PCI: Wake-up devices before saving config space for reset
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40
41 unsigned int pci_pm_d3_delay;
42
43 static void pci_pme_list_scan(struct work_struct *work);
44
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52 };
53
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64 }
65
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84 /*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92
93 /*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97 unsigned int pcibios_max_latency = 255;
98
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101
102 /**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 struct list_head *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each(tmp, &bus->children) {
116 n = pci_bus_max_busnr(pci_bus_b(tmp));
117 if(n > max)
118 max = n;
119 }
120 return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139
140 #define PCI_FIND_CAP_TTL 48
141
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144 {
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161 }
162
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165 {
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180 {
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198 }
199
200 /**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228 }
229
230 /**
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 int pos;
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
255 }
256
257 /**
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
262 *
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
267 */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (start)
281 pos = start;
282
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309 /**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355 }
356 /**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375 /**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
398 /**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in or where
405 * it should be allocated from.
406 */
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
409 {
410 const struct pci_bus *bus = dev->bus;
411 int i;
412 struct resource *best = NULL, *r;
413
414 pci_bus_for_each_resource(bus, r, i) {
415 if (!r)
416 continue;
417 if (res->start && !(res->start >= r->start && res->end <= r->end))
418 continue; /* Not contained */
419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 continue; /* Wrong type */
421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 return r; /* Exact match */
423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 if (r->flags & IORESOURCE_PREFETCH)
425 continue;
426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 if (!best)
428 best = r;
429 }
430 return best;
431 }
432
433 /**
434 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
435 * @dev: PCI device to have its BARs restored
436 *
437 * Restore the BAR values for a given device, so as to make it
438 * accessible by its driver.
439 */
440 static void
441 pci_restore_bars(struct pci_dev *dev)
442 {
443 int i;
444
445 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
446 pci_update_resource(dev, i);
447 }
448
449 static struct pci_platform_pm_ops *pci_platform_pm;
450
451 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
452 {
453 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
454 || !ops->sleep_wake)
455 return -EINVAL;
456 pci_platform_pm = ops;
457 return 0;
458 }
459
460 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
461 {
462 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
463 }
464
465 static inline int platform_pci_set_power_state(struct pci_dev *dev,
466 pci_power_t t)
467 {
468 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
469 }
470
471 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
472 {
473 return pci_platform_pm ?
474 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
475 }
476
477 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
478 {
479 return pci_platform_pm ?
480 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
481 }
482
483 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
484 {
485 return pci_platform_pm ?
486 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
487 }
488
489 /**
490 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
491 * given PCI device
492 * @dev: PCI device to handle.
493 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
494 *
495 * RETURN VALUE:
496 * -EINVAL if the requested state is invalid.
497 * -EIO if device does not support PCI PM or its PM capabilities register has a
498 * wrong version, or device doesn't support the requested state.
499 * 0 if device already is in the requested state.
500 * 0 if device's power state has been successfully changed.
501 */
502 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
503 {
504 u16 pmcsr;
505 bool need_restore = false;
506
507 /* Check if we're already there */
508 if (dev->current_state == state)
509 return 0;
510
511 if (!dev->pm_cap)
512 return -EIO;
513
514 if (state < PCI_D0 || state > PCI_D3hot)
515 return -EINVAL;
516
517 /* Validate current state:
518 * Can enter D0 from any state, but if we can only go deeper
519 * to sleep if we're already in a low power state
520 */
521 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
522 && dev->current_state > state) {
523 dev_err(&dev->dev, "invalid power transition "
524 "(from state %d to %d)\n", dev->current_state, state);
525 return -EINVAL;
526 }
527
528 /* check if this device supports the desired state */
529 if ((state == PCI_D1 && !dev->d1_support)
530 || (state == PCI_D2 && !dev->d2_support))
531 return -EIO;
532
533 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
534
535 /* If we're (effectively) in D3, force entire word to 0.
536 * This doesn't affect PME_Status, disables PME_En, and
537 * sets PowerState to 0.
538 */
539 switch (dev->current_state) {
540 case PCI_D0:
541 case PCI_D1:
542 case PCI_D2:
543 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
544 pmcsr |= state;
545 break;
546 case PCI_D3hot:
547 case PCI_D3cold:
548 case PCI_UNKNOWN: /* Boot-up */
549 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
550 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
551 need_restore = true;
552 /* Fall-through: force to D0 */
553 default:
554 pmcsr = 0;
555 break;
556 }
557
558 /* enter specified state */
559 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
560
561 /* Mandatory power management transition delays */
562 /* see PCI PM 1.1 5.6.1 table 18 */
563 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
564 pci_dev_d3_sleep(dev);
565 else if (state == PCI_D2 || dev->current_state == PCI_D2)
566 udelay(PCI_PM_D2_DELAY);
567
568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
570 if (dev->current_state != state && printk_ratelimit())
571 dev_info(&dev->dev, "Refused to change power state, "
572 "currently in D%d\n", dev->current_state);
573
574 /*
575 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
576 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
577 * from D3hot to D0 _may_ perform an internal reset, thereby
578 * going to "D0 Uninitialized" rather than "D0 Initialized".
579 * For example, at least some versions of the 3c905B and the
580 * 3c556B exhibit this behaviour.
581 *
582 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
583 * devices in a D3hot state at boot. Consequently, we need to
584 * restore at least the BARs so that the device will be
585 * accessible to its driver.
586 */
587 if (need_restore)
588 pci_restore_bars(dev);
589
590 if (dev->bus->self)
591 pcie_aspm_pm_state_change(dev->bus->self);
592
593 return 0;
594 }
595
596 /**
597 * pci_update_current_state - Read PCI power state of given device from its
598 * PCI PM registers and cache it
599 * @dev: PCI device to handle.
600 * @state: State to cache in case the device doesn't have the PM capability
601 */
602 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
603 {
604 if (dev->pm_cap) {
605 u16 pmcsr;
606
607 /*
608 * Configuration space is not accessible for device in
609 * D3cold, so just keep or set D3cold for safety
610 */
611 if (dev->current_state == PCI_D3cold)
612 return;
613 if (state == PCI_D3cold) {
614 dev->current_state = PCI_D3cold;
615 return;
616 }
617 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
618 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
619 } else {
620 dev->current_state = state;
621 }
622 }
623
624 /**
625 * pci_power_up - Put the given device into D0 forcibly
626 * @dev: PCI device to power up
627 */
628 void pci_power_up(struct pci_dev *dev)
629 {
630 if (platform_pci_power_manageable(dev))
631 platform_pci_set_power_state(dev, PCI_D0);
632
633 pci_raw_set_power_state(dev, PCI_D0);
634 pci_update_current_state(dev, PCI_D0);
635 }
636
637 /**
638 * pci_platform_power_transition - Use platform to change device power state
639 * @dev: PCI device to handle.
640 * @state: State to put the device into.
641 */
642 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
643 {
644 int error;
645
646 if (platform_pci_power_manageable(dev)) {
647 error = platform_pci_set_power_state(dev, state);
648 if (!error)
649 pci_update_current_state(dev, state);
650 } else
651 error = -ENODEV;
652
653 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
654 dev->current_state = PCI_D0;
655
656 return error;
657 }
658
659 /**
660 * __pci_start_power_transition - Start power transition of a PCI device
661 * @dev: PCI device to handle.
662 * @state: State to put the device into.
663 */
664 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
665 {
666 if (state == PCI_D0) {
667 pci_platform_power_transition(dev, PCI_D0);
668 /*
669 * Mandatory power management transition delays, see
670 * PCI Express Base Specification Revision 2.0 Section
671 * 6.6.1: Conventional Reset. Do not delay for
672 * devices powered on/off by corresponding bridge,
673 * because have already delayed for the bridge.
674 */
675 if (dev->runtime_d3cold) {
676 msleep(dev->d3cold_delay);
677 /*
678 * When powering on a bridge from D3cold, the
679 * whole hierarchy may be powered on into
680 * D0uninitialized state, resume them to give
681 * them a chance to suspend again
682 */
683 pci_wakeup_bus(dev->subordinate);
684 }
685 }
686 }
687
688 /**
689 * __pci_dev_set_current_state - Set current state of a PCI device
690 * @dev: Device to handle
691 * @data: pointer to state to be set
692 */
693 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
694 {
695 pci_power_t state = *(pci_power_t *)data;
696
697 dev->current_state = state;
698 return 0;
699 }
700
701 /**
702 * __pci_bus_set_current_state - Walk given bus and set current state of devices
703 * @bus: Top bus of the subtree to walk.
704 * @state: state to be set
705 */
706 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
707 {
708 if (bus)
709 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
710 }
711
712 /**
713 * __pci_complete_power_transition - Complete power transition of a PCI device
714 * @dev: PCI device to handle.
715 * @state: State to put the device into.
716 *
717 * This function should not be called directly by device drivers.
718 */
719 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
720 {
721 int ret;
722
723 if (state <= PCI_D0)
724 return -EINVAL;
725 ret = pci_platform_power_transition(dev, state);
726 /* Power off the bridge may power off the whole hierarchy */
727 if (!ret && state == PCI_D3cold)
728 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
729 return ret;
730 }
731 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
732
733 /**
734 * pci_set_power_state - Set the power state of a PCI device
735 * @dev: PCI device to handle.
736 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
737 *
738 * Transition a device to a new power state, using the platform firmware and/or
739 * the device's PCI PM registers.
740 *
741 * RETURN VALUE:
742 * -EINVAL if the requested state is invalid.
743 * -EIO if device does not support PCI PM or its PM capabilities register has a
744 * wrong version, or device doesn't support the requested state.
745 * 0 if device already is in the requested state.
746 * 0 if device's power state has been successfully changed.
747 */
748 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
749 {
750 int error;
751
752 /* bound the state we're entering */
753 if (state > PCI_D3cold)
754 state = PCI_D3cold;
755 else if (state < PCI_D0)
756 state = PCI_D0;
757 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
758 /*
759 * If the device or the parent bridge do not support PCI PM,
760 * ignore the request if we're doing anything other than putting
761 * it into D0 (which would only happen on boot).
762 */
763 return 0;
764
765 /* Check if we're already there */
766 if (dev->current_state == state)
767 return 0;
768
769 __pci_start_power_transition(dev, state);
770
771 /* This device is quirked not to be put into D3, so
772 don't put it in D3 */
773 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
774 return 0;
775
776 /*
777 * To put device in D3cold, we put device into D3hot in native
778 * way, then put device into D3cold with platform ops
779 */
780 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
781 PCI_D3hot : state);
782
783 if (!__pci_complete_power_transition(dev, state))
784 error = 0;
785 /*
786 * When aspm_policy is "powersave" this call ensures
787 * that ASPM is configured.
788 */
789 if (!error && dev->bus->self)
790 pcie_aspm_powersave_config_link(dev->bus->self);
791
792 return error;
793 }
794
795 /**
796 * pci_choose_state - Choose the power state of a PCI device
797 * @dev: PCI device to be suspended
798 * @state: target sleep state for the whole system. This is the value
799 * that is passed to suspend() function.
800 *
801 * Returns PCI power state suitable for given device and given system
802 * message.
803 */
804
805 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
806 {
807 pci_power_t ret;
808
809 if (!dev->pm_cap)
810 return PCI_D0;
811
812 ret = platform_pci_choose_state(dev);
813 if (ret != PCI_POWER_ERROR)
814 return ret;
815
816 switch (state.event) {
817 case PM_EVENT_ON:
818 return PCI_D0;
819 case PM_EVENT_FREEZE:
820 case PM_EVENT_PRETHAW:
821 /* REVISIT both freeze and pre-thaw "should" use D0 */
822 case PM_EVENT_SUSPEND:
823 case PM_EVENT_HIBERNATE:
824 return PCI_D3hot;
825 default:
826 dev_info(&dev->dev, "unrecognized suspend event %d\n",
827 state.event);
828 BUG();
829 }
830 return PCI_D0;
831 }
832
833 EXPORT_SYMBOL(pci_choose_state);
834
835 #define PCI_EXP_SAVE_REGS 7
836
837
838 static struct pci_cap_saved_state *pci_find_saved_cap(
839 struct pci_dev *pci_dev, char cap)
840 {
841 struct pci_cap_saved_state *tmp;
842
843 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
844 if (tmp->cap.cap_nr == cap)
845 return tmp;
846 }
847 return NULL;
848 }
849
850 static int pci_save_pcie_state(struct pci_dev *dev)
851 {
852 int i = 0;
853 struct pci_cap_saved_state *save_state;
854 u16 *cap;
855
856 if (!pci_is_pcie(dev))
857 return 0;
858
859 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
860 if (!save_state) {
861 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
862 return -ENOMEM;
863 }
864
865 cap = (u16 *)&save_state->cap.data[0];
866 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
867 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
868 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
869 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
870 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
871 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
872 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
873
874 return 0;
875 }
876
877 static void pci_restore_pcie_state(struct pci_dev *dev)
878 {
879 int i = 0;
880 struct pci_cap_saved_state *save_state;
881 u16 *cap;
882
883 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
884 if (!save_state)
885 return;
886
887 cap = (u16 *)&save_state->cap.data[0];
888 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
889 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
890 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
891 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
892 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
893 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
894 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
895 }
896
897
898 static int pci_save_pcix_state(struct pci_dev *dev)
899 {
900 int pos;
901 struct pci_cap_saved_state *save_state;
902
903 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
904 if (pos <= 0)
905 return 0;
906
907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 if (!save_state) {
909 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
910 return -ENOMEM;
911 }
912
913 pci_read_config_word(dev, pos + PCI_X_CMD,
914 (u16 *)save_state->cap.data);
915
916 return 0;
917 }
918
919 static void pci_restore_pcix_state(struct pci_dev *dev)
920 {
921 int i = 0, pos;
922 struct pci_cap_saved_state *save_state;
923 u16 *cap;
924
925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
926 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
927 if (!save_state || pos <= 0)
928 return;
929 cap = (u16 *)&save_state->cap.data[0];
930
931 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
932 }
933
934
935 /**
936 * pci_save_state - save the PCI configuration space of a device before suspending
937 * @dev: - PCI device that we're dealing with
938 */
939 int
940 pci_save_state(struct pci_dev *dev)
941 {
942 int i;
943 /* XXX: 100% dword access ok here? */
944 for (i = 0; i < 16; i++)
945 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
946 dev->state_saved = true;
947 if ((i = pci_save_pcie_state(dev)) != 0)
948 return i;
949 if ((i = pci_save_pcix_state(dev)) != 0)
950 return i;
951 return 0;
952 }
953
954 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
955 u32 saved_val, int retry)
956 {
957 u32 val;
958
959 pci_read_config_dword(pdev, offset, &val);
960 if (val == saved_val)
961 return;
962
963 for (;;) {
964 dev_dbg(&pdev->dev, "restoring config space at offset "
965 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
966 pci_write_config_dword(pdev, offset, saved_val);
967 if (retry-- <= 0)
968 return;
969
970 pci_read_config_dword(pdev, offset, &val);
971 if (val == saved_val)
972 return;
973
974 mdelay(1);
975 }
976 }
977
978 static void pci_restore_config_space_range(struct pci_dev *pdev,
979 int start, int end, int retry)
980 {
981 int index;
982
983 for (index = end; index >= start; index--)
984 pci_restore_config_dword(pdev, 4 * index,
985 pdev->saved_config_space[index],
986 retry);
987 }
988
989 static void pci_restore_config_space(struct pci_dev *pdev)
990 {
991 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
992 pci_restore_config_space_range(pdev, 10, 15, 0);
993 /* Restore BARs before the command register. */
994 pci_restore_config_space_range(pdev, 4, 9, 10);
995 pci_restore_config_space_range(pdev, 0, 3, 0);
996 } else {
997 pci_restore_config_space_range(pdev, 0, 15, 0);
998 }
999 }
1000
1001 /**
1002 * pci_restore_state - Restore the saved state of a PCI device
1003 * @dev: - PCI device that we're dealing with
1004 */
1005 void pci_restore_state(struct pci_dev *dev)
1006 {
1007 if (!dev->state_saved)
1008 return;
1009
1010 /* PCI Express register must be restored first */
1011 pci_restore_pcie_state(dev);
1012 pci_restore_ats_state(dev);
1013
1014 pci_restore_config_space(dev);
1015
1016 pci_restore_pcix_state(dev);
1017 pci_restore_msi_state(dev);
1018 pci_restore_iov_state(dev);
1019
1020 dev->state_saved = false;
1021 }
1022
1023 struct pci_saved_state {
1024 u32 config_space[16];
1025 struct pci_cap_saved_data cap[0];
1026 };
1027
1028 /**
1029 * pci_store_saved_state - Allocate and return an opaque struct containing
1030 * the device saved state.
1031 * @dev: PCI device that we're dealing with
1032 *
1033 * Rerturn NULL if no state or error.
1034 */
1035 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1036 {
1037 struct pci_saved_state *state;
1038 struct pci_cap_saved_state *tmp;
1039 struct pci_cap_saved_data *cap;
1040 size_t size;
1041
1042 if (!dev->state_saved)
1043 return NULL;
1044
1045 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1046
1047 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1048 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1049
1050 state = kzalloc(size, GFP_KERNEL);
1051 if (!state)
1052 return NULL;
1053
1054 memcpy(state->config_space, dev->saved_config_space,
1055 sizeof(state->config_space));
1056
1057 cap = state->cap;
1058 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1059 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1060 memcpy(cap, &tmp->cap, len);
1061 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1062 }
1063 /* Empty cap_save terminates list */
1064
1065 return state;
1066 }
1067 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1068
1069 /**
1070 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1071 * @dev: PCI device that we're dealing with
1072 * @state: Saved state returned from pci_store_saved_state()
1073 */
1074 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1075 {
1076 struct pci_cap_saved_data *cap;
1077
1078 dev->state_saved = false;
1079
1080 if (!state)
1081 return 0;
1082
1083 memcpy(dev->saved_config_space, state->config_space,
1084 sizeof(state->config_space));
1085
1086 cap = state->cap;
1087 while (cap->size) {
1088 struct pci_cap_saved_state *tmp;
1089
1090 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1091 if (!tmp || tmp->cap.size != cap->size)
1092 return -EINVAL;
1093
1094 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1095 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1096 sizeof(struct pci_cap_saved_data) + cap->size);
1097 }
1098
1099 dev->state_saved = true;
1100 return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1103
1104 /**
1105 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1106 * and free the memory allocated for it.
1107 * @dev: PCI device that we're dealing with
1108 * @state: Pointer to saved state returned from pci_store_saved_state()
1109 */
1110 int pci_load_and_free_saved_state(struct pci_dev *dev,
1111 struct pci_saved_state **state)
1112 {
1113 int ret = pci_load_saved_state(dev, *state);
1114 kfree(*state);
1115 *state = NULL;
1116 return ret;
1117 }
1118 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1119
1120 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1121 {
1122 int err;
1123
1124 err = pci_set_power_state(dev, PCI_D0);
1125 if (err < 0 && err != -EIO)
1126 return err;
1127 err = pcibios_enable_device(dev, bars);
1128 if (err < 0)
1129 return err;
1130 pci_fixup_device(pci_fixup_enable, dev);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * pci_reenable_device - Resume abandoned device
1137 * @dev: PCI device to be resumed
1138 *
1139 * Note this function is a backend of pci_default_resume and is not supposed
1140 * to be called by normal code, write proper resume handler and use it instead.
1141 */
1142 int pci_reenable_device(struct pci_dev *dev)
1143 {
1144 if (pci_is_enabled(dev))
1145 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1146 return 0;
1147 }
1148
1149 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1150 {
1151 int err;
1152 int i, bars = 0;
1153
1154 /*
1155 * Power state could be unknown at this point, either due to a fresh
1156 * boot or a device removal call. So get the current power state
1157 * so that things like MSI message writing will behave as expected
1158 * (e.g. if the device really is in D0 at enable time).
1159 */
1160 if (dev->pm_cap) {
1161 u16 pmcsr;
1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164 }
1165
1166 if (atomic_inc_return(&dev->enable_cnt) > 1)
1167 return 0; /* already enabled */
1168
1169 /* only skip sriov related */
1170 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1171 if (dev->resource[i].flags & flags)
1172 bars |= (1 << i);
1173 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1174 if (dev->resource[i].flags & flags)
1175 bars |= (1 << i);
1176
1177 err = do_pci_enable_device(dev, bars);
1178 if (err < 0)
1179 atomic_dec(&dev->enable_cnt);
1180 return err;
1181 }
1182
1183 /**
1184 * pci_enable_device_io - Initialize a device for use with IO space
1185 * @dev: PCI device to be initialized
1186 *
1187 * Initialize device before it's used by a driver. Ask low-level code
1188 * to enable I/O resources. Wake up the device if it was suspended.
1189 * Beware, this function can fail.
1190 */
1191 int pci_enable_device_io(struct pci_dev *dev)
1192 {
1193 return pci_enable_device_flags(dev, IORESOURCE_IO);
1194 }
1195
1196 /**
1197 * pci_enable_device_mem - Initialize a device for use with Memory space
1198 * @dev: PCI device to be initialized
1199 *
1200 * Initialize device before it's used by a driver. Ask low-level code
1201 * to enable Memory resources. Wake up the device if it was suspended.
1202 * Beware, this function can fail.
1203 */
1204 int pci_enable_device_mem(struct pci_dev *dev)
1205 {
1206 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1207 }
1208
1209 /**
1210 * pci_enable_device - Initialize device before it's used by a driver.
1211 * @dev: PCI device to be initialized
1212 *
1213 * Initialize device before it's used by a driver. Ask low-level code
1214 * to enable I/O and memory. Wake up the device if it was suspended.
1215 * Beware, this function can fail.
1216 *
1217 * Note we don't actually enable the device many times if we call
1218 * this function repeatedly (we just increment the count).
1219 */
1220 int pci_enable_device(struct pci_dev *dev)
1221 {
1222 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1223 }
1224
1225 /*
1226 * Managed PCI resources. This manages device on/off, intx/msi/msix
1227 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1228 * there's no need to track it separately. pci_devres is initialized
1229 * when a device is enabled using managed PCI device enable interface.
1230 */
1231 struct pci_devres {
1232 unsigned int enabled:1;
1233 unsigned int pinned:1;
1234 unsigned int orig_intx:1;
1235 unsigned int restore_intx:1;
1236 u32 region_mask;
1237 };
1238
1239 static void pcim_release(struct device *gendev, void *res)
1240 {
1241 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1242 struct pci_devres *this = res;
1243 int i;
1244
1245 if (dev->msi_enabled)
1246 pci_disable_msi(dev);
1247 if (dev->msix_enabled)
1248 pci_disable_msix(dev);
1249
1250 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1251 if (this->region_mask & (1 << i))
1252 pci_release_region(dev, i);
1253
1254 if (this->restore_intx)
1255 pci_intx(dev, this->orig_intx);
1256
1257 if (this->enabled && !this->pinned)
1258 pci_disable_device(dev);
1259 }
1260
1261 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1262 {
1263 struct pci_devres *dr, *new_dr;
1264
1265 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1266 if (dr)
1267 return dr;
1268
1269 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1270 if (!new_dr)
1271 return NULL;
1272 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1273 }
1274
1275 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1276 {
1277 if (pci_is_managed(pdev))
1278 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1279 return NULL;
1280 }
1281
1282 /**
1283 * pcim_enable_device - Managed pci_enable_device()
1284 * @pdev: PCI device to be initialized
1285 *
1286 * Managed pci_enable_device().
1287 */
1288 int pcim_enable_device(struct pci_dev *pdev)
1289 {
1290 struct pci_devres *dr;
1291 int rc;
1292
1293 dr = get_pci_dr(pdev);
1294 if (unlikely(!dr))
1295 return -ENOMEM;
1296 if (dr->enabled)
1297 return 0;
1298
1299 rc = pci_enable_device(pdev);
1300 if (!rc) {
1301 pdev->is_managed = 1;
1302 dr->enabled = 1;
1303 }
1304 return rc;
1305 }
1306
1307 /**
1308 * pcim_pin_device - Pin managed PCI device
1309 * @pdev: PCI device to pin
1310 *
1311 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1312 * driver detach. @pdev must have been enabled with
1313 * pcim_enable_device().
1314 */
1315 void pcim_pin_device(struct pci_dev *pdev)
1316 {
1317 struct pci_devres *dr;
1318
1319 dr = find_pci_dr(pdev);
1320 WARN_ON(!dr || !dr->enabled);
1321 if (dr)
1322 dr->pinned = 1;
1323 }
1324
1325 /*
1326 * pcibios_add_device - provide arch specific hooks when adding device dev
1327 * @dev: the PCI device being added
1328 *
1329 * Permits the platform to provide architecture specific functionality when
1330 * devices are added. This is the default implementation. Architecture
1331 * implementations can override this.
1332 */
1333 int __weak pcibios_add_device (struct pci_dev *dev)
1334 {
1335 return 0;
1336 }
1337
1338 /**
1339 * pcibios_release_device - provide arch specific hooks when releasing device dev
1340 * @dev: the PCI device being released
1341 *
1342 * Permits the platform to provide architecture specific functionality when
1343 * devices are released. This is the default implementation. Architecture
1344 * implementations can override this.
1345 */
1346 void __weak pcibios_release_device(struct pci_dev *dev) {}
1347
1348 /**
1349 * pcibios_disable_device - disable arch specific PCI resources for device dev
1350 * @dev: the PCI device to disable
1351 *
1352 * Disables architecture specific PCI resources for the device. This
1353 * is the default implementation. Architecture implementations can
1354 * override this.
1355 */
1356 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1357
1358 static void do_pci_disable_device(struct pci_dev *dev)
1359 {
1360 u16 pci_command;
1361
1362 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1363 if (pci_command & PCI_COMMAND_MASTER) {
1364 pci_command &= ~PCI_COMMAND_MASTER;
1365 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1366 }
1367
1368 pcibios_disable_device(dev);
1369 }
1370
1371 /**
1372 * pci_disable_enabled_device - Disable device without updating enable_cnt
1373 * @dev: PCI device to disable
1374 *
1375 * NOTE: This function is a backend of PCI power management routines and is
1376 * not supposed to be called drivers.
1377 */
1378 void pci_disable_enabled_device(struct pci_dev *dev)
1379 {
1380 if (pci_is_enabled(dev))
1381 do_pci_disable_device(dev);
1382 }
1383
1384 /**
1385 * pci_disable_device - Disable PCI device after use
1386 * @dev: PCI device to be disabled
1387 *
1388 * Signal to the system that the PCI device is not in use by the system
1389 * anymore. This only involves disabling PCI bus-mastering, if active.
1390 *
1391 * Note we don't actually disable the device until all callers of
1392 * pci_enable_device() have called pci_disable_device().
1393 */
1394 void
1395 pci_disable_device(struct pci_dev *dev)
1396 {
1397 struct pci_devres *dr;
1398
1399 dr = find_pci_dr(dev);
1400 if (dr)
1401 dr->enabled = 0;
1402
1403 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1404 "disabling already-disabled device");
1405
1406 if (atomic_dec_return(&dev->enable_cnt) != 0)
1407 return;
1408
1409 do_pci_disable_device(dev);
1410
1411 dev->is_busmaster = 0;
1412 }
1413
1414 /**
1415 * pcibios_set_pcie_reset_state - set reset state for device dev
1416 * @dev: the PCIe device reset
1417 * @state: Reset state to enter into
1418 *
1419 *
1420 * Sets the PCIe reset state for the device. This is the default
1421 * implementation. Architecture implementations can override this.
1422 */
1423 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1424 enum pcie_reset_state state)
1425 {
1426 return -EINVAL;
1427 }
1428
1429 /**
1430 * pci_set_pcie_reset_state - set reset state for device dev
1431 * @dev: the PCIe device reset
1432 * @state: Reset state to enter into
1433 *
1434 *
1435 * Sets the PCI reset state for the device.
1436 */
1437 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1438 {
1439 return pcibios_set_pcie_reset_state(dev, state);
1440 }
1441
1442 /**
1443 * pci_check_pme_status - Check if given device has generated PME.
1444 * @dev: Device to check.
1445 *
1446 * Check the PME status of the device and if set, clear it and clear PME enable
1447 * (if set). Return 'true' if PME status and PME enable were both set or
1448 * 'false' otherwise.
1449 */
1450 bool pci_check_pme_status(struct pci_dev *dev)
1451 {
1452 int pmcsr_pos;
1453 u16 pmcsr;
1454 bool ret = false;
1455
1456 if (!dev->pm_cap)
1457 return false;
1458
1459 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1460 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1461 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1462 return false;
1463
1464 /* Clear PME status. */
1465 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1466 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1467 /* Disable PME to avoid interrupt flood. */
1468 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1469 ret = true;
1470 }
1471
1472 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1473
1474 return ret;
1475 }
1476
1477 /**
1478 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1479 * @dev: Device to handle.
1480 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1481 *
1482 * Check if @dev has generated PME and queue a resume request for it in that
1483 * case.
1484 */
1485 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1486 {
1487 if (pme_poll_reset && dev->pme_poll)
1488 dev->pme_poll = false;
1489
1490 if (pci_check_pme_status(dev)) {
1491 pci_wakeup_event(dev);
1492 pm_request_resume(&dev->dev);
1493 }
1494 return 0;
1495 }
1496
1497 /**
1498 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1499 * @bus: Top bus of the subtree to walk.
1500 */
1501 void pci_pme_wakeup_bus(struct pci_bus *bus)
1502 {
1503 if (bus)
1504 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1505 }
1506
1507 /**
1508 * pci_wakeup - Wake up a PCI device
1509 * @pci_dev: Device to handle.
1510 * @ign: ignored parameter
1511 */
1512 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1513 {
1514 pci_wakeup_event(pci_dev);
1515 pm_request_resume(&pci_dev->dev);
1516 return 0;
1517 }
1518
1519 /**
1520 * pci_wakeup_bus - Walk given bus and wake up devices on it
1521 * @bus: Top bus of the subtree to walk.
1522 */
1523 void pci_wakeup_bus(struct pci_bus *bus)
1524 {
1525 if (bus)
1526 pci_walk_bus(bus, pci_wakeup, NULL);
1527 }
1528
1529 /**
1530 * pci_pme_capable - check the capability of PCI device to generate PME#
1531 * @dev: PCI device to handle.
1532 * @state: PCI state from which device will issue PME#.
1533 */
1534 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1535 {
1536 if (!dev->pm_cap)
1537 return false;
1538
1539 return !!(dev->pme_support & (1 << state));
1540 }
1541
1542 static void pci_pme_list_scan(struct work_struct *work)
1543 {
1544 struct pci_pme_device *pme_dev, *n;
1545
1546 mutex_lock(&pci_pme_list_mutex);
1547 if (!list_empty(&pci_pme_list)) {
1548 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1549 if (pme_dev->dev->pme_poll) {
1550 struct pci_dev *bridge;
1551
1552 bridge = pme_dev->dev->bus->self;
1553 /*
1554 * If bridge is in low power state, the
1555 * configuration space of subordinate devices
1556 * may be not accessible
1557 */
1558 if (bridge && bridge->current_state != PCI_D0)
1559 continue;
1560 pci_pme_wakeup(pme_dev->dev, NULL);
1561 } else {
1562 list_del(&pme_dev->list);
1563 kfree(pme_dev);
1564 }
1565 }
1566 if (!list_empty(&pci_pme_list))
1567 schedule_delayed_work(&pci_pme_work,
1568 msecs_to_jiffies(PME_TIMEOUT));
1569 }
1570 mutex_unlock(&pci_pme_list_mutex);
1571 }
1572
1573 /**
1574 * pci_pme_active - enable or disable PCI device's PME# function
1575 * @dev: PCI device to handle.
1576 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1577 *
1578 * The caller must verify that the device is capable of generating PME# before
1579 * calling this function with @enable equal to 'true'.
1580 */
1581 void pci_pme_active(struct pci_dev *dev, bool enable)
1582 {
1583 u16 pmcsr;
1584
1585 if (!dev->pme_support)
1586 return;
1587
1588 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1589 /* Clear PME_Status by writing 1 to it and enable PME# */
1590 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1591 if (!enable)
1592 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1593
1594 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1595
1596 /*
1597 * PCI (as opposed to PCIe) PME requires that the device have
1598 * its PME# line hooked up correctly. Not all hardware vendors
1599 * do this, so the PME never gets delivered and the device
1600 * remains asleep. The easiest way around this is to
1601 * periodically walk the list of suspended devices and check
1602 * whether any have their PME flag set. The assumption is that
1603 * we'll wake up often enough anyway that this won't be a huge
1604 * hit, and the power savings from the devices will still be a
1605 * win.
1606 *
1607 * Although PCIe uses in-band PME message instead of PME# line
1608 * to report PME, PME does not work for some PCIe devices in
1609 * reality. For example, there are devices that set their PME
1610 * status bits, but don't really bother to send a PME message;
1611 * there are PCI Express Root Ports that don't bother to
1612 * trigger interrupts when they receive PME messages from the
1613 * devices below. So PME poll is used for PCIe devices too.
1614 */
1615
1616 if (dev->pme_poll) {
1617 struct pci_pme_device *pme_dev;
1618 if (enable) {
1619 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1620 GFP_KERNEL);
1621 if (!pme_dev)
1622 goto out;
1623 pme_dev->dev = dev;
1624 mutex_lock(&pci_pme_list_mutex);
1625 list_add(&pme_dev->list, &pci_pme_list);
1626 if (list_is_singular(&pci_pme_list))
1627 schedule_delayed_work(&pci_pme_work,
1628 msecs_to_jiffies(PME_TIMEOUT));
1629 mutex_unlock(&pci_pme_list_mutex);
1630 } else {
1631 mutex_lock(&pci_pme_list_mutex);
1632 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1633 if (pme_dev->dev == dev) {
1634 list_del(&pme_dev->list);
1635 kfree(pme_dev);
1636 break;
1637 }
1638 }
1639 mutex_unlock(&pci_pme_list_mutex);
1640 }
1641 }
1642
1643 out:
1644 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1645 }
1646
1647 /**
1648 * __pci_enable_wake - enable PCI device as wakeup event source
1649 * @dev: PCI device affected
1650 * @state: PCI state from which device will issue wakeup events
1651 * @runtime: True if the events are to be generated at run time
1652 * @enable: True to enable event generation; false to disable
1653 *
1654 * This enables the device as a wakeup event source, or disables it.
1655 * When such events involves platform-specific hooks, those hooks are
1656 * called automatically by this routine.
1657 *
1658 * Devices with legacy power management (no standard PCI PM capabilities)
1659 * always require such platform hooks.
1660 *
1661 * RETURN VALUE:
1662 * 0 is returned on success
1663 * -EINVAL is returned if device is not supposed to wake up the system
1664 * Error code depending on the platform is returned if both the platform and
1665 * the native mechanism fail to enable the generation of wake-up events
1666 */
1667 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1668 bool runtime, bool enable)
1669 {
1670 int ret = 0;
1671
1672 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1673 return -EINVAL;
1674
1675 /* Don't do the same thing twice in a row for one device. */
1676 if (!!enable == !!dev->wakeup_prepared)
1677 return 0;
1678
1679 /*
1680 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1681 * Anderson we should be doing PME# wake enable followed by ACPI wake
1682 * enable. To disable wake-up we call the platform first, for symmetry.
1683 */
1684
1685 if (enable) {
1686 int error;
1687
1688 if (pci_pme_capable(dev, state))
1689 pci_pme_active(dev, true);
1690 else
1691 ret = 1;
1692 error = runtime ? platform_pci_run_wake(dev, true) :
1693 platform_pci_sleep_wake(dev, true);
1694 if (ret)
1695 ret = error;
1696 if (!ret)
1697 dev->wakeup_prepared = true;
1698 } else {
1699 if (runtime)
1700 platform_pci_run_wake(dev, false);
1701 else
1702 platform_pci_sleep_wake(dev, false);
1703 pci_pme_active(dev, false);
1704 dev->wakeup_prepared = false;
1705 }
1706
1707 return ret;
1708 }
1709 EXPORT_SYMBOL(__pci_enable_wake);
1710
1711 /**
1712 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1713 * @dev: PCI device to prepare
1714 * @enable: True to enable wake-up event generation; false to disable
1715 *
1716 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1717 * and this function allows them to set that up cleanly - pci_enable_wake()
1718 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1719 * ordering constraints.
1720 *
1721 * This function only returns error code if the device is not capable of
1722 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1723 * enable wake-up power for it.
1724 */
1725 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1726 {
1727 return pci_pme_capable(dev, PCI_D3cold) ?
1728 pci_enable_wake(dev, PCI_D3cold, enable) :
1729 pci_enable_wake(dev, PCI_D3hot, enable);
1730 }
1731
1732 /**
1733 * pci_target_state - find an appropriate low power state for a given PCI dev
1734 * @dev: PCI device
1735 *
1736 * Use underlying platform code to find a supported low power state for @dev.
1737 * If the platform can't manage @dev, return the deepest state from which it
1738 * can generate wake events, based on any available PME info.
1739 */
1740 pci_power_t pci_target_state(struct pci_dev *dev)
1741 {
1742 pci_power_t target_state = PCI_D3hot;
1743
1744 if (platform_pci_power_manageable(dev)) {
1745 /*
1746 * Call the platform to choose the target state of the device
1747 * and enable wake-up from this state if supported.
1748 */
1749 pci_power_t state = platform_pci_choose_state(dev);
1750
1751 switch (state) {
1752 case PCI_POWER_ERROR:
1753 case PCI_UNKNOWN:
1754 break;
1755 case PCI_D1:
1756 case PCI_D2:
1757 if (pci_no_d1d2(dev))
1758 break;
1759 default:
1760 target_state = state;
1761 }
1762 } else if (!dev->pm_cap) {
1763 target_state = PCI_D0;
1764 } else if (device_may_wakeup(&dev->dev)) {
1765 /*
1766 * Find the deepest state from which the device can generate
1767 * wake-up events, make it the target state and enable device
1768 * to generate PME#.
1769 */
1770 if (dev->pme_support) {
1771 while (target_state
1772 && !(dev->pme_support & (1 << target_state)))
1773 target_state--;
1774 }
1775 }
1776
1777 return target_state;
1778 }
1779
1780 /**
1781 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1782 * @dev: Device to handle.
1783 *
1784 * Choose the power state appropriate for the device depending on whether
1785 * it can wake up the system and/or is power manageable by the platform
1786 * (PCI_D3hot is the default) and put the device into that state.
1787 */
1788 int pci_prepare_to_sleep(struct pci_dev *dev)
1789 {
1790 pci_power_t target_state = pci_target_state(dev);
1791 int error;
1792
1793 if (target_state == PCI_POWER_ERROR)
1794 return -EIO;
1795
1796 /* D3cold during system suspend/hibernate is not supported */
1797 if (target_state > PCI_D3hot)
1798 target_state = PCI_D3hot;
1799
1800 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1801
1802 error = pci_set_power_state(dev, target_state);
1803
1804 if (error)
1805 pci_enable_wake(dev, target_state, false);
1806
1807 return error;
1808 }
1809
1810 /**
1811 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1812 * @dev: Device to handle.
1813 *
1814 * Disable device's system wake-up capability and put it into D0.
1815 */
1816 int pci_back_from_sleep(struct pci_dev *dev)
1817 {
1818 pci_enable_wake(dev, PCI_D0, false);
1819 return pci_set_power_state(dev, PCI_D0);
1820 }
1821
1822 /**
1823 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1824 * @dev: PCI device being suspended.
1825 *
1826 * Prepare @dev to generate wake-up events at run time and put it into a low
1827 * power state.
1828 */
1829 int pci_finish_runtime_suspend(struct pci_dev *dev)
1830 {
1831 pci_power_t target_state = pci_target_state(dev);
1832 int error;
1833
1834 if (target_state == PCI_POWER_ERROR)
1835 return -EIO;
1836
1837 dev->runtime_d3cold = target_state == PCI_D3cold;
1838
1839 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1840
1841 error = pci_set_power_state(dev, target_state);
1842
1843 if (error) {
1844 __pci_enable_wake(dev, target_state, true, false);
1845 dev->runtime_d3cold = false;
1846 }
1847
1848 return error;
1849 }
1850
1851 /**
1852 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1853 * @dev: Device to check.
1854 *
1855 * Return true if the device itself is cabable of generating wake-up events
1856 * (through the platform or using the native PCIe PME) or if the device supports
1857 * PME and one of its upstream bridges can generate wake-up events.
1858 */
1859 bool pci_dev_run_wake(struct pci_dev *dev)
1860 {
1861 struct pci_bus *bus = dev->bus;
1862
1863 if (device_run_wake(&dev->dev))
1864 return true;
1865
1866 if (!dev->pme_support)
1867 return false;
1868
1869 while (bus->parent) {
1870 struct pci_dev *bridge = bus->self;
1871
1872 if (device_run_wake(&bridge->dev))
1873 return true;
1874
1875 bus = bus->parent;
1876 }
1877
1878 /* We have reached the root bus. */
1879 if (bus->bridge)
1880 return device_run_wake(bus->bridge);
1881
1882 return false;
1883 }
1884 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1885
1886 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1887 {
1888 struct device *dev = &pdev->dev;
1889 struct device *parent = dev->parent;
1890
1891 if (parent)
1892 pm_runtime_get_sync(parent);
1893 pm_runtime_get_noresume(dev);
1894 /*
1895 * pdev->current_state is set to PCI_D3cold during suspending,
1896 * so wait until suspending completes
1897 */
1898 pm_runtime_barrier(dev);
1899 /*
1900 * Only need to resume devices in D3cold, because config
1901 * registers are still accessible for devices suspended but
1902 * not in D3cold.
1903 */
1904 if (pdev->current_state == PCI_D3cold)
1905 pm_runtime_resume(dev);
1906 }
1907
1908 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1909 {
1910 struct device *dev = &pdev->dev;
1911 struct device *parent = dev->parent;
1912
1913 pm_runtime_put(dev);
1914 if (parent)
1915 pm_runtime_put_sync(parent);
1916 }
1917
1918 /**
1919 * pci_pm_init - Initialize PM functions of given PCI device
1920 * @dev: PCI device to handle.
1921 */
1922 void pci_pm_init(struct pci_dev *dev)
1923 {
1924 int pm;
1925 u16 pmc;
1926
1927 pm_runtime_forbid(&dev->dev);
1928 pm_runtime_set_active(&dev->dev);
1929 pm_runtime_enable(&dev->dev);
1930 device_enable_async_suspend(&dev->dev);
1931 dev->wakeup_prepared = false;
1932
1933 dev->pm_cap = 0;
1934 dev->pme_support = 0;
1935
1936 /* find PCI PM capability in list */
1937 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1938 if (!pm)
1939 return;
1940 /* Check device's ability to generate PME# */
1941 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1942
1943 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1944 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1945 pmc & PCI_PM_CAP_VER_MASK);
1946 return;
1947 }
1948
1949 dev->pm_cap = pm;
1950 dev->d3_delay = PCI_PM_D3_WAIT;
1951 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1952 dev->d3cold_allowed = true;
1953
1954 dev->d1_support = false;
1955 dev->d2_support = false;
1956 if (!pci_no_d1d2(dev)) {
1957 if (pmc & PCI_PM_CAP_D1)
1958 dev->d1_support = true;
1959 if (pmc & PCI_PM_CAP_D2)
1960 dev->d2_support = true;
1961
1962 if (dev->d1_support || dev->d2_support)
1963 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1964 dev->d1_support ? " D1" : "",
1965 dev->d2_support ? " D2" : "");
1966 }
1967
1968 pmc &= PCI_PM_CAP_PME_MASK;
1969 if (pmc) {
1970 dev_printk(KERN_DEBUG, &dev->dev,
1971 "PME# supported from%s%s%s%s%s\n",
1972 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1973 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1974 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1975 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1976 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1977 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1978 dev->pme_poll = true;
1979 /*
1980 * Make device's PM flags reflect the wake-up capability, but
1981 * let the user space enable it to wake up the system as needed.
1982 */
1983 device_set_wakeup_capable(&dev->dev, true);
1984 /* Disable the PME# generation functionality */
1985 pci_pme_active(dev, false);
1986 }
1987 }
1988
1989 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1990 struct pci_cap_saved_state *new_cap)
1991 {
1992 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1993 }
1994
1995 /**
1996 * pci_add_save_buffer - allocate buffer for saving given capability registers
1997 * @dev: the PCI device
1998 * @cap: the capability to allocate the buffer for
1999 * @size: requested size of the buffer
2000 */
2001 static int pci_add_cap_save_buffer(
2002 struct pci_dev *dev, char cap, unsigned int size)
2003 {
2004 int pos;
2005 struct pci_cap_saved_state *save_state;
2006
2007 pos = pci_find_capability(dev, cap);
2008 if (pos <= 0)
2009 return 0;
2010
2011 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2012 if (!save_state)
2013 return -ENOMEM;
2014
2015 save_state->cap.cap_nr = cap;
2016 save_state->cap.size = size;
2017 pci_add_saved_cap(dev, save_state);
2018
2019 return 0;
2020 }
2021
2022 /**
2023 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2024 * @dev: the PCI device
2025 */
2026 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2027 {
2028 int error;
2029
2030 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2031 PCI_EXP_SAVE_REGS * sizeof(u16));
2032 if (error)
2033 dev_err(&dev->dev,
2034 "unable to preallocate PCI Express save buffer\n");
2035
2036 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2037 if (error)
2038 dev_err(&dev->dev,
2039 "unable to preallocate PCI-X save buffer\n");
2040 }
2041
2042 void pci_free_cap_save_buffers(struct pci_dev *dev)
2043 {
2044 struct pci_cap_saved_state *tmp;
2045 struct hlist_node *n;
2046
2047 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2048 kfree(tmp);
2049 }
2050
2051 /**
2052 * pci_configure_ari - enable or disable ARI forwarding
2053 * @dev: the PCI device
2054 *
2055 * If @dev and its upstream bridge both support ARI, enable ARI in the
2056 * bridge. Otherwise, disable ARI in the bridge.
2057 */
2058 void pci_configure_ari(struct pci_dev *dev)
2059 {
2060 u32 cap;
2061 struct pci_dev *bridge;
2062
2063 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2064 return;
2065
2066 bridge = dev->bus->self;
2067 if (!bridge)
2068 return;
2069
2070 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2071 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2072 return;
2073
2074 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2075 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2076 PCI_EXP_DEVCTL2_ARI);
2077 bridge->ari_enabled = 1;
2078 } else {
2079 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2080 PCI_EXP_DEVCTL2_ARI);
2081 bridge->ari_enabled = 0;
2082 }
2083 }
2084
2085 /**
2086 * pci_enable_ido - enable ID-based Ordering on a device
2087 * @dev: the PCI device
2088 * @type: which types of IDO to enable
2089 *
2090 * Enable ID-based ordering on @dev. @type can contain the bits
2091 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2092 * which types of transactions are allowed to be re-ordered.
2093 */
2094 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2095 {
2096 u16 ctrl = 0;
2097
2098 if (type & PCI_EXP_IDO_REQUEST)
2099 ctrl |= PCI_EXP_IDO_REQ_EN;
2100 if (type & PCI_EXP_IDO_COMPLETION)
2101 ctrl |= PCI_EXP_IDO_CMP_EN;
2102 if (ctrl)
2103 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2104 }
2105 EXPORT_SYMBOL(pci_enable_ido);
2106
2107 /**
2108 * pci_disable_ido - disable ID-based ordering on a device
2109 * @dev: the PCI device
2110 * @type: which types of IDO to disable
2111 */
2112 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2113 {
2114 u16 ctrl = 0;
2115
2116 if (type & PCI_EXP_IDO_REQUEST)
2117 ctrl |= PCI_EXP_IDO_REQ_EN;
2118 if (type & PCI_EXP_IDO_COMPLETION)
2119 ctrl |= PCI_EXP_IDO_CMP_EN;
2120 if (ctrl)
2121 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2122 }
2123 EXPORT_SYMBOL(pci_disable_ido);
2124
2125 /**
2126 * pci_enable_obff - enable optimized buffer flush/fill
2127 * @dev: PCI device
2128 * @type: type of signaling to use
2129 *
2130 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2131 * signaling if possible, falling back to message signaling only if
2132 * WAKE# isn't supported. @type should indicate whether the PCIe link
2133 * be brought out of L0s or L1 to send the message. It should be either
2134 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2135 *
2136 * If your device can benefit from receiving all messages, even at the
2137 * power cost of bringing the link back up from a low power state, use
2138 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2139 * preferred type).
2140 *
2141 * RETURNS:
2142 * Zero on success, appropriate error number on failure.
2143 */
2144 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2145 {
2146 u32 cap;
2147 u16 ctrl;
2148 int ret;
2149
2150 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2151 if (!(cap & PCI_EXP_OBFF_MASK))
2152 return -ENOTSUPP; /* no OBFF support at all */
2153
2154 /* Make sure the topology supports OBFF as well */
2155 if (dev->bus->self) {
2156 ret = pci_enable_obff(dev->bus->self, type);
2157 if (ret)
2158 return ret;
2159 }
2160
2161 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2162 if (cap & PCI_EXP_OBFF_WAKE)
2163 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2164 else {
2165 switch (type) {
2166 case PCI_EXP_OBFF_SIGNAL_L0:
2167 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2168 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2169 break;
2170 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2171 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2172 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2173 break;
2174 default:
2175 WARN(1, "bad OBFF signal type\n");
2176 return -ENOTSUPP;
2177 }
2178 }
2179 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2180
2181 return 0;
2182 }
2183 EXPORT_SYMBOL(pci_enable_obff);
2184
2185 /**
2186 * pci_disable_obff - disable optimized buffer flush/fill
2187 * @dev: PCI device
2188 *
2189 * Disable OBFF on @dev.
2190 */
2191 void pci_disable_obff(struct pci_dev *dev)
2192 {
2193 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2194 }
2195 EXPORT_SYMBOL(pci_disable_obff);
2196
2197 /**
2198 * pci_ltr_supported - check whether a device supports LTR
2199 * @dev: PCI device
2200 *
2201 * RETURNS:
2202 * True if @dev supports latency tolerance reporting, false otherwise.
2203 */
2204 static bool pci_ltr_supported(struct pci_dev *dev)
2205 {
2206 u32 cap;
2207
2208 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2209
2210 return cap & PCI_EXP_DEVCAP2_LTR;
2211 }
2212
2213 /**
2214 * pci_enable_ltr - enable latency tolerance reporting
2215 * @dev: PCI device
2216 *
2217 * Enable LTR on @dev if possible, which means enabling it first on
2218 * upstream ports.
2219 *
2220 * RETURNS:
2221 * Zero on success, errno on failure.
2222 */
2223 int pci_enable_ltr(struct pci_dev *dev)
2224 {
2225 int ret;
2226
2227 /* Only primary function can enable/disable LTR */
2228 if (PCI_FUNC(dev->devfn) != 0)
2229 return -EINVAL;
2230
2231 if (!pci_ltr_supported(dev))
2232 return -ENOTSUPP;
2233
2234 /* Enable upstream ports first */
2235 if (dev->bus->self) {
2236 ret = pci_enable_ltr(dev->bus->self);
2237 if (ret)
2238 return ret;
2239 }
2240
2241 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2242 }
2243 EXPORT_SYMBOL(pci_enable_ltr);
2244
2245 /**
2246 * pci_disable_ltr - disable latency tolerance reporting
2247 * @dev: PCI device
2248 */
2249 void pci_disable_ltr(struct pci_dev *dev)
2250 {
2251 /* Only primary function can enable/disable LTR */
2252 if (PCI_FUNC(dev->devfn) != 0)
2253 return;
2254
2255 if (!pci_ltr_supported(dev))
2256 return;
2257
2258 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2259 }
2260 EXPORT_SYMBOL(pci_disable_ltr);
2261
2262 static int __pci_ltr_scale(int *val)
2263 {
2264 int scale = 0;
2265
2266 while (*val > 1023) {
2267 *val = (*val + 31) / 32;
2268 scale++;
2269 }
2270 return scale;
2271 }
2272
2273 /**
2274 * pci_set_ltr - set LTR latency values
2275 * @dev: PCI device
2276 * @snoop_lat_ns: snoop latency in nanoseconds
2277 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2278 *
2279 * Figure out the scale and set the LTR values accordingly.
2280 */
2281 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2282 {
2283 int pos, ret, snoop_scale, nosnoop_scale;
2284 u16 val;
2285
2286 if (!pci_ltr_supported(dev))
2287 return -ENOTSUPP;
2288
2289 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2290 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2291
2292 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2293 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2294 return -EINVAL;
2295
2296 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2297 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2298 return -EINVAL;
2299
2300 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2301 if (!pos)
2302 return -ENOTSUPP;
2303
2304 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2305 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2306 if (ret != 4)
2307 return -EIO;
2308
2309 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2310 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2311 if (ret != 4)
2312 return -EIO;
2313
2314 return 0;
2315 }
2316 EXPORT_SYMBOL(pci_set_ltr);
2317
2318 static int pci_acs_enable;
2319
2320 /**
2321 * pci_request_acs - ask for ACS to be enabled if supported
2322 */
2323 void pci_request_acs(void)
2324 {
2325 pci_acs_enable = 1;
2326 }
2327
2328 /**
2329 * pci_enable_acs - enable ACS if hardware support it
2330 * @dev: the PCI device
2331 */
2332 void pci_enable_acs(struct pci_dev *dev)
2333 {
2334 int pos;
2335 u16 cap;
2336 u16 ctrl;
2337
2338 if (!pci_acs_enable)
2339 return;
2340
2341 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2342 if (!pos)
2343 return;
2344
2345 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2346 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2347
2348 /* Source Validation */
2349 ctrl |= (cap & PCI_ACS_SV);
2350
2351 /* P2P Request Redirect */
2352 ctrl |= (cap & PCI_ACS_RR);
2353
2354 /* P2P Completion Redirect */
2355 ctrl |= (cap & PCI_ACS_CR);
2356
2357 /* Upstream Forwarding */
2358 ctrl |= (cap & PCI_ACS_UF);
2359
2360 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2361 }
2362
2363 /**
2364 * pci_acs_enabled - test ACS against required flags for a given device
2365 * @pdev: device to test
2366 * @acs_flags: required PCI ACS flags
2367 *
2368 * Return true if the device supports the provided flags. Automatically
2369 * filters out flags that are not implemented on multifunction devices.
2370 */
2371 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2372 {
2373 int pos, ret;
2374 u16 ctrl;
2375
2376 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2377 if (ret >= 0)
2378 return ret > 0;
2379
2380 if (!pci_is_pcie(pdev))
2381 return false;
2382
2383 /* Filter out flags not applicable to multifunction */
2384 if (pdev->multifunction)
2385 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2386 PCI_ACS_EC | PCI_ACS_DT);
2387
2388 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2389 pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2390 pdev->multifunction) {
2391 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2392 if (!pos)
2393 return false;
2394
2395 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2396 if ((ctrl & acs_flags) != acs_flags)
2397 return false;
2398 }
2399
2400 return true;
2401 }
2402
2403 /**
2404 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2405 * @start: starting downstream device
2406 * @end: ending upstream device or NULL to search to the root bus
2407 * @acs_flags: required flags
2408 *
2409 * Walk up a device tree from start to end testing PCI ACS support. If
2410 * any step along the way does not support the required flags, return false.
2411 */
2412 bool pci_acs_path_enabled(struct pci_dev *start,
2413 struct pci_dev *end, u16 acs_flags)
2414 {
2415 struct pci_dev *pdev, *parent = start;
2416
2417 do {
2418 pdev = parent;
2419
2420 if (!pci_acs_enabled(pdev, acs_flags))
2421 return false;
2422
2423 if (pci_is_root_bus(pdev->bus))
2424 return (end == NULL);
2425
2426 parent = pdev->bus->self;
2427 } while (pdev != end);
2428
2429 return true;
2430 }
2431
2432 /**
2433 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2434 * @dev: the PCI device
2435 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2436 *
2437 * Perform INTx swizzling for a device behind one level of bridge. This is
2438 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2439 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2440 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2441 * the PCI Express Base Specification, Revision 2.1)
2442 */
2443 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2444 {
2445 int slot;
2446
2447 if (pci_ari_enabled(dev->bus))
2448 slot = 0;
2449 else
2450 slot = PCI_SLOT(dev->devfn);
2451
2452 return (((pin - 1) + slot) % 4) + 1;
2453 }
2454
2455 int
2456 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2457 {
2458 u8 pin;
2459
2460 pin = dev->pin;
2461 if (!pin)
2462 return -1;
2463
2464 while (!pci_is_root_bus(dev->bus)) {
2465 pin = pci_swizzle_interrupt_pin(dev, pin);
2466 dev = dev->bus->self;
2467 }
2468 *bridge = dev;
2469 return pin;
2470 }
2471
2472 /**
2473 * pci_common_swizzle - swizzle INTx all the way to root bridge
2474 * @dev: the PCI device
2475 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2476 *
2477 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2478 * bridges all the way up to a PCI root bus.
2479 */
2480 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2481 {
2482 u8 pin = *pinp;
2483
2484 while (!pci_is_root_bus(dev->bus)) {
2485 pin = pci_swizzle_interrupt_pin(dev, pin);
2486 dev = dev->bus->self;
2487 }
2488 *pinp = pin;
2489 return PCI_SLOT(dev->devfn);
2490 }
2491
2492 /**
2493 * pci_release_region - Release a PCI bar
2494 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2495 * @bar: BAR to release
2496 *
2497 * Releases the PCI I/O and memory resources previously reserved by a
2498 * successful call to pci_request_region. Call this function only
2499 * after all use of the PCI regions has ceased.
2500 */
2501 void pci_release_region(struct pci_dev *pdev, int bar)
2502 {
2503 struct pci_devres *dr;
2504
2505 if (pci_resource_len(pdev, bar) == 0)
2506 return;
2507 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2508 release_region(pci_resource_start(pdev, bar),
2509 pci_resource_len(pdev, bar));
2510 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2511 release_mem_region(pci_resource_start(pdev, bar),
2512 pci_resource_len(pdev, bar));
2513
2514 dr = find_pci_dr(pdev);
2515 if (dr)
2516 dr->region_mask &= ~(1 << bar);
2517 }
2518
2519 /**
2520 * __pci_request_region - Reserved PCI I/O and memory resource
2521 * @pdev: PCI device whose resources are to be reserved
2522 * @bar: BAR to be reserved
2523 * @res_name: Name to be associated with resource.
2524 * @exclusive: whether the region access is exclusive or not
2525 *
2526 * Mark the PCI region associated with PCI device @pdev BR @bar as
2527 * being reserved by owner @res_name. Do not access any
2528 * address inside the PCI regions unless this call returns
2529 * successfully.
2530 *
2531 * If @exclusive is set, then the region is marked so that userspace
2532 * is explicitly not allowed to map the resource via /dev/mem or
2533 * sysfs MMIO access.
2534 *
2535 * Returns 0 on success, or %EBUSY on error. A warning
2536 * message is also printed on failure.
2537 */
2538 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2539 int exclusive)
2540 {
2541 struct pci_devres *dr;
2542
2543 if (pci_resource_len(pdev, bar) == 0)
2544 return 0;
2545
2546 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2547 if (!request_region(pci_resource_start(pdev, bar),
2548 pci_resource_len(pdev, bar), res_name))
2549 goto err_out;
2550 }
2551 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2552 if (!__request_mem_region(pci_resource_start(pdev, bar),
2553 pci_resource_len(pdev, bar), res_name,
2554 exclusive))
2555 goto err_out;
2556 }
2557
2558 dr = find_pci_dr(pdev);
2559 if (dr)
2560 dr->region_mask |= 1 << bar;
2561
2562 return 0;
2563
2564 err_out:
2565 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2566 &pdev->resource[bar]);
2567 return -EBUSY;
2568 }
2569
2570 /**
2571 * pci_request_region - Reserve PCI I/O and memory resource
2572 * @pdev: PCI device whose resources are to be reserved
2573 * @bar: BAR to be reserved
2574 * @res_name: Name to be associated with resource
2575 *
2576 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2577 * being reserved by owner @res_name. Do not access any
2578 * address inside the PCI regions unless this call returns
2579 * successfully.
2580 *
2581 * Returns 0 on success, or %EBUSY on error. A warning
2582 * message is also printed on failure.
2583 */
2584 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2585 {
2586 return __pci_request_region(pdev, bar, res_name, 0);
2587 }
2588
2589 /**
2590 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2591 * @pdev: PCI device whose resources are to be reserved
2592 * @bar: BAR to be reserved
2593 * @res_name: Name to be associated with resource.
2594 *
2595 * Mark the PCI region associated with PCI device @pdev BR @bar as
2596 * being reserved by owner @res_name. Do not access any
2597 * address inside the PCI regions unless this call returns
2598 * successfully.
2599 *
2600 * Returns 0 on success, or %EBUSY on error. A warning
2601 * message is also printed on failure.
2602 *
2603 * The key difference that _exclusive makes it that userspace is
2604 * explicitly not allowed to map the resource via /dev/mem or
2605 * sysfs.
2606 */
2607 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2608 {
2609 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2610 }
2611 /**
2612 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2613 * @pdev: PCI device whose resources were previously reserved
2614 * @bars: Bitmask of BARs to be released
2615 *
2616 * Release selected PCI I/O and memory resources previously reserved.
2617 * Call this function only after all use of the PCI regions has ceased.
2618 */
2619 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2620 {
2621 int i;
2622
2623 for (i = 0; i < 6; i++)
2624 if (bars & (1 << i))
2625 pci_release_region(pdev, i);
2626 }
2627
2628 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2629 const char *res_name, int excl)
2630 {
2631 int i;
2632
2633 for (i = 0; i < 6; i++)
2634 if (bars & (1 << i))
2635 if (__pci_request_region(pdev, i, res_name, excl))
2636 goto err_out;
2637 return 0;
2638
2639 err_out:
2640 while(--i >= 0)
2641 if (bars & (1 << i))
2642 pci_release_region(pdev, i);
2643
2644 return -EBUSY;
2645 }
2646
2647
2648 /**
2649 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2650 * @pdev: PCI device whose resources are to be reserved
2651 * @bars: Bitmask of BARs to be requested
2652 * @res_name: Name to be associated with resource
2653 */
2654 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2655 const char *res_name)
2656 {
2657 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2658 }
2659
2660 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2661 int bars, const char *res_name)
2662 {
2663 return __pci_request_selected_regions(pdev, bars, res_name,
2664 IORESOURCE_EXCLUSIVE);
2665 }
2666
2667 /**
2668 * pci_release_regions - Release reserved PCI I/O and memory resources
2669 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2670 *
2671 * Releases all PCI I/O and memory resources previously reserved by a
2672 * successful call to pci_request_regions. Call this function only
2673 * after all use of the PCI regions has ceased.
2674 */
2675
2676 void pci_release_regions(struct pci_dev *pdev)
2677 {
2678 pci_release_selected_regions(pdev, (1 << 6) - 1);
2679 }
2680
2681 /**
2682 * pci_request_regions - Reserved PCI I/O and memory resources
2683 * @pdev: PCI device whose resources are to be reserved
2684 * @res_name: Name to be associated with resource.
2685 *
2686 * Mark all PCI regions associated with PCI device @pdev as
2687 * being reserved by owner @res_name. Do not access any
2688 * address inside the PCI regions unless this call returns
2689 * successfully.
2690 *
2691 * Returns 0 on success, or %EBUSY on error. A warning
2692 * message is also printed on failure.
2693 */
2694 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2695 {
2696 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2697 }
2698
2699 /**
2700 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2701 * @pdev: PCI device whose resources are to be reserved
2702 * @res_name: Name to be associated with resource.
2703 *
2704 * Mark all PCI regions associated with PCI device @pdev as
2705 * being reserved by owner @res_name. Do not access any
2706 * address inside the PCI regions unless this call returns
2707 * successfully.
2708 *
2709 * pci_request_regions_exclusive() will mark the region so that
2710 * /dev/mem and the sysfs MMIO access will not be allowed.
2711 *
2712 * Returns 0 on success, or %EBUSY on error. A warning
2713 * message is also printed on failure.
2714 */
2715 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2716 {
2717 return pci_request_selected_regions_exclusive(pdev,
2718 ((1 << 6) - 1), res_name);
2719 }
2720
2721 static void __pci_set_master(struct pci_dev *dev, bool enable)
2722 {
2723 u16 old_cmd, cmd;
2724
2725 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2726 if (enable)
2727 cmd = old_cmd | PCI_COMMAND_MASTER;
2728 else
2729 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2730 if (cmd != old_cmd) {
2731 dev_dbg(&dev->dev, "%s bus mastering\n",
2732 enable ? "enabling" : "disabling");
2733 pci_write_config_word(dev, PCI_COMMAND, cmd);
2734 }
2735 dev->is_busmaster = enable;
2736 }
2737
2738 /**
2739 * pcibios_setup - process "pci=" kernel boot arguments
2740 * @str: string used to pass in "pci=" kernel boot arguments
2741 *
2742 * Process kernel boot arguments. This is the default implementation.
2743 * Architecture specific implementations can override this as necessary.
2744 */
2745 char * __weak __init pcibios_setup(char *str)
2746 {
2747 return str;
2748 }
2749
2750 /**
2751 * pcibios_set_master - enable PCI bus-mastering for device dev
2752 * @dev: the PCI device to enable
2753 *
2754 * Enables PCI bus-mastering for the device. This is the default
2755 * implementation. Architecture specific implementations can override
2756 * this if necessary.
2757 */
2758 void __weak pcibios_set_master(struct pci_dev *dev)
2759 {
2760 u8 lat;
2761
2762 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2763 if (pci_is_pcie(dev))
2764 return;
2765
2766 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2767 if (lat < 16)
2768 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2769 else if (lat > pcibios_max_latency)
2770 lat = pcibios_max_latency;
2771 else
2772 return;
2773 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2774 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2775 }
2776
2777 /**
2778 * pci_set_master - enables bus-mastering for device dev
2779 * @dev: the PCI device to enable
2780 *
2781 * Enables bus-mastering on the device and calls pcibios_set_master()
2782 * to do the needed arch specific settings.
2783 */
2784 void pci_set_master(struct pci_dev *dev)
2785 {
2786 __pci_set_master(dev, true);
2787 pcibios_set_master(dev);
2788 }
2789
2790 /**
2791 * pci_clear_master - disables bus-mastering for device dev
2792 * @dev: the PCI device to disable
2793 */
2794 void pci_clear_master(struct pci_dev *dev)
2795 {
2796 __pci_set_master(dev, false);
2797 }
2798
2799 /**
2800 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2801 * @dev: the PCI device for which MWI is to be enabled
2802 *
2803 * Helper function for pci_set_mwi.
2804 * Originally copied from drivers/net/acenic.c.
2805 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2806 *
2807 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2808 */
2809 int pci_set_cacheline_size(struct pci_dev *dev)
2810 {
2811 u8 cacheline_size;
2812
2813 if (!pci_cache_line_size)
2814 return -EINVAL;
2815
2816 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2817 equal to or multiple of the right value. */
2818 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2819 if (cacheline_size >= pci_cache_line_size &&
2820 (cacheline_size % pci_cache_line_size) == 0)
2821 return 0;
2822
2823 /* Write the correct value. */
2824 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2825 /* Read it back. */
2826 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2827 if (cacheline_size == pci_cache_line_size)
2828 return 0;
2829
2830 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2831 "supported\n", pci_cache_line_size << 2);
2832
2833 return -EINVAL;
2834 }
2835 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2836
2837 #ifdef PCI_DISABLE_MWI
2838 int pci_set_mwi(struct pci_dev *dev)
2839 {
2840 return 0;
2841 }
2842
2843 int pci_try_set_mwi(struct pci_dev *dev)
2844 {
2845 return 0;
2846 }
2847
2848 void pci_clear_mwi(struct pci_dev *dev)
2849 {
2850 }
2851
2852 #else
2853
2854 /**
2855 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2856 * @dev: the PCI device for which MWI is enabled
2857 *
2858 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2859 *
2860 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2861 */
2862 int
2863 pci_set_mwi(struct pci_dev *dev)
2864 {
2865 int rc;
2866 u16 cmd;
2867
2868 rc = pci_set_cacheline_size(dev);
2869 if (rc)
2870 return rc;
2871
2872 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2873 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2874 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2875 cmd |= PCI_COMMAND_INVALIDATE;
2876 pci_write_config_word(dev, PCI_COMMAND, cmd);
2877 }
2878
2879 return 0;
2880 }
2881
2882 /**
2883 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2884 * @dev: the PCI device for which MWI is enabled
2885 *
2886 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2887 * Callers are not required to check the return value.
2888 *
2889 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2890 */
2891 int pci_try_set_mwi(struct pci_dev *dev)
2892 {
2893 int rc = pci_set_mwi(dev);
2894 return rc;
2895 }
2896
2897 /**
2898 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2899 * @dev: the PCI device to disable
2900 *
2901 * Disables PCI Memory-Write-Invalidate transaction on the device
2902 */
2903 void
2904 pci_clear_mwi(struct pci_dev *dev)
2905 {
2906 u16 cmd;
2907
2908 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2909 if (cmd & PCI_COMMAND_INVALIDATE) {
2910 cmd &= ~PCI_COMMAND_INVALIDATE;
2911 pci_write_config_word(dev, PCI_COMMAND, cmd);
2912 }
2913 }
2914 #endif /* ! PCI_DISABLE_MWI */
2915
2916 /**
2917 * pci_intx - enables/disables PCI INTx for device dev
2918 * @pdev: the PCI device to operate on
2919 * @enable: boolean: whether to enable or disable PCI INTx
2920 *
2921 * Enables/disables PCI INTx for device dev
2922 */
2923 void
2924 pci_intx(struct pci_dev *pdev, int enable)
2925 {
2926 u16 pci_command, new;
2927
2928 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2929
2930 if (enable) {
2931 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2932 } else {
2933 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2934 }
2935
2936 if (new != pci_command) {
2937 struct pci_devres *dr;
2938
2939 pci_write_config_word(pdev, PCI_COMMAND, new);
2940
2941 dr = find_pci_dr(pdev);
2942 if (dr && !dr->restore_intx) {
2943 dr->restore_intx = 1;
2944 dr->orig_intx = !enable;
2945 }
2946 }
2947 }
2948
2949 /**
2950 * pci_intx_mask_supported - probe for INTx masking support
2951 * @dev: the PCI device to operate on
2952 *
2953 * Check if the device dev support INTx masking via the config space
2954 * command word.
2955 */
2956 bool pci_intx_mask_supported(struct pci_dev *dev)
2957 {
2958 bool mask_supported = false;
2959 u16 orig, new;
2960
2961 if (dev->broken_intx_masking)
2962 return false;
2963
2964 pci_cfg_access_lock(dev);
2965
2966 pci_read_config_word(dev, PCI_COMMAND, &orig);
2967 pci_write_config_word(dev, PCI_COMMAND,
2968 orig ^ PCI_COMMAND_INTX_DISABLE);
2969 pci_read_config_word(dev, PCI_COMMAND, &new);
2970
2971 /*
2972 * There's no way to protect against hardware bugs or detect them
2973 * reliably, but as long as we know what the value should be, let's
2974 * go ahead and check it.
2975 */
2976 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2977 dev_err(&dev->dev, "Command register changed from "
2978 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2979 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2980 mask_supported = true;
2981 pci_write_config_word(dev, PCI_COMMAND, orig);
2982 }
2983
2984 pci_cfg_access_unlock(dev);
2985 return mask_supported;
2986 }
2987 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2988
2989 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2990 {
2991 struct pci_bus *bus = dev->bus;
2992 bool mask_updated = true;
2993 u32 cmd_status_dword;
2994 u16 origcmd, newcmd;
2995 unsigned long flags;
2996 bool irq_pending;
2997
2998 /*
2999 * We do a single dword read to retrieve both command and status.
3000 * Document assumptions that make this possible.
3001 */
3002 BUILD_BUG_ON(PCI_COMMAND % 4);
3003 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3004
3005 raw_spin_lock_irqsave(&pci_lock, flags);
3006
3007 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3008
3009 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3010
3011 /*
3012 * Check interrupt status register to see whether our device
3013 * triggered the interrupt (when masking) or the next IRQ is
3014 * already pending (when unmasking).
3015 */
3016 if (mask != irq_pending) {
3017 mask_updated = false;
3018 goto done;
3019 }
3020
3021 origcmd = cmd_status_dword;
3022 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3023 if (mask)
3024 newcmd |= PCI_COMMAND_INTX_DISABLE;
3025 if (newcmd != origcmd)
3026 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3027
3028 done:
3029 raw_spin_unlock_irqrestore(&pci_lock, flags);
3030
3031 return mask_updated;
3032 }
3033
3034 /**
3035 * pci_check_and_mask_intx - mask INTx on pending interrupt
3036 * @dev: the PCI device to operate on
3037 *
3038 * Check if the device dev has its INTx line asserted, mask it and
3039 * return true in that case. False is returned if not interrupt was
3040 * pending.
3041 */
3042 bool pci_check_and_mask_intx(struct pci_dev *dev)
3043 {
3044 return pci_check_and_set_intx_mask(dev, true);
3045 }
3046 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3047
3048 /**
3049 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3050 * @dev: the PCI device to operate on
3051 *
3052 * Check if the device dev has its INTx line asserted, unmask it if not
3053 * and return true. False is returned and the mask remains active if
3054 * there was still an interrupt pending.
3055 */
3056 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3057 {
3058 return pci_check_and_set_intx_mask(dev, false);
3059 }
3060 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3061
3062 /**
3063 * pci_msi_off - disables any msi or msix capabilities
3064 * @dev: the PCI device to operate on
3065 *
3066 * If you want to use msi see pci_enable_msi and friends.
3067 * This is a lower level primitive that allows us to disable
3068 * msi operation at the device level.
3069 */
3070 void pci_msi_off(struct pci_dev *dev)
3071 {
3072 int pos;
3073 u16 control;
3074
3075 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3076 if (pos) {
3077 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3078 control &= ~PCI_MSI_FLAGS_ENABLE;
3079 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3080 }
3081 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3082 if (pos) {
3083 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3084 control &= ~PCI_MSIX_FLAGS_ENABLE;
3085 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3086 }
3087 }
3088 EXPORT_SYMBOL_GPL(pci_msi_off);
3089
3090 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3091 {
3092 return dma_set_max_seg_size(&dev->dev, size);
3093 }
3094 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3095
3096 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3097 {
3098 return dma_set_seg_boundary(&dev->dev, mask);
3099 }
3100 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3101
3102 static int pcie_flr(struct pci_dev *dev, int probe)
3103 {
3104 int i;
3105 u32 cap;
3106 u16 status;
3107
3108 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3109 if (!(cap & PCI_EXP_DEVCAP_FLR))
3110 return -ENOTTY;
3111
3112 if (probe)
3113 return 0;
3114
3115 /* Wait for Transaction Pending bit clean */
3116 for (i = 0; i < 4; i++) {
3117 if (i)
3118 msleep((1 << (i - 1)) * 100);
3119
3120 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3121 if (!(status & PCI_EXP_DEVSTA_TRPND))
3122 goto clear;
3123 }
3124
3125 dev_err(&dev->dev, "transaction is not cleared; "
3126 "proceeding with reset anyway\n");
3127
3128 clear:
3129 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3130
3131 msleep(100);
3132
3133 return 0;
3134 }
3135
3136 static int pci_af_flr(struct pci_dev *dev, int probe)
3137 {
3138 int i;
3139 int pos;
3140 u8 cap;
3141 u8 status;
3142
3143 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3144 if (!pos)
3145 return -ENOTTY;
3146
3147 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3148 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3149 return -ENOTTY;
3150
3151 if (probe)
3152 return 0;
3153
3154 /* Wait for Transaction Pending bit clean */
3155 for (i = 0; i < 4; i++) {
3156 if (i)
3157 msleep((1 << (i - 1)) * 100);
3158
3159 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3160 if (!(status & PCI_AF_STATUS_TP))
3161 goto clear;
3162 }
3163
3164 dev_err(&dev->dev, "transaction is not cleared; "
3165 "proceeding with reset anyway\n");
3166
3167 clear:
3168 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3169 msleep(100);
3170
3171 return 0;
3172 }
3173
3174 /**
3175 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3176 * @dev: Device to reset.
3177 * @probe: If set, only check if the device can be reset this way.
3178 *
3179 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3180 * unset, it will be reinitialized internally when going from PCI_D3hot to
3181 * PCI_D0. If that's the case and the device is not in a low-power state
3182 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3183 *
3184 * NOTE: This causes the caller to sleep for twice the device power transition
3185 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3186 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3187 * Moreover, only devices in D0 can be reset by this function.
3188 */
3189 static int pci_pm_reset(struct pci_dev *dev, int probe)
3190 {
3191 u16 csr;
3192
3193 if (!dev->pm_cap)
3194 return -ENOTTY;
3195
3196 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3197 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3198 return -ENOTTY;
3199
3200 if (probe)
3201 return 0;
3202
3203 if (dev->current_state != PCI_D0)
3204 return -EINVAL;
3205
3206 csr &= ~PCI_PM_CTRL_STATE_MASK;
3207 csr |= PCI_D3hot;
3208 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3209 pci_dev_d3_sleep(dev);
3210
3211 csr &= ~PCI_PM_CTRL_STATE_MASK;
3212 csr |= PCI_D0;
3213 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3214 pci_dev_d3_sleep(dev);
3215
3216 return 0;
3217 }
3218
3219 /**
3220 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3221 * @dev: Bridge device
3222 *
3223 * Use the bridge control register to assert reset on the secondary bus.
3224 * Devices on the secondary bus are left in power-on state.
3225 */
3226 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3227 {
3228 u16 ctrl;
3229
3230 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3231 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3232 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3233 msleep(100);
3234
3235 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3236 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3237 msleep(100);
3238 }
3239 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3240
3241 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3242 {
3243 struct pci_dev *pdev;
3244
3245 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3246 return -ENOTTY;
3247
3248 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3249 if (pdev != dev)
3250 return -ENOTTY;
3251
3252 if (probe)
3253 return 0;
3254
3255 pci_reset_bridge_secondary_bus(dev->bus->self);
3256
3257 return 0;
3258 }
3259
3260 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3261 {
3262 int rc = -ENOTTY;
3263
3264 if (!hotplug || !try_module_get(hotplug->ops->owner))
3265 return rc;
3266
3267 if (hotplug->ops->reset_slot)
3268 rc = hotplug->ops->reset_slot(hotplug, probe);
3269
3270 module_put(hotplug->ops->owner);
3271
3272 return rc;
3273 }
3274
3275 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3276 {
3277 struct pci_dev *pdev;
3278
3279 if (dev->subordinate || !dev->slot)
3280 return -ENOTTY;
3281
3282 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3283 if (pdev != dev && pdev->slot == dev->slot)
3284 return -ENOTTY;
3285
3286 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3287 }
3288
3289 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3290 {
3291 int rc;
3292
3293 might_sleep();
3294
3295 rc = pci_dev_specific_reset(dev, probe);
3296 if (rc != -ENOTTY)
3297 goto done;
3298
3299 rc = pcie_flr(dev, probe);
3300 if (rc != -ENOTTY)
3301 goto done;
3302
3303 rc = pci_af_flr(dev, probe);
3304 if (rc != -ENOTTY)
3305 goto done;
3306
3307 rc = pci_pm_reset(dev, probe);
3308 if (rc != -ENOTTY)
3309 goto done;
3310
3311 rc = pci_dev_reset_slot_function(dev, probe);
3312 if (rc != -ENOTTY)
3313 goto done;
3314
3315 rc = pci_parent_bus_reset(dev, probe);
3316 done:
3317 return rc;
3318 }
3319
3320 static void pci_dev_lock(struct pci_dev *dev)
3321 {
3322 pci_cfg_access_lock(dev);
3323 /* block PM suspend, driver probe, etc. */
3324 device_lock(&dev->dev);
3325 }
3326
3327 static void pci_dev_unlock(struct pci_dev *dev)
3328 {
3329 device_unlock(&dev->dev);
3330 pci_cfg_access_unlock(dev);
3331 }
3332
3333 static void pci_dev_save_and_disable(struct pci_dev *dev)
3334 {
3335 /*
3336 * Wake-up device prior to save. PM registers default to D0 after
3337 * reset and a simple register restore doesn't reliably return
3338 * to a non-D0 state anyway.
3339 */
3340 pci_set_power_state(dev, PCI_D0);
3341
3342 pci_save_state(dev);
3343 /*
3344 * Disable the device by clearing the Command register, except for
3345 * INTx-disable which is set. This not only disables MMIO and I/O port
3346 * BARs, but also prevents the device from being Bus Master, preventing
3347 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3348 * compliant devices, INTx-disable prevents legacy interrupts.
3349 */
3350 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3351 }
3352
3353 static void pci_dev_restore(struct pci_dev *dev)
3354 {
3355 pci_restore_state(dev);
3356 }
3357
3358 static int pci_dev_reset(struct pci_dev *dev, int probe)
3359 {
3360 int rc;
3361
3362 if (!probe)
3363 pci_dev_lock(dev);
3364
3365 rc = __pci_dev_reset(dev, probe);
3366
3367 if (!probe)
3368 pci_dev_unlock(dev);
3369
3370 return rc;
3371 }
3372 /**
3373 * __pci_reset_function - reset a PCI device function
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device. The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * The device function is presumed to be unused when this function is called.
3381 * Resetting the device will make the contents of PCI configuration space
3382 * random, so any caller of this must be prepared to reinitialise the
3383 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3384 * etc.
3385 *
3386 * Returns 0 if the device function was successfully reset or negative if the
3387 * device doesn't support resetting a single function.
3388 */
3389 int __pci_reset_function(struct pci_dev *dev)
3390 {
3391 return pci_dev_reset(dev, 0);
3392 }
3393 EXPORT_SYMBOL_GPL(__pci_reset_function);
3394
3395 /**
3396 * __pci_reset_function_locked - reset a PCI device function while holding
3397 * the @dev mutex lock.
3398 * @dev: PCI device to reset
3399 *
3400 * Some devices allow an individual function to be reset without affecting
3401 * other functions in the same device. The PCI device must be responsive
3402 * to PCI config space in order to use this function.
3403 *
3404 * The device function is presumed to be unused and the caller is holding
3405 * the device mutex lock when this function is called.
3406 * Resetting the device will make the contents of PCI configuration space
3407 * random, so any caller of this must be prepared to reinitialise the
3408 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3409 * etc.
3410 *
3411 * Returns 0 if the device function was successfully reset or negative if the
3412 * device doesn't support resetting a single function.
3413 */
3414 int __pci_reset_function_locked(struct pci_dev *dev)
3415 {
3416 return __pci_dev_reset(dev, 0);
3417 }
3418 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3419
3420 /**
3421 * pci_probe_reset_function - check whether the device can be safely reset
3422 * @dev: PCI device to reset
3423 *
3424 * Some devices allow an individual function to be reset without affecting
3425 * other functions in the same device. The PCI device must be responsive
3426 * to PCI config space in order to use this function.
3427 *
3428 * Returns 0 if the device function can be reset or negative if the
3429 * device doesn't support resetting a single function.
3430 */
3431 int pci_probe_reset_function(struct pci_dev *dev)
3432 {
3433 return pci_dev_reset(dev, 1);
3434 }
3435
3436 /**
3437 * pci_reset_function - quiesce and reset a PCI device function
3438 * @dev: PCI device to reset
3439 *
3440 * Some devices allow an individual function to be reset without affecting
3441 * other functions in the same device. The PCI device must be responsive
3442 * to PCI config space in order to use this function.
3443 *
3444 * This function does not just reset the PCI portion of a device, but
3445 * clears all the state associated with the device. This function differs
3446 * from __pci_reset_function in that it saves and restores device state
3447 * over the reset.
3448 *
3449 * Returns 0 if the device function was successfully reset or negative if the
3450 * device doesn't support resetting a single function.
3451 */
3452 int pci_reset_function(struct pci_dev *dev)
3453 {
3454 int rc;
3455
3456 rc = pci_dev_reset(dev, 1);
3457 if (rc)
3458 return rc;
3459
3460 pci_dev_save_and_disable(dev);
3461
3462 rc = pci_dev_reset(dev, 0);
3463
3464 pci_dev_restore(dev);
3465
3466 return rc;
3467 }
3468 EXPORT_SYMBOL_GPL(pci_reset_function);
3469
3470 /* Lock devices from the top of the tree down */
3471 static void pci_bus_lock(struct pci_bus *bus)
3472 {
3473 struct pci_dev *dev;
3474
3475 list_for_each_entry(dev, &bus->devices, bus_list) {
3476 pci_dev_lock(dev);
3477 if (dev->subordinate)
3478 pci_bus_lock(dev->subordinate);
3479 }
3480 }
3481
3482 /* Unlock devices from the bottom of the tree up */
3483 static void pci_bus_unlock(struct pci_bus *bus)
3484 {
3485 struct pci_dev *dev;
3486
3487 list_for_each_entry(dev, &bus->devices, bus_list) {
3488 if (dev->subordinate)
3489 pci_bus_unlock(dev->subordinate);
3490 pci_dev_unlock(dev);
3491 }
3492 }
3493
3494 /* Lock devices from the top of the tree down */
3495 static void pci_slot_lock(struct pci_slot *slot)
3496 {
3497 struct pci_dev *dev;
3498
3499 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3500 if (!dev->slot || dev->slot != slot)
3501 continue;
3502 pci_dev_lock(dev);
3503 if (dev->subordinate)
3504 pci_bus_lock(dev->subordinate);
3505 }
3506 }
3507
3508 /* Unlock devices from the bottom of the tree up */
3509 static void pci_slot_unlock(struct pci_slot *slot)
3510 {
3511 struct pci_dev *dev;
3512
3513 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3514 if (!dev->slot || dev->slot != slot)
3515 continue;
3516 if (dev->subordinate)
3517 pci_bus_unlock(dev->subordinate);
3518 pci_dev_unlock(dev);
3519 }
3520 }
3521
3522 /* Save and disable devices from the top of the tree down */
3523 static void pci_bus_save_and_disable(struct pci_bus *bus)
3524 {
3525 struct pci_dev *dev;
3526
3527 list_for_each_entry(dev, &bus->devices, bus_list) {
3528 pci_dev_save_and_disable(dev);
3529 if (dev->subordinate)
3530 pci_bus_save_and_disable(dev->subordinate);
3531 }
3532 }
3533
3534 /*
3535 * Restore devices from top of the tree down - parent bridges need to be
3536 * restored before we can get to subordinate devices.
3537 */
3538 static void pci_bus_restore(struct pci_bus *bus)
3539 {
3540 struct pci_dev *dev;
3541
3542 list_for_each_entry(dev, &bus->devices, bus_list) {
3543 pci_dev_restore(dev);
3544 if (dev->subordinate)
3545 pci_bus_restore(dev->subordinate);
3546 }
3547 }
3548
3549 /* Save and disable devices from the top of the tree down */
3550 static void pci_slot_save_and_disable(struct pci_slot *slot)
3551 {
3552 struct pci_dev *dev;
3553
3554 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3555 if (!dev->slot || dev->slot != slot)
3556 continue;
3557 pci_dev_save_and_disable(dev);
3558 if (dev->subordinate)
3559 pci_bus_save_and_disable(dev->subordinate);
3560 }
3561 }
3562
3563 /*
3564 * Restore devices from top of the tree down - parent bridges need to be
3565 * restored before we can get to subordinate devices.
3566 */
3567 static void pci_slot_restore(struct pci_slot *slot)
3568 {
3569 struct pci_dev *dev;
3570
3571 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3572 if (!dev->slot || dev->slot != slot)
3573 continue;
3574 pci_dev_restore(dev);
3575 if (dev->subordinate)
3576 pci_bus_restore(dev->subordinate);
3577 }
3578 }
3579
3580 static int pci_slot_reset(struct pci_slot *slot, int probe)
3581 {
3582 int rc;
3583
3584 if (!slot)
3585 return -ENOTTY;
3586
3587 if (!probe)
3588 pci_slot_lock(slot);
3589
3590 might_sleep();
3591
3592 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3593
3594 if (!probe)
3595 pci_slot_unlock(slot);
3596
3597 return rc;
3598 }
3599
3600 /**
3601 * pci_reset_slot - reset a PCI slot
3602 * @slot: PCI slot to reset
3603 *
3604 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3605 * independent of other slots. For instance, some slots may support slot power
3606 * control. In the case of a 1:1 bus to slot architecture, this function may
3607 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3608 * Generally a slot reset should be attempted before a bus reset. All of the
3609 * function of the slot and any subordinate buses behind the slot are reset
3610 * through this function. PCI config space of all devices in the slot and
3611 * behind the slot is saved before and restored after reset.
3612 *
3613 * Return 0 on success, non-zero on error.
3614 */
3615 int pci_reset_slot(struct pci_slot *slot)
3616 {
3617 int rc;
3618
3619 rc = pci_slot_reset(slot, 1);
3620 if (rc)
3621 return rc;
3622
3623 pci_slot_save_and_disable(slot);
3624
3625 rc = pci_slot_reset(slot, 0);
3626
3627 pci_slot_restore(slot);
3628
3629 return rc;
3630 }
3631 EXPORT_SYMBOL_GPL(pci_reset_slot);
3632
3633 static int pci_bus_reset(struct pci_bus *bus, int probe)
3634 {
3635 if (!bus->self)
3636 return -ENOTTY;
3637
3638 if (probe)
3639 return 0;
3640
3641 pci_bus_lock(bus);
3642
3643 might_sleep();
3644
3645 pci_reset_bridge_secondary_bus(bus->self);
3646
3647 pci_bus_unlock(bus);
3648
3649 return 0;
3650 }
3651
3652 /**
3653 * pci_reset_bus - reset a PCI bus
3654 * @bus: top level PCI bus to reset
3655 *
3656 * Do a bus reset on the given bus and any subordinate buses, saving
3657 * and restoring state of all devices.
3658 *
3659 * Return 0 on success, non-zero on error.
3660 */
3661 int pci_reset_bus(struct pci_bus *bus)
3662 {
3663 int rc;
3664
3665 rc = pci_bus_reset(bus, 1);
3666 if (rc)
3667 return rc;
3668
3669 pci_bus_save_and_disable(bus);
3670
3671 rc = pci_bus_reset(bus, 0);
3672
3673 pci_bus_restore(bus);
3674
3675 return rc;
3676 }
3677 EXPORT_SYMBOL_GPL(pci_reset_bus);
3678
3679 /**
3680 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3681 * @dev: PCI device to query
3682 *
3683 * Returns mmrbc: maximum designed memory read count in bytes
3684 * or appropriate error value.
3685 */
3686 int pcix_get_max_mmrbc(struct pci_dev *dev)
3687 {
3688 int cap;
3689 u32 stat;
3690
3691 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3692 if (!cap)
3693 return -EINVAL;
3694
3695 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3696 return -EINVAL;
3697
3698 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3699 }
3700 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3701
3702 /**
3703 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3704 * @dev: PCI device to query
3705 *
3706 * Returns mmrbc: maximum memory read count in bytes
3707 * or appropriate error value.
3708 */
3709 int pcix_get_mmrbc(struct pci_dev *dev)
3710 {
3711 int cap;
3712 u16 cmd;
3713
3714 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3715 if (!cap)
3716 return -EINVAL;
3717
3718 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3719 return -EINVAL;
3720
3721 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3722 }
3723 EXPORT_SYMBOL(pcix_get_mmrbc);
3724
3725 /**
3726 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3727 * @dev: PCI device to query
3728 * @mmrbc: maximum memory read count in bytes
3729 * valid values are 512, 1024, 2048, 4096
3730 *
3731 * If possible sets maximum memory read byte count, some bridges have erratas
3732 * that prevent this.
3733 */
3734 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3735 {
3736 int cap;
3737 u32 stat, v, o;
3738 u16 cmd;
3739
3740 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3741 return -EINVAL;
3742
3743 v = ffs(mmrbc) - 10;
3744
3745 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3746 if (!cap)
3747 return -EINVAL;
3748
3749 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3750 return -EINVAL;
3751
3752 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3753 return -E2BIG;
3754
3755 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3756 return -EINVAL;
3757
3758 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3759 if (o != v) {
3760 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3761 return -EIO;
3762
3763 cmd &= ~PCI_X_CMD_MAX_READ;
3764 cmd |= v << 2;
3765 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3766 return -EIO;
3767 }
3768 return 0;
3769 }
3770 EXPORT_SYMBOL(pcix_set_mmrbc);
3771
3772 /**
3773 * pcie_get_readrq - get PCI Express read request size
3774 * @dev: PCI device to query
3775 *
3776 * Returns maximum memory read request in bytes
3777 * or appropriate error value.
3778 */
3779 int pcie_get_readrq(struct pci_dev *dev)
3780 {
3781 u16 ctl;
3782
3783 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3784
3785 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3786 }
3787 EXPORT_SYMBOL(pcie_get_readrq);
3788
3789 /**
3790 * pcie_set_readrq - set PCI Express maximum memory read request
3791 * @dev: PCI device to query
3792 * @rq: maximum memory read count in bytes
3793 * valid values are 128, 256, 512, 1024, 2048, 4096
3794 *
3795 * If possible sets maximum memory read request in bytes
3796 */
3797 int pcie_set_readrq(struct pci_dev *dev, int rq)
3798 {
3799 u16 v;
3800
3801 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3802 return -EINVAL;
3803
3804 /*
3805 * If using the "performance" PCIe config, we clamp the
3806 * read rq size to the max packet size to prevent the
3807 * host bridge generating requests larger than we can
3808 * cope with
3809 */
3810 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3811 int mps = pcie_get_mps(dev);
3812
3813 if (mps < 0)
3814 return mps;
3815 if (mps < rq)
3816 rq = mps;
3817 }
3818
3819 v = (ffs(rq) - 8) << 12;
3820
3821 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3822 PCI_EXP_DEVCTL_READRQ, v);
3823 }
3824 EXPORT_SYMBOL(pcie_set_readrq);
3825
3826 /**
3827 * pcie_get_mps - get PCI Express maximum payload size
3828 * @dev: PCI device to query
3829 *
3830 * Returns maximum payload size in bytes
3831 * or appropriate error value.
3832 */
3833 int pcie_get_mps(struct pci_dev *dev)
3834 {
3835 u16 ctl;
3836
3837 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3838
3839 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3840 }
3841
3842 /**
3843 * pcie_set_mps - set PCI Express maximum payload size
3844 * @dev: PCI device to query
3845 * @mps: maximum payload size in bytes
3846 * valid values are 128, 256, 512, 1024, 2048, 4096
3847 *
3848 * If possible sets maximum payload size
3849 */
3850 int pcie_set_mps(struct pci_dev *dev, int mps)
3851 {
3852 u16 v;
3853
3854 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3855 return -EINVAL;
3856
3857 v = ffs(mps) - 8;
3858 if (v > dev->pcie_mpss)
3859 return -EINVAL;
3860 v <<= 5;
3861
3862 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3863 PCI_EXP_DEVCTL_PAYLOAD, v);
3864 }
3865
3866 /**
3867 * pci_select_bars - Make BAR mask from the type of resource
3868 * @dev: the PCI device for which BAR mask is made
3869 * @flags: resource type mask to be selected
3870 *
3871 * This helper routine makes bar mask from the type of resource.
3872 */
3873 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3874 {
3875 int i, bars = 0;
3876 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3877 if (pci_resource_flags(dev, i) & flags)
3878 bars |= (1 << i);
3879 return bars;
3880 }
3881
3882 /**
3883 * pci_resource_bar - get position of the BAR associated with a resource
3884 * @dev: the PCI device
3885 * @resno: the resource number
3886 * @type: the BAR type to be filled in
3887 *
3888 * Returns BAR position in config space, or 0 if the BAR is invalid.
3889 */
3890 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3891 {
3892 int reg;
3893
3894 if (resno < PCI_ROM_RESOURCE) {
3895 *type = pci_bar_unknown;
3896 return PCI_BASE_ADDRESS_0 + 4 * resno;
3897 } else if (resno == PCI_ROM_RESOURCE) {
3898 *type = pci_bar_mem32;
3899 return dev->rom_base_reg;
3900 } else if (resno < PCI_BRIDGE_RESOURCES) {
3901 /* device specific resource */
3902 reg = pci_iov_resource_bar(dev, resno, type);
3903 if (reg)
3904 return reg;
3905 }
3906
3907 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3908 return 0;
3909 }
3910
3911 /* Some architectures require additional programming to enable VGA */
3912 static arch_set_vga_state_t arch_set_vga_state;
3913
3914 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3915 {
3916 arch_set_vga_state = func; /* NULL disables */
3917 }
3918
3919 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3920 unsigned int command_bits, u32 flags)
3921 {
3922 if (arch_set_vga_state)
3923 return arch_set_vga_state(dev, decode, command_bits,
3924 flags);
3925 return 0;
3926 }
3927
3928 /**
3929 * pci_set_vga_state - set VGA decode state on device and parents if requested
3930 * @dev: the PCI device
3931 * @decode: true = enable decoding, false = disable decoding
3932 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3933 * @flags: traverse ancestors and change bridges
3934 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3935 */
3936 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3937 unsigned int command_bits, u32 flags)
3938 {
3939 struct pci_bus *bus;
3940 struct pci_dev *bridge;
3941 u16 cmd;
3942 int rc;
3943
3944 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3945
3946 /* ARCH specific VGA enables */
3947 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3948 if (rc)
3949 return rc;
3950
3951 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3952 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3953 if (decode == true)
3954 cmd |= command_bits;
3955 else
3956 cmd &= ~command_bits;
3957 pci_write_config_word(dev, PCI_COMMAND, cmd);
3958 }
3959
3960 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3961 return 0;
3962
3963 bus = dev->bus;
3964 while (bus) {
3965 bridge = bus->self;
3966 if (bridge) {
3967 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3968 &cmd);
3969 if (decode == true)
3970 cmd |= PCI_BRIDGE_CTL_VGA;
3971 else
3972 cmd &= ~PCI_BRIDGE_CTL_VGA;
3973 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3974 cmd);
3975 }
3976 bus = bus->parent;
3977 }
3978 return 0;
3979 }
3980
3981 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3982 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3983 static DEFINE_SPINLOCK(resource_alignment_lock);
3984
3985 /**
3986 * pci_specified_resource_alignment - get resource alignment specified by user.
3987 * @dev: the PCI device to get
3988 *
3989 * RETURNS: Resource alignment if it is specified.
3990 * Zero if it is not specified.
3991 */
3992 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3993 {
3994 int seg, bus, slot, func, align_order, count;
3995 resource_size_t align = 0;
3996 char *p;
3997
3998 spin_lock(&resource_alignment_lock);
3999 p = resource_alignment_param;
4000 while (*p) {
4001 count = 0;
4002 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4003 p[count] == '@') {
4004 p += count + 1;
4005 } else {
4006 align_order = -1;
4007 }
4008 if (sscanf(p, "%x:%x:%x.%x%n",
4009 &seg, &bus, &slot, &func, &count) != 4) {
4010 seg = 0;
4011 if (sscanf(p, "%x:%x.%x%n",
4012 &bus, &slot, &func, &count) != 3) {
4013 /* Invalid format */
4014 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4015 p);
4016 break;
4017 }
4018 }
4019 p += count;
4020 if (seg == pci_domain_nr(dev->bus) &&
4021 bus == dev->bus->number &&
4022 slot == PCI_SLOT(dev->devfn) &&
4023 func == PCI_FUNC(dev->devfn)) {
4024 if (align_order == -1) {
4025 align = PAGE_SIZE;
4026 } else {
4027 align = 1 << align_order;
4028 }
4029 /* Found */
4030 break;
4031 }
4032 if (*p != ';' && *p != ',') {
4033 /* End of param or invalid format */
4034 break;
4035 }
4036 p++;
4037 }
4038 spin_unlock(&resource_alignment_lock);
4039 return align;
4040 }
4041
4042 /*
4043 * This function disables memory decoding and releases memory resources
4044 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4045 * It also rounds up size to specified alignment.
4046 * Later on, the kernel will assign page-aligned memory resource back
4047 * to the device.
4048 */
4049 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4050 {
4051 int i;
4052 struct resource *r;
4053 resource_size_t align, size;
4054 u16 command;
4055
4056 /* check if specified PCI is target device to reassign */
4057 align = pci_specified_resource_alignment(dev);
4058 if (!align)
4059 return;
4060
4061 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4062 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4063 dev_warn(&dev->dev,
4064 "Can't reassign resources to host bridge.\n");
4065 return;
4066 }
4067
4068 dev_info(&dev->dev,
4069 "Disabling memory decoding and releasing memory resources.\n");
4070 pci_read_config_word(dev, PCI_COMMAND, &command);
4071 command &= ~PCI_COMMAND_MEMORY;
4072 pci_write_config_word(dev, PCI_COMMAND, command);
4073
4074 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4075 r = &dev->resource[i];
4076 if (!(r->flags & IORESOURCE_MEM))
4077 continue;
4078 size = resource_size(r);
4079 if (size < align) {
4080 size = align;
4081 dev_info(&dev->dev,
4082 "Rounding up size of resource #%d to %#llx.\n",
4083 i, (unsigned long long)size);
4084 }
4085 r->end = size - 1;
4086 r->start = 0;
4087 }
4088 /* Need to disable bridge's resource window,
4089 * to enable the kernel to reassign new resource
4090 * window later on.
4091 */
4092 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4093 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4094 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4095 r = &dev->resource[i];
4096 if (!(r->flags & IORESOURCE_MEM))
4097 continue;
4098 r->end = resource_size(r) - 1;
4099 r->start = 0;
4100 }
4101 pci_disable_bridge_window(dev);
4102 }
4103 }
4104
4105 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4106 {
4107 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4108 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4109 spin_lock(&resource_alignment_lock);
4110 strncpy(resource_alignment_param, buf, count);
4111 resource_alignment_param[count] = '\0';
4112 spin_unlock(&resource_alignment_lock);
4113 return count;
4114 }
4115
4116 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4117 {
4118 size_t count;
4119 spin_lock(&resource_alignment_lock);
4120 count = snprintf(buf, size, "%s", resource_alignment_param);
4121 spin_unlock(&resource_alignment_lock);
4122 return count;
4123 }
4124
4125 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4126 {
4127 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4128 }
4129
4130 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4131 const char *buf, size_t count)
4132 {
4133 return pci_set_resource_alignment_param(buf, count);
4134 }
4135
4136 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4137 pci_resource_alignment_store);
4138
4139 static int __init pci_resource_alignment_sysfs_init(void)
4140 {
4141 return bus_create_file(&pci_bus_type,
4142 &bus_attr_resource_alignment);
4143 }
4144
4145 late_initcall(pci_resource_alignment_sysfs_init);
4146
4147 static void pci_no_domains(void)
4148 {
4149 #ifdef CONFIG_PCI_DOMAINS
4150 pci_domains_supported = 0;
4151 #endif
4152 }
4153
4154 /**
4155 * pci_ext_cfg_avail - can we access extended PCI config space?
4156 *
4157 * Returns 1 if we can access PCI extended config space (offsets
4158 * greater than 0xff). This is the default implementation. Architecture
4159 * implementations can override this.
4160 */
4161 int __weak pci_ext_cfg_avail(void)
4162 {
4163 return 1;
4164 }
4165
4166 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4167 {
4168 }
4169 EXPORT_SYMBOL(pci_fixup_cardbus);
4170
4171 static int __init pci_setup(char *str)
4172 {
4173 while (str) {
4174 char *k = strchr(str, ',');
4175 if (k)
4176 *k++ = 0;
4177 if (*str && (str = pcibios_setup(str)) && *str) {
4178 if (!strcmp(str, "nomsi")) {
4179 pci_no_msi();
4180 } else if (!strcmp(str, "noaer")) {
4181 pci_no_aer();
4182 } else if (!strncmp(str, "realloc=", 8)) {
4183 pci_realloc_get_opt(str + 8);
4184 } else if (!strncmp(str, "realloc", 7)) {
4185 pci_realloc_get_opt("on");
4186 } else if (!strcmp(str, "nodomains")) {
4187 pci_no_domains();
4188 } else if (!strncmp(str, "noari", 5)) {
4189 pcie_ari_disabled = true;
4190 } else if (!strncmp(str, "cbiosize=", 9)) {
4191 pci_cardbus_io_size = memparse(str + 9, &str);
4192 } else if (!strncmp(str, "cbmemsize=", 10)) {
4193 pci_cardbus_mem_size = memparse(str + 10, &str);
4194 } else if (!strncmp(str, "resource_alignment=", 19)) {
4195 pci_set_resource_alignment_param(str + 19,
4196 strlen(str + 19));
4197 } else if (!strncmp(str, "ecrc=", 5)) {
4198 pcie_ecrc_get_policy(str + 5);
4199 } else if (!strncmp(str, "hpiosize=", 9)) {
4200 pci_hotplug_io_size = memparse(str + 9, &str);
4201 } else if (!strncmp(str, "hpmemsize=", 10)) {
4202 pci_hotplug_mem_size = memparse(str + 10, &str);
4203 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4204 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4205 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4206 pcie_bus_config = PCIE_BUS_SAFE;
4207 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4208 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4209 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4210 pcie_bus_config = PCIE_BUS_PEER2PEER;
4211 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4212 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4213 } else {
4214 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4215 str);
4216 }
4217 }
4218 str = k;
4219 }
4220 return 0;
4221 }
4222 early_param("pci", pci_setup);
4223
4224 EXPORT_SYMBOL(pci_reenable_device);
4225 EXPORT_SYMBOL(pci_enable_device_io);
4226 EXPORT_SYMBOL(pci_enable_device_mem);
4227 EXPORT_SYMBOL(pci_enable_device);
4228 EXPORT_SYMBOL(pcim_enable_device);
4229 EXPORT_SYMBOL(pcim_pin_device);
4230 EXPORT_SYMBOL(pci_disable_device);
4231 EXPORT_SYMBOL(pci_find_capability);
4232 EXPORT_SYMBOL(pci_bus_find_capability);
4233 EXPORT_SYMBOL(pci_release_regions);
4234 EXPORT_SYMBOL(pci_request_regions);
4235 EXPORT_SYMBOL(pci_request_regions_exclusive);
4236 EXPORT_SYMBOL(pci_release_region);
4237 EXPORT_SYMBOL(pci_request_region);
4238 EXPORT_SYMBOL(pci_request_region_exclusive);
4239 EXPORT_SYMBOL(pci_release_selected_regions);
4240 EXPORT_SYMBOL(pci_request_selected_regions);
4241 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4242 EXPORT_SYMBOL(pci_set_master);
4243 EXPORT_SYMBOL(pci_clear_master);
4244 EXPORT_SYMBOL(pci_set_mwi);
4245 EXPORT_SYMBOL(pci_try_set_mwi);
4246 EXPORT_SYMBOL(pci_clear_mwi);
4247 EXPORT_SYMBOL_GPL(pci_intx);
4248 EXPORT_SYMBOL(pci_assign_resource);
4249 EXPORT_SYMBOL(pci_find_parent_resource);
4250 EXPORT_SYMBOL(pci_select_bars);
4251
4252 EXPORT_SYMBOL(pci_set_power_state);
4253 EXPORT_SYMBOL(pci_save_state);
4254 EXPORT_SYMBOL(pci_restore_state);
4255 EXPORT_SYMBOL(pci_pme_capable);
4256 EXPORT_SYMBOL(pci_pme_active);
4257 EXPORT_SYMBOL(pci_wake_from_d3);
4258 EXPORT_SYMBOL(pci_target_state);
4259 EXPORT_SYMBOL(pci_prepare_to_sleep);
4260 EXPORT_SYMBOL(pci_back_from_sleep);
4261 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.202343 seconds and 5 git commands to generate.