PCI: Fix IRQ swizzling for ARI-enabled devices
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
33
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
37
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
43
44 /**
45 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
46 * @bus: pointer to PCI bus structure to search
47 *
48 * Given a PCI bus, returns the highest PCI bus number present in the set
49 * including the given PCI bus and its list of child PCI buses.
50 */
51 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
52 {
53 struct list_head *tmp;
54 unsigned char max, n;
55
56 max = bus->subordinate;
57 list_for_each(tmp, &bus->children) {
58 n = pci_bus_max_busnr(pci_bus_b(tmp));
59 if(n > max)
60 max = n;
61 }
62 return max;
63 }
64 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
65
66 #ifdef CONFIG_HAS_IOMEM
67 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
68 {
69 /*
70 * Make sure the BAR is actually a memory resource, not an IO resource
71 */
72 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
73 WARN_ON(1);
74 return NULL;
75 }
76 return ioremap_nocache(pci_resource_start(pdev, bar),
77 pci_resource_len(pdev, bar));
78 }
79 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
80 #endif
81
82 #if 0
83 /**
84 * pci_max_busnr - returns maximum PCI bus number
85 *
86 * Returns the highest PCI bus number present in the system global list of
87 * PCI buses.
88 */
89 unsigned char __devinit
90 pci_max_busnr(void)
91 {
92 struct pci_bus *bus = NULL;
93 unsigned char max, n;
94
95 max = 0;
96 while ((bus = pci_find_next_bus(bus)) != NULL) {
97 n = pci_bus_max_busnr(bus);
98 if(n > max)
99 max = n;
100 }
101 return max;
102 }
103
104 #endif /* 0 */
105
106 #define PCI_FIND_CAP_TTL 48
107
108 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
109 u8 pos, int cap, int *ttl)
110 {
111 u8 id;
112
113 while ((*ttl)--) {
114 pci_bus_read_config_byte(bus, devfn, pos, &pos);
115 if (pos < 0x40)
116 break;
117 pos &= ~3;
118 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
119 &id);
120 if (id == 0xff)
121 break;
122 if (id == cap)
123 return pos;
124 pos += PCI_CAP_LIST_NEXT;
125 }
126 return 0;
127 }
128
129 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
130 u8 pos, int cap)
131 {
132 int ttl = PCI_FIND_CAP_TTL;
133
134 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
135 }
136
137 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
138 {
139 return __pci_find_next_cap(dev->bus, dev->devfn,
140 pos + PCI_CAP_LIST_NEXT, cap);
141 }
142 EXPORT_SYMBOL_GPL(pci_find_next_capability);
143
144 static int __pci_bus_find_cap_start(struct pci_bus *bus,
145 unsigned int devfn, u8 hdr_type)
146 {
147 u16 status;
148
149 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
150 if (!(status & PCI_STATUS_CAP_LIST))
151 return 0;
152
153 switch (hdr_type) {
154 case PCI_HEADER_TYPE_NORMAL:
155 case PCI_HEADER_TYPE_BRIDGE:
156 return PCI_CAPABILITY_LIST;
157 case PCI_HEADER_TYPE_CARDBUS:
158 return PCI_CB_CAPABILITY_LIST;
159 default:
160 return 0;
161 }
162
163 return 0;
164 }
165
166 /**
167 * pci_find_capability - query for devices' capabilities
168 * @dev: PCI device to query
169 * @cap: capability code
170 *
171 * Tell if a device supports a given PCI capability.
172 * Returns the address of the requested capability structure within the
173 * device's PCI configuration space or 0 in case the device does not
174 * support it. Possible values for @cap:
175 *
176 * %PCI_CAP_ID_PM Power Management
177 * %PCI_CAP_ID_AGP Accelerated Graphics Port
178 * %PCI_CAP_ID_VPD Vital Product Data
179 * %PCI_CAP_ID_SLOTID Slot Identification
180 * %PCI_CAP_ID_MSI Message Signalled Interrupts
181 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
182 * %PCI_CAP_ID_PCIX PCI-X
183 * %PCI_CAP_ID_EXP PCI Express
184 */
185 int pci_find_capability(struct pci_dev *dev, int cap)
186 {
187 int pos;
188
189 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
190 if (pos)
191 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
192
193 return pos;
194 }
195
196 /**
197 * pci_bus_find_capability - query for devices' capabilities
198 * @bus: the PCI bus to query
199 * @devfn: PCI device to query
200 * @cap: capability code
201 *
202 * Like pci_find_capability() but works for pci devices that do not have a
203 * pci_dev structure set up yet.
204 *
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it.
208 */
209 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
210 {
211 int pos;
212 u8 hdr_type;
213
214 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
215
216 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
217 if (pos)
218 pos = __pci_find_next_cap(bus, devfn, pos, cap);
219
220 return pos;
221 }
222
223 /**
224 * pci_find_ext_capability - Find an extended capability
225 * @dev: PCI device to query
226 * @cap: capability code
227 *
228 * Returns the address of the requested extended capability structure
229 * within the device's PCI configuration space or 0 if the device does
230 * not support it. Possible values for @cap:
231 *
232 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
233 * %PCI_EXT_CAP_ID_VC Virtual Channel
234 * %PCI_EXT_CAP_ID_DSN Device Serial Number
235 * %PCI_EXT_CAP_ID_PWR Power Budgeting
236 */
237 int pci_find_ext_capability(struct pci_dev *dev, int cap)
238 {
239 u32 header;
240 int ttl;
241 int pos = PCI_CFG_SPACE_SIZE;
242
243 /* minimum 8 bytes per capability */
244 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
245
246 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
247 return 0;
248
249 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
250 return 0;
251
252 /*
253 * If we have no capabilities, this is indicated by cap ID,
254 * cap version and next pointer all being 0.
255 */
256 if (header == 0)
257 return 0;
258
259 while (ttl-- > 0) {
260 if (PCI_EXT_CAP_ID(header) == cap)
261 return pos;
262
263 pos = PCI_EXT_CAP_NEXT(header);
264 if (pos < PCI_CFG_SPACE_SIZE)
265 break;
266
267 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
268 break;
269 }
270
271 return 0;
272 }
273 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
274
275 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
276 {
277 int rc, ttl = PCI_FIND_CAP_TTL;
278 u8 cap, mask;
279
280 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
281 mask = HT_3BIT_CAP_MASK;
282 else
283 mask = HT_5BIT_CAP_MASK;
284
285 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
286 PCI_CAP_ID_HT, &ttl);
287 while (pos) {
288 rc = pci_read_config_byte(dev, pos + 3, &cap);
289 if (rc != PCIBIOS_SUCCESSFUL)
290 return 0;
291
292 if ((cap & mask) == ht_cap)
293 return pos;
294
295 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
296 pos + PCI_CAP_LIST_NEXT,
297 PCI_CAP_ID_HT, &ttl);
298 }
299
300 return 0;
301 }
302 /**
303 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
304 * @dev: PCI device to query
305 * @pos: Position from which to continue searching
306 * @ht_cap: Hypertransport capability code
307 *
308 * To be used in conjunction with pci_find_ht_capability() to search for
309 * all capabilities matching @ht_cap. @pos should always be a value returned
310 * from pci_find_ht_capability().
311 *
312 * NB. To be 100% safe against broken PCI devices, the caller should take
313 * steps to avoid an infinite loop.
314 */
315 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
316 {
317 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
318 }
319 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
320
321 /**
322 * pci_find_ht_capability - query a device's Hypertransport capabilities
323 * @dev: PCI device to query
324 * @ht_cap: Hypertransport capability code
325 *
326 * Tell if a device supports a given Hypertransport capability.
327 * Returns an address within the device's PCI configuration space
328 * or 0 in case the device does not support the request capability.
329 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
330 * which has a Hypertransport capability matching @ht_cap.
331 */
332 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
333 {
334 int pos;
335
336 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
337 if (pos)
338 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
339
340 return pos;
341 }
342 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
343
344 /**
345 * pci_find_parent_resource - return resource region of parent bus of given region
346 * @dev: PCI device structure contains resources to be searched
347 * @res: child resource record for which parent is sought
348 *
349 * For given resource region of given device, return the resource
350 * region of parent bus the given region is contained in or where
351 * it should be allocated from.
352 */
353 struct resource *
354 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
355 {
356 const struct pci_bus *bus = dev->bus;
357 int i;
358 struct resource *best = NULL;
359
360 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
361 struct resource *r = bus->resource[i];
362 if (!r)
363 continue;
364 if (res->start && !(res->start >= r->start && res->end <= r->end))
365 continue; /* Not contained */
366 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
367 continue; /* Wrong type */
368 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
369 return r; /* Exact match */
370 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
371 best = r; /* Approximating prefetchable by non-prefetchable */
372 }
373 return best;
374 }
375
376 /**
377 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
378 * @dev: PCI device to have its BARs restored
379 *
380 * Restore the BAR values for a given device, so as to make it
381 * accessible by its driver.
382 */
383 static void
384 pci_restore_bars(struct pci_dev *dev)
385 {
386 int i;
387
388 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
389 pci_update_resource(dev, i);
390 }
391
392 static struct pci_platform_pm_ops *pci_platform_pm;
393
394 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
395 {
396 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
397 || !ops->sleep_wake || !ops->can_wakeup)
398 return -EINVAL;
399 pci_platform_pm = ops;
400 return 0;
401 }
402
403 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
404 {
405 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
406 }
407
408 static inline int platform_pci_set_power_state(struct pci_dev *dev,
409 pci_power_t t)
410 {
411 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
412 }
413
414 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
415 {
416 return pci_platform_pm ?
417 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
418 }
419
420 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
421 {
422 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
423 }
424
425 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
426 {
427 return pci_platform_pm ?
428 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
429 }
430
431 /**
432 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
433 * given PCI device
434 * @dev: PCI device to handle.
435 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
436 *
437 * RETURN VALUE:
438 * -EINVAL if the requested state is invalid.
439 * -EIO if device does not support PCI PM or its PM capabilities register has a
440 * wrong version, or device doesn't support the requested state.
441 * 0 if device already is in the requested state.
442 * 0 if device's power state has been successfully changed.
443 */
444 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
445 {
446 u16 pmcsr;
447 bool need_restore = false;
448
449 /* Check if we're already there */
450 if (dev->current_state == state)
451 return 0;
452
453 if (!dev->pm_cap)
454 return -EIO;
455
456 if (state < PCI_D0 || state > PCI_D3hot)
457 return -EINVAL;
458
459 /* Validate current state:
460 * Can enter D0 from any state, but if we can only go deeper
461 * to sleep if we're already in a low power state
462 */
463 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
464 && dev->current_state > state) {
465 dev_err(&dev->dev, "invalid power transition "
466 "(from state %d to %d)\n", dev->current_state, state);
467 return -EINVAL;
468 }
469
470 /* check if this device supports the desired state */
471 if ((state == PCI_D1 && !dev->d1_support)
472 || (state == PCI_D2 && !dev->d2_support))
473 return -EIO;
474
475 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
476
477 /* If we're (effectively) in D3, force entire word to 0.
478 * This doesn't affect PME_Status, disables PME_En, and
479 * sets PowerState to 0.
480 */
481 switch (dev->current_state) {
482 case PCI_D0:
483 case PCI_D1:
484 case PCI_D2:
485 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
486 pmcsr |= state;
487 break;
488 case PCI_D3hot:
489 case PCI_D3cold:
490 case PCI_UNKNOWN: /* Boot-up */
491 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
492 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
493 need_restore = true;
494 /* Fall-through: force to D0 */
495 default:
496 pmcsr = 0;
497 break;
498 }
499
500 /* enter specified state */
501 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
502
503 /* Mandatory power management transition delays */
504 /* see PCI PM 1.1 5.6.1 table 18 */
505 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
506 msleep(pci_pm_d3_delay);
507 else if (state == PCI_D2 || dev->current_state == PCI_D2)
508 udelay(PCI_PM_D2_DELAY);
509
510 dev->current_state = state;
511
512 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
513 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
514 * from D3hot to D0 _may_ perform an internal reset, thereby
515 * going to "D0 Uninitialized" rather than "D0 Initialized".
516 * For example, at least some versions of the 3c905B and the
517 * 3c556B exhibit this behaviour.
518 *
519 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
520 * devices in a D3hot state at boot. Consequently, we need to
521 * restore at least the BARs so that the device will be
522 * accessible to its driver.
523 */
524 if (need_restore)
525 pci_restore_bars(dev);
526
527 if (dev->bus->self)
528 pcie_aspm_pm_state_change(dev->bus->self);
529
530 return 0;
531 }
532
533 /**
534 * pci_update_current_state - Read PCI power state of given device from its
535 * PCI PM registers and cache it
536 * @dev: PCI device to handle.
537 * @state: State to cache in case the device doesn't have the PM capability
538 */
539 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
540 {
541 if (dev->pm_cap) {
542 u16 pmcsr;
543
544 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
545 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
546 } else {
547 dev->current_state = state;
548 }
549 }
550
551 /**
552 * pci_platform_power_transition - Use platform to change device power state
553 * @dev: PCI device to handle.
554 * @state: State to put the device into.
555 */
556 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
557 {
558 int error;
559
560 if (platform_pci_power_manageable(dev)) {
561 error = platform_pci_set_power_state(dev, state);
562 if (!error)
563 pci_update_current_state(dev, state);
564 } else {
565 error = -ENODEV;
566 /* Fall back to PCI_D0 if native PM is not supported */
567 if (!dev->pm_cap)
568 dev->current_state = PCI_D0;
569 }
570
571 return error;
572 }
573
574 /**
575 * __pci_start_power_transition - Start power transition of a PCI device
576 * @dev: PCI device to handle.
577 * @state: State to put the device into.
578 */
579 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
580 {
581 if (state == PCI_D0)
582 pci_platform_power_transition(dev, PCI_D0);
583 }
584
585 /**
586 * __pci_complete_power_transition - Complete power transition of a PCI device
587 * @dev: PCI device to handle.
588 * @state: State to put the device into.
589 *
590 * This function should not be called directly by device drivers.
591 */
592 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
593 {
594 return state > PCI_D0 ?
595 pci_platform_power_transition(dev, state) : -EINVAL;
596 }
597 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
598
599 /**
600 * pci_set_power_state - Set the power state of a PCI device
601 * @dev: PCI device to handle.
602 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
603 *
604 * Transition a device to a new power state, using the platform firmware and/or
605 * the device's PCI PM registers.
606 *
607 * RETURN VALUE:
608 * -EINVAL if the requested state is invalid.
609 * -EIO if device does not support PCI PM or its PM capabilities register has a
610 * wrong version, or device doesn't support the requested state.
611 * 0 if device already is in the requested state.
612 * 0 if device's power state has been successfully changed.
613 */
614 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
615 {
616 int error;
617
618 /* bound the state we're entering */
619 if (state > PCI_D3hot)
620 state = PCI_D3hot;
621 else if (state < PCI_D0)
622 state = PCI_D0;
623 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
624 /*
625 * If the device or the parent bridge do not support PCI PM,
626 * ignore the request if we're doing anything other than putting
627 * it into D0 (which would only happen on boot).
628 */
629 return 0;
630
631 /* Check if we're already there */
632 if (dev->current_state == state)
633 return 0;
634
635 __pci_start_power_transition(dev, state);
636
637 /* This device is quirked not to be put into D3, so
638 don't put it in D3 */
639 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
640 return 0;
641
642 error = pci_raw_set_power_state(dev, state);
643
644 if (!__pci_complete_power_transition(dev, state))
645 error = 0;
646
647 return error;
648 }
649
650 /**
651 * pci_choose_state - Choose the power state of a PCI device
652 * @dev: PCI device to be suspended
653 * @state: target sleep state for the whole system. This is the value
654 * that is passed to suspend() function.
655 *
656 * Returns PCI power state suitable for given device and given system
657 * message.
658 */
659
660 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
661 {
662 pci_power_t ret;
663
664 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
665 return PCI_D0;
666
667 ret = platform_pci_choose_state(dev);
668 if (ret != PCI_POWER_ERROR)
669 return ret;
670
671 switch (state.event) {
672 case PM_EVENT_ON:
673 return PCI_D0;
674 case PM_EVENT_FREEZE:
675 case PM_EVENT_PRETHAW:
676 /* REVISIT both freeze and pre-thaw "should" use D0 */
677 case PM_EVENT_SUSPEND:
678 case PM_EVENT_HIBERNATE:
679 return PCI_D3hot;
680 default:
681 dev_info(&dev->dev, "unrecognized suspend event %d\n",
682 state.event);
683 BUG();
684 }
685 return PCI_D0;
686 }
687
688 EXPORT_SYMBOL(pci_choose_state);
689
690 #define PCI_EXP_SAVE_REGS 7
691
692 #define pcie_cap_has_devctl(type, flags) 1
693 #define pcie_cap_has_lnkctl(type, flags) \
694 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
695 (type == PCI_EXP_TYPE_ROOT_PORT || \
696 type == PCI_EXP_TYPE_ENDPOINT || \
697 type == PCI_EXP_TYPE_LEG_END))
698 #define pcie_cap_has_sltctl(type, flags) \
699 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
700 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
701 (type == PCI_EXP_TYPE_DOWNSTREAM && \
702 (flags & PCI_EXP_FLAGS_SLOT))))
703 #define pcie_cap_has_rtctl(type, flags) \
704 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
705 (type == PCI_EXP_TYPE_ROOT_PORT || \
706 type == PCI_EXP_TYPE_RC_EC))
707 #define pcie_cap_has_devctl2(type, flags) \
708 ((flags & PCI_EXP_FLAGS_VERS) > 1)
709 #define pcie_cap_has_lnkctl2(type, flags) \
710 ((flags & PCI_EXP_FLAGS_VERS) > 1)
711 #define pcie_cap_has_sltctl2(type, flags) \
712 ((flags & PCI_EXP_FLAGS_VERS) > 1)
713
714 static int pci_save_pcie_state(struct pci_dev *dev)
715 {
716 int pos, i = 0;
717 struct pci_cap_saved_state *save_state;
718 u16 *cap;
719 u16 flags;
720
721 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
722 if (pos <= 0)
723 return 0;
724
725 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
726 if (!save_state) {
727 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
728 return -ENOMEM;
729 }
730 cap = (u16 *)&save_state->data[0];
731
732 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
733
734 if (pcie_cap_has_devctl(dev->pcie_type, flags))
735 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
736 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
737 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
738 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
739 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
740 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
741 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
742 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
743 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
744 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
745 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
746 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
747 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
748
749 return 0;
750 }
751
752 static void pci_restore_pcie_state(struct pci_dev *dev)
753 {
754 int i = 0, pos;
755 struct pci_cap_saved_state *save_state;
756 u16 *cap;
757 u16 flags;
758
759 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
760 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
761 if (!save_state || pos <= 0)
762 return;
763 cap = (u16 *)&save_state->data[0];
764
765 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
766
767 if (pcie_cap_has_devctl(dev->pcie_type, flags))
768 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
769 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
770 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
771 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
772 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
773 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
774 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
775 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
776 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
777 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
778 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
779 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
780 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
781 }
782
783
784 static int pci_save_pcix_state(struct pci_dev *dev)
785 {
786 int pos;
787 struct pci_cap_saved_state *save_state;
788
789 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
790 if (pos <= 0)
791 return 0;
792
793 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
794 if (!save_state) {
795 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
796 return -ENOMEM;
797 }
798
799 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
800
801 return 0;
802 }
803
804 static void pci_restore_pcix_state(struct pci_dev *dev)
805 {
806 int i = 0, pos;
807 struct pci_cap_saved_state *save_state;
808 u16 *cap;
809
810 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
811 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
812 if (!save_state || pos <= 0)
813 return;
814 cap = (u16 *)&save_state->data[0];
815
816 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
817 }
818
819
820 /**
821 * pci_save_state - save the PCI configuration space of a device before suspending
822 * @dev: - PCI device that we're dealing with
823 */
824 int
825 pci_save_state(struct pci_dev *dev)
826 {
827 int i;
828 /* XXX: 100% dword access ok here? */
829 for (i = 0; i < 16; i++)
830 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
831 dev->state_saved = true;
832 if ((i = pci_save_pcie_state(dev)) != 0)
833 return i;
834 if ((i = pci_save_pcix_state(dev)) != 0)
835 return i;
836 return 0;
837 }
838
839 /**
840 * pci_restore_state - Restore the saved state of a PCI device
841 * @dev: - PCI device that we're dealing with
842 */
843 int
844 pci_restore_state(struct pci_dev *dev)
845 {
846 int i;
847 u32 val;
848
849 /* PCI Express register must be restored first */
850 pci_restore_pcie_state(dev);
851
852 /*
853 * The Base Address register should be programmed before the command
854 * register(s)
855 */
856 for (i = 15; i >= 0; i--) {
857 pci_read_config_dword(dev, i * 4, &val);
858 if (val != dev->saved_config_space[i]) {
859 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
860 "space at offset %#x (was %#x, writing %#x)\n",
861 i, val, (int)dev->saved_config_space[i]);
862 pci_write_config_dword(dev,i * 4,
863 dev->saved_config_space[i]);
864 }
865 }
866 pci_restore_pcix_state(dev);
867 pci_restore_msi_state(dev);
868 pci_restore_iov_state(dev);
869
870 return 0;
871 }
872
873 static int do_pci_enable_device(struct pci_dev *dev, int bars)
874 {
875 int err;
876
877 err = pci_set_power_state(dev, PCI_D0);
878 if (err < 0 && err != -EIO)
879 return err;
880 err = pcibios_enable_device(dev, bars);
881 if (err < 0)
882 return err;
883 pci_fixup_device(pci_fixup_enable, dev);
884
885 return 0;
886 }
887
888 /**
889 * pci_reenable_device - Resume abandoned device
890 * @dev: PCI device to be resumed
891 *
892 * Note this function is a backend of pci_default_resume and is not supposed
893 * to be called by normal code, write proper resume handler and use it instead.
894 */
895 int pci_reenable_device(struct pci_dev *dev)
896 {
897 if (pci_is_enabled(dev))
898 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
899 return 0;
900 }
901
902 static int __pci_enable_device_flags(struct pci_dev *dev,
903 resource_size_t flags)
904 {
905 int err;
906 int i, bars = 0;
907
908 if (atomic_add_return(1, &dev->enable_cnt) > 1)
909 return 0; /* already enabled */
910
911 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
912 if (dev->resource[i].flags & flags)
913 bars |= (1 << i);
914
915 err = do_pci_enable_device(dev, bars);
916 if (err < 0)
917 atomic_dec(&dev->enable_cnt);
918 return err;
919 }
920
921 /**
922 * pci_enable_device_io - Initialize a device for use with IO space
923 * @dev: PCI device to be initialized
924 *
925 * Initialize device before it's used by a driver. Ask low-level code
926 * to enable I/O resources. Wake up the device if it was suspended.
927 * Beware, this function can fail.
928 */
929 int pci_enable_device_io(struct pci_dev *dev)
930 {
931 return __pci_enable_device_flags(dev, IORESOURCE_IO);
932 }
933
934 /**
935 * pci_enable_device_mem - Initialize a device for use with Memory space
936 * @dev: PCI device to be initialized
937 *
938 * Initialize device before it's used by a driver. Ask low-level code
939 * to enable Memory resources. Wake up the device if it was suspended.
940 * Beware, this function can fail.
941 */
942 int pci_enable_device_mem(struct pci_dev *dev)
943 {
944 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
945 }
946
947 /**
948 * pci_enable_device - Initialize device before it's used by a driver.
949 * @dev: PCI device to be initialized
950 *
951 * Initialize device before it's used by a driver. Ask low-level code
952 * to enable I/O and memory. Wake up the device if it was suspended.
953 * Beware, this function can fail.
954 *
955 * Note we don't actually enable the device many times if we call
956 * this function repeatedly (we just increment the count).
957 */
958 int pci_enable_device(struct pci_dev *dev)
959 {
960 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
961 }
962
963 /*
964 * Managed PCI resources. This manages device on/off, intx/msi/msix
965 * on/off and BAR regions. pci_dev itself records msi/msix status, so
966 * there's no need to track it separately. pci_devres is initialized
967 * when a device is enabled using managed PCI device enable interface.
968 */
969 struct pci_devres {
970 unsigned int enabled:1;
971 unsigned int pinned:1;
972 unsigned int orig_intx:1;
973 unsigned int restore_intx:1;
974 u32 region_mask;
975 };
976
977 static void pcim_release(struct device *gendev, void *res)
978 {
979 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
980 struct pci_devres *this = res;
981 int i;
982
983 if (dev->msi_enabled)
984 pci_disable_msi(dev);
985 if (dev->msix_enabled)
986 pci_disable_msix(dev);
987
988 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
989 if (this->region_mask & (1 << i))
990 pci_release_region(dev, i);
991
992 if (this->restore_intx)
993 pci_intx(dev, this->orig_intx);
994
995 if (this->enabled && !this->pinned)
996 pci_disable_device(dev);
997 }
998
999 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1000 {
1001 struct pci_devres *dr, *new_dr;
1002
1003 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1004 if (dr)
1005 return dr;
1006
1007 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1008 if (!new_dr)
1009 return NULL;
1010 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1011 }
1012
1013 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1014 {
1015 if (pci_is_managed(pdev))
1016 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1017 return NULL;
1018 }
1019
1020 /**
1021 * pcim_enable_device - Managed pci_enable_device()
1022 * @pdev: PCI device to be initialized
1023 *
1024 * Managed pci_enable_device().
1025 */
1026 int pcim_enable_device(struct pci_dev *pdev)
1027 {
1028 struct pci_devres *dr;
1029 int rc;
1030
1031 dr = get_pci_dr(pdev);
1032 if (unlikely(!dr))
1033 return -ENOMEM;
1034 if (dr->enabled)
1035 return 0;
1036
1037 rc = pci_enable_device(pdev);
1038 if (!rc) {
1039 pdev->is_managed = 1;
1040 dr->enabled = 1;
1041 }
1042 return rc;
1043 }
1044
1045 /**
1046 * pcim_pin_device - Pin managed PCI device
1047 * @pdev: PCI device to pin
1048 *
1049 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1050 * driver detach. @pdev must have been enabled with
1051 * pcim_enable_device().
1052 */
1053 void pcim_pin_device(struct pci_dev *pdev)
1054 {
1055 struct pci_devres *dr;
1056
1057 dr = find_pci_dr(pdev);
1058 WARN_ON(!dr || !dr->enabled);
1059 if (dr)
1060 dr->pinned = 1;
1061 }
1062
1063 /**
1064 * pcibios_disable_device - disable arch specific PCI resources for device dev
1065 * @dev: the PCI device to disable
1066 *
1067 * Disables architecture specific PCI resources for the device. This
1068 * is the default implementation. Architecture implementations can
1069 * override this.
1070 */
1071 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1072
1073 static void do_pci_disable_device(struct pci_dev *dev)
1074 {
1075 u16 pci_command;
1076
1077 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1078 if (pci_command & PCI_COMMAND_MASTER) {
1079 pci_command &= ~PCI_COMMAND_MASTER;
1080 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1081 }
1082
1083 pcibios_disable_device(dev);
1084 }
1085
1086 /**
1087 * pci_disable_enabled_device - Disable device without updating enable_cnt
1088 * @dev: PCI device to disable
1089 *
1090 * NOTE: This function is a backend of PCI power management routines and is
1091 * not supposed to be called drivers.
1092 */
1093 void pci_disable_enabled_device(struct pci_dev *dev)
1094 {
1095 if (pci_is_enabled(dev))
1096 do_pci_disable_device(dev);
1097 }
1098
1099 /**
1100 * pci_disable_device - Disable PCI device after use
1101 * @dev: PCI device to be disabled
1102 *
1103 * Signal to the system that the PCI device is not in use by the system
1104 * anymore. This only involves disabling PCI bus-mastering, if active.
1105 *
1106 * Note we don't actually disable the device until all callers of
1107 * pci_device_enable() have called pci_device_disable().
1108 */
1109 void
1110 pci_disable_device(struct pci_dev *dev)
1111 {
1112 struct pci_devres *dr;
1113
1114 dr = find_pci_dr(dev);
1115 if (dr)
1116 dr->enabled = 0;
1117
1118 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1119 return;
1120
1121 do_pci_disable_device(dev);
1122
1123 dev->is_busmaster = 0;
1124 }
1125
1126 /**
1127 * pcibios_set_pcie_reset_state - set reset state for device dev
1128 * @dev: the PCI-E device reset
1129 * @state: Reset state to enter into
1130 *
1131 *
1132 * Sets the PCI-E reset state for the device. This is the default
1133 * implementation. Architecture implementations can override this.
1134 */
1135 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1136 enum pcie_reset_state state)
1137 {
1138 return -EINVAL;
1139 }
1140
1141 /**
1142 * pci_set_pcie_reset_state - set reset state for device dev
1143 * @dev: the PCI-E device reset
1144 * @state: Reset state to enter into
1145 *
1146 *
1147 * Sets the PCI reset state for the device.
1148 */
1149 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1150 {
1151 return pcibios_set_pcie_reset_state(dev, state);
1152 }
1153
1154 /**
1155 * pci_pme_capable - check the capability of PCI device to generate PME#
1156 * @dev: PCI device to handle.
1157 * @state: PCI state from which device will issue PME#.
1158 */
1159 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1160 {
1161 if (!dev->pm_cap)
1162 return false;
1163
1164 return !!(dev->pme_support & (1 << state));
1165 }
1166
1167 /**
1168 * pci_pme_active - enable or disable PCI device's PME# function
1169 * @dev: PCI device to handle.
1170 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1171 *
1172 * The caller must verify that the device is capable of generating PME# before
1173 * calling this function with @enable equal to 'true'.
1174 */
1175 void pci_pme_active(struct pci_dev *dev, bool enable)
1176 {
1177 u16 pmcsr;
1178
1179 if (!dev->pm_cap)
1180 return;
1181
1182 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1183 /* Clear PME_Status by writing 1 to it and enable PME# */
1184 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1185 if (!enable)
1186 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1187
1188 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1189
1190 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1191 enable ? "enabled" : "disabled");
1192 }
1193
1194 /**
1195 * pci_enable_wake - enable PCI device as wakeup event source
1196 * @dev: PCI device affected
1197 * @state: PCI state from which device will issue wakeup events
1198 * @enable: True to enable event generation; false to disable
1199 *
1200 * This enables the device as a wakeup event source, or disables it.
1201 * When such events involves platform-specific hooks, those hooks are
1202 * called automatically by this routine.
1203 *
1204 * Devices with legacy power management (no standard PCI PM capabilities)
1205 * always require such platform hooks.
1206 *
1207 * RETURN VALUE:
1208 * 0 is returned on success
1209 * -EINVAL is returned if device is not supposed to wake up the system
1210 * Error code depending on the platform is returned if both the platform and
1211 * the native mechanism fail to enable the generation of wake-up events
1212 */
1213 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1214 {
1215 int error = 0;
1216 bool pme_done = false;
1217
1218 if (enable && !device_may_wakeup(&dev->dev))
1219 return -EINVAL;
1220
1221 /*
1222 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1223 * Anderson we should be doing PME# wake enable followed by ACPI wake
1224 * enable. To disable wake-up we call the platform first, for symmetry.
1225 */
1226
1227 if (!enable && platform_pci_can_wakeup(dev))
1228 error = platform_pci_sleep_wake(dev, false);
1229
1230 if (!enable || pci_pme_capable(dev, state)) {
1231 pci_pme_active(dev, enable);
1232 pme_done = true;
1233 }
1234
1235 if (enable && platform_pci_can_wakeup(dev))
1236 error = platform_pci_sleep_wake(dev, true);
1237
1238 return pme_done ? 0 : error;
1239 }
1240
1241 /**
1242 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1243 * @dev: PCI device to prepare
1244 * @enable: True to enable wake-up event generation; false to disable
1245 *
1246 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1247 * and this function allows them to set that up cleanly - pci_enable_wake()
1248 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1249 * ordering constraints.
1250 *
1251 * This function only returns error code if the device is not capable of
1252 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1253 * enable wake-up power for it.
1254 */
1255 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1256 {
1257 return pci_pme_capable(dev, PCI_D3cold) ?
1258 pci_enable_wake(dev, PCI_D3cold, enable) :
1259 pci_enable_wake(dev, PCI_D3hot, enable);
1260 }
1261
1262 /**
1263 * pci_target_state - find an appropriate low power state for a given PCI dev
1264 * @dev: PCI device
1265 *
1266 * Use underlying platform code to find a supported low power state for @dev.
1267 * If the platform can't manage @dev, return the deepest state from which it
1268 * can generate wake events, based on any available PME info.
1269 */
1270 pci_power_t pci_target_state(struct pci_dev *dev)
1271 {
1272 pci_power_t target_state = PCI_D3hot;
1273
1274 if (platform_pci_power_manageable(dev)) {
1275 /*
1276 * Call the platform to choose the target state of the device
1277 * and enable wake-up from this state if supported.
1278 */
1279 pci_power_t state = platform_pci_choose_state(dev);
1280
1281 switch (state) {
1282 case PCI_POWER_ERROR:
1283 case PCI_UNKNOWN:
1284 break;
1285 case PCI_D1:
1286 case PCI_D2:
1287 if (pci_no_d1d2(dev))
1288 break;
1289 default:
1290 target_state = state;
1291 }
1292 } else if (!dev->pm_cap) {
1293 target_state = PCI_D0;
1294 } else if (device_may_wakeup(&dev->dev)) {
1295 /*
1296 * Find the deepest state from which the device can generate
1297 * wake-up events, make it the target state and enable device
1298 * to generate PME#.
1299 */
1300 if (dev->pme_support) {
1301 while (target_state
1302 && !(dev->pme_support & (1 << target_state)))
1303 target_state--;
1304 }
1305 }
1306
1307 return target_state;
1308 }
1309
1310 /**
1311 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1312 * @dev: Device to handle.
1313 *
1314 * Choose the power state appropriate for the device depending on whether
1315 * it can wake up the system and/or is power manageable by the platform
1316 * (PCI_D3hot is the default) and put the device into that state.
1317 */
1318 int pci_prepare_to_sleep(struct pci_dev *dev)
1319 {
1320 pci_power_t target_state = pci_target_state(dev);
1321 int error;
1322
1323 if (target_state == PCI_POWER_ERROR)
1324 return -EIO;
1325
1326 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1327
1328 error = pci_set_power_state(dev, target_state);
1329
1330 if (error)
1331 pci_enable_wake(dev, target_state, false);
1332
1333 return error;
1334 }
1335
1336 /**
1337 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1338 * @dev: Device to handle.
1339 *
1340 * Disable device's sytem wake-up capability and put it into D0.
1341 */
1342 int pci_back_from_sleep(struct pci_dev *dev)
1343 {
1344 pci_enable_wake(dev, PCI_D0, false);
1345 return pci_set_power_state(dev, PCI_D0);
1346 }
1347
1348 /**
1349 * pci_pm_init - Initialize PM functions of given PCI device
1350 * @dev: PCI device to handle.
1351 */
1352 void pci_pm_init(struct pci_dev *dev)
1353 {
1354 int pm;
1355 u16 pmc;
1356
1357 dev->pm_cap = 0;
1358
1359 /* find PCI PM capability in list */
1360 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1361 if (!pm)
1362 return;
1363 /* Check device's ability to generate PME# */
1364 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1365
1366 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1367 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1368 pmc & PCI_PM_CAP_VER_MASK);
1369 return;
1370 }
1371
1372 dev->pm_cap = pm;
1373
1374 dev->d1_support = false;
1375 dev->d2_support = false;
1376 if (!pci_no_d1d2(dev)) {
1377 if (pmc & PCI_PM_CAP_D1)
1378 dev->d1_support = true;
1379 if (pmc & PCI_PM_CAP_D2)
1380 dev->d2_support = true;
1381
1382 if (dev->d1_support || dev->d2_support)
1383 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1384 dev->d1_support ? " D1" : "",
1385 dev->d2_support ? " D2" : "");
1386 }
1387
1388 pmc &= PCI_PM_CAP_PME_MASK;
1389 if (pmc) {
1390 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1391 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1392 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1393 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1394 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1395 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1396 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1397 /*
1398 * Make device's PM flags reflect the wake-up capability, but
1399 * let the user space enable it to wake up the system as needed.
1400 */
1401 device_set_wakeup_capable(&dev->dev, true);
1402 device_set_wakeup_enable(&dev->dev, false);
1403 /* Disable the PME# generation functionality */
1404 pci_pme_active(dev, false);
1405 } else {
1406 dev->pme_support = 0;
1407 }
1408 }
1409
1410 /**
1411 * platform_pci_wakeup_init - init platform wakeup if present
1412 * @dev: PCI device
1413 *
1414 * Some devices don't have PCI PM caps but can still generate wakeup
1415 * events through platform methods (like ACPI events). If @dev supports
1416 * platform wakeup events, set the device flag to indicate as much. This
1417 * may be redundant if the device also supports PCI PM caps, but double
1418 * initialization should be safe in that case.
1419 */
1420 void platform_pci_wakeup_init(struct pci_dev *dev)
1421 {
1422 if (!platform_pci_can_wakeup(dev))
1423 return;
1424
1425 device_set_wakeup_capable(&dev->dev, true);
1426 device_set_wakeup_enable(&dev->dev, false);
1427 platform_pci_sleep_wake(dev, false);
1428 }
1429
1430 /**
1431 * pci_add_save_buffer - allocate buffer for saving given capability registers
1432 * @dev: the PCI device
1433 * @cap: the capability to allocate the buffer for
1434 * @size: requested size of the buffer
1435 */
1436 static int pci_add_cap_save_buffer(
1437 struct pci_dev *dev, char cap, unsigned int size)
1438 {
1439 int pos;
1440 struct pci_cap_saved_state *save_state;
1441
1442 pos = pci_find_capability(dev, cap);
1443 if (pos <= 0)
1444 return 0;
1445
1446 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1447 if (!save_state)
1448 return -ENOMEM;
1449
1450 save_state->cap_nr = cap;
1451 pci_add_saved_cap(dev, save_state);
1452
1453 return 0;
1454 }
1455
1456 /**
1457 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1458 * @dev: the PCI device
1459 */
1460 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1461 {
1462 int error;
1463
1464 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1465 PCI_EXP_SAVE_REGS * sizeof(u16));
1466 if (error)
1467 dev_err(&dev->dev,
1468 "unable to preallocate PCI Express save buffer\n");
1469
1470 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1471 if (error)
1472 dev_err(&dev->dev,
1473 "unable to preallocate PCI-X save buffer\n");
1474 }
1475
1476 /**
1477 * pci_enable_ari - enable ARI forwarding if hardware support it
1478 * @dev: the PCI device
1479 */
1480 void pci_enable_ari(struct pci_dev *dev)
1481 {
1482 int pos;
1483 u32 cap;
1484 u16 ctrl;
1485 struct pci_dev *bridge;
1486
1487 if (!dev->is_pcie || dev->devfn)
1488 return;
1489
1490 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1491 if (!pos)
1492 return;
1493
1494 bridge = dev->bus->self;
1495 if (!bridge || !bridge->is_pcie)
1496 return;
1497
1498 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1499 if (!pos)
1500 return;
1501
1502 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1503 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1504 return;
1505
1506 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1507 ctrl |= PCI_EXP_DEVCTL2_ARI;
1508 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1509
1510 bridge->ari_enabled = 1;
1511 }
1512
1513 /**
1514 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1515 * @dev: the PCI device
1516 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1517 *
1518 * Perform INTx swizzling for a device behind one level of bridge. This is
1519 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1520 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1521 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1522 * the PCI Express Base Specification, Revision 2.1)
1523 */
1524 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1525 {
1526 int slot;
1527
1528 if (pci_ari_enabled(dev->bus))
1529 slot = 0;
1530 else
1531 slot = PCI_SLOT(dev->devfn);
1532
1533 return (((pin - 1) + slot) % 4) + 1;
1534 }
1535
1536 int
1537 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1538 {
1539 u8 pin;
1540
1541 pin = dev->pin;
1542 if (!pin)
1543 return -1;
1544
1545 while (!pci_is_root_bus(dev->bus)) {
1546 pin = pci_swizzle_interrupt_pin(dev, pin);
1547 dev = dev->bus->self;
1548 }
1549 *bridge = dev;
1550 return pin;
1551 }
1552
1553 /**
1554 * pci_common_swizzle - swizzle INTx all the way to root bridge
1555 * @dev: the PCI device
1556 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1557 *
1558 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1559 * bridges all the way up to a PCI root bus.
1560 */
1561 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1562 {
1563 u8 pin = *pinp;
1564
1565 while (!pci_is_root_bus(dev->bus)) {
1566 pin = pci_swizzle_interrupt_pin(dev, pin);
1567 dev = dev->bus->self;
1568 }
1569 *pinp = pin;
1570 return PCI_SLOT(dev->devfn);
1571 }
1572
1573 /**
1574 * pci_release_region - Release a PCI bar
1575 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1576 * @bar: BAR to release
1577 *
1578 * Releases the PCI I/O and memory resources previously reserved by a
1579 * successful call to pci_request_region. Call this function only
1580 * after all use of the PCI regions has ceased.
1581 */
1582 void pci_release_region(struct pci_dev *pdev, int bar)
1583 {
1584 struct pci_devres *dr;
1585
1586 if (pci_resource_len(pdev, bar) == 0)
1587 return;
1588 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1589 release_region(pci_resource_start(pdev, bar),
1590 pci_resource_len(pdev, bar));
1591 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1592 release_mem_region(pci_resource_start(pdev, bar),
1593 pci_resource_len(pdev, bar));
1594
1595 dr = find_pci_dr(pdev);
1596 if (dr)
1597 dr->region_mask &= ~(1 << bar);
1598 }
1599
1600 /**
1601 * __pci_request_region - Reserved PCI I/O and memory resource
1602 * @pdev: PCI device whose resources are to be reserved
1603 * @bar: BAR to be reserved
1604 * @res_name: Name to be associated with resource.
1605 * @exclusive: whether the region access is exclusive or not
1606 *
1607 * Mark the PCI region associated with PCI device @pdev BR @bar as
1608 * being reserved by owner @res_name. Do not access any
1609 * address inside the PCI regions unless this call returns
1610 * successfully.
1611 *
1612 * If @exclusive is set, then the region is marked so that userspace
1613 * is explicitly not allowed to map the resource via /dev/mem or
1614 * sysfs MMIO access.
1615 *
1616 * Returns 0 on success, or %EBUSY on error. A warning
1617 * message is also printed on failure.
1618 */
1619 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1620 int exclusive)
1621 {
1622 struct pci_devres *dr;
1623
1624 if (pci_resource_len(pdev, bar) == 0)
1625 return 0;
1626
1627 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1628 if (!request_region(pci_resource_start(pdev, bar),
1629 pci_resource_len(pdev, bar), res_name))
1630 goto err_out;
1631 }
1632 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1633 if (!__request_mem_region(pci_resource_start(pdev, bar),
1634 pci_resource_len(pdev, bar), res_name,
1635 exclusive))
1636 goto err_out;
1637 }
1638
1639 dr = find_pci_dr(pdev);
1640 if (dr)
1641 dr->region_mask |= 1 << bar;
1642
1643 return 0;
1644
1645 err_out:
1646 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1647 bar,
1648 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1649 &pdev->resource[bar]);
1650 return -EBUSY;
1651 }
1652
1653 /**
1654 * pci_request_region - Reserve PCI I/O and memory resource
1655 * @pdev: PCI device whose resources are to be reserved
1656 * @bar: BAR to be reserved
1657 * @res_name: Name to be associated with resource
1658 *
1659 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1660 * being reserved by owner @res_name. Do not access any
1661 * address inside the PCI regions unless this call returns
1662 * successfully.
1663 *
1664 * Returns 0 on success, or %EBUSY on error. A warning
1665 * message is also printed on failure.
1666 */
1667 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1668 {
1669 return __pci_request_region(pdev, bar, res_name, 0);
1670 }
1671
1672 /**
1673 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1674 * @pdev: PCI device whose resources are to be reserved
1675 * @bar: BAR to be reserved
1676 * @res_name: Name to be associated with resource.
1677 *
1678 * Mark the PCI region associated with PCI device @pdev BR @bar as
1679 * being reserved by owner @res_name. Do not access any
1680 * address inside the PCI regions unless this call returns
1681 * successfully.
1682 *
1683 * Returns 0 on success, or %EBUSY on error. A warning
1684 * message is also printed on failure.
1685 *
1686 * The key difference that _exclusive makes it that userspace is
1687 * explicitly not allowed to map the resource via /dev/mem or
1688 * sysfs.
1689 */
1690 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1691 {
1692 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1693 }
1694 /**
1695 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1696 * @pdev: PCI device whose resources were previously reserved
1697 * @bars: Bitmask of BARs to be released
1698 *
1699 * Release selected PCI I/O and memory resources previously reserved.
1700 * Call this function only after all use of the PCI regions has ceased.
1701 */
1702 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1703 {
1704 int i;
1705
1706 for (i = 0; i < 6; i++)
1707 if (bars & (1 << i))
1708 pci_release_region(pdev, i);
1709 }
1710
1711 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1712 const char *res_name, int excl)
1713 {
1714 int i;
1715
1716 for (i = 0; i < 6; i++)
1717 if (bars & (1 << i))
1718 if (__pci_request_region(pdev, i, res_name, excl))
1719 goto err_out;
1720 return 0;
1721
1722 err_out:
1723 while(--i >= 0)
1724 if (bars & (1 << i))
1725 pci_release_region(pdev, i);
1726
1727 return -EBUSY;
1728 }
1729
1730
1731 /**
1732 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1733 * @pdev: PCI device whose resources are to be reserved
1734 * @bars: Bitmask of BARs to be requested
1735 * @res_name: Name to be associated with resource
1736 */
1737 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1738 const char *res_name)
1739 {
1740 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1741 }
1742
1743 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1744 int bars, const char *res_name)
1745 {
1746 return __pci_request_selected_regions(pdev, bars, res_name,
1747 IORESOURCE_EXCLUSIVE);
1748 }
1749
1750 /**
1751 * pci_release_regions - Release reserved PCI I/O and memory resources
1752 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1753 *
1754 * Releases all PCI I/O and memory resources previously reserved by a
1755 * successful call to pci_request_regions. Call this function only
1756 * after all use of the PCI regions has ceased.
1757 */
1758
1759 void pci_release_regions(struct pci_dev *pdev)
1760 {
1761 pci_release_selected_regions(pdev, (1 << 6) - 1);
1762 }
1763
1764 /**
1765 * pci_request_regions - Reserved PCI I/O and memory resources
1766 * @pdev: PCI device whose resources are to be reserved
1767 * @res_name: Name to be associated with resource.
1768 *
1769 * Mark all PCI regions associated with PCI device @pdev as
1770 * being reserved by owner @res_name. Do not access any
1771 * address inside the PCI regions unless this call returns
1772 * successfully.
1773 *
1774 * Returns 0 on success, or %EBUSY on error. A warning
1775 * message is also printed on failure.
1776 */
1777 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1778 {
1779 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1780 }
1781
1782 /**
1783 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1784 * @pdev: PCI device whose resources are to be reserved
1785 * @res_name: Name to be associated with resource.
1786 *
1787 * Mark all PCI regions associated with PCI device @pdev as
1788 * being reserved by owner @res_name. Do not access any
1789 * address inside the PCI regions unless this call returns
1790 * successfully.
1791 *
1792 * pci_request_regions_exclusive() will mark the region so that
1793 * /dev/mem and the sysfs MMIO access will not be allowed.
1794 *
1795 * Returns 0 on success, or %EBUSY on error. A warning
1796 * message is also printed on failure.
1797 */
1798 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1799 {
1800 return pci_request_selected_regions_exclusive(pdev,
1801 ((1 << 6) - 1), res_name);
1802 }
1803
1804 static void __pci_set_master(struct pci_dev *dev, bool enable)
1805 {
1806 u16 old_cmd, cmd;
1807
1808 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1809 if (enable)
1810 cmd = old_cmd | PCI_COMMAND_MASTER;
1811 else
1812 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1813 if (cmd != old_cmd) {
1814 dev_dbg(&dev->dev, "%s bus mastering\n",
1815 enable ? "enabling" : "disabling");
1816 pci_write_config_word(dev, PCI_COMMAND, cmd);
1817 }
1818 dev->is_busmaster = enable;
1819 }
1820
1821 /**
1822 * pci_set_master - enables bus-mastering for device dev
1823 * @dev: the PCI device to enable
1824 *
1825 * Enables bus-mastering on the device and calls pcibios_set_master()
1826 * to do the needed arch specific settings.
1827 */
1828 void pci_set_master(struct pci_dev *dev)
1829 {
1830 __pci_set_master(dev, true);
1831 pcibios_set_master(dev);
1832 }
1833
1834 /**
1835 * pci_clear_master - disables bus-mastering for device dev
1836 * @dev: the PCI device to disable
1837 */
1838 void pci_clear_master(struct pci_dev *dev)
1839 {
1840 __pci_set_master(dev, false);
1841 }
1842
1843 #ifdef PCI_DISABLE_MWI
1844 int pci_set_mwi(struct pci_dev *dev)
1845 {
1846 return 0;
1847 }
1848
1849 int pci_try_set_mwi(struct pci_dev *dev)
1850 {
1851 return 0;
1852 }
1853
1854 void pci_clear_mwi(struct pci_dev *dev)
1855 {
1856 }
1857
1858 #else
1859
1860 #ifndef PCI_CACHE_LINE_BYTES
1861 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1862 #endif
1863
1864 /* This can be overridden by arch code. */
1865 /* Don't forget this is measured in 32-bit words, not bytes */
1866 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1867
1868 /**
1869 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1870 * @dev: the PCI device for which MWI is to be enabled
1871 *
1872 * Helper function for pci_set_mwi.
1873 * Originally copied from drivers/net/acenic.c.
1874 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1875 *
1876 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1877 */
1878 static int
1879 pci_set_cacheline_size(struct pci_dev *dev)
1880 {
1881 u8 cacheline_size;
1882
1883 if (!pci_cache_line_size)
1884 return -EINVAL; /* The system doesn't support MWI. */
1885
1886 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1887 equal to or multiple of the right value. */
1888 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1889 if (cacheline_size >= pci_cache_line_size &&
1890 (cacheline_size % pci_cache_line_size) == 0)
1891 return 0;
1892
1893 /* Write the correct value. */
1894 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1895 /* Read it back. */
1896 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1897 if (cacheline_size == pci_cache_line_size)
1898 return 0;
1899
1900 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1901 "supported\n", pci_cache_line_size << 2);
1902
1903 return -EINVAL;
1904 }
1905
1906 /**
1907 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1908 * @dev: the PCI device for which MWI is enabled
1909 *
1910 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1911 *
1912 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1913 */
1914 int
1915 pci_set_mwi(struct pci_dev *dev)
1916 {
1917 int rc;
1918 u16 cmd;
1919
1920 rc = pci_set_cacheline_size(dev);
1921 if (rc)
1922 return rc;
1923
1924 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1925 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1926 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1927 cmd |= PCI_COMMAND_INVALIDATE;
1928 pci_write_config_word(dev, PCI_COMMAND, cmd);
1929 }
1930
1931 return 0;
1932 }
1933
1934 /**
1935 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1936 * @dev: the PCI device for which MWI is enabled
1937 *
1938 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1939 * Callers are not required to check the return value.
1940 *
1941 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1942 */
1943 int pci_try_set_mwi(struct pci_dev *dev)
1944 {
1945 int rc = pci_set_mwi(dev);
1946 return rc;
1947 }
1948
1949 /**
1950 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1951 * @dev: the PCI device to disable
1952 *
1953 * Disables PCI Memory-Write-Invalidate transaction on the device
1954 */
1955 void
1956 pci_clear_mwi(struct pci_dev *dev)
1957 {
1958 u16 cmd;
1959
1960 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1961 if (cmd & PCI_COMMAND_INVALIDATE) {
1962 cmd &= ~PCI_COMMAND_INVALIDATE;
1963 pci_write_config_word(dev, PCI_COMMAND, cmd);
1964 }
1965 }
1966 #endif /* ! PCI_DISABLE_MWI */
1967
1968 /**
1969 * pci_intx - enables/disables PCI INTx for device dev
1970 * @pdev: the PCI device to operate on
1971 * @enable: boolean: whether to enable or disable PCI INTx
1972 *
1973 * Enables/disables PCI INTx for device dev
1974 */
1975 void
1976 pci_intx(struct pci_dev *pdev, int enable)
1977 {
1978 u16 pci_command, new;
1979
1980 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1981
1982 if (enable) {
1983 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1984 } else {
1985 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1986 }
1987
1988 if (new != pci_command) {
1989 struct pci_devres *dr;
1990
1991 pci_write_config_word(pdev, PCI_COMMAND, new);
1992
1993 dr = find_pci_dr(pdev);
1994 if (dr && !dr->restore_intx) {
1995 dr->restore_intx = 1;
1996 dr->orig_intx = !enable;
1997 }
1998 }
1999 }
2000
2001 /**
2002 * pci_msi_off - disables any msi or msix capabilities
2003 * @dev: the PCI device to operate on
2004 *
2005 * If you want to use msi see pci_enable_msi and friends.
2006 * This is a lower level primitive that allows us to disable
2007 * msi operation at the device level.
2008 */
2009 void pci_msi_off(struct pci_dev *dev)
2010 {
2011 int pos;
2012 u16 control;
2013
2014 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2015 if (pos) {
2016 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2017 control &= ~PCI_MSI_FLAGS_ENABLE;
2018 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2019 }
2020 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2021 if (pos) {
2022 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2023 control &= ~PCI_MSIX_FLAGS_ENABLE;
2024 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2025 }
2026 }
2027
2028 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2029 /*
2030 * These can be overridden by arch-specific implementations
2031 */
2032 int
2033 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2034 {
2035 if (!pci_dma_supported(dev, mask))
2036 return -EIO;
2037
2038 dev->dma_mask = mask;
2039
2040 return 0;
2041 }
2042
2043 int
2044 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2045 {
2046 if (!pci_dma_supported(dev, mask))
2047 return -EIO;
2048
2049 dev->dev.coherent_dma_mask = mask;
2050
2051 return 0;
2052 }
2053 #endif
2054
2055 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2056 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2057 {
2058 return dma_set_max_seg_size(&dev->dev, size);
2059 }
2060 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2061 #endif
2062
2063 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2064 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2065 {
2066 return dma_set_seg_boundary(&dev->dev, mask);
2067 }
2068 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2069 #endif
2070
2071 static int pcie_flr(struct pci_dev *dev, int probe)
2072 {
2073 int i;
2074 int pos;
2075 u32 cap;
2076 u16 status;
2077
2078 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2079 if (!pos)
2080 return -ENOTTY;
2081
2082 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2083 if (!(cap & PCI_EXP_DEVCAP_FLR))
2084 return -ENOTTY;
2085
2086 if (probe)
2087 return 0;
2088
2089 /* Wait for Transaction Pending bit clean */
2090 for (i = 0; i < 4; i++) {
2091 if (i)
2092 msleep((1 << (i - 1)) * 100);
2093
2094 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2095 if (!(status & PCI_EXP_DEVSTA_TRPND))
2096 goto clear;
2097 }
2098
2099 dev_err(&dev->dev, "transaction is not cleared; "
2100 "proceeding with reset anyway\n");
2101
2102 clear:
2103 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2104 PCI_EXP_DEVCTL_BCR_FLR);
2105 msleep(100);
2106
2107 return 0;
2108 }
2109
2110 static int pci_af_flr(struct pci_dev *dev, int probe)
2111 {
2112 int i;
2113 int pos;
2114 u8 cap;
2115 u8 status;
2116
2117 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2118 if (!pos)
2119 return -ENOTTY;
2120
2121 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2122 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2123 return -ENOTTY;
2124
2125 if (probe)
2126 return 0;
2127
2128 /* Wait for Transaction Pending bit clean */
2129 for (i = 0; i < 4; i++) {
2130 if (i)
2131 msleep((1 << (i - 1)) * 100);
2132
2133 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2134 if (!(status & PCI_AF_STATUS_TP))
2135 goto clear;
2136 }
2137
2138 dev_err(&dev->dev, "transaction is not cleared; "
2139 "proceeding with reset anyway\n");
2140
2141 clear:
2142 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2143 msleep(100);
2144
2145 return 0;
2146 }
2147
2148 static int pci_pm_reset(struct pci_dev *dev, int probe)
2149 {
2150 u16 csr;
2151
2152 if (!dev->pm_cap)
2153 return -ENOTTY;
2154
2155 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2156 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2157 return -ENOTTY;
2158
2159 if (probe)
2160 return 0;
2161
2162 if (dev->current_state != PCI_D0)
2163 return -EINVAL;
2164
2165 csr &= ~PCI_PM_CTRL_STATE_MASK;
2166 csr |= PCI_D3hot;
2167 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2168 msleep(pci_pm_d3_delay);
2169
2170 csr &= ~PCI_PM_CTRL_STATE_MASK;
2171 csr |= PCI_D0;
2172 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2173 msleep(pci_pm_d3_delay);
2174
2175 return 0;
2176 }
2177
2178 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2179 {
2180 u16 ctrl;
2181 struct pci_dev *pdev;
2182
2183 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2184 return -ENOTTY;
2185
2186 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2187 if (pdev != dev)
2188 return -ENOTTY;
2189
2190 if (probe)
2191 return 0;
2192
2193 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2194 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2195 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2196 msleep(100);
2197
2198 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2199 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2200 msleep(100);
2201
2202 return 0;
2203 }
2204
2205 static int pci_dev_reset(struct pci_dev *dev, int probe)
2206 {
2207 int rc;
2208
2209 might_sleep();
2210
2211 if (!probe) {
2212 pci_block_user_cfg_access(dev);
2213 /* block PM suspend, driver probe, etc. */
2214 down(&dev->dev.sem);
2215 }
2216
2217 rc = pcie_flr(dev, probe);
2218 if (rc != -ENOTTY)
2219 goto done;
2220
2221 rc = pci_af_flr(dev, probe);
2222 if (rc != -ENOTTY)
2223 goto done;
2224
2225 rc = pci_pm_reset(dev, probe);
2226 if (rc != -ENOTTY)
2227 goto done;
2228
2229 rc = pci_parent_bus_reset(dev, probe);
2230 done:
2231 if (!probe) {
2232 up(&dev->dev.sem);
2233 pci_unblock_user_cfg_access(dev);
2234 }
2235
2236 return rc;
2237 }
2238
2239 /**
2240 * __pci_reset_function - reset a PCI device function
2241 * @dev: PCI device to reset
2242 *
2243 * Some devices allow an individual function to be reset without affecting
2244 * other functions in the same device. The PCI device must be responsive
2245 * to PCI config space in order to use this function.
2246 *
2247 * The device function is presumed to be unused when this function is called.
2248 * Resetting the device will make the contents of PCI configuration space
2249 * random, so any caller of this must be prepared to reinitialise the
2250 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2251 * etc.
2252 *
2253 * Returns 0 if the device function was successfully reset or negative if the
2254 * device doesn't support resetting a single function.
2255 */
2256 int __pci_reset_function(struct pci_dev *dev)
2257 {
2258 return pci_dev_reset(dev, 0);
2259 }
2260 EXPORT_SYMBOL_GPL(__pci_reset_function);
2261
2262 /**
2263 * pci_reset_function - quiesce and reset a PCI device function
2264 * @dev: PCI device to reset
2265 *
2266 * Some devices allow an individual function to be reset without affecting
2267 * other functions in the same device. The PCI device must be responsive
2268 * to PCI config space in order to use this function.
2269 *
2270 * This function does not just reset the PCI portion of a device, but
2271 * clears all the state associated with the device. This function differs
2272 * from __pci_reset_function in that it saves and restores device state
2273 * over the reset.
2274 *
2275 * Returns 0 if the device function was successfully reset or negative if the
2276 * device doesn't support resetting a single function.
2277 */
2278 int pci_reset_function(struct pci_dev *dev)
2279 {
2280 int rc;
2281
2282 rc = pci_dev_reset(dev, 1);
2283 if (rc)
2284 return rc;
2285
2286 pci_save_state(dev);
2287
2288 /*
2289 * both INTx and MSI are disabled after the Interrupt Disable bit
2290 * is set and the Bus Master bit is cleared.
2291 */
2292 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2293
2294 rc = pci_dev_reset(dev, 0);
2295
2296 pci_restore_state(dev);
2297
2298 return rc;
2299 }
2300 EXPORT_SYMBOL_GPL(pci_reset_function);
2301
2302 /**
2303 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2304 * @dev: PCI device to query
2305 *
2306 * Returns mmrbc: maximum designed memory read count in bytes
2307 * or appropriate error value.
2308 */
2309 int pcix_get_max_mmrbc(struct pci_dev *dev)
2310 {
2311 int err, cap;
2312 u32 stat;
2313
2314 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2315 if (!cap)
2316 return -EINVAL;
2317
2318 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2319 if (err)
2320 return -EINVAL;
2321
2322 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2323 }
2324 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2325
2326 /**
2327 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2328 * @dev: PCI device to query
2329 *
2330 * Returns mmrbc: maximum memory read count in bytes
2331 * or appropriate error value.
2332 */
2333 int pcix_get_mmrbc(struct pci_dev *dev)
2334 {
2335 int ret, cap;
2336 u32 cmd;
2337
2338 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2339 if (!cap)
2340 return -EINVAL;
2341
2342 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2343 if (!ret)
2344 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2345
2346 return ret;
2347 }
2348 EXPORT_SYMBOL(pcix_get_mmrbc);
2349
2350 /**
2351 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2352 * @dev: PCI device to query
2353 * @mmrbc: maximum memory read count in bytes
2354 * valid values are 512, 1024, 2048, 4096
2355 *
2356 * If possible sets maximum memory read byte count, some bridges have erratas
2357 * that prevent this.
2358 */
2359 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2360 {
2361 int cap, err = -EINVAL;
2362 u32 stat, cmd, v, o;
2363
2364 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2365 goto out;
2366
2367 v = ffs(mmrbc) - 10;
2368
2369 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2370 if (!cap)
2371 goto out;
2372
2373 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2374 if (err)
2375 goto out;
2376
2377 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2378 return -E2BIG;
2379
2380 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2381 if (err)
2382 goto out;
2383
2384 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2385 if (o != v) {
2386 if (v > o && dev->bus &&
2387 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2388 return -EIO;
2389
2390 cmd &= ~PCI_X_CMD_MAX_READ;
2391 cmd |= v << 2;
2392 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2393 }
2394 out:
2395 return err;
2396 }
2397 EXPORT_SYMBOL(pcix_set_mmrbc);
2398
2399 /**
2400 * pcie_get_readrq - get PCI Express read request size
2401 * @dev: PCI device to query
2402 *
2403 * Returns maximum memory read request in bytes
2404 * or appropriate error value.
2405 */
2406 int pcie_get_readrq(struct pci_dev *dev)
2407 {
2408 int ret, cap;
2409 u16 ctl;
2410
2411 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2412 if (!cap)
2413 return -EINVAL;
2414
2415 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2416 if (!ret)
2417 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2418
2419 return ret;
2420 }
2421 EXPORT_SYMBOL(pcie_get_readrq);
2422
2423 /**
2424 * pcie_set_readrq - set PCI Express maximum memory read request
2425 * @dev: PCI device to query
2426 * @rq: maximum memory read count in bytes
2427 * valid values are 128, 256, 512, 1024, 2048, 4096
2428 *
2429 * If possible sets maximum read byte count
2430 */
2431 int pcie_set_readrq(struct pci_dev *dev, int rq)
2432 {
2433 int cap, err = -EINVAL;
2434 u16 ctl, v;
2435
2436 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2437 goto out;
2438
2439 v = (ffs(rq) - 8) << 12;
2440
2441 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2442 if (!cap)
2443 goto out;
2444
2445 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2446 if (err)
2447 goto out;
2448
2449 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2450 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2451 ctl |= v;
2452 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2453 }
2454
2455 out:
2456 return err;
2457 }
2458 EXPORT_SYMBOL(pcie_set_readrq);
2459
2460 /**
2461 * pci_select_bars - Make BAR mask from the type of resource
2462 * @dev: the PCI device for which BAR mask is made
2463 * @flags: resource type mask to be selected
2464 *
2465 * This helper routine makes bar mask from the type of resource.
2466 */
2467 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2468 {
2469 int i, bars = 0;
2470 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2471 if (pci_resource_flags(dev, i) & flags)
2472 bars |= (1 << i);
2473 return bars;
2474 }
2475
2476 /**
2477 * pci_resource_bar - get position of the BAR associated with a resource
2478 * @dev: the PCI device
2479 * @resno: the resource number
2480 * @type: the BAR type to be filled in
2481 *
2482 * Returns BAR position in config space, or 0 if the BAR is invalid.
2483 */
2484 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2485 {
2486 int reg;
2487
2488 if (resno < PCI_ROM_RESOURCE) {
2489 *type = pci_bar_unknown;
2490 return PCI_BASE_ADDRESS_0 + 4 * resno;
2491 } else if (resno == PCI_ROM_RESOURCE) {
2492 *type = pci_bar_mem32;
2493 return dev->rom_base_reg;
2494 } else if (resno < PCI_BRIDGE_RESOURCES) {
2495 /* device specific resource */
2496 reg = pci_iov_resource_bar(dev, resno, type);
2497 if (reg)
2498 return reg;
2499 }
2500
2501 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2502 return 0;
2503 }
2504
2505 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2506 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2507 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2508
2509 /**
2510 * pci_specified_resource_alignment - get resource alignment specified by user.
2511 * @dev: the PCI device to get
2512 *
2513 * RETURNS: Resource alignment if it is specified.
2514 * Zero if it is not specified.
2515 */
2516 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2517 {
2518 int seg, bus, slot, func, align_order, count;
2519 resource_size_t align = 0;
2520 char *p;
2521
2522 spin_lock(&resource_alignment_lock);
2523 p = resource_alignment_param;
2524 while (*p) {
2525 count = 0;
2526 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2527 p[count] == '@') {
2528 p += count + 1;
2529 } else {
2530 align_order = -1;
2531 }
2532 if (sscanf(p, "%x:%x:%x.%x%n",
2533 &seg, &bus, &slot, &func, &count) != 4) {
2534 seg = 0;
2535 if (sscanf(p, "%x:%x.%x%n",
2536 &bus, &slot, &func, &count) != 3) {
2537 /* Invalid format */
2538 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2539 p);
2540 break;
2541 }
2542 }
2543 p += count;
2544 if (seg == pci_domain_nr(dev->bus) &&
2545 bus == dev->bus->number &&
2546 slot == PCI_SLOT(dev->devfn) &&
2547 func == PCI_FUNC(dev->devfn)) {
2548 if (align_order == -1) {
2549 align = PAGE_SIZE;
2550 } else {
2551 align = 1 << align_order;
2552 }
2553 /* Found */
2554 break;
2555 }
2556 if (*p != ';' && *p != ',') {
2557 /* End of param or invalid format */
2558 break;
2559 }
2560 p++;
2561 }
2562 spin_unlock(&resource_alignment_lock);
2563 return align;
2564 }
2565
2566 /**
2567 * pci_is_reassigndev - check if specified PCI is target device to reassign
2568 * @dev: the PCI device to check
2569 *
2570 * RETURNS: non-zero for PCI device is a target device to reassign,
2571 * or zero is not.
2572 */
2573 int pci_is_reassigndev(struct pci_dev *dev)
2574 {
2575 return (pci_specified_resource_alignment(dev) != 0);
2576 }
2577
2578 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2579 {
2580 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2581 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2582 spin_lock(&resource_alignment_lock);
2583 strncpy(resource_alignment_param, buf, count);
2584 resource_alignment_param[count] = '\0';
2585 spin_unlock(&resource_alignment_lock);
2586 return count;
2587 }
2588
2589 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2590 {
2591 size_t count;
2592 spin_lock(&resource_alignment_lock);
2593 count = snprintf(buf, size, "%s", resource_alignment_param);
2594 spin_unlock(&resource_alignment_lock);
2595 return count;
2596 }
2597
2598 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2599 {
2600 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2601 }
2602
2603 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2604 const char *buf, size_t count)
2605 {
2606 return pci_set_resource_alignment_param(buf, count);
2607 }
2608
2609 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2610 pci_resource_alignment_store);
2611
2612 static int __init pci_resource_alignment_sysfs_init(void)
2613 {
2614 return bus_create_file(&pci_bus_type,
2615 &bus_attr_resource_alignment);
2616 }
2617
2618 late_initcall(pci_resource_alignment_sysfs_init);
2619
2620 static void __devinit pci_no_domains(void)
2621 {
2622 #ifdef CONFIG_PCI_DOMAINS
2623 pci_domains_supported = 0;
2624 #endif
2625 }
2626
2627 /**
2628 * pci_ext_cfg_enabled - can we access extended PCI config space?
2629 * @dev: The PCI device of the root bridge.
2630 *
2631 * Returns 1 if we can access PCI extended config space (offsets
2632 * greater than 0xff). This is the default implementation. Architecture
2633 * implementations can override this.
2634 */
2635 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2636 {
2637 return 1;
2638 }
2639
2640 static int __devinit pci_init(void)
2641 {
2642 struct pci_dev *dev = NULL;
2643
2644 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2645 pci_fixup_device(pci_fixup_final, dev);
2646 }
2647
2648 return 0;
2649 }
2650
2651 static int __init pci_setup(char *str)
2652 {
2653 while (str) {
2654 char *k = strchr(str, ',');
2655 if (k)
2656 *k++ = 0;
2657 if (*str && (str = pcibios_setup(str)) && *str) {
2658 if (!strcmp(str, "nomsi")) {
2659 pci_no_msi();
2660 } else if (!strcmp(str, "noaer")) {
2661 pci_no_aer();
2662 } else if (!strcmp(str, "nodomains")) {
2663 pci_no_domains();
2664 } else if (!strncmp(str, "cbiosize=", 9)) {
2665 pci_cardbus_io_size = memparse(str + 9, &str);
2666 } else if (!strncmp(str, "cbmemsize=", 10)) {
2667 pci_cardbus_mem_size = memparse(str + 10, &str);
2668 } else if (!strncmp(str, "resource_alignment=", 19)) {
2669 pci_set_resource_alignment_param(str + 19,
2670 strlen(str + 19));
2671 } else if (!strncmp(str, "ecrc=", 5)) {
2672 pcie_ecrc_get_policy(str + 5);
2673 } else {
2674 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2675 str);
2676 }
2677 }
2678 str = k;
2679 }
2680 return 0;
2681 }
2682 early_param("pci", pci_setup);
2683
2684 device_initcall(pci_init);
2685
2686 EXPORT_SYMBOL(pci_reenable_device);
2687 EXPORT_SYMBOL(pci_enable_device_io);
2688 EXPORT_SYMBOL(pci_enable_device_mem);
2689 EXPORT_SYMBOL(pci_enable_device);
2690 EXPORT_SYMBOL(pcim_enable_device);
2691 EXPORT_SYMBOL(pcim_pin_device);
2692 EXPORT_SYMBOL(pci_disable_device);
2693 EXPORT_SYMBOL(pci_find_capability);
2694 EXPORT_SYMBOL(pci_bus_find_capability);
2695 EXPORT_SYMBOL(pci_release_regions);
2696 EXPORT_SYMBOL(pci_request_regions);
2697 EXPORT_SYMBOL(pci_request_regions_exclusive);
2698 EXPORT_SYMBOL(pci_release_region);
2699 EXPORT_SYMBOL(pci_request_region);
2700 EXPORT_SYMBOL(pci_request_region_exclusive);
2701 EXPORT_SYMBOL(pci_release_selected_regions);
2702 EXPORT_SYMBOL(pci_request_selected_regions);
2703 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2704 EXPORT_SYMBOL(pci_set_master);
2705 EXPORT_SYMBOL(pci_clear_master);
2706 EXPORT_SYMBOL(pci_set_mwi);
2707 EXPORT_SYMBOL(pci_try_set_mwi);
2708 EXPORT_SYMBOL(pci_clear_mwi);
2709 EXPORT_SYMBOL_GPL(pci_intx);
2710 EXPORT_SYMBOL(pci_set_dma_mask);
2711 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2712 EXPORT_SYMBOL(pci_assign_resource);
2713 EXPORT_SYMBOL(pci_find_parent_resource);
2714 EXPORT_SYMBOL(pci_select_bars);
2715
2716 EXPORT_SYMBOL(pci_set_power_state);
2717 EXPORT_SYMBOL(pci_save_state);
2718 EXPORT_SYMBOL(pci_restore_state);
2719 EXPORT_SYMBOL(pci_pme_capable);
2720 EXPORT_SYMBOL(pci_pme_active);
2721 EXPORT_SYMBOL(pci_enable_wake);
2722 EXPORT_SYMBOL(pci_wake_from_d3);
2723 EXPORT_SYMBOL(pci_target_state);
2724 EXPORT_SYMBOL(pci_prepare_to_sleep);
2725 EXPORT_SYMBOL(pci_back_from_sleep);
2726 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2727
This page took 0.086797 seconds and 5 git commands to generate.