ID_HT, &ttl);
291 }
292
293 return 0;
294 }
295 /**
296 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
297 * @dev: PCI device to query
298 * @pos: Position from which to continue searching
299 * @ht_cap: Hypertransport capability code
300 *
301 * To be used in conjunction with pci_find_ht_capability() to search for
302 * all capabilities matching @ht_cap. @pos should always be a value returned
303 * from pci_find_ht_capability().
304 *
305 * NB. To be 100% safe against broken PCI devices, the caller should take
306 * steps to avoid an infinite loop.
307 */
308 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
309 {
310 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
311 }
312 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
313
314 /**
315 * pci_find_ht_capability - query a device's Hypertransport capabilities
316 * @dev: PCI device to query
317 * @ht_cap: Hypertransport capability code
318 *
319 * Tell if a device supports a given Hypertransport capability.
320 * Returns an address within the device's PCI configuration space
321 * or 0 in case the device does not support the request capability.
322 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
323 * which has a Hypertransport capability matching @ht_cap.
324 */
325 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
326 {
327 int pos;
328
329 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
330 if (pos)
331 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
332
333 return pos;
334 }
335 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
336
337 /**
338 * pci_find_parent_resource - return resource region of parent bus of given region
339 * @dev: PCI device structure contains resources to be searched
340 * @res: child resource record for which parent is sought
341 *
342 * For given resource region of given device, return the resource
343 * region of parent bus the given region is contained in or where
344 * it should be allocated from.
345 */
346 struct resource *
347 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
348 {
349 const struct pci_bus *bus = dev->bus;
350 int i;
351 struct resource *best = NULL;
352
353 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
354 struct resource *r = bus->resource[i];
355 if (!r)
356 continue;
357 if (res->start && !(res->start >= r->start && res->end <= r->end))
358 continue; /* Not contained */
359 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
360 continue; /* Wrong type */
361 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
362 return r; /* Exact match */
363 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
364 best = r; /* Approximating prefetchable by non-prefetchable */
365 }
366 return best;
367 }
368
369 /**
370 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
371 * @dev: PCI device to have its BARs restored
372 *
373 * Restore the BAR values for a given device, so as to make it
374 * accessible by its driver.
375 */
376 static void
377 pci_restore_bars(struct pci_dev *dev)
378 {
379 int i, numres;
380
381 switch (dev->hdr_type) {
382 case PCI_HEADER_TYPE_NORMAL:
383 numres = 6;
384 break;
385 case PCI_HEADER_TYPE_BRIDGE:
386 numres = 2;
387 break;
388 case PCI_HEADER_TYPE_CARDBUS:
389 numres = 1;
390 break;
391 default:
392 /* Should never get here, but just in case... */
393 return;
394 }
395
396 for (i = 0; i < numres; i++)
397 pci_update_resource(dev, i);
398 }
399
400 static struct pci_platform_pm_ops *pci_platform_pm;
401
402 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
403 {
404 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
405 || !ops->sleep_wake || !ops->can_wakeup)
406 return -EINVAL;
407 pci_platform_pm = ops;
408 return 0;
409 }
410
411 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
412 {
413 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
414 }
415
416 static inline int platform_pci_set_power_state(struct pci_dev *dev,
417 pci_power_t t)
418 {
419 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
420 }
421
422 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
423 {
424 return pci_platform_pm ?
425 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
426 }
427
428 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
429 {
430 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
431 }
432
433 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
434 {
435 return pci_platform_pm ?
436 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
437 }
438
439 /**
440 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
441 * given PCI device
442 * @dev: PCI device to handle.
443 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
444 *
445 * RETURN VALUE:
446 * -EINVAL if the requested state is invalid.
447 * -EIO if device does not support PCI PM or its PM capabilities register has a
448 * wrong version, or device doesn't support the requested state.
449 * 0 if device already is in the requested state.
450 * 0 if device's power state has been successfully changed.
451 */
452 static int
453 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
454 {
455 u16 pmcsr;
456 bool need_restore = false;
457
458 if (!dev->pm_cap)
459 return -EIO;
460
461 if (state < PCI_D0 || state > PCI_D3hot)
462 return -EINVAL;
463
464 /* Validate current state:
465 * Can enter D0 from any state, but if we can only go deeper
466 * to sleep if we're already in a low power state
467 */
468 if (dev->current_state == state) {
469 /* we're already there */
470 return 0;
471 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
472 && dev->current_state > state) {
473 dev_err(&dev->dev, "invalid power transition "
474 "(from state %d to %d)\n", dev->current_state, state);
475 return -EINVAL;
476 }
477
478 /* check if this device supports the desired state */
479 if ((state == PCI_D1 && !dev->d1_support)
480 || (state == PCI_D2 && !dev->d2_support))
481 return -EIO;
482
483 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
484
485 /* If we're (effectively) in D3, force entire word to 0.
486 * This doesn't affect PME_Status, disables PME_En, and
487 * sets PowerState to 0.
488 */
489 switch (dev->current_state) {
490 case PCI_D0:
491 case PCI_D1:
492 case PCI_D2:
493 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
494 pmcsr |= state;
495 break;
496 case PCI_UNKNOWN: /* Boot-up */
497 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
498 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
499 need_restore = true;
500 /* Fall-through: force to D0 */
501 default:
502 pmcsr = 0;
503 break;
504 }
505
506 /* enter specified state */
507 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
508
509 /* Mandatory power management transition delays */
510 /* see PCI PM 1.1 5.6.1 table 18 */
511 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
512 msleep(pci_pm_d3_delay);
513 else if (state == PCI_D2 || dev->current_state == PCI_D2)
514 udelay(200);
515
516 dev->current_state = state;
517
518 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
519 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
520 * from D3hot to D0 _may_ perform an internal reset, thereby
521 * going to "D0 Uninitialized" rather than "D0 Initialized".
522 * For example, at least some versions of the 3c905B and the
523 * 3c556B exhibit this behaviour.
524 *
525 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
526 * devices in a D3hot state at boot. Consequently, we need to
527 * restore at least the BARs so that the device will be
528 * accessible to its driver.
529 */
530 if (need_restore)
531 pci_restore_bars(dev);
532
533 if (dev->bus->self)
534 pcie_aspm_pm_state_change(dev->bus->self);
535
536 return 0;
537 }
538
539 /**
540 * pci_update_current_state - Read PCI power state of given device from its
541 * PCI PM registers and cache it
542 * @dev: PCI device to handle.
543 */
544 static void pci_update_current_state(struct pci_dev *dev)
545 {
546 if (dev->pm_cap) {
547 u16 pmcsr;
548
549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
550 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
551 }
552 }
553
554 /**
555 * pci_set_power_state - Set the power state of a PCI device
556 * @dev: PCI device to handle.
557 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
558 *
559 * Transition a device to a new power state, using the platform formware and/or
560 * the device's PCI PM registers.
561 *
562 * RETURN VALUE:
563 * -EINVAL if the requested state is invalid.
564 * -EIO if device does not support PCI PM or its PM capabilities register has a
565 * wrong version, or device doesn't support the requested state.
566 * 0 if device already is in the requested state.
567 * 0 if device's power state has been successfully changed.
568 */
569 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
570 {
571 int error;
572
573 /* bound the state we're entering */
574 if (state > PCI_D3hot)
575 state = PCI_D3hot;
576 else if (state < PCI_D0)
577 state = PCI_D0;
578 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
579 /*
580 * If the device or the parent bridge do not support PCI PM,
581 * ignore the request if we're doing anything other than putting
582 * it into D0 (which would only happen on boot).
583 */
584 return 0;
585
586 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
587 /*
588 * Allow the platform to change the state, for example via ACPI
589 * _PR0, _PS0 and some such, but do not trust it.
590 */
591 int ret = platform_pci_set_power_state(dev, PCI_D0);
592 if (!ret)
593 pci_update_current_state(dev);
594 }
595 /* This device is quirked not to be put into D3, so
596 don't put it in D3 */
597 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
598 return 0;
599
600 error = pci_raw_set_power_state(dev, state);
601
602 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
603 /* Allow the platform to finalize the transition */
604 int ret = platform_pci_set_power_state(dev, state);
605 if (!ret) {
606 pci_update_current_state(dev);
607 error = 0;
608 }
609 }
610
611 return error;
612 }
613
614 /**
615 * pci_choose_state - Choose the power state of a PCI device
616 * @dev: PCI device to be suspended
617 * @state: target sleep state for the whole system. This is the value
618 * that is passed to suspend() function.
619 *
620 * Returns PCI power state suitable for given device and given system
621 * message.
622 */
623
624 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
625 {
626 pci_power_t ret;
627
628 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
629 return PCI_D0;
630
631 ret = platform_pci_choose_state(dev);
632 if (ret != PCI_POWER_ERROR)
633 return ret;
634
635 switch (state.event) {
636 case PM_EVENT_ON:
637 return PCI_D0;
638 case PM_EVENT_FREEZE:
639 case PM_EVENT_PRETHAW:
640 /* REVISIT both freeze and pre-thaw "should" use D0 */
641 case PM_EVENT_SUSPEND:
642 case PM_EVENT_HIBERNATE:
643 return PCI_D3hot;
644 default:
645 dev_info(&dev->dev, "unrecognized suspend event %d\n",
646 state.event);
647 BUG();
648 }
649 return PCI_D0;
650 }
651
652 EXPORT_SYMBOL(pci_choose_state);
653
654 static int pci_save_pcie_state(struct pci_dev *dev)
655 {
656 int pos, i = 0;
657 struct pci_cap_saved_state *save_state;
658 u16 *cap;
659
660 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
661 if (pos <= 0)
662 return 0;
663
664 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
665 if (!save_state) {
666 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
667 return -ENOMEM;
668 }
669 cap = (u16 *)&save_state->data[0];
670
671 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
672 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
673 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
674 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
675
676 return 0;
677 }
678
679 static void pci_restore_pcie_state(struct pci_dev *dev)
680 {
681 int i = 0, pos;
682 struct pci_cap_saved_state *save_state;
683 u16 *cap;
684
685 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
686 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
687 if (!save_state || pos <= 0)
688 return;
689 cap = (u16 *)&save_state->data[0];
690
691 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
692 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
693 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
694 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
695 }
696
697
698 static int pci_save_pcix_state(struct pci_dev *dev)
699 {
700 int pos;
701 struct pci_cap_saved_state *save_state;
702
703 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
704 if (pos <= 0)
705 return 0;
706
707 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
708 if (!save_state) {
709 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
710 return -ENOMEM;
711 }
712
713 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
714
715 return 0;
716 }
717
718 static void pci_restore_pcix_state(struct pci_dev *dev)
719 {
720 int i = 0, pos;
721 struct pci_cap_saved_state *save_state;
722 u16 *cap;
723
724 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
725 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
726 if (!save_state || pos <= 0)
727 return;
728 cap = (u16 *)&save_state->data[0];
729
730 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
731 }
732
733
734 /**
735 * pci_save_state - save the PCI configuration space of a device before suspending
736 * @dev: - PCI device that we're dealing with
737 */
738 int
739 pci_save_state(struct pci_dev *dev)
740 {
741 int i;
742 /* XXX: 100% dword access ok here? */
743 for (i = 0; i < 16; i++)
744 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
745 if ((i = pci_save_pcie_state(dev)) != 0)
746 return i;
747 if ((i = pci_save_pcix_state(dev)) != 0)
748 return i;
749 return 0;
750 }
751
752 /**
753 * pci_restore_state - Restore the saved state of a PCI device
754 * @dev: - PCI device that we're dealing with
755 */
756 int
757 pci_restore_state(struct pci_dev *dev)
758 {
759 int i;
760 u32 val;
761
762 /* PCI Express register must be restored first */
763 pci_restore_pcie_state(dev);
764
765 /*
766 * The Base Address register should be programmed before the command
767 * register(s)
768 */
769 for (i = 15; i >= 0; i--) {
770 pci_read_config_dword(dev, i * 4, &val);
771 if (val != dev->saved_config_space[i]) {
772 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
773 "space at offset %#x (was %#x, writing %#x)\n",
774 i, val, (int)dev->saved_config_space[i]);
775 pci_write_config_dword(dev,i * 4,
776 dev->saved_config_space[i]);
777 }
778 }
779 pci_restore_pcix_state(dev);
780 pci_restore_msi_state(dev);
781
782 return 0;
783 }
784
785 static int do_pci_enable_device(struct pci_dev *dev, int bars)
786 {
787 int err;
788
789 err = pci_set_power_state(dev, PCI_D0);
790 if (err < 0 && err != -EIO)
791 return err;
792 err = pcibios_enable_device(dev, bars);
793 if (err < 0)
794 return err;
795 pci_fixup_device(pci_fixup_enable, dev);
796
797 return 0;
798 }
799
800 /**
801 * pci_reenable_device - Resume abandoned device
802 * @dev: PCI device to be resumed
803 *
804 * Note this function is a backend of pci_default_resume and is not supposed
805 * to be called by normal code, write proper resume handler and use it instead.
806 */
807 int pci_reenable_device(struct pci_dev *dev)
808 {
809 if (atomic_read(&dev->enable_cnt))
810 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
811 return 0;
812 }
813
814 static int __pci_enable_device_flags(struct pci_dev *dev,
815 resource_size_t flags)
816 {
817 int err;
818 int i, bars = 0;
819
820 if (atomic_add_return(1, &dev->enable_cnt) > 1)
821 return 0; /* already enabled */
822
823 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
824 if (dev->resource[i].flags & flags)
825 bars |= (1 << i);
826
827 err = do_pci_enable_device(dev, bars);
828 if (err < 0)
829 atomic_dec(&dev->enable_cnt);
830 return err;
831 }
832
833 /**
834 * pci_enable_device_io - Initialize a device for use with IO space
835 * @dev: PCI device to be initialized
836 *
837 * Initialize device before it's used by a driver. Ask low-level code
838 * to enable I/O resources. Wake up the device if it was suspended.
839 * Beware, this function can fail.
840 */
841 int pci_enable_device_io(struct pci_dev *dev)
842 {
843 return __pci_enable_device_flags(dev, IORESOURCE_IO);
844 }
845
846 /**
847 * pci_enable_device_mem - Initialize a device for use with Memory space
848 * @dev: PCI device to be initialized
849 *
850 * Initialize device before it's used by a driver. Ask low-level code
851 * to enable Memory resources. Wake up the device if it was suspended.
852 * Beware, this function can fail.
853 */
854 int pci_enable_device_mem(struct pci_dev *dev)
855 {
856 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
857 }
858
859 /**
860 * pci_enable_device - Initialize device before it's used by a driver.
861 * @dev: PCI device to be initialized
862 *
863 * Initialize device before it's used by a driver. Ask low-level code
864 * to enable I/O and memory. Wake up the device if it was suspended.
865 * Beware, this function can fail.
866 *
867 * Note we don't actually enable the device many times if we call
868 * this function repeatedly (we just increment the count).
869 */
870 int pci_enable_device(struct pci_dev *dev)
871 {
872 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
873 }
874
875 /*
876 * Managed PCI resources. This manages device on/off, intx/msi/msix
877 * on/off and BAR regions. pci_dev itself records msi/msix status, so
878 * there's no need to track it separately. pci_devres is initialized
879 * when a device is enabled using managed PCI device enable interface.
880 */
881 struct pci_devres {
882 unsigned int enabled:1;
883 unsigned int pinned:1;
884 unsigned int orig_intx:1;
885 unsigned int restore_intx:1;
886 u32 region_mask;
887 };
888
889 static void pcim_release(struct device *gendev, void *res)
890 {
891 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
892 struct pci_devres *this = res;
893 int i;
894
895 if (dev->msi_enabled)
896 pci_disable_msi(dev);
897 if (dev->msix_enabled)
898 pci_disable_msix(dev);
899
900 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
901 if (this->region_mask & (1 << i))
902 pci_release_region(dev, i);
903
904 if (this->restore_intx)
905 pci_intx(dev, this->orig_intx);
906
907 if (this->enabled && !this->pinned)
908 pci_disable_device(dev);
909 }
910
911 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
912 {
913 struct pci_devres *dr, *new_dr;
914
915 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
916 if (dr)
917 return dr;
918
919 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
920 if (!new_dr)
921 return NULL;
922 return devres_get(&pdev->dev, new_dr, NULL, NULL);
923 }
924
925 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
926 {
927 if (pci_is_managed(pdev))
928 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
929 return NULL;
930 }
931
932 /**
933 * pcim_enable_device - Managed pci_enable_device()
934 * @pdev: PCI device to be initialized
935 *
936 * Managed pci_enable_device().
937 */
938 int pcim_enable_device(struct pci_dev *pdev)
939 {
940 struct pci_devres *dr;
941 int rc;
942
943 dr = get_pci_dr(pdev);
944 if (unlikely(!dr))
945 return -ENOMEM;
946 if (dr->enabled)
947 return 0;
948
949 rc = pci_enable_device(pdev);
950 if (!rc) {
951 pdev->is_managed = 1;
952 dr->enabled = 1;
953 }
954 return rc;
955 }
956
957 /**
958 * pcim_pin_device - Pin managed PCI device
959 * @pdev: PCI device to pin
960 *
961 * Pin managed PCI device @pdev. Pinned device won't be disabled on
962 * driver detach. @pdev must have been enabled with
963 * pcim_enable_device().
964 */
965 void pcim_pin_device(struct pci_dev *pdev)
966 {
967 struct pci_devres *dr;
968
969 dr = find_pci_dr(pdev);
970 WARN_ON(!dr || !dr->enabled);
971 if (dr)
972 dr->pinned = 1;
973 }
974
975 /**
976 * pcibios_disable_device - disable arch specific PCI resources for device dev
977 * @dev: the PCI device to disable
978 *
979 * Disables architecture specific PCI resources for the device. This
980 * is the default implementation. Architecture implementations can
981 * override this.
982 */
983 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
984
985 /**
986 * pci_disable_device - Disable PCI device after use
987 * @dev: PCI device to be disabled
988 *
989 * Signal to the system that the PCI device is not in use by the system
990 * anymore. This only involves disabling PCI bus-mastering, if active.
991 *
992 * Note we don't actually disable the device until all callers of
993 * pci_device_enable() have called pci_device_disable().
994 */
995 void
996 pci_disable_device(struct pci_dev *dev)
997 {
998 struct pci_devres *dr;
999 u16 pci_command;
1000
1001 dr = find_pci_dr(dev);
1002 if (dr)
1003 dr->enabled = 0;
1004
1005 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1006 return;
1007
1008 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1009 if (pci_command & PCI_COMMAND_MASTER) {
1010 pci_command &= ~PCI_COMMAND_MASTER;
1011 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1012 }
1013 dev->is_busmaster = 0;
1014
1015 pcibios_disable_device(dev);
1016 }
1017
1018 /**
1019 * pcibios_set_pcie_reset_state - set reset state for device dev
1020 * @dev: the PCI-E device reset
1021 * @state: Reset state to enter into
1022 *
1023 *
1024 * Sets the PCI-E reset state for the device. This is the default
1025 * implementation. Architecture implementations can override this.
1026 */
1027 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1028 enum pcie_reset_state state)
1029 {
1030 return -EINVAL;
1031 }
1032
1033 /**
1034 * pci_set_pcie_reset_state - set reset state for device dev
1035 * @dev: the PCI-E device reset
1036 * @state: Reset state to enter into
1037 *
1038 *
1039 * Sets the PCI reset state for the device.
1040 */
1041 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1042 {
1043 return pcibios_set_pcie_reset_state(dev, state);
1044 }
1045
1046 /**
1047 * pci_pme_capable - check the capability of PCI device to generate PME#
1048 * @dev: PCI device to handle.
1049 * @state: PCI state from which device will issue PME#.
1050 */
1051 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1052 {
1053 if (!dev->pm_cap)
1054 return false;
1055
1056 return !!(dev->pme_support & (1 << state));
1057 }
1058
1059 /**
1060 * pci_pme_active - enable or disable PCI device's PME# function
1061 * @dev: PCI device to handle.
1062 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1063 *
1064 * The caller must verify that the device is capable of generating PME# before
1065 * calling this function with @enable equal to 'true'.
1066 */
1067 void pci_pme_active(struct pci_dev *dev, bool enable)
1068 {
1069 u16 pmcsr;
1070
1071 if (!dev->pm_cap)
1072 return;
1073
1074 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1075 /* Clear PME_Status by writing 1 to it and enable PME# */
1076 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1077 if (!enable)
1078 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1079
1080 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1081
1082 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1083 enable ? "enabled" : "disabled");
1084 }
1085
1086 /**
1087 * pci_enable_wake - enable PCI device as wakeup event source
1088 * @dev: PCI device affected
1089 * @state: PCI state from which device will issue wakeup events
1090 * @enable: True to enable event generation; false to disable
1091 *
1092 * This enables the device as a wakeup event source, or disables it.
1093 * When such events involves platform-specific hooks, those hooks are
1094 * called automatically by this routine.
1095 *
1096 * Devices with legacy power management (no standard PCI PM capabilities)
1097 * always require such platform hooks.
1098 *
1099 * RETURN VALUE:
1100 * 0 is returned on success
1101 * -EINVAL is returned if device is not supposed to wake up the system
1102 * Error code depending on the platform is returned if both the platform and
1103 * the native mechanism fail to enable the generation of wake-up events
1104 */
1105 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1106 {
1107 int error = 0;
1108 bool pme_done = false;
1109
1110 if (enable && !device_may_wakeup(&dev->dev))
1111 return -EINVAL;
1112
1113 /*
1114 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1115 * Anderson we should be doing PME# wake enable followed by ACPI wake
1116 * enable. To disable wake-up we call the platform first, for symmetry.
1117 */
1118
1119 if (!enable && platform_pci_can_wakeup(dev))
1120 error = platform_pci_sleep_wake(dev, false);
1121
1122 if (!enable || pci_pme_capable(dev, state)) {
1123 pci_pme_active(dev, enable);
1124 pme_done = true;
1125 }
1126
1127 if (enable && platform_pci_can_wakeup(dev))
1128 error = platform_pci_sleep_wake(dev, true);
1129
1130 return pme_done ? 0 : error;
1131 }
1132
1133 /**
1134 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1135 * @dev: PCI device to prepare
1136 * @enable: True to enable wake-up event generation; false to disable
1137 *
1138 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1139 * and this function allows them to set that up cleanly - pci_enable_wake()
1140 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1141 * ordering constraints.
1142 *
1143 * This function only returns error code if the device is not capable of
1144 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1145 * enable wake-up power for it.
1146 */
1147 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1148 {
1149 return pci_pme_capable(dev, PCI_D3cold) ?
1150 pci_enable_wake(dev, PCI_D3cold, enable) :
1151 pci_enable_wake(dev, PCI_D3hot, enable);
1152 }
1153
1154 /**
1155 * pci_target_state - find an appropriate low power state for a given PCI dev
1156 * @dev: PCI device
1157 *
1158 * Use underlying platform code to find a supported low power state for @dev.
1159 * If the platform can't manage @dev, return the deepest state from which it
1160 * can generate wake events, based on any available PME info.
1161 */
1162 pci_power_t pci_target_state(struct pci_dev *dev)
1163 {
1164 pci_power_t target_state = PCI_D3hot;
1165
1166 if (platform_pci_power_manageable(dev)) {
1167 /*
1168 * Call the platform to choose the target state of the device
1169 * and enable wake-up from this state if supported.
1170 */
1171 pci_power_t state = platform_pci_choose_state(dev);
1172
1173 switch (state) {
1174 case PCI_POWER_ERROR:
1175 case PCI_UNKNOWN:
1176 break;
1177 case PCI_D1:
1178 case PCI_D2:
1179 if (pci_no_d1d2(dev))
1180 break;
1181 default:
1182 target_state = state;
1183 }
1184 } else if (device_may_wakeup(&dev->dev)) {
1185 /*
1186 * Find the deepest state from which the device can generate
1187 * wake-up events, make it the target state and enable device
1188 * to generate PME#.
1189 */
1190 if (!dev->pm_cap)
1191 return PCI_POWER_ERROR;
1192
1193 if (dev->pme_support) {
1194 while (target_state
1195 && !(dev->pme_support & (1 << target_state)))
1196 target_state--;
1197 }
1198 }
1199
1200 return target_state;
1201 }
1202
1203 /**
1204 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1205 * @dev: Device to handle.
1206 *
1207 * Choose the power state appropriate for the device depending on whether
1208 * it can wake up the system and/or is power manageable by the platform
1209 * (PCI_D3hot is the default) and put the device into that state.
1210 */
1211 int pci_prepare_to_sleep(struct pci_dev *dev)
1212 {
1213 pci_power_t target_state = pci_target_state(dev);
1214 int error;
1215
1216 if (target_state == PCI_POWER_ERROR)
1217 return -EIO;
1218
1219 pci_enable_wake(dev, target_state, true);
1220
1221 error = pci_set_power_state(dev, target_state);
1222
1223 if (error)
1224 pci_enable_wake(dev, target_state, false);
1225
1226 return error;
1227 }
1228
1229 /**
1230 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1231 * @dev: Device to handle.
1232 *
1233 * Disable device's sytem wake-up capability and put it into D0.
1234 */
1235 int pci_back_from_sleep(struct pci_dev *dev)
1236 {
1237 pci_enable_wake(dev, PCI_D0, false);
1238 return pci_set_power_state(dev, PCI_D0);
1239 }
1240
1241 /**
1242 * pci_pm_init - Initialize PM functions of given PCI device
1243 * @dev: PCI device to handle.
1244 */
1245 void pci_pm_init(struct pci_dev *dev)
1246 {
1247 int pm;
1248 u16 pmc;
1249
1250 dev->pm_cap = 0;
1251
1252 /* find PCI PM capability in list */
1253 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1254 if (!pm)
1255 return;
1256 /* Check device's ability to generate PME# */
1257 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1258
1259 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1260 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1261 pmc & PCI_PM_CAP_VER_MASK);
1262 return;
1263 }
1264
1265 dev->pm_cap = pm;
1266
1267 dev->d1_support = false;
1268 dev->d2_support = false;
1269 if (!pci_no_d1d2(dev)) {
1270 if (pmc & PCI_PM_CAP_D1)
1271 dev->d1_support = true;
1272 if (pmc & PCI_PM_CAP_D2)
1273 dev->d2_support = true;
1274
1275 if (dev->d1_support || dev->d2_support)
1276 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1277 dev->d1_support ? " D1" : "",
1278 dev->d2_support ? " D2" : "");
1279 }
1280
1281 pmc &= PCI_PM_CAP_PME_MASK;
1282 if (pmc) {
1283 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1284 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1285 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1286 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1287 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1288 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1289 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1290 /*
1291 * Make device's PM flags reflect the wake-up capability, but
1292 * let the user space enable it to wake up the system as needed.
1293 */
1294 device_set_wakeup_capable(&dev->dev, true);
1295 device_set_wakeup_enable(&dev->dev, false);
1296 /* Disable the PME# generation functionality */
1297 pci_pme_active(dev, false);
1298 } else {
1299 dev->pme_support = 0;
1300 }
1301 }
1302
1303 /**
1304 * pci_add_save_buffer - allocate buffer for saving given capability registers
1305 * @dev: the PCI device
1306 * @cap: the capability to allocate the buffer for
1307 * @size: requested size of the buffer
1308 */
1309 static int pci_add_cap_save_buffer(
1310 struct pci_dev *dev, char cap, unsigned int size)
1311 {
1312 int pos;
1313 struct pci_cap_saved_state *save_state;
1314
1315 pos = pci_find_capability(dev, cap);
1316 if (pos <= 0)
1317 return 0;
1318
1319 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1320 if (!save_state)
1321 return -ENOMEM;
1322
1323 save_state->cap_nr = cap;
1324 pci_add_saved_cap(dev, save_state);
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1331 * @dev: the PCI device
1332 */
1333 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1334 {
1335 int error;
1336
1337 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1338 if (error)
1339 dev_err(&dev->dev,
1340 "unable to preallocate PCI Express save buffer\n");
1341
1342 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1343 if (error)
1344 dev_err(&dev->dev,
1345 "unable to preallocate PCI-X save buffer\n");
1346 }
1347
1348 /**
1349 * pci_enable_ari - enable ARI forwarding if hardware support it
1350 * @dev: the PCI device
1351 */
1352 void pci_enable_ari(struct pci_dev *dev)
1353 {
1354 int pos;
1355 u32 cap;
1356 u16 ctrl;
1357 struct pci_dev *bridge;
1358
1359 if (!dev->is_pcie || dev->devfn)
1360 return;
1361
1362 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1363 if (!pos)
1364 return;
1365
1366 bridge = dev->bus->self;
1367 if (!bridge || !bridge->is_pcie)
1368 return;
1369
1370 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1371 if (!pos)
1372 return;
1373
1374 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1375 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1376 return;
1377
1378 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1379 ctrl |= PCI_EXP_DEVCTL2_ARI;
1380 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1381
1382 bridge->ari_enabled = 1;
1383 }
1384
1385 /**
1386 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1387 * @dev: the PCI device
1388 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1389 *
1390 * Perform INTx swizzling for a device behind one level of bridge. This is
1391 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1392 * behind bridges on add-in cards.
1393 */
1394 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1395 {
1396 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1397 }
1398
1399 int
1400 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1401 {
1402 u8 pin;
1403
1404 pin = dev->pin;
1405 if (!pin)
1406 return -1;
1407
1408 while (dev->bus->self) {
1409 pin = pci_swizzle_interrupt_pin(dev, pin);
1410 dev = dev->bus->self;
1411 }
1412 *bridge = dev;
1413 return pin;
1414 }
1415
1416 /**
1417 * pci_release_region - Release a PCI bar
1418 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1419 * @bar: BAR to release
1420 *
1421 * Releases the PCI I/O and memory resources previously reserved by a
1422 * successful call to pci_request_region. Call this function only
1423 * after all use of the PCI regions has ceased.
1424 */
1425 void pci_release_region(struct pci_dev *pdev, int bar)
1426 {
1427 struct pci_devres *dr;
1428
1429 if (pci_resource_len(pdev, bar) == 0)
1430 return;
1431 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1432 release_region(pci_resource_start(pdev, bar),
1433 pci_resource_len(pdev, bar));
1434 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1435 release_mem_region(pci_resource_start(pdev, bar),
1436 pci_resource_len(pdev, bar));
1437
1438 dr = find_pci_dr(pdev);
1439 if (dr)
1440 dr->region_mask &= ~(1 << bar);
1441 }
1442
1443 /**
1444 * pci_request_region - Reserved PCI I/O and memory resource
1445 * @pdev: PCI device whose resources are to be reserved
1446 * @bar: BAR to be reserved
1447 * @res_name: Name to be associated with resource.
1448 *
1449 * Mark the PCI region associated with PCI device @pdev BR @bar as
1450 * being reserved by owner @res_name. Do not access any
1451 * address inside the PCI regions unless this call returns
1452 * successfully.
1453 *
1454 * Returns 0 on success, or %EBUSY on error. A warning
1455 * message is also printed on failure.
1456 */
1457 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1458 int exclusive)
1459 {
1460 struct pci_devres *dr;
1461
1462 if (pci_resource_len(pdev, bar) == 0)
1463 return 0;
1464
1465 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1466 if (!request_region(pci_resource_start(pdev, bar),
1467 pci_resource_len(pdev, bar), res_name))
1468 goto err_out;
1469 }
1470 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1471 if (!__request_mem_region(pci_resource_start(pdev, bar),
1472 pci_resource_len(pdev, bar), res_name,
1473 exclusive))
1474 goto err_out;
1475 }
1476
1477 dr = find_pci_dr(pdev);
1478 if (dr)
1479 dr->region_mask |= 1 << bar;
1480
1481 return 0;
1482
1483 err_out:
1484 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1485 bar,
1486 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1487 &pdev->resource[bar]);
1488 return -EBUSY;
1489 }
1490
1491 /**
1492 * pci_request_region - Reserved PCI I/O and memory resource
1493 * @pdev: PCI device whose resources are to be reserved
1494 * @bar: BAR to be reserved
1495 * @res_name: Name to be associated with resource.
1496 *
1497 * Mark the PCI region associated with PCI device @pdev BR @bar as
1498 * being reserved by owner @res_name. Do not access any
1499 * address inside the PCI regions unless this call returns
1500 * successfully.
1501 *
1502 * Returns 0 on success, or %EBUSY on error. A warning
1503 * message is also printed on failure.
1504 */
1505 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1506 {
1507 return __pci_request_region(pdev, bar, res_name, 0);
1508 }
1509
1510 /**
1511 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1512 * @pdev: PCI device whose resources are to be reserved
1513 * @bar: BAR to be reserved
1514 * @res_name: Name to be associated with resource.
1515 *
1516 * Mark the PCI region associated with PCI device @pdev BR @bar as
1517 * being reserved by owner @res_name. Do not access any
1518 * address inside the PCI regions unless this call returns
1519 * successfully.
1520 *
1521 * Returns 0 on success, or %EBUSY on error. A warning
1522 * message is also printed on failure.
1523 *
1524 * The key difference that _exclusive makes it that userspace is
1525 * explicitly not allowed to map the resource via /dev/mem or
1526 * sysfs.
1527 */
1528 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1529 {
1530 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1531 }
1532 /**
1533 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1534 * @pdev: PCI device whose resources were previously reserved
1535 * @bars: Bitmask of BARs to be released
1536 *
1537 * Release selected PCI I/O and memory resources previously reserved.
1538 * Call this function only after all use of the PCI regions has ceased.
1539 */
1540 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1541 {
1542 int i;
1543
1544 for (i = 0; i < 6; i++)
1545 if (bars & (1 << i))
1546 pci_release_region(pdev, i);
1547 }
1548
1549 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1550 const char *res_name, int excl)
1551 {
1552 int i;
1553
1554 for (i = 0; i < 6; i++)
1555 if (bars & (1 << i))
1556 if (__pci_request_region(pdev, i, res_name, excl))
1557 goto err_out;
1558 return 0;
1559
1560 err_out:
1561 while(--i >= 0)
1562 if (bars & (1 << i))
1563 pci_release_region(pdev, i);
1564
1565 return -EBUSY;
1566 }
1567
1568
1569 /**
1570 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1571 * @pdev: PCI device whose resources are to be reserved
1572 * @bars: Bitmask of BARs to be requested
1573 * @res_name: Name to be associated with resource
1574 */
1575 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1576 const char *res_name)
1577 {
1578 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1579 }
1580
1581 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1582 int bars, const char *res_name)
1583 {
1584 return __pci_request_selected_regions(pdev, bars, res_name,
1585 IORESOURCE_EXCLUSIVE);
1586 }
1587
1588 /**
1589 * pci_release_regions - Release reserved PCI I/O and memory resources
1590 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1591 *
1592 * Releases all PCI I/O and memory resources previously reserved by a
1593 * successful call to pci_request_regions. Call this function only
1594 * after all use of the PCI regions has ceased.
1595 */
1596
1597 void pci_release_regions(struct pci_dev *pdev)
1598 {
1599 pci_release_selected_regions(pdev, (1 << 6) - 1);
1600 }
1601
1602 /**
1603 * pci_request_regions - Reserved PCI I/O and memory resources
1604 * @pdev: PCI device whose resources are to be reserved
1605 * @res_name: Name to be associated with resource.
1606 *
1607 * Mark all PCI regions associated with PCI device @pdev as
1608 * being reserved by owner @res_name. Do not access any
1609 * address inside the PCI regions unless this call returns
1610 * successfully.
1611 *
1612 * Returns 0 on success, or %EBUSY on error. A warning
1613 * message is also printed on failure.
1614 */
1615 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1616 {
1617 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1618 }
1619
1620 /**
1621 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1622 * @pdev: PCI device whose resources are to be reserved
1623 * @res_name: Name to be associated with resource.
1624 *
1625 * Mark all PCI regions associated with PCI device @pdev as
1626 * being reserved by owner @res_name. Do not access any
1627 * address inside the PCI regions unless this call returns
1628 * successfully.
1629 *
1630 * pci_request_regions_exclusive() will mark the region so that
1631 * /dev/mem and the sysfs MMIO access will not be allowed.
1632 *
1633 * Returns 0 on success, or %EBUSY on error. A warning
1634 * message is also printed on failure.
1635 */
1636 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1637 {
1638 return pci_request_selected_regions_exclusive(pdev,
1639 ((1 << 6) - 1), res_name);
1640 }
1641
1642
1643 /**
1644 * pci_set_master - enables bus-mastering for device dev
1645 * @dev: the PCI device to enable
1646 *
1647 * Enables bus-mastering on the device and calls pcibios_set_master()
1648 * to do the needed arch specific settings.
1649 */
1650 void
1651 pci_set_master(struct pci_dev *dev)
1652 {
1653 u16 cmd;
1654
1655 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1656 if (! (cmd & PCI_COMMAND_MASTER)) {
1657 dev_dbg(&dev->dev, "enabling bus mastering\n");
1658 cmd |= PCI_COMMAND_MASTER;
1659 pci_write_config_word(dev, PCI_COMMAND, cmd);
1660 }
1661 dev->is_busmaster = 1;
1662 pcibios_set_master(dev);
1663 }
1664
1665 #ifdef PCI_DISABLE_MWI
1666 int pci_set_mwi(struct pci_dev *dev)
1667 {
1668 return 0;
1669 }
1670
1671 int pci_try_set_mwi(struct pci_dev *dev)
1672 {
1673 return 0;
1674 }
1675
1676 void pci_clear_mwi(struct pci_dev *dev)
1677 {
1678 }
1679
1680 #else
1681
1682 #ifndef PCI_CACHE_LINE_BYTES
1683 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1684 #endif
1685
1686 /* This can be overridden by arch code. */
1687 /* Don't forget this is measured in 32-bit words, not bytes */
1688 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1689
1690 /**
1691 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1692 * @dev: the PCI device for which MWI is to be enabled
1693 *
1694 * Helper function for pci_set_mwi.
1695 * Originally copied from drivers/net/acenic.c.
1696 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1697 *
1698 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1699 */
1700 static int
1701 pci_set_cacheline_size(struct pci_dev *dev)
1702 {
1703 u8 cacheline_size;
1704
1705 if (!pci_cache_line_size)
1706 return -EINVAL; /* The system doesn't support MWI. */
1707
1708 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1709 equal to or multiple of the right value. */
1710 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1711 if (cacheline_size >= pci_cache_line_size &&
1712 (cacheline_size % pci_cache_line_size) == 0)
1713 return 0;
1714
1715 /* Write the correct value. */
1716 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1717 /* Read it back. */
1718 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1719 if (cacheline_size == pci_cache_line_size)
1720 return 0;
1721
1722 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1723 "supported\n", pci_cache_line_size << 2);
1724
1725 return -EINVAL;
1726 }
1727
1728 /**
1729 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1730 * @dev: the PCI device for which MWI is enabled
1731 *
1732 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1733 *
1734 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1735 */
1736 int
1737 pci_set_mwi(struct pci_dev *dev)
1738 {
1739 int rc;
1740 u16 cmd;
1741
1742 rc = pci_set_cacheline_size(dev);
1743 if (rc)
1744 return rc;
1745
1746 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1747 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1748 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1749 cmd |= PCI_COMMAND_INVALIDATE;
1750 pci_write_config_word(dev, PCI_COMMAND, cmd);
1751 }
1752
1753 return 0;
1754 }
1755
1756 /**
1757 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1758 * @dev: the PCI device for which MWI is enabled
1759 *
1760 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1761 * Callers are not required to check the return value.
1762 *
1763 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1764 */
1765 int pci_try_set_mwi(struct pci_dev *dev)
1766 {
1767 int rc = pci_set_mwi(dev);
1768 return rc;
1769 }
1770
1771 /**
1772 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1773 * @dev: the PCI device to disable
1774 *
1775 * Disables PCI Memory-Write-Invalidate transaction on the device
1776 */
1777 void
1778 pci_clear_mwi(struct pci_dev *dev)
1779 {
1780 u16 cmd;
1781
1782 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1783 if (cmd & PCI_COMMAND_INVALIDATE) {
1784 cmd &= ~PCI_COMMAND_INVALIDATE;
1785 pci_write_config_word(dev, PCI_COMMAND, cmd);
1786 }
1787 }
1788 #endif /* ! PCI_DISABLE_MWI */
1789
1790 /**
1791 * pci_intx - enables/disables PCI INTx for device dev
1792 * @pdev: the PCI device to operate on
1793 * @enable: boolean: whether to enable or disable PCI INTx
1794 *
1795 * Enables/disables PCI INTx for device dev
1796 */
1797 void
1798 pci_intx(struct pci_dev *pdev, int enable)
1799 {
1800 u16 pci_command, new;
1801
1802 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1803
1804 if (enable) {
1805 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1806 } else {
1807 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1808 }
1809
1810 if (new != pci_command) {
1811 struct pci_devres *dr;
1812
1813 pci_write_config_word(pdev, PCI_COMMAND, new);
1814
1815 dr = find_pci_dr(pdev);
1816 if (dr && !dr->restore_intx) {
1817 dr->restore_intx = 1;
1818 dr->orig_intx = !enable;
1819 }
1820 }
1821 }
1822
1823 /**
1824 * pci_msi_off - disables any msi or msix capabilities
1825 * @dev: the PCI device to operate on
1826 *
1827 * If you want to use msi see pci_enable_msi and friends.
1828 * This is a lower level primitive that allows us to disable
1829 * msi operation at the device level.
1830 */
1831 void pci_msi_off(struct pci_dev *dev)
1832 {
1833 int pos;
1834 u16 control;
1835
1836 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1837 if (pos) {
1838 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1839 control &= ~PCI_MSI_FLAGS_ENABLE;
1840 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1841 }
1842 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1843 if (pos) {
1844 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1845 control &= ~PCI_MSIX_FLAGS_ENABLE;
1846 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1847 }
1848 }
1849
1850 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1851 /*
1852 * These can be overridden by arch-specific implementations
1853 */
1854 int
1855 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1856 {
1857 if (!pci_dma_supported(dev, mask))
1858 return -EIO;
1859
1860 dev->dma_mask = mask;
1861
1862 return 0;
1863 }
1864
1865 int
1866 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1867 {
1868 if (!pci_dma_supported(dev, mask))
1869 return -EIO;
1870
1871 dev->dev.coherent_dma_mask = mask;
1872
1873 return 0;
1874 }
1875 #endif
1876
1877 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1878 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1879 {
1880 return dma_set_max_seg_size(&dev->dev, size);
1881 }
1882 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1883 #endif
1884
1885 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1886 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1887 {
1888 return dma_set_seg_boundary(&dev->dev, mask);
1889 }
1890 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1891 #endif
1892
1893 static int __pcie_flr(struct pci_dev *dev, int probe)
1894 {
1895 u16 status;
1896 u32 cap;
1897 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
1898
1899 if (!exppos)
1900 return -ENOTTY;
1901 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
1902 if (!(cap & PCI_EXP_DEVCAP_FLR))
1903 return -ENOTTY;
1904
1905 if (probe)
1906 return 0;
1907
1908 pci_block_user_cfg_access(dev);
1909
1910 /* Wait for Transaction Pending bit clean */
1911 msleep(100);
1912 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1913 if (status & PCI_EXP_DEVSTA_TRPND) {
1914 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
1915 "sleeping for 1 second\n");
1916 ssleep(1);
1917 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1918 if (status & PCI_EXP_DEVSTA_TRPND)
1919 dev_info(&dev->dev, "Still busy after 1s; "
1920 "proceeding with reset anyway\n");
1921 }
1922
1923 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
1924 PCI_EXP_DEVCTL_BCR_FLR);
1925 mdelay(100);
1926
1927 pci_unblock_user_cfg_access(dev);
1928 return 0;
1929 }
1930
1931 static int __pci_af_flr(struct pci_dev *dev, int probe)
1932 {
1933 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
1934 u8 status;
1935 u8 cap;
1936
1937 if (!cappos)
1938 return -ENOTTY;
1939 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
1940 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
1941 return -ENOTTY;
1942
1943 if (probe)
1944 return 0;
1945
1946 pci_block_user_cfg_access(dev);
1947
1948 /* Wait for Transaction Pending bit clean */
1949 msleep(100);
1950 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
1951 if (status & PCI_AF_STATUS_TP) {
1952 dev_info(&dev->dev, "Busy after 100ms while trying to"
1953 " reset; sleeping for 1 second\n");
1954 ssleep(1);
1955 pci_read_config_byte(dev,
1956 cappos + PCI_AF_STATUS, &status);
1957 if (status & PCI_AF_STATUS_TP)
1958 dev_info(&dev->dev, "Still busy after 1s; "
1959 "proceeding with reset anyway\n");
1960 }
1961 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
1962 mdelay(100);
1963
1964 pci_unblock_user_cfg_access(dev);
1965 return 0;
1966 }
1967
1968 static int __pci_reset_function(struct pci_dev *pdev, int probe)
1969 {
1970 int res;
1971
1972 res = __pcie_flr(pdev, probe);
1973 if (res != -ENOTTY)
1974 return res;
1975
1976 res = __pci_af_flr(pdev, probe);
1977 if (res != -ENOTTY)
1978 return res;
1979
1980 return res;
1981 }
1982
1983 /**
1984 * pci_execute_reset_function() - Reset a PCI device function
1985 * @dev: Device function to reset
1986 *
1987 * Some devices allow an individual function to be reset without affecting
1988 * other functions in the same device. The PCI device must be responsive
1989 * to PCI config space in order to use this function.
1990 *
1991 * The device function is presumed to be unused when this function is called.
1992 * Resetting the device will make the contents of PCI configuration space
1993 * random, so any caller of this must be prepared to reinitialise the
1994 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
1995 * etc.
1996 *
1997 * Returns 0 if the device function was successfully reset or -ENOTTY if the
1998 * device doesn't support resetting a single function.
1999 */
2000 int pci_execute_reset_function(struct pci_dev *dev)
2001 {
2002 return __pci_reset_function(dev, 0);
2003 }
2004 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2005
2006 /**
2007 * pci_reset_function() - quiesce and reset a PCI device function
2008 * @dev: Device function to reset
2009 *
2010 * Some devices allow an individual function to be reset without affecting
2011 * other functions in the same device. The PCI device must be responsive
2012 * to PCI config space in order to use this function.
2013 *
2014 * This function does not just reset the PCI portion of a device, but
2015 * clears all the state associated with the device. This function differs
2016 * from pci_execute_reset_function in that it saves and restores device state
2017 * over the reset.
2018 *
2019 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2020 * device doesn't support resetting a single function.
2021 */
2022 int pci_reset_function(struct pci_dev *dev)
2023 {
2024 int r = __pci_reset_function(dev, 1);
2025
2026 if (r < 0)
2027 return r;
2028
2029 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2030 disable_irq(dev->irq);
2031 pci_save_state(dev);
2032
2033 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2034
2035 r = pci_execute_reset_function(dev);
2036
2037 pci_restore_state(dev);
2038 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2039 enable_irq(dev->irq);
2040
2041 return r;
2042 }
2043 EXPORT_SYMBOL_GPL(pci_reset_function);
2044
2045 /**
2046 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2047 * @dev: PCI device to query
2048 *
2049 * Returns mmrbc: maximum designed memory read count in bytes
2050 * or appropriate error value.
2051 */
2052 int pcix_get_max_mmrbc(struct pci_dev *dev)
2053 {
2054 int err, cap;
2055 u32 stat;
2056
2057 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2058 if (!cap)
2059 return -EINVAL;
2060
2061 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2062 if (err)
2063 return -EINVAL;
2064
2065 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2066 }
2067 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2068
2069 /**
2070 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2071 * @dev: PCI device to query
2072 *
2073 * Returns mmrbc: maximum memory read count in bytes
2074 * or appropriate error value.
2075 */
2076 int pcix_get_mmrbc(struct pci_dev *dev)
2077 {
2078 int ret, cap;
2079 u32 cmd;
2080
2081 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2082 if (!cap)
2083 return -EINVAL;
2084
2085 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2086 if (!ret)
2087 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2088
2089 return ret;
2090 }
2091 EXPORT_SYMBOL(pcix_get_mmrbc);
2092
2093 /**
2094 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2095 * @dev: PCI device to query
2096 * @mmrbc: maximum memory read count in bytes
2097 * valid values are 512, 1024, 2048, 4096
2098 *
2099 * If possible sets maximum memory read byte count, some bridges have erratas
2100 * that prevent this.
2101 */
2102 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2103 {
2104 int cap, err = -EINVAL;
2105 u32 stat, cmd, v, o;
2106
2107 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2108 goto out;
2109
2110 v = ffs(mmrbc) - 10;
2111
2112 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2113 if (!cap)
2114 goto out;
2115
2116 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2117 if (err)
2118 goto out;
2119
2120 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2121 return -E2BIG;
2122
2123 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2124 if (err)
2125 goto out;
2126
2127 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2128 if (o != v) {
2129 if (v > o && dev->bus &&
2130 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2131 return -EIO;
2132
2133 cmd &= ~PCI_X_CMD_MAX_READ;
2134 cmd |= v << 2;
2135 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2136 }
2137 out:
2138 return err;
2139 }
2140 EXPORT_SYMBOL(pcix_set_mmrbc);
2141
2142 /**
2143 * pcie_get_readrq - get PCI Express read request size
2144 * @dev: PCI device to query
2145 *
2146 * Returns maximum memory read request in bytes
2147 * or appropriate error value.
2148 */
2149 int pcie_get_readrq(struct pci_dev *dev)
2150 {
2151 int ret, cap;
2152 u16 ctl;
2153
2154 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2155 if (!cap)
2156 return -EINVAL;
2157
2158 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2159 if (!ret)
2160 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2161
2162 return ret;
2163 }
2164 EXPORT_SYMBOL(pcie_get_readrq);
2165
2166 /**
2167 * pcie_set_readrq - set PCI Express maximum memory read request
2168 * @dev: PCI device to query
2169 * @rq: maximum memory read count in bytes
2170 * valid values are 128, 256, 512, 1024, 2048, 4096
2171 *
2172 * If possible sets maximum read byte count
2173 */
2174 int pcie_set_readrq(struct pci_dev *dev, int rq)
2175 {
2176 int cap, err = -EINVAL;
2177 u16 ctl, v;
2178
2179 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2180 goto out;
2181
2182 v = (ffs(rq) - 8) << 12;
2183
2184 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2185 if (!cap)
2186 goto out;
2187
2188 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2189 if (err)
2190 goto out;
2191
2192 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2193 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2194 ctl |= v;
2195 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2196 }
2197
2198 out:
2199 return err;
2200 }
2201 EXPORT_SYMBOL(pcie_set_readrq);
2202
2203 /**
2204 * pci_select_bars - Make BAR mask from the type of resource
2205 * @dev: the PCI device for which BAR mask is made
2206 * @flags: resource type mask to be selected
2207 *
2208 * This helper routine makes bar mask from the type of resource.
2209 */
2210 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2211 {
2212 int i, bars = 0;
2213 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2214 if (pci_resource_flags(dev, i) & flags)
2215 bars |= (1 << i);
2216 return bars;
2217 }
2218
2219 static void __devinit pci_no_domains(void)
2220 {
2221 #ifdef CONFIG_PCI_DOMAINS
2222 pci_domains_supported = 0;
2223 #endif
2224 }
2225
2226 /**
2227 * pci_ext_cfg_enabled - can we access extended PCI config space?
2228 * @dev: The PCI device of the root bridge.
2229 *
2230 * Returns 1 if we can access PCI extended config space (offsets
2231 * greater than 0xff). This is the default implementation. Architecture
2232 * implementations can override this.
2233 */
2234 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2235 {
2236 return 1;
2237 }
2238
2239 static int __devinit pci_init(void)
2240 {
2241 struct pci_dev *dev = NULL;
2242
2243 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2244 pci_fixup_device(pci_fixup_final, dev);
2245 }
2246
2247 return 0;
2248 }
2249
2250 static int __init pci_setup(char *str)
2251 {
2252 while (str) {
2253 char *k = strchr(str, ',');
2254 if (k)
2255 *k++ = 0;
2256 if (*str && (str = pcibios_setup(str)) && *str) {
2257 if (!strcmp(str, "nomsi")) {
2258 pci_no_msi();
2259 } else if (!strcmp(str, "noaer")) {
2260 pci_no_aer();
2261 } else if (!strcmp(str, "nodomains")) {
2262 pci_no_domains();
2263 } else if (!strncmp(str, "cbiosize=", 9)) {
2264 pci_cardbus_io_size = memparse(str + 9, &str);
2265 } else if (!strncmp(str, "cbmemsize=", 10)) {
2266 pci_cardbus_mem_size = memparse(str + 10, &str);
2267 } else {
2268 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2269 str);
2270 }
2271 }
2272 str = k;
2273 }
2274 return 0;
2275 }
2276 early_param("pci", pci_setup);
2277
2278 device_initcall(pci_init);
2279
2280 EXPORT_SYMBOL(pci_reenable_device);
2281 EXPORT_SYMBOL(pci_enable_device_io);
2282 EXPORT_SYMBOL(pci_enable_device_mem);
2283 EXPORT_SYMBOL(pci_enable_device);
2284 EXPORT_SYMBOL(pcim_enable_device);
2285 EXPORT_SYMBOL(pcim_pin_device);
2286 EXPORT_SYMBOL(pci_disable_device);
2287 EXPORT_SYMBOL(pci_find_capability);
2288 EXPORT_SYMBOL(pci_bus_find_capability);
2289 EXPORT_SYMBOL(pci_release_regions);
2290 EXPORT_SYMBOL(pci_request_regions);
2291 EXPORT_SYMBOL(pci_request_regions_exclusive);
2292 EXPORT_SYMBOL(pci_release_region);
2293 EXPORT_SYMBOL(pci_request_region);
2294 EXPORT_SYMBOL(pci_request_region_exclusive);
2295 EXPORT_SYMBOL(pci_release_selected_regions);
2296 EXPORT_SYMBOL(pci_request_selected_regions);
2297 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2298 EXPORT_SYMBOL(pci_set_master);
2299 EXPORT_SYMBOL(pci_set_mwi);
2300 EXPORT_SYMBOL(pci_try_set_mwi);
2301 EXPORT_SYMBOL(pci_clear_mwi);
2302 EXPORT_SYMBOL_GPL(pci_intx);
2303 EXPORT_SYMBOL(pci_set_dma_mask);
2304 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2305 EXPORT_SYMBOL(pci_assign_resource);
2306 EXPORT_SYMBOL(pci_find_parent_resource);
2307 EXPORT_SYMBOL(pci_select_bars);
2308
2309 EXPORT_SYMBOL(pci_set_power_state);
2310 EXPORT_SYMBOL(pci_save_state);
2311 EXPORT_SYMBOL(pci_restore_state);
2312 EXPORT_SYMBOL(pci_pme_capable);
2313 EXPORT_SYMBOL(pci_pme_active);
2314 EXPORT_SYMBOL(pci_enable_wake);
2315 EXPORT_SYMBOL(pci_wake_from_d3);
2316 EXPORT_SYMBOL(pci_target_state);
2317 EXPORT_SYMBOL(pci_prepare_to_sleep);
2318 EXPORT_SYMBOL(pci_back_from_sleep);
2319 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2320
This page took 0.079424 seconds and 5 git commands to generate.