rbd: nuke copy_token()
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40
41 unsigned int pci_pm_d3_delay;
42
43 static void pci_pme_list_scan(struct work_struct *work);
44
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52 };
53
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64 }
65
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84 /*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92
93 /*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97 unsigned int pcibios_max_latency = 255;
98
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101
102 /**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
110 {
111 struct pci_bus *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
117 if (n > max)
118 max = n;
119 }
120 return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139
140 #define PCI_FIND_CAP_TTL 48
141
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144 {
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161 }
162
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165 {
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180 {
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198 }
199
200 /**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228 }
229 EXPORT_SYMBOL(pci_find_capability);
230
231 /**
232 * pci_bus_find_capability - query for devices' capabilities
233 * @bus: the PCI bus to query
234 * @devfn: PCI device to query
235 * @cap: capability code
236 *
237 * Like pci_find_capability() but works for pci devices that do not have a
238 * pci_dev structure set up yet.
239 *
240 * Returns the address of the requested capability structure within the
241 * device's PCI configuration space or 0 in case the device does not
242 * support it.
243 */
244 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245 {
246 int pos;
247 u8 hdr_type;
248
249 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250
251 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
252 if (pos)
253 pos = __pci_find_next_cap(bus, devfn, pos, cap);
254
255 return pos;
256 }
257 EXPORT_SYMBOL(pci_bus_find_capability);
258
259 /**
260 * pci_find_next_ext_capability - Find an extended capability
261 * @dev: PCI device to query
262 * @start: address at which to start looking (0 to start at beginning of list)
263 * @cap: capability code
264 *
265 * Returns the address of the next matching extended capability structure
266 * within the device's PCI configuration space or 0 if the device does
267 * not support it. Some capabilities can occur several times, e.g., the
268 * vendor-specific capability, and this provides a way to find them all.
269 */
270 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
271 {
272 u32 header;
273 int ttl;
274 int pos = PCI_CFG_SPACE_SIZE;
275
276 /* minimum 8 bytes per capability */
277 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
278
279 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
280 return 0;
281
282 if (start)
283 pos = start;
284
285 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
286 return 0;
287
288 /*
289 * If we have no capabilities, this is indicated by cap ID,
290 * cap version and next pointer all being 0.
291 */
292 if (header == 0)
293 return 0;
294
295 while (ttl-- > 0) {
296 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
297 return pos;
298
299 pos = PCI_EXT_CAP_NEXT(header);
300 if (pos < PCI_CFG_SPACE_SIZE)
301 break;
302
303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 break;
305 }
306
307 return 0;
308 }
309 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310
311 /**
312 * pci_find_ext_capability - Find an extended capability
313 * @dev: PCI device to query
314 * @cap: capability code
315 *
316 * Returns the address of the requested extended capability structure
317 * within the device's PCI configuration space or 0 if the device does
318 * not support it. Possible values for @cap:
319 *
320 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
321 * %PCI_EXT_CAP_ID_VC Virtual Channel
322 * %PCI_EXT_CAP_ID_DSN Device Serial Number
323 * %PCI_EXT_CAP_ID_PWR Power Budgeting
324 */
325 int pci_find_ext_capability(struct pci_dev *dev, int cap)
326 {
327 return pci_find_next_ext_capability(dev, 0, cap);
328 }
329 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
330
331 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
332 {
333 int rc, ttl = PCI_FIND_CAP_TTL;
334 u8 cap, mask;
335
336 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
337 mask = HT_3BIT_CAP_MASK;
338 else
339 mask = HT_5BIT_CAP_MASK;
340
341 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
342 PCI_CAP_ID_HT, &ttl);
343 while (pos) {
344 rc = pci_read_config_byte(dev, pos + 3, &cap);
345 if (rc != PCIBIOS_SUCCESSFUL)
346 return 0;
347
348 if ((cap & mask) == ht_cap)
349 return pos;
350
351 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
352 pos + PCI_CAP_LIST_NEXT,
353 PCI_CAP_ID_HT, &ttl);
354 }
355
356 return 0;
357 }
358 /**
359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
360 * @dev: PCI device to query
361 * @pos: Position from which to continue searching
362 * @ht_cap: Hypertransport capability code
363 *
364 * To be used in conjunction with pci_find_ht_capability() to search for
365 * all capabilities matching @ht_cap. @pos should always be a value returned
366 * from pci_find_ht_capability().
367 *
368 * NB. To be 100% safe against broken PCI devices, the caller should take
369 * steps to avoid an infinite loop.
370 */
371 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
374 }
375 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376
377 /**
378 * pci_find_ht_capability - query a device's Hypertransport capabilities
379 * @dev: PCI device to query
380 * @ht_cap: Hypertransport capability code
381 *
382 * Tell if a device supports a given Hypertransport capability.
383 * Returns an address within the device's PCI configuration space
384 * or 0 in case the device does not support the request capability.
385 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
386 * which has a Hypertransport capability matching @ht_cap.
387 */
388 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
389 {
390 int pos;
391
392 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
393 if (pos)
394 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
395
396 return pos;
397 }
398 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399
400 /**
401 * pci_find_parent_resource - return resource region of parent bus of given region
402 * @dev: PCI device structure contains resources to be searched
403 * @res: child resource record for which parent is sought
404 *
405 * For given resource region of given device, return the resource
406 * region of parent bus the given region is contained in.
407 */
408 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
409 struct resource *res)
410 {
411 const struct pci_bus *bus = dev->bus;
412 struct resource *r;
413 int i;
414
415 pci_bus_for_each_resource(bus, r, i) {
416 if (!r)
417 continue;
418 if (res->start && resource_contains(r, res)) {
419
420 /*
421 * If the window is prefetchable but the BAR is
422 * not, the allocator made a mistake.
423 */
424 if (r->flags & IORESOURCE_PREFETCH &&
425 !(res->flags & IORESOURCE_PREFETCH))
426 return NULL;
427
428 /*
429 * If we're below a transparent bridge, there may
430 * be both a positively-decoded aperture and a
431 * subtractively-decoded region that contain the BAR.
432 * We want the positively-decoded one, so this depends
433 * on pci_bus_for_each_resource() giving us those
434 * first.
435 */
436 return r;
437 }
438 }
439 return NULL;
440 }
441 EXPORT_SYMBOL(pci_find_parent_resource);
442
443 /**
444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
445 * @dev: the PCI device to operate on
446 * @pos: config space offset of status word
447 * @mask: mask of bit(s) to care about in status word
448 *
449 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
450 */
451 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
452 {
453 int i;
454
455 /* Wait for Transaction Pending bit clean */
456 for (i = 0; i < 4; i++) {
457 u16 status;
458 if (i)
459 msleep((1 << (i - 1)) * 100);
460
461 pci_read_config_word(dev, pos, &status);
462 if (!(status & mask))
463 return 1;
464 }
465
466 return 0;
467 }
468
469 /**
470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471 * @dev: PCI device to have its BARs restored
472 *
473 * Restore the BAR values for a given device, so as to make it
474 * accessible by its driver.
475 */
476 static void pci_restore_bars(struct pci_dev *dev)
477 {
478 int i;
479
480 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
481 pci_update_resource(dev, i);
482 }
483
484 static struct pci_platform_pm_ops *pci_platform_pm;
485
486 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
487 {
488 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
489 || !ops->sleep_wake)
490 return -EINVAL;
491 pci_platform_pm = ops;
492 return 0;
493 }
494
495 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
496 {
497 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
498 }
499
500 static inline int platform_pci_set_power_state(struct pci_dev *dev,
501 pci_power_t t)
502 {
503 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
504 }
505
506 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
507 {
508 return pci_platform_pm ?
509 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
510 }
511
512 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
513 {
514 return pci_platform_pm ?
515 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
516 }
517
518 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
519 {
520 return pci_platform_pm ?
521 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
522 }
523
524 /**
525 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
526 * given PCI device
527 * @dev: PCI device to handle.
528 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
529 *
530 * RETURN VALUE:
531 * -EINVAL if the requested state is invalid.
532 * -EIO if device does not support PCI PM or its PM capabilities register has a
533 * wrong version, or device doesn't support the requested state.
534 * 0 if device already is in the requested state.
535 * 0 if device's power state has been successfully changed.
536 */
537 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
538 {
539 u16 pmcsr;
540 bool need_restore = false;
541
542 /* Check if we're already there */
543 if (dev->current_state == state)
544 return 0;
545
546 if (!dev->pm_cap)
547 return -EIO;
548
549 if (state < PCI_D0 || state > PCI_D3hot)
550 return -EINVAL;
551
552 /* Validate current state:
553 * Can enter D0 from any state, but if we can only go deeper
554 * to sleep if we're already in a low power state
555 */
556 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
557 && dev->current_state > state) {
558 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
559 dev->current_state, state);
560 return -EINVAL;
561 }
562
563 /* check if this device supports the desired state */
564 if ((state == PCI_D1 && !dev->d1_support)
565 || (state == PCI_D2 && !dev->d2_support))
566 return -EIO;
567
568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569
570 /* If we're (effectively) in D3, force entire word to 0.
571 * This doesn't affect PME_Status, disables PME_En, and
572 * sets PowerState to 0.
573 */
574 switch (dev->current_state) {
575 case PCI_D0:
576 case PCI_D1:
577 case PCI_D2:
578 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
579 pmcsr |= state;
580 break;
581 case PCI_D3hot:
582 case PCI_D3cold:
583 case PCI_UNKNOWN: /* Boot-up */
584 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
585 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
586 need_restore = true;
587 /* Fall-through: force to D0 */
588 default:
589 pmcsr = 0;
590 break;
591 }
592
593 /* enter specified state */
594 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
595
596 /* Mandatory power management transition delays */
597 /* see PCI PM 1.1 5.6.1 table 18 */
598 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
599 pci_dev_d3_sleep(dev);
600 else if (state == PCI_D2 || dev->current_state == PCI_D2)
601 udelay(PCI_PM_D2_DELAY);
602
603 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
604 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
605 if (dev->current_state != state && printk_ratelimit())
606 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
607 dev->current_state);
608
609 /*
610 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
611 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
612 * from D3hot to D0 _may_ perform an internal reset, thereby
613 * going to "D0 Uninitialized" rather than "D0 Initialized".
614 * For example, at least some versions of the 3c905B and the
615 * 3c556B exhibit this behaviour.
616 *
617 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
618 * devices in a D3hot state at boot. Consequently, we need to
619 * restore at least the BARs so that the device will be
620 * accessible to its driver.
621 */
622 if (need_restore)
623 pci_restore_bars(dev);
624
625 if (dev->bus->self)
626 pcie_aspm_pm_state_change(dev->bus->self);
627
628 return 0;
629 }
630
631 /**
632 * pci_update_current_state - Read PCI power state of given device from its
633 * PCI PM registers and cache it
634 * @dev: PCI device to handle.
635 * @state: State to cache in case the device doesn't have the PM capability
636 */
637 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
638 {
639 if (dev->pm_cap) {
640 u16 pmcsr;
641
642 /*
643 * Configuration space is not accessible for device in
644 * D3cold, so just keep or set D3cold for safety
645 */
646 if (dev->current_state == PCI_D3cold)
647 return;
648 if (state == PCI_D3cold) {
649 dev->current_state = PCI_D3cold;
650 return;
651 }
652 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
653 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
654 } else {
655 dev->current_state = state;
656 }
657 }
658
659 /**
660 * pci_power_up - Put the given device into D0 forcibly
661 * @dev: PCI device to power up
662 */
663 void pci_power_up(struct pci_dev *dev)
664 {
665 if (platform_pci_power_manageable(dev))
666 platform_pci_set_power_state(dev, PCI_D0);
667
668 pci_raw_set_power_state(dev, PCI_D0);
669 pci_update_current_state(dev, PCI_D0);
670 }
671
672 /**
673 * pci_platform_power_transition - Use platform to change device power state
674 * @dev: PCI device to handle.
675 * @state: State to put the device into.
676 */
677 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
678 {
679 int error;
680
681 if (platform_pci_power_manageable(dev)) {
682 error = platform_pci_set_power_state(dev, state);
683 if (!error)
684 pci_update_current_state(dev, state);
685 } else
686 error = -ENODEV;
687
688 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
689 dev->current_state = PCI_D0;
690
691 return error;
692 }
693
694 /**
695 * pci_wakeup - Wake up a PCI device
696 * @pci_dev: Device to handle.
697 * @ign: ignored parameter
698 */
699 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
700 {
701 pci_wakeup_event(pci_dev);
702 pm_request_resume(&pci_dev->dev);
703 return 0;
704 }
705
706 /**
707 * pci_wakeup_bus - Walk given bus and wake up devices on it
708 * @bus: Top bus of the subtree to walk.
709 */
710 static void pci_wakeup_bus(struct pci_bus *bus)
711 {
712 if (bus)
713 pci_walk_bus(bus, pci_wakeup, NULL);
714 }
715
716 /**
717 * __pci_start_power_transition - Start power transition of a PCI device
718 * @dev: PCI device to handle.
719 * @state: State to put the device into.
720 */
721 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
722 {
723 if (state == PCI_D0) {
724 pci_platform_power_transition(dev, PCI_D0);
725 /*
726 * Mandatory power management transition delays, see
727 * PCI Express Base Specification Revision 2.0 Section
728 * 6.6.1: Conventional Reset. Do not delay for
729 * devices powered on/off by corresponding bridge,
730 * because have already delayed for the bridge.
731 */
732 if (dev->runtime_d3cold) {
733 msleep(dev->d3cold_delay);
734 /*
735 * When powering on a bridge from D3cold, the
736 * whole hierarchy may be powered on into
737 * D0uninitialized state, resume them to give
738 * them a chance to suspend again
739 */
740 pci_wakeup_bus(dev->subordinate);
741 }
742 }
743 }
744
745 /**
746 * __pci_dev_set_current_state - Set current state of a PCI device
747 * @dev: Device to handle
748 * @data: pointer to state to be set
749 */
750 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
751 {
752 pci_power_t state = *(pci_power_t *)data;
753
754 dev->current_state = state;
755 return 0;
756 }
757
758 /**
759 * __pci_bus_set_current_state - Walk given bus and set current state of devices
760 * @bus: Top bus of the subtree to walk.
761 * @state: state to be set
762 */
763 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
764 {
765 if (bus)
766 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
767 }
768
769 /**
770 * __pci_complete_power_transition - Complete power transition of a PCI device
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
773 *
774 * This function should not be called directly by device drivers.
775 */
776 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
777 {
778 int ret;
779
780 if (state <= PCI_D0)
781 return -EINVAL;
782 ret = pci_platform_power_transition(dev, state);
783 /* Power off the bridge may power off the whole hierarchy */
784 if (!ret && state == PCI_D3cold)
785 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
786 return ret;
787 }
788 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
789
790 /**
791 * pci_set_power_state - Set the power state of a PCI device
792 * @dev: PCI device to handle.
793 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
794 *
795 * Transition a device to a new power state, using the platform firmware and/or
796 * the device's PCI PM registers.
797 *
798 * RETURN VALUE:
799 * -EINVAL if the requested state is invalid.
800 * -EIO if device does not support PCI PM or its PM capabilities register has a
801 * wrong version, or device doesn't support the requested state.
802 * 0 if device already is in the requested state.
803 * 0 if device's power state has been successfully changed.
804 */
805 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
806 {
807 int error;
808
809 /* bound the state we're entering */
810 if (state > PCI_D3cold)
811 state = PCI_D3cold;
812 else if (state < PCI_D0)
813 state = PCI_D0;
814 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
815 /*
816 * If the device or the parent bridge do not support PCI PM,
817 * ignore the request if we're doing anything other than putting
818 * it into D0 (which would only happen on boot).
819 */
820 return 0;
821
822 /* Check if we're already there */
823 if (dev->current_state == state)
824 return 0;
825
826 __pci_start_power_transition(dev, state);
827
828 /* This device is quirked not to be put into D3, so
829 don't put it in D3 */
830 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
831 return 0;
832
833 /*
834 * To put device in D3cold, we put device into D3hot in native
835 * way, then put device into D3cold with platform ops
836 */
837 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
838 PCI_D3hot : state);
839
840 if (!__pci_complete_power_transition(dev, state))
841 error = 0;
842
843 return error;
844 }
845 EXPORT_SYMBOL(pci_set_power_state);
846
847 /**
848 * pci_choose_state - Choose the power state of a PCI device
849 * @dev: PCI device to be suspended
850 * @state: target sleep state for the whole system. This is the value
851 * that is passed to suspend() function.
852 *
853 * Returns PCI power state suitable for given device and given system
854 * message.
855 */
856
857 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
858 {
859 pci_power_t ret;
860
861 if (!dev->pm_cap)
862 return PCI_D0;
863
864 ret = platform_pci_choose_state(dev);
865 if (ret != PCI_POWER_ERROR)
866 return ret;
867
868 switch (state.event) {
869 case PM_EVENT_ON:
870 return PCI_D0;
871 case PM_EVENT_FREEZE:
872 case PM_EVENT_PRETHAW:
873 /* REVISIT both freeze and pre-thaw "should" use D0 */
874 case PM_EVENT_SUSPEND:
875 case PM_EVENT_HIBERNATE:
876 return PCI_D3hot;
877 default:
878 dev_info(&dev->dev, "unrecognized suspend event %d\n",
879 state.event);
880 BUG();
881 }
882 return PCI_D0;
883 }
884 EXPORT_SYMBOL(pci_choose_state);
885
886 #define PCI_EXP_SAVE_REGS 7
887
888 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
889 u16 cap, bool extended)
890 {
891 struct pci_cap_saved_state *tmp;
892
893 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
894 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
895 return tmp;
896 }
897 return NULL;
898 }
899
900 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
901 {
902 return _pci_find_saved_cap(dev, cap, false);
903 }
904
905 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
906 {
907 return _pci_find_saved_cap(dev, cap, true);
908 }
909
910 static int pci_save_pcie_state(struct pci_dev *dev)
911 {
912 int i = 0;
913 struct pci_cap_saved_state *save_state;
914 u16 *cap;
915
916 if (!pci_is_pcie(dev))
917 return 0;
918
919 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
920 if (!save_state) {
921 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
922 return -ENOMEM;
923 }
924
925 cap = (u16 *)&save_state->cap.data[0];
926 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
927 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
928 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
929 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
930 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
931 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
933
934 return 0;
935 }
936
937 static void pci_restore_pcie_state(struct pci_dev *dev)
938 {
939 int i = 0;
940 struct pci_cap_saved_state *save_state;
941 u16 *cap;
942
943 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
944 if (!save_state)
945 return;
946
947 cap = (u16 *)&save_state->cap.data[0];
948 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
949 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
950 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
951 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
952 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
953 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
955 }
956
957
958 static int pci_save_pcix_state(struct pci_dev *dev)
959 {
960 int pos;
961 struct pci_cap_saved_state *save_state;
962
963 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
964 if (pos <= 0)
965 return 0;
966
967 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
968 if (!save_state) {
969 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
970 return -ENOMEM;
971 }
972
973 pci_read_config_word(dev, pos + PCI_X_CMD,
974 (u16 *)save_state->cap.data);
975
976 return 0;
977 }
978
979 static void pci_restore_pcix_state(struct pci_dev *dev)
980 {
981 int i = 0, pos;
982 struct pci_cap_saved_state *save_state;
983 u16 *cap;
984
985 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
986 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
987 if (!save_state || pos <= 0)
988 return;
989 cap = (u16 *)&save_state->cap.data[0];
990
991 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
992 }
993
994
995 /**
996 * pci_save_state - save the PCI configuration space of a device before suspending
997 * @dev: - PCI device that we're dealing with
998 */
999 int pci_save_state(struct pci_dev *dev)
1000 {
1001 int i;
1002 /* XXX: 100% dword access ok here? */
1003 for (i = 0; i < 16; i++)
1004 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1005 dev->state_saved = true;
1006
1007 i = pci_save_pcie_state(dev);
1008 if (i != 0)
1009 return i;
1010
1011 i = pci_save_pcix_state(dev);
1012 if (i != 0)
1013 return i;
1014
1015 return pci_save_vc_state(dev);
1016 }
1017 EXPORT_SYMBOL(pci_save_state);
1018
1019 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1020 u32 saved_val, int retry)
1021 {
1022 u32 val;
1023
1024 pci_read_config_dword(pdev, offset, &val);
1025 if (val == saved_val)
1026 return;
1027
1028 for (;;) {
1029 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1030 offset, val, saved_val);
1031 pci_write_config_dword(pdev, offset, saved_val);
1032 if (retry-- <= 0)
1033 return;
1034
1035 pci_read_config_dword(pdev, offset, &val);
1036 if (val == saved_val)
1037 return;
1038
1039 mdelay(1);
1040 }
1041 }
1042
1043 static void pci_restore_config_space_range(struct pci_dev *pdev,
1044 int start, int end, int retry)
1045 {
1046 int index;
1047
1048 for (index = end; index >= start; index--)
1049 pci_restore_config_dword(pdev, 4 * index,
1050 pdev->saved_config_space[index],
1051 retry);
1052 }
1053
1054 static void pci_restore_config_space(struct pci_dev *pdev)
1055 {
1056 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1057 pci_restore_config_space_range(pdev, 10, 15, 0);
1058 /* Restore BARs before the command register. */
1059 pci_restore_config_space_range(pdev, 4, 9, 10);
1060 pci_restore_config_space_range(pdev, 0, 3, 0);
1061 } else {
1062 pci_restore_config_space_range(pdev, 0, 15, 0);
1063 }
1064 }
1065
1066 /**
1067 * pci_restore_state - Restore the saved state of a PCI device
1068 * @dev: - PCI device that we're dealing with
1069 */
1070 void pci_restore_state(struct pci_dev *dev)
1071 {
1072 if (!dev->state_saved)
1073 return;
1074
1075 /* PCI Express register must be restored first */
1076 pci_restore_pcie_state(dev);
1077 pci_restore_ats_state(dev);
1078 pci_restore_vc_state(dev);
1079
1080 pci_restore_config_space(dev);
1081
1082 pci_restore_pcix_state(dev);
1083 pci_restore_msi_state(dev);
1084 pci_restore_iov_state(dev);
1085
1086 dev->state_saved = false;
1087 }
1088 EXPORT_SYMBOL(pci_restore_state);
1089
1090 struct pci_saved_state {
1091 u32 config_space[16];
1092 struct pci_cap_saved_data cap[0];
1093 };
1094
1095 /**
1096 * pci_store_saved_state - Allocate and return an opaque struct containing
1097 * the device saved state.
1098 * @dev: PCI device that we're dealing with
1099 *
1100 * Return NULL if no state or error.
1101 */
1102 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1103 {
1104 struct pci_saved_state *state;
1105 struct pci_cap_saved_state *tmp;
1106 struct pci_cap_saved_data *cap;
1107 size_t size;
1108
1109 if (!dev->state_saved)
1110 return NULL;
1111
1112 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1113
1114 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1115 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1116
1117 state = kzalloc(size, GFP_KERNEL);
1118 if (!state)
1119 return NULL;
1120
1121 memcpy(state->config_space, dev->saved_config_space,
1122 sizeof(state->config_space));
1123
1124 cap = state->cap;
1125 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1126 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1127 memcpy(cap, &tmp->cap, len);
1128 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1129 }
1130 /* Empty cap_save terminates list */
1131
1132 return state;
1133 }
1134 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1135
1136 /**
1137 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1138 * @dev: PCI device that we're dealing with
1139 * @state: Saved state returned from pci_store_saved_state()
1140 */
1141 int pci_load_saved_state(struct pci_dev *dev,
1142 struct pci_saved_state *state)
1143 {
1144 struct pci_cap_saved_data *cap;
1145
1146 dev->state_saved = false;
1147
1148 if (!state)
1149 return 0;
1150
1151 memcpy(dev->saved_config_space, state->config_space,
1152 sizeof(state->config_space));
1153
1154 cap = state->cap;
1155 while (cap->size) {
1156 struct pci_cap_saved_state *tmp;
1157
1158 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1159 if (!tmp || tmp->cap.size != cap->size)
1160 return -EINVAL;
1161
1162 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1163 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1164 sizeof(struct pci_cap_saved_data) + cap->size);
1165 }
1166
1167 dev->state_saved = true;
1168 return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1171
1172 /**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 * and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178 int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 struct pci_saved_state **state)
1180 {
1181 int ret = pci_load_saved_state(dev, *state);
1182 kfree(*state);
1183 *state = NULL;
1184 return ret;
1185 }
1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
1188 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189 {
1190 return pci_enable_resources(dev, bars);
1191 }
1192
1193 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 int err;
1196 struct pci_dev *bridge;
1197 u16 cmd;
1198 u8 pin;
1199
1200 err = pci_set_power_state(dev, PCI_D0);
1201 if (err < 0 && err != -EIO)
1202 return err;
1203
1204 bridge = pci_upstream_bridge(dev);
1205 if (bridge)
1206 pcie_aspm_powersave_config_link(bridge);
1207
1208 err = pcibios_enable_device(dev, bars);
1209 if (err < 0)
1210 return err;
1211 pci_fixup_device(pci_fixup_enable, dev);
1212
1213 if (dev->msi_enabled || dev->msix_enabled)
1214 return 0;
1215
1216 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1217 if (pin) {
1218 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1219 if (cmd & PCI_COMMAND_INTX_DISABLE)
1220 pci_write_config_word(dev, PCI_COMMAND,
1221 cmd & ~PCI_COMMAND_INTX_DISABLE);
1222 }
1223
1224 return 0;
1225 }
1226
1227 /**
1228 * pci_reenable_device - Resume abandoned device
1229 * @dev: PCI device to be resumed
1230 *
1231 * Note this function is a backend of pci_default_resume and is not supposed
1232 * to be called by normal code, write proper resume handler and use it instead.
1233 */
1234 int pci_reenable_device(struct pci_dev *dev)
1235 {
1236 if (pci_is_enabled(dev))
1237 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1238 return 0;
1239 }
1240 EXPORT_SYMBOL(pci_reenable_device);
1241
1242 static void pci_enable_bridge(struct pci_dev *dev)
1243 {
1244 struct pci_dev *bridge;
1245 int retval;
1246
1247 bridge = pci_upstream_bridge(dev);
1248 if (bridge)
1249 pci_enable_bridge(bridge);
1250
1251 if (pci_is_enabled(dev)) {
1252 if (!dev->is_busmaster)
1253 pci_set_master(dev);
1254 return;
1255 }
1256
1257 retval = pci_enable_device(dev);
1258 if (retval)
1259 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1260 retval);
1261 pci_set_master(dev);
1262 }
1263
1264 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1265 {
1266 struct pci_dev *bridge;
1267 int err;
1268 int i, bars = 0;
1269
1270 /*
1271 * Power state could be unknown at this point, either due to a fresh
1272 * boot or a device removal call. So get the current power state
1273 * so that things like MSI message writing will behave as expected
1274 * (e.g. if the device really is in D0 at enable time).
1275 */
1276 if (dev->pm_cap) {
1277 u16 pmcsr;
1278 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1280 }
1281
1282 if (atomic_inc_return(&dev->enable_cnt) > 1)
1283 return 0; /* already enabled */
1284
1285 bridge = pci_upstream_bridge(dev);
1286 if (bridge)
1287 pci_enable_bridge(bridge);
1288
1289 /* only skip sriov related */
1290 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1291 if (dev->resource[i].flags & flags)
1292 bars |= (1 << i);
1293 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1294 if (dev->resource[i].flags & flags)
1295 bars |= (1 << i);
1296
1297 err = do_pci_enable_device(dev, bars);
1298 if (err < 0)
1299 atomic_dec(&dev->enable_cnt);
1300 return err;
1301 }
1302
1303 /**
1304 * pci_enable_device_io - Initialize a device for use with IO space
1305 * @dev: PCI device to be initialized
1306 *
1307 * Initialize device before it's used by a driver. Ask low-level code
1308 * to enable I/O resources. Wake up the device if it was suspended.
1309 * Beware, this function can fail.
1310 */
1311 int pci_enable_device_io(struct pci_dev *dev)
1312 {
1313 return pci_enable_device_flags(dev, IORESOURCE_IO);
1314 }
1315 EXPORT_SYMBOL(pci_enable_device_io);
1316
1317 /**
1318 * pci_enable_device_mem - Initialize a device for use with Memory space
1319 * @dev: PCI device to be initialized
1320 *
1321 * Initialize device before it's used by a driver. Ask low-level code
1322 * to enable Memory resources. Wake up the device if it was suspended.
1323 * Beware, this function can fail.
1324 */
1325 int pci_enable_device_mem(struct pci_dev *dev)
1326 {
1327 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1328 }
1329 EXPORT_SYMBOL(pci_enable_device_mem);
1330
1331 /**
1332 * pci_enable_device - Initialize device before it's used by a driver.
1333 * @dev: PCI device to be initialized
1334 *
1335 * Initialize device before it's used by a driver. Ask low-level code
1336 * to enable I/O and memory. Wake up the device if it was suspended.
1337 * Beware, this function can fail.
1338 *
1339 * Note we don't actually enable the device many times if we call
1340 * this function repeatedly (we just increment the count).
1341 */
1342 int pci_enable_device(struct pci_dev *dev)
1343 {
1344 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1345 }
1346 EXPORT_SYMBOL(pci_enable_device);
1347
1348 /*
1349 * Managed PCI resources. This manages device on/off, intx/msi/msix
1350 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1351 * there's no need to track it separately. pci_devres is initialized
1352 * when a device is enabled using managed PCI device enable interface.
1353 */
1354 struct pci_devres {
1355 unsigned int enabled:1;
1356 unsigned int pinned:1;
1357 unsigned int orig_intx:1;
1358 unsigned int restore_intx:1;
1359 u32 region_mask;
1360 };
1361
1362 static void pcim_release(struct device *gendev, void *res)
1363 {
1364 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1365 struct pci_devres *this = res;
1366 int i;
1367
1368 if (dev->msi_enabled)
1369 pci_disable_msi(dev);
1370 if (dev->msix_enabled)
1371 pci_disable_msix(dev);
1372
1373 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1374 if (this->region_mask & (1 << i))
1375 pci_release_region(dev, i);
1376
1377 if (this->restore_intx)
1378 pci_intx(dev, this->orig_intx);
1379
1380 if (this->enabled && !this->pinned)
1381 pci_disable_device(dev);
1382 }
1383
1384 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1385 {
1386 struct pci_devres *dr, *new_dr;
1387
1388 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1389 if (dr)
1390 return dr;
1391
1392 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1393 if (!new_dr)
1394 return NULL;
1395 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1396 }
1397
1398 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1399 {
1400 if (pci_is_managed(pdev))
1401 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1402 return NULL;
1403 }
1404
1405 /**
1406 * pcim_enable_device - Managed pci_enable_device()
1407 * @pdev: PCI device to be initialized
1408 *
1409 * Managed pci_enable_device().
1410 */
1411 int pcim_enable_device(struct pci_dev *pdev)
1412 {
1413 struct pci_devres *dr;
1414 int rc;
1415
1416 dr = get_pci_dr(pdev);
1417 if (unlikely(!dr))
1418 return -ENOMEM;
1419 if (dr->enabled)
1420 return 0;
1421
1422 rc = pci_enable_device(pdev);
1423 if (!rc) {
1424 pdev->is_managed = 1;
1425 dr->enabled = 1;
1426 }
1427 return rc;
1428 }
1429 EXPORT_SYMBOL(pcim_enable_device);
1430
1431 /**
1432 * pcim_pin_device - Pin managed PCI device
1433 * @pdev: PCI device to pin
1434 *
1435 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1436 * driver detach. @pdev must have been enabled with
1437 * pcim_enable_device().
1438 */
1439 void pcim_pin_device(struct pci_dev *pdev)
1440 {
1441 struct pci_devres *dr;
1442
1443 dr = find_pci_dr(pdev);
1444 WARN_ON(!dr || !dr->enabled);
1445 if (dr)
1446 dr->pinned = 1;
1447 }
1448 EXPORT_SYMBOL(pcim_pin_device);
1449
1450 /*
1451 * pcibios_add_device - provide arch specific hooks when adding device dev
1452 * @dev: the PCI device being added
1453 *
1454 * Permits the platform to provide architecture specific functionality when
1455 * devices are added. This is the default implementation. Architecture
1456 * implementations can override this.
1457 */
1458 int __weak pcibios_add_device(struct pci_dev *dev)
1459 {
1460 return 0;
1461 }
1462
1463 /**
1464 * pcibios_release_device - provide arch specific hooks when releasing device dev
1465 * @dev: the PCI device being released
1466 *
1467 * Permits the platform to provide architecture specific functionality when
1468 * devices are released. This is the default implementation. Architecture
1469 * implementations can override this.
1470 */
1471 void __weak pcibios_release_device(struct pci_dev *dev) {}
1472
1473 /**
1474 * pcibios_disable_device - disable arch specific PCI resources for device dev
1475 * @dev: the PCI device to disable
1476 *
1477 * Disables architecture specific PCI resources for the device. This
1478 * is the default implementation. Architecture implementations can
1479 * override this.
1480 */
1481 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1482
1483 /**
1484 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1485 * @irq: ISA IRQ to penalize
1486 * @active: IRQ active or not
1487 *
1488 * Permits the platform to provide architecture-specific functionality when
1489 * penalizing ISA IRQs. This is the default implementation. Architecture
1490 * implementations can override this.
1491 */
1492 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1493
1494 static void do_pci_disable_device(struct pci_dev *dev)
1495 {
1496 u16 pci_command;
1497
1498 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1499 if (pci_command & PCI_COMMAND_MASTER) {
1500 pci_command &= ~PCI_COMMAND_MASTER;
1501 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1502 }
1503
1504 pcibios_disable_device(dev);
1505 }
1506
1507 /**
1508 * pci_disable_enabled_device - Disable device without updating enable_cnt
1509 * @dev: PCI device to disable
1510 *
1511 * NOTE: This function is a backend of PCI power management routines and is
1512 * not supposed to be called drivers.
1513 */
1514 void pci_disable_enabled_device(struct pci_dev *dev)
1515 {
1516 if (pci_is_enabled(dev))
1517 do_pci_disable_device(dev);
1518 }
1519
1520 /**
1521 * pci_disable_device - Disable PCI device after use
1522 * @dev: PCI device to be disabled
1523 *
1524 * Signal to the system that the PCI device is not in use by the system
1525 * anymore. This only involves disabling PCI bus-mastering, if active.
1526 *
1527 * Note we don't actually disable the device until all callers of
1528 * pci_enable_device() have called pci_disable_device().
1529 */
1530 void pci_disable_device(struct pci_dev *dev)
1531 {
1532 struct pci_devres *dr;
1533
1534 dr = find_pci_dr(dev);
1535 if (dr)
1536 dr->enabled = 0;
1537
1538 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1539 "disabling already-disabled device");
1540
1541 if (atomic_dec_return(&dev->enable_cnt) != 0)
1542 return;
1543
1544 do_pci_disable_device(dev);
1545
1546 dev->is_busmaster = 0;
1547 }
1548 EXPORT_SYMBOL(pci_disable_device);
1549
1550 /**
1551 * pcibios_set_pcie_reset_state - set reset state for device dev
1552 * @dev: the PCIe device reset
1553 * @state: Reset state to enter into
1554 *
1555 *
1556 * Sets the PCIe reset state for the device. This is the default
1557 * implementation. Architecture implementations can override this.
1558 */
1559 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1560 enum pcie_reset_state state)
1561 {
1562 return -EINVAL;
1563 }
1564
1565 /**
1566 * pci_set_pcie_reset_state - set reset state for device dev
1567 * @dev: the PCIe device reset
1568 * @state: Reset state to enter into
1569 *
1570 *
1571 * Sets the PCI reset state for the device.
1572 */
1573 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1574 {
1575 return pcibios_set_pcie_reset_state(dev, state);
1576 }
1577 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1578
1579 /**
1580 * pci_check_pme_status - Check if given device has generated PME.
1581 * @dev: Device to check.
1582 *
1583 * Check the PME status of the device and if set, clear it and clear PME enable
1584 * (if set). Return 'true' if PME status and PME enable were both set or
1585 * 'false' otherwise.
1586 */
1587 bool pci_check_pme_status(struct pci_dev *dev)
1588 {
1589 int pmcsr_pos;
1590 u16 pmcsr;
1591 bool ret = false;
1592
1593 if (!dev->pm_cap)
1594 return false;
1595
1596 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1597 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1598 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1599 return false;
1600
1601 /* Clear PME status. */
1602 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1603 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1604 /* Disable PME to avoid interrupt flood. */
1605 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1606 ret = true;
1607 }
1608
1609 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1610
1611 return ret;
1612 }
1613
1614 /**
1615 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1616 * @dev: Device to handle.
1617 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1618 *
1619 * Check if @dev has generated PME and queue a resume request for it in that
1620 * case.
1621 */
1622 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1623 {
1624 if (pme_poll_reset && dev->pme_poll)
1625 dev->pme_poll = false;
1626
1627 if (pci_check_pme_status(dev)) {
1628 pci_wakeup_event(dev);
1629 pm_request_resume(&dev->dev);
1630 }
1631 return 0;
1632 }
1633
1634 /**
1635 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1636 * @bus: Top bus of the subtree to walk.
1637 */
1638 void pci_pme_wakeup_bus(struct pci_bus *bus)
1639 {
1640 if (bus)
1641 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1642 }
1643
1644
1645 /**
1646 * pci_pme_capable - check the capability of PCI device to generate PME#
1647 * @dev: PCI device to handle.
1648 * @state: PCI state from which device will issue PME#.
1649 */
1650 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1651 {
1652 if (!dev->pm_cap)
1653 return false;
1654
1655 return !!(dev->pme_support & (1 << state));
1656 }
1657 EXPORT_SYMBOL(pci_pme_capable);
1658
1659 static void pci_pme_list_scan(struct work_struct *work)
1660 {
1661 struct pci_pme_device *pme_dev, *n;
1662
1663 mutex_lock(&pci_pme_list_mutex);
1664 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1665 if (pme_dev->dev->pme_poll) {
1666 struct pci_dev *bridge;
1667
1668 bridge = pme_dev->dev->bus->self;
1669 /*
1670 * If bridge is in low power state, the
1671 * configuration space of subordinate devices
1672 * may be not accessible
1673 */
1674 if (bridge && bridge->current_state != PCI_D0)
1675 continue;
1676 pci_pme_wakeup(pme_dev->dev, NULL);
1677 } else {
1678 list_del(&pme_dev->list);
1679 kfree(pme_dev);
1680 }
1681 }
1682 if (!list_empty(&pci_pme_list))
1683 schedule_delayed_work(&pci_pme_work,
1684 msecs_to_jiffies(PME_TIMEOUT));
1685 mutex_unlock(&pci_pme_list_mutex);
1686 }
1687
1688 /**
1689 * pci_pme_active - enable or disable PCI device's PME# function
1690 * @dev: PCI device to handle.
1691 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1692 *
1693 * The caller must verify that the device is capable of generating PME# before
1694 * calling this function with @enable equal to 'true'.
1695 */
1696 void pci_pme_active(struct pci_dev *dev, bool enable)
1697 {
1698 u16 pmcsr;
1699
1700 if (!dev->pme_support)
1701 return;
1702
1703 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1704 /* Clear PME_Status by writing 1 to it and enable PME# */
1705 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1706 if (!enable)
1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708
1709 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1710
1711 /*
1712 * PCI (as opposed to PCIe) PME requires that the device have
1713 * its PME# line hooked up correctly. Not all hardware vendors
1714 * do this, so the PME never gets delivered and the device
1715 * remains asleep. The easiest way around this is to
1716 * periodically walk the list of suspended devices and check
1717 * whether any have their PME flag set. The assumption is that
1718 * we'll wake up often enough anyway that this won't be a huge
1719 * hit, and the power savings from the devices will still be a
1720 * win.
1721 *
1722 * Although PCIe uses in-band PME message instead of PME# line
1723 * to report PME, PME does not work for some PCIe devices in
1724 * reality. For example, there are devices that set their PME
1725 * status bits, but don't really bother to send a PME message;
1726 * there are PCI Express Root Ports that don't bother to
1727 * trigger interrupts when they receive PME messages from the
1728 * devices below. So PME poll is used for PCIe devices too.
1729 */
1730
1731 if (dev->pme_poll) {
1732 struct pci_pme_device *pme_dev;
1733 if (enable) {
1734 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1735 GFP_KERNEL);
1736 if (!pme_dev) {
1737 dev_warn(&dev->dev, "can't enable PME#\n");
1738 return;
1739 }
1740 pme_dev->dev = dev;
1741 mutex_lock(&pci_pme_list_mutex);
1742 list_add(&pme_dev->list, &pci_pme_list);
1743 if (list_is_singular(&pci_pme_list))
1744 schedule_delayed_work(&pci_pme_work,
1745 msecs_to_jiffies(PME_TIMEOUT));
1746 mutex_unlock(&pci_pme_list_mutex);
1747 } else {
1748 mutex_lock(&pci_pme_list_mutex);
1749 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1750 if (pme_dev->dev == dev) {
1751 list_del(&pme_dev->list);
1752 kfree(pme_dev);
1753 break;
1754 }
1755 }
1756 mutex_unlock(&pci_pme_list_mutex);
1757 }
1758 }
1759
1760 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1761 }
1762 EXPORT_SYMBOL(pci_pme_active);
1763
1764 /**
1765 * __pci_enable_wake - enable PCI device as wakeup event source
1766 * @dev: PCI device affected
1767 * @state: PCI state from which device will issue wakeup events
1768 * @runtime: True if the events are to be generated at run time
1769 * @enable: True to enable event generation; false to disable
1770 *
1771 * This enables the device as a wakeup event source, or disables it.
1772 * When such events involves platform-specific hooks, those hooks are
1773 * called automatically by this routine.
1774 *
1775 * Devices with legacy power management (no standard PCI PM capabilities)
1776 * always require such platform hooks.
1777 *
1778 * RETURN VALUE:
1779 * 0 is returned on success
1780 * -EINVAL is returned if device is not supposed to wake up the system
1781 * Error code depending on the platform is returned if both the platform and
1782 * the native mechanism fail to enable the generation of wake-up events
1783 */
1784 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1785 bool runtime, bool enable)
1786 {
1787 int ret = 0;
1788
1789 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1790 return -EINVAL;
1791
1792 /* Don't do the same thing twice in a row for one device. */
1793 if (!!enable == !!dev->wakeup_prepared)
1794 return 0;
1795
1796 /*
1797 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1798 * Anderson we should be doing PME# wake enable followed by ACPI wake
1799 * enable. To disable wake-up we call the platform first, for symmetry.
1800 */
1801
1802 if (enable) {
1803 int error;
1804
1805 if (pci_pme_capable(dev, state))
1806 pci_pme_active(dev, true);
1807 else
1808 ret = 1;
1809 error = runtime ? platform_pci_run_wake(dev, true) :
1810 platform_pci_sleep_wake(dev, true);
1811 if (ret)
1812 ret = error;
1813 if (!ret)
1814 dev->wakeup_prepared = true;
1815 } else {
1816 if (runtime)
1817 platform_pci_run_wake(dev, false);
1818 else
1819 platform_pci_sleep_wake(dev, false);
1820 pci_pme_active(dev, false);
1821 dev->wakeup_prepared = false;
1822 }
1823
1824 return ret;
1825 }
1826 EXPORT_SYMBOL(__pci_enable_wake);
1827
1828 /**
1829 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1830 * @dev: PCI device to prepare
1831 * @enable: True to enable wake-up event generation; false to disable
1832 *
1833 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1834 * and this function allows them to set that up cleanly - pci_enable_wake()
1835 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1836 * ordering constraints.
1837 *
1838 * This function only returns error code if the device is not capable of
1839 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1840 * enable wake-up power for it.
1841 */
1842 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1843 {
1844 return pci_pme_capable(dev, PCI_D3cold) ?
1845 pci_enable_wake(dev, PCI_D3cold, enable) :
1846 pci_enable_wake(dev, PCI_D3hot, enable);
1847 }
1848 EXPORT_SYMBOL(pci_wake_from_d3);
1849
1850 /**
1851 * pci_target_state - find an appropriate low power state for a given PCI dev
1852 * @dev: PCI device
1853 *
1854 * Use underlying platform code to find a supported low power state for @dev.
1855 * If the platform can't manage @dev, return the deepest state from which it
1856 * can generate wake events, based on any available PME info.
1857 */
1858 static pci_power_t pci_target_state(struct pci_dev *dev)
1859 {
1860 pci_power_t target_state = PCI_D3hot;
1861
1862 if (platform_pci_power_manageable(dev)) {
1863 /*
1864 * Call the platform to choose the target state of the device
1865 * and enable wake-up from this state if supported.
1866 */
1867 pci_power_t state = platform_pci_choose_state(dev);
1868
1869 switch (state) {
1870 case PCI_POWER_ERROR:
1871 case PCI_UNKNOWN:
1872 break;
1873 case PCI_D1:
1874 case PCI_D2:
1875 if (pci_no_d1d2(dev))
1876 break;
1877 default:
1878 target_state = state;
1879 }
1880 } else if (!dev->pm_cap) {
1881 target_state = PCI_D0;
1882 } else if (device_may_wakeup(&dev->dev)) {
1883 /*
1884 * Find the deepest state from which the device can generate
1885 * wake-up events, make it the target state and enable device
1886 * to generate PME#.
1887 */
1888 if (dev->pme_support) {
1889 while (target_state
1890 && !(dev->pme_support & (1 << target_state)))
1891 target_state--;
1892 }
1893 }
1894
1895 return target_state;
1896 }
1897
1898 /**
1899 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1900 * @dev: Device to handle.
1901 *
1902 * Choose the power state appropriate for the device depending on whether
1903 * it can wake up the system and/or is power manageable by the platform
1904 * (PCI_D3hot is the default) and put the device into that state.
1905 */
1906 int pci_prepare_to_sleep(struct pci_dev *dev)
1907 {
1908 pci_power_t target_state = pci_target_state(dev);
1909 int error;
1910
1911 if (target_state == PCI_POWER_ERROR)
1912 return -EIO;
1913
1914 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1915
1916 error = pci_set_power_state(dev, target_state);
1917
1918 if (error)
1919 pci_enable_wake(dev, target_state, false);
1920
1921 return error;
1922 }
1923 EXPORT_SYMBOL(pci_prepare_to_sleep);
1924
1925 /**
1926 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1927 * @dev: Device to handle.
1928 *
1929 * Disable device's system wake-up capability and put it into D0.
1930 */
1931 int pci_back_from_sleep(struct pci_dev *dev)
1932 {
1933 pci_enable_wake(dev, PCI_D0, false);
1934 return pci_set_power_state(dev, PCI_D0);
1935 }
1936 EXPORT_SYMBOL(pci_back_from_sleep);
1937
1938 /**
1939 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1940 * @dev: PCI device being suspended.
1941 *
1942 * Prepare @dev to generate wake-up events at run time and put it into a low
1943 * power state.
1944 */
1945 int pci_finish_runtime_suspend(struct pci_dev *dev)
1946 {
1947 pci_power_t target_state = pci_target_state(dev);
1948 int error;
1949
1950 if (target_state == PCI_POWER_ERROR)
1951 return -EIO;
1952
1953 dev->runtime_d3cold = target_state == PCI_D3cold;
1954
1955 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1956
1957 error = pci_set_power_state(dev, target_state);
1958
1959 if (error) {
1960 __pci_enable_wake(dev, target_state, true, false);
1961 dev->runtime_d3cold = false;
1962 }
1963
1964 return error;
1965 }
1966
1967 /**
1968 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1969 * @dev: Device to check.
1970 *
1971 * Return true if the device itself is capable of generating wake-up events
1972 * (through the platform or using the native PCIe PME) or if the device supports
1973 * PME and one of its upstream bridges can generate wake-up events.
1974 */
1975 bool pci_dev_run_wake(struct pci_dev *dev)
1976 {
1977 struct pci_bus *bus = dev->bus;
1978
1979 if (device_run_wake(&dev->dev))
1980 return true;
1981
1982 if (!dev->pme_support)
1983 return false;
1984
1985 while (bus->parent) {
1986 struct pci_dev *bridge = bus->self;
1987
1988 if (device_run_wake(&bridge->dev))
1989 return true;
1990
1991 bus = bus->parent;
1992 }
1993
1994 /* We have reached the root bus. */
1995 if (bus->bridge)
1996 return device_run_wake(bus->bridge);
1997
1998 return false;
1999 }
2000 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2001
2002 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2003 {
2004 struct device *dev = &pdev->dev;
2005 struct device *parent = dev->parent;
2006
2007 if (parent)
2008 pm_runtime_get_sync(parent);
2009 pm_runtime_get_noresume(dev);
2010 /*
2011 * pdev->current_state is set to PCI_D3cold during suspending,
2012 * so wait until suspending completes
2013 */
2014 pm_runtime_barrier(dev);
2015 /*
2016 * Only need to resume devices in D3cold, because config
2017 * registers are still accessible for devices suspended but
2018 * not in D3cold.
2019 */
2020 if (pdev->current_state == PCI_D3cold)
2021 pm_runtime_resume(dev);
2022 }
2023
2024 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2025 {
2026 struct device *dev = &pdev->dev;
2027 struct device *parent = dev->parent;
2028
2029 pm_runtime_put(dev);
2030 if (parent)
2031 pm_runtime_put_sync(parent);
2032 }
2033
2034 /**
2035 * pci_pm_init - Initialize PM functions of given PCI device
2036 * @dev: PCI device to handle.
2037 */
2038 void pci_pm_init(struct pci_dev *dev)
2039 {
2040 int pm;
2041 u16 pmc;
2042
2043 pm_runtime_forbid(&dev->dev);
2044 pm_runtime_set_active(&dev->dev);
2045 pm_runtime_enable(&dev->dev);
2046 device_enable_async_suspend(&dev->dev);
2047 dev->wakeup_prepared = false;
2048
2049 dev->pm_cap = 0;
2050 dev->pme_support = 0;
2051
2052 /* find PCI PM capability in list */
2053 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2054 if (!pm)
2055 return;
2056 /* Check device's ability to generate PME# */
2057 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2058
2059 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2060 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2061 pmc & PCI_PM_CAP_VER_MASK);
2062 return;
2063 }
2064
2065 dev->pm_cap = pm;
2066 dev->d3_delay = PCI_PM_D3_WAIT;
2067 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2068 dev->d3cold_allowed = true;
2069
2070 dev->d1_support = false;
2071 dev->d2_support = false;
2072 if (!pci_no_d1d2(dev)) {
2073 if (pmc & PCI_PM_CAP_D1)
2074 dev->d1_support = true;
2075 if (pmc & PCI_PM_CAP_D2)
2076 dev->d2_support = true;
2077
2078 if (dev->d1_support || dev->d2_support)
2079 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2080 dev->d1_support ? " D1" : "",
2081 dev->d2_support ? " D2" : "");
2082 }
2083
2084 pmc &= PCI_PM_CAP_PME_MASK;
2085 if (pmc) {
2086 dev_printk(KERN_DEBUG, &dev->dev,
2087 "PME# supported from%s%s%s%s%s\n",
2088 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2089 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2090 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2091 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2092 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2093 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2094 dev->pme_poll = true;
2095 /*
2096 * Make device's PM flags reflect the wake-up capability, but
2097 * let the user space enable it to wake up the system as needed.
2098 */
2099 device_set_wakeup_capable(&dev->dev, true);
2100 /* Disable the PME# generation functionality */
2101 pci_pme_active(dev, false);
2102 }
2103 }
2104
2105 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2106 struct pci_cap_saved_state *new_cap)
2107 {
2108 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2109 }
2110
2111 /**
2112 * _pci_add_cap_save_buffer - allocate buffer for saving given
2113 * capability registers
2114 * @dev: the PCI device
2115 * @cap: the capability to allocate the buffer for
2116 * @extended: Standard or Extended capability ID
2117 * @size: requested size of the buffer
2118 */
2119 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2120 bool extended, unsigned int size)
2121 {
2122 int pos;
2123 struct pci_cap_saved_state *save_state;
2124
2125 if (extended)
2126 pos = pci_find_ext_capability(dev, cap);
2127 else
2128 pos = pci_find_capability(dev, cap);
2129
2130 if (pos <= 0)
2131 return 0;
2132
2133 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2134 if (!save_state)
2135 return -ENOMEM;
2136
2137 save_state->cap.cap_nr = cap;
2138 save_state->cap.cap_extended = extended;
2139 save_state->cap.size = size;
2140 pci_add_saved_cap(dev, save_state);
2141
2142 return 0;
2143 }
2144
2145 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2146 {
2147 return _pci_add_cap_save_buffer(dev, cap, false, size);
2148 }
2149
2150 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2151 {
2152 return _pci_add_cap_save_buffer(dev, cap, true, size);
2153 }
2154
2155 /**
2156 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2157 * @dev: the PCI device
2158 */
2159 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2160 {
2161 int error;
2162
2163 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2164 PCI_EXP_SAVE_REGS * sizeof(u16));
2165 if (error)
2166 dev_err(&dev->dev,
2167 "unable to preallocate PCI Express save buffer\n");
2168
2169 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2170 if (error)
2171 dev_err(&dev->dev,
2172 "unable to preallocate PCI-X save buffer\n");
2173
2174 pci_allocate_vc_save_buffers(dev);
2175 }
2176
2177 void pci_free_cap_save_buffers(struct pci_dev *dev)
2178 {
2179 struct pci_cap_saved_state *tmp;
2180 struct hlist_node *n;
2181
2182 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2183 kfree(tmp);
2184 }
2185
2186 /**
2187 * pci_configure_ari - enable or disable ARI forwarding
2188 * @dev: the PCI device
2189 *
2190 * If @dev and its upstream bridge both support ARI, enable ARI in the
2191 * bridge. Otherwise, disable ARI in the bridge.
2192 */
2193 void pci_configure_ari(struct pci_dev *dev)
2194 {
2195 u32 cap;
2196 struct pci_dev *bridge;
2197
2198 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2199 return;
2200
2201 bridge = dev->bus->self;
2202 if (!bridge)
2203 return;
2204
2205 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2206 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2207 return;
2208
2209 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2210 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2211 PCI_EXP_DEVCTL2_ARI);
2212 bridge->ari_enabled = 1;
2213 } else {
2214 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2215 PCI_EXP_DEVCTL2_ARI);
2216 bridge->ari_enabled = 0;
2217 }
2218 }
2219
2220 static int pci_acs_enable;
2221
2222 /**
2223 * pci_request_acs - ask for ACS to be enabled if supported
2224 */
2225 void pci_request_acs(void)
2226 {
2227 pci_acs_enable = 1;
2228 }
2229
2230 /**
2231 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2232 * @dev: the PCI device
2233 */
2234 static int pci_std_enable_acs(struct pci_dev *dev)
2235 {
2236 int pos;
2237 u16 cap;
2238 u16 ctrl;
2239
2240 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2241 if (!pos)
2242 return -ENODEV;
2243
2244 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2245 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2246
2247 /* Source Validation */
2248 ctrl |= (cap & PCI_ACS_SV);
2249
2250 /* P2P Request Redirect */
2251 ctrl |= (cap & PCI_ACS_RR);
2252
2253 /* P2P Completion Redirect */
2254 ctrl |= (cap & PCI_ACS_CR);
2255
2256 /* Upstream Forwarding */
2257 ctrl |= (cap & PCI_ACS_UF);
2258
2259 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2260
2261 return 0;
2262 }
2263
2264 /**
2265 * pci_enable_acs - enable ACS if hardware support it
2266 * @dev: the PCI device
2267 */
2268 void pci_enable_acs(struct pci_dev *dev)
2269 {
2270 if (!pci_acs_enable)
2271 return;
2272
2273 if (!pci_std_enable_acs(dev))
2274 return;
2275
2276 pci_dev_specific_enable_acs(dev);
2277 }
2278
2279 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2280 {
2281 int pos;
2282 u16 cap, ctrl;
2283
2284 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2285 if (!pos)
2286 return false;
2287
2288 /*
2289 * Except for egress control, capabilities are either required
2290 * or only required if controllable. Features missing from the
2291 * capability field can therefore be assumed as hard-wired enabled.
2292 */
2293 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2294 acs_flags &= (cap | PCI_ACS_EC);
2295
2296 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2297 return (ctrl & acs_flags) == acs_flags;
2298 }
2299
2300 /**
2301 * pci_acs_enabled - test ACS against required flags for a given device
2302 * @pdev: device to test
2303 * @acs_flags: required PCI ACS flags
2304 *
2305 * Return true if the device supports the provided flags. Automatically
2306 * filters out flags that are not implemented on multifunction devices.
2307 *
2308 * Note that this interface checks the effective ACS capabilities of the
2309 * device rather than the actual capabilities. For instance, most single
2310 * function endpoints are not required to support ACS because they have no
2311 * opportunity for peer-to-peer access. We therefore return 'true'
2312 * regardless of whether the device exposes an ACS capability. This makes
2313 * it much easier for callers of this function to ignore the actual type
2314 * or topology of the device when testing ACS support.
2315 */
2316 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2317 {
2318 int ret;
2319
2320 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2321 if (ret >= 0)
2322 return ret > 0;
2323
2324 /*
2325 * Conventional PCI and PCI-X devices never support ACS, either
2326 * effectively or actually. The shared bus topology implies that
2327 * any device on the bus can receive or snoop DMA.
2328 */
2329 if (!pci_is_pcie(pdev))
2330 return false;
2331
2332 switch (pci_pcie_type(pdev)) {
2333 /*
2334 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2335 * but since their primary interface is PCI/X, we conservatively
2336 * handle them as we would a non-PCIe device.
2337 */
2338 case PCI_EXP_TYPE_PCIE_BRIDGE:
2339 /*
2340 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2341 * applicable... must never implement an ACS Extended Capability...".
2342 * This seems arbitrary, but we take a conservative interpretation
2343 * of this statement.
2344 */
2345 case PCI_EXP_TYPE_PCI_BRIDGE:
2346 case PCI_EXP_TYPE_RC_EC:
2347 return false;
2348 /*
2349 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2350 * implement ACS in order to indicate their peer-to-peer capabilities,
2351 * regardless of whether they are single- or multi-function devices.
2352 */
2353 case PCI_EXP_TYPE_DOWNSTREAM:
2354 case PCI_EXP_TYPE_ROOT_PORT:
2355 return pci_acs_flags_enabled(pdev, acs_flags);
2356 /*
2357 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2358 * implemented by the remaining PCIe types to indicate peer-to-peer
2359 * capabilities, but only when they are part of a multifunction
2360 * device. The footnote for section 6.12 indicates the specific
2361 * PCIe types included here.
2362 */
2363 case PCI_EXP_TYPE_ENDPOINT:
2364 case PCI_EXP_TYPE_UPSTREAM:
2365 case PCI_EXP_TYPE_LEG_END:
2366 case PCI_EXP_TYPE_RC_END:
2367 if (!pdev->multifunction)
2368 break;
2369
2370 return pci_acs_flags_enabled(pdev, acs_flags);
2371 }
2372
2373 /*
2374 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2375 * to single function devices with the exception of downstream ports.
2376 */
2377 return true;
2378 }
2379
2380 /**
2381 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2382 * @start: starting downstream device
2383 * @end: ending upstream device or NULL to search to the root bus
2384 * @acs_flags: required flags
2385 *
2386 * Walk up a device tree from start to end testing PCI ACS support. If
2387 * any step along the way does not support the required flags, return false.
2388 */
2389 bool pci_acs_path_enabled(struct pci_dev *start,
2390 struct pci_dev *end, u16 acs_flags)
2391 {
2392 struct pci_dev *pdev, *parent = start;
2393
2394 do {
2395 pdev = parent;
2396
2397 if (!pci_acs_enabled(pdev, acs_flags))
2398 return false;
2399
2400 if (pci_is_root_bus(pdev->bus))
2401 return (end == NULL);
2402
2403 parent = pdev->bus->self;
2404 } while (pdev != end);
2405
2406 return true;
2407 }
2408
2409 /**
2410 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2411 * @dev: the PCI device
2412 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2413 *
2414 * Perform INTx swizzling for a device behind one level of bridge. This is
2415 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2416 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2417 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2418 * the PCI Express Base Specification, Revision 2.1)
2419 */
2420 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2421 {
2422 int slot;
2423
2424 if (pci_ari_enabled(dev->bus))
2425 slot = 0;
2426 else
2427 slot = PCI_SLOT(dev->devfn);
2428
2429 return (((pin - 1) + slot) % 4) + 1;
2430 }
2431
2432 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2433 {
2434 u8 pin;
2435
2436 pin = dev->pin;
2437 if (!pin)
2438 return -1;
2439
2440 while (!pci_is_root_bus(dev->bus)) {
2441 pin = pci_swizzle_interrupt_pin(dev, pin);
2442 dev = dev->bus->self;
2443 }
2444 *bridge = dev;
2445 return pin;
2446 }
2447
2448 /**
2449 * pci_common_swizzle - swizzle INTx all the way to root bridge
2450 * @dev: the PCI device
2451 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2452 *
2453 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2454 * bridges all the way up to a PCI root bus.
2455 */
2456 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2457 {
2458 u8 pin = *pinp;
2459
2460 while (!pci_is_root_bus(dev->bus)) {
2461 pin = pci_swizzle_interrupt_pin(dev, pin);
2462 dev = dev->bus->self;
2463 }
2464 *pinp = pin;
2465 return PCI_SLOT(dev->devfn);
2466 }
2467
2468 /**
2469 * pci_release_region - Release a PCI bar
2470 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2471 * @bar: BAR to release
2472 *
2473 * Releases the PCI I/O and memory resources previously reserved by a
2474 * successful call to pci_request_region. Call this function only
2475 * after all use of the PCI regions has ceased.
2476 */
2477 void pci_release_region(struct pci_dev *pdev, int bar)
2478 {
2479 struct pci_devres *dr;
2480
2481 if (pci_resource_len(pdev, bar) == 0)
2482 return;
2483 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2484 release_region(pci_resource_start(pdev, bar),
2485 pci_resource_len(pdev, bar));
2486 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2487 release_mem_region(pci_resource_start(pdev, bar),
2488 pci_resource_len(pdev, bar));
2489
2490 dr = find_pci_dr(pdev);
2491 if (dr)
2492 dr->region_mask &= ~(1 << bar);
2493 }
2494 EXPORT_SYMBOL(pci_release_region);
2495
2496 /**
2497 * __pci_request_region - Reserved PCI I/O and memory resource
2498 * @pdev: PCI device whose resources are to be reserved
2499 * @bar: BAR to be reserved
2500 * @res_name: Name to be associated with resource.
2501 * @exclusive: whether the region access is exclusive or not
2502 *
2503 * Mark the PCI region associated with PCI device @pdev BR @bar as
2504 * being reserved by owner @res_name. Do not access any
2505 * address inside the PCI regions unless this call returns
2506 * successfully.
2507 *
2508 * If @exclusive is set, then the region is marked so that userspace
2509 * is explicitly not allowed to map the resource via /dev/mem or
2510 * sysfs MMIO access.
2511 *
2512 * Returns 0 on success, or %EBUSY on error. A warning
2513 * message is also printed on failure.
2514 */
2515 static int __pci_request_region(struct pci_dev *pdev, int bar,
2516 const char *res_name, int exclusive)
2517 {
2518 struct pci_devres *dr;
2519
2520 if (pci_resource_len(pdev, bar) == 0)
2521 return 0;
2522
2523 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2524 if (!request_region(pci_resource_start(pdev, bar),
2525 pci_resource_len(pdev, bar), res_name))
2526 goto err_out;
2527 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2528 if (!__request_mem_region(pci_resource_start(pdev, bar),
2529 pci_resource_len(pdev, bar), res_name,
2530 exclusive))
2531 goto err_out;
2532 }
2533
2534 dr = find_pci_dr(pdev);
2535 if (dr)
2536 dr->region_mask |= 1 << bar;
2537
2538 return 0;
2539
2540 err_out:
2541 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2542 &pdev->resource[bar]);
2543 return -EBUSY;
2544 }
2545
2546 /**
2547 * pci_request_region - Reserve PCI I/O and memory resource
2548 * @pdev: PCI device whose resources are to be reserved
2549 * @bar: BAR to be reserved
2550 * @res_name: Name to be associated with resource
2551 *
2552 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2553 * being reserved by owner @res_name. Do not access any
2554 * address inside the PCI regions unless this call returns
2555 * successfully.
2556 *
2557 * Returns 0 on success, or %EBUSY on error. A warning
2558 * message is also printed on failure.
2559 */
2560 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2561 {
2562 return __pci_request_region(pdev, bar, res_name, 0);
2563 }
2564 EXPORT_SYMBOL(pci_request_region);
2565
2566 /**
2567 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2568 * @pdev: PCI device whose resources are to be reserved
2569 * @bar: BAR to be reserved
2570 * @res_name: Name to be associated with resource.
2571 *
2572 * Mark the PCI region associated with PCI device @pdev BR @bar as
2573 * being reserved by owner @res_name. Do not access any
2574 * address inside the PCI regions unless this call returns
2575 * successfully.
2576 *
2577 * Returns 0 on success, or %EBUSY on error. A warning
2578 * message is also printed on failure.
2579 *
2580 * The key difference that _exclusive makes it that userspace is
2581 * explicitly not allowed to map the resource via /dev/mem or
2582 * sysfs.
2583 */
2584 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2585 const char *res_name)
2586 {
2587 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2588 }
2589 EXPORT_SYMBOL(pci_request_region_exclusive);
2590
2591 /**
2592 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2593 * @pdev: PCI device whose resources were previously reserved
2594 * @bars: Bitmask of BARs to be released
2595 *
2596 * Release selected PCI I/O and memory resources previously reserved.
2597 * Call this function only after all use of the PCI regions has ceased.
2598 */
2599 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2600 {
2601 int i;
2602
2603 for (i = 0; i < 6; i++)
2604 if (bars & (1 << i))
2605 pci_release_region(pdev, i);
2606 }
2607 EXPORT_SYMBOL(pci_release_selected_regions);
2608
2609 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2610 const char *res_name, int excl)
2611 {
2612 int i;
2613
2614 for (i = 0; i < 6; i++)
2615 if (bars & (1 << i))
2616 if (__pci_request_region(pdev, i, res_name, excl))
2617 goto err_out;
2618 return 0;
2619
2620 err_out:
2621 while (--i >= 0)
2622 if (bars & (1 << i))
2623 pci_release_region(pdev, i);
2624
2625 return -EBUSY;
2626 }
2627
2628
2629 /**
2630 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2631 * @pdev: PCI device whose resources are to be reserved
2632 * @bars: Bitmask of BARs to be requested
2633 * @res_name: Name to be associated with resource
2634 */
2635 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2636 const char *res_name)
2637 {
2638 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2639 }
2640 EXPORT_SYMBOL(pci_request_selected_regions);
2641
2642 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2643 const char *res_name)
2644 {
2645 return __pci_request_selected_regions(pdev, bars, res_name,
2646 IORESOURCE_EXCLUSIVE);
2647 }
2648 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2649
2650 /**
2651 * pci_release_regions - Release reserved PCI I/O and memory resources
2652 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2653 *
2654 * Releases all PCI I/O and memory resources previously reserved by a
2655 * successful call to pci_request_regions. Call this function only
2656 * after all use of the PCI regions has ceased.
2657 */
2658
2659 void pci_release_regions(struct pci_dev *pdev)
2660 {
2661 pci_release_selected_regions(pdev, (1 << 6) - 1);
2662 }
2663 EXPORT_SYMBOL(pci_release_regions);
2664
2665 /**
2666 * pci_request_regions - Reserved PCI I/O and memory resources
2667 * @pdev: PCI device whose resources are to be reserved
2668 * @res_name: Name to be associated with resource.
2669 *
2670 * Mark all PCI regions associated with PCI device @pdev as
2671 * being reserved by owner @res_name. Do not access any
2672 * address inside the PCI regions unless this call returns
2673 * successfully.
2674 *
2675 * Returns 0 on success, or %EBUSY on error. A warning
2676 * message is also printed on failure.
2677 */
2678 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2679 {
2680 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2681 }
2682 EXPORT_SYMBOL(pci_request_regions);
2683
2684 /**
2685 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2686 * @pdev: PCI device whose resources are to be reserved
2687 * @res_name: Name to be associated with resource.
2688 *
2689 * Mark all PCI regions associated with PCI device @pdev as
2690 * being reserved by owner @res_name. Do not access any
2691 * address inside the PCI regions unless this call returns
2692 * successfully.
2693 *
2694 * pci_request_regions_exclusive() will mark the region so that
2695 * /dev/mem and the sysfs MMIO access will not be allowed.
2696 *
2697 * Returns 0 on success, or %EBUSY on error. A warning
2698 * message is also printed on failure.
2699 */
2700 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2701 {
2702 return pci_request_selected_regions_exclusive(pdev,
2703 ((1 << 6) - 1), res_name);
2704 }
2705 EXPORT_SYMBOL(pci_request_regions_exclusive);
2706
2707 /**
2708 * pci_remap_iospace - Remap the memory mapped I/O space
2709 * @res: Resource describing the I/O space
2710 * @phys_addr: physical address of range to be mapped
2711 *
2712 * Remap the memory mapped I/O space described by the @res
2713 * and the CPU physical address @phys_addr into virtual address space.
2714 * Only architectures that have memory mapped IO functions defined
2715 * (and the PCI_IOBASE value defined) should call this function.
2716 */
2717 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2718 {
2719 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2720 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2721
2722 if (!(res->flags & IORESOURCE_IO))
2723 return -EINVAL;
2724
2725 if (res->end > IO_SPACE_LIMIT)
2726 return -EINVAL;
2727
2728 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2729 pgprot_device(PAGE_KERNEL));
2730 #else
2731 /* this architecture does not have memory mapped I/O space,
2732 so this function should never be called */
2733 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2734 return -ENODEV;
2735 #endif
2736 }
2737
2738 static void __pci_set_master(struct pci_dev *dev, bool enable)
2739 {
2740 u16 old_cmd, cmd;
2741
2742 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2743 if (enable)
2744 cmd = old_cmd | PCI_COMMAND_MASTER;
2745 else
2746 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2747 if (cmd != old_cmd) {
2748 dev_dbg(&dev->dev, "%s bus mastering\n",
2749 enable ? "enabling" : "disabling");
2750 pci_write_config_word(dev, PCI_COMMAND, cmd);
2751 }
2752 dev->is_busmaster = enable;
2753 }
2754
2755 /**
2756 * pcibios_setup - process "pci=" kernel boot arguments
2757 * @str: string used to pass in "pci=" kernel boot arguments
2758 *
2759 * Process kernel boot arguments. This is the default implementation.
2760 * Architecture specific implementations can override this as necessary.
2761 */
2762 char * __weak __init pcibios_setup(char *str)
2763 {
2764 return str;
2765 }
2766
2767 /**
2768 * pcibios_set_master - enable PCI bus-mastering for device dev
2769 * @dev: the PCI device to enable
2770 *
2771 * Enables PCI bus-mastering for the device. This is the default
2772 * implementation. Architecture specific implementations can override
2773 * this if necessary.
2774 */
2775 void __weak pcibios_set_master(struct pci_dev *dev)
2776 {
2777 u8 lat;
2778
2779 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2780 if (pci_is_pcie(dev))
2781 return;
2782
2783 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2784 if (lat < 16)
2785 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2786 else if (lat > pcibios_max_latency)
2787 lat = pcibios_max_latency;
2788 else
2789 return;
2790
2791 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2792 }
2793
2794 /**
2795 * pci_set_master - enables bus-mastering for device dev
2796 * @dev: the PCI device to enable
2797 *
2798 * Enables bus-mastering on the device and calls pcibios_set_master()
2799 * to do the needed arch specific settings.
2800 */
2801 void pci_set_master(struct pci_dev *dev)
2802 {
2803 __pci_set_master(dev, true);
2804 pcibios_set_master(dev);
2805 }
2806 EXPORT_SYMBOL(pci_set_master);
2807
2808 /**
2809 * pci_clear_master - disables bus-mastering for device dev
2810 * @dev: the PCI device to disable
2811 */
2812 void pci_clear_master(struct pci_dev *dev)
2813 {
2814 __pci_set_master(dev, false);
2815 }
2816 EXPORT_SYMBOL(pci_clear_master);
2817
2818 /**
2819 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2820 * @dev: the PCI device for which MWI is to be enabled
2821 *
2822 * Helper function for pci_set_mwi.
2823 * Originally copied from drivers/net/acenic.c.
2824 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2825 *
2826 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2827 */
2828 int pci_set_cacheline_size(struct pci_dev *dev)
2829 {
2830 u8 cacheline_size;
2831
2832 if (!pci_cache_line_size)
2833 return -EINVAL;
2834
2835 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2836 equal to or multiple of the right value. */
2837 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2838 if (cacheline_size >= pci_cache_line_size &&
2839 (cacheline_size % pci_cache_line_size) == 0)
2840 return 0;
2841
2842 /* Write the correct value. */
2843 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2844 /* Read it back. */
2845 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2846 if (cacheline_size == pci_cache_line_size)
2847 return 0;
2848
2849 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2850 pci_cache_line_size << 2);
2851
2852 return -EINVAL;
2853 }
2854 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2855
2856 /**
2857 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2858 * @dev: the PCI device for which MWI is enabled
2859 *
2860 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2861 *
2862 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2863 */
2864 int pci_set_mwi(struct pci_dev *dev)
2865 {
2866 #ifdef PCI_DISABLE_MWI
2867 return 0;
2868 #else
2869 int rc;
2870 u16 cmd;
2871
2872 rc = pci_set_cacheline_size(dev);
2873 if (rc)
2874 return rc;
2875
2876 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2877 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2878 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2879 cmd |= PCI_COMMAND_INVALIDATE;
2880 pci_write_config_word(dev, PCI_COMMAND, cmd);
2881 }
2882 return 0;
2883 #endif
2884 }
2885 EXPORT_SYMBOL(pci_set_mwi);
2886
2887 /**
2888 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2889 * @dev: the PCI device for which MWI is enabled
2890 *
2891 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2892 * Callers are not required to check the return value.
2893 *
2894 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2895 */
2896 int pci_try_set_mwi(struct pci_dev *dev)
2897 {
2898 #ifdef PCI_DISABLE_MWI
2899 return 0;
2900 #else
2901 return pci_set_mwi(dev);
2902 #endif
2903 }
2904 EXPORT_SYMBOL(pci_try_set_mwi);
2905
2906 /**
2907 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2908 * @dev: the PCI device to disable
2909 *
2910 * Disables PCI Memory-Write-Invalidate transaction on the device
2911 */
2912 void pci_clear_mwi(struct pci_dev *dev)
2913 {
2914 #ifndef PCI_DISABLE_MWI
2915 u16 cmd;
2916
2917 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2918 if (cmd & PCI_COMMAND_INVALIDATE) {
2919 cmd &= ~PCI_COMMAND_INVALIDATE;
2920 pci_write_config_word(dev, PCI_COMMAND, cmd);
2921 }
2922 #endif
2923 }
2924 EXPORT_SYMBOL(pci_clear_mwi);
2925
2926 /**
2927 * pci_intx - enables/disables PCI INTx for device dev
2928 * @pdev: the PCI device to operate on
2929 * @enable: boolean: whether to enable or disable PCI INTx
2930 *
2931 * Enables/disables PCI INTx for device dev
2932 */
2933 void pci_intx(struct pci_dev *pdev, int enable)
2934 {
2935 u16 pci_command, new;
2936
2937 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2938
2939 if (enable)
2940 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2941 else
2942 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2943
2944 if (new != pci_command) {
2945 struct pci_devres *dr;
2946
2947 pci_write_config_word(pdev, PCI_COMMAND, new);
2948
2949 dr = find_pci_dr(pdev);
2950 if (dr && !dr->restore_intx) {
2951 dr->restore_intx = 1;
2952 dr->orig_intx = !enable;
2953 }
2954 }
2955 }
2956 EXPORT_SYMBOL_GPL(pci_intx);
2957
2958 /**
2959 * pci_intx_mask_supported - probe for INTx masking support
2960 * @dev: the PCI device to operate on
2961 *
2962 * Check if the device dev support INTx masking via the config space
2963 * command word.
2964 */
2965 bool pci_intx_mask_supported(struct pci_dev *dev)
2966 {
2967 bool mask_supported = false;
2968 u16 orig, new;
2969
2970 if (dev->broken_intx_masking)
2971 return false;
2972
2973 pci_cfg_access_lock(dev);
2974
2975 pci_read_config_word(dev, PCI_COMMAND, &orig);
2976 pci_write_config_word(dev, PCI_COMMAND,
2977 orig ^ PCI_COMMAND_INTX_DISABLE);
2978 pci_read_config_word(dev, PCI_COMMAND, &new);
2979
2980 /*
2981 * There's no way to protect against hardware bugs or detect them
2982 * reliably, but as long as we know what the value should be, let's
2983 * go ahead and check it.
2984 */
2985 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2986 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2987 orig, new);
2988 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2989 mask_supported = true;
2990 pci_write_config_word(dev, PCI_COMMAND, orig);
2991 }
2992
2993 pci_cfg_access_unlock(dev);
2994 return mask_supported;
2995 }
2996 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2997
2998 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2999 {
3000 struct pci_bus *bus = dev->bus;
3001 bool mask_updated = true;
3002 u32 cmd_status_dword;
3003 u16 origcmd, newcmd;
3004 unsigned long flags;
3005 bool irq_pending;
3006
3007 /*
3008 * We do a single dword read to retrieve both command and status.
3009 * Document assumptions that make this possible.
3010 */
3011 BUILD_BUG_ON(PCI_COMMAND % 4);
3012 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3013
3014 raw_spin_lock_irqsave(&pci_lock, flags);
3015
3016 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3017
3018 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3019
3020 /*
3021 * Check interrupt status register to see whether our device
3022 * triggered the interrupt (when masking) or the next IRQ is
3023 * already pending (when unmasking).
3024 */
3025 if (mask != irq_pending) {
3026 mask_updated = false;
3027 goto done;
3028 }
3029
3030 origcmd = cmd_status_dword;
3031 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3032 if (mask)
3033 newcmd |= PCI_COMMAND_INTX_DISABLE;
3034 if (newcmd != origcmd)
3035 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3036
3037 done:
3038 raw_spin_unlock_irqrestore(&pci_lock, flags);
3039
3040 return mask_updated;
3041 }
3042
3043 /**
3044 * pci_check_and_mask_intx - mask INTx on pending interrupt
3045 * @dev: the PCI device to operate on
3046 *
3047 * Check if the device dev has its INTx line asserted, mask it and
3048 * return true in that case. False is returned if not interrupt was
3049 * pending.
3050 */
3051 bool pci_check_and_mask_intx(struct pci_dev *dev)
3052 {
3053 return pci_check_and_set_intx_mask(dev, true);
3054 }
3055 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3056
3057 /**
3058 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3059 * @dev: the PCI device to operate on
3060 *
3061 * Check if the device dev has its INTx line asserted, unmask it if not
3062 * and return true. False is returned and the mask remains active if
3063 * there was still an interrupt pending.
3064 */
3065 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3066 {
3067 return pci_check_and_set_intx_mask(dev, false);
3068 }
3069 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3070
3071 /**
3072 * pci_msi_off - disables any MSI or MSI-X capabilities
3073 * @dev: the PCI device to operate on
3074 *
3075 * If you want to use MSI, see pci_enable_msi() and friends.
3076 * This is a lower-level primitive that allows us to disable
3077 * MSI operation at the device level.
3078 */
3079 void pci_msi_off(struct pci_dev *dev)
3080 {
3081 int pos;
3082 u16 control;
3083
3084 /*
3085 * This looks like it could go in msi.c, but we need it even when
3086 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3087 * dev->msi_cap or dev->msix_cap here.
3088 */
3089 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3090 if (pos) {
3091 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3092 control &= ~PCI_MSI_FLAGS_ENABLE;
3093 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3094 }
3095 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3096 if (pos) {
3097 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3098 control &= ~PCI_MSIX_FLAGS_ENABLE;
3099 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3100 }
3101 }
3102 EXPORT_SYMBOL_GPL(pci_msi_off);
3103
3104 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3105 {
3106 return dma_set_max_seg_size(&dev->dev, size);
3107 }
3108 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3109
3110 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3111 {
3112 return dma_set_seg_boundary(&dev->dev, mask);
3113 }
3114 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3115
3116 /**
3117 * pci_wait_for_pending_transaction - waits for pending transaction
3118 * @dev: the PCI device to operate on
3119 *
3120 * Return 0 if transaction is pending 1 otherwise.
3121 */
3122 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3123 {
3124 if (!pci_is_pcie(dev))
3125 return 1;
3126
3127 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3128 PCI_EXP_DEVSTA_TRPND);
3129 }
3130 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3131
3132 static int pcie_flr(struct pci_dev *dev, int probe)
3133 {
3134 u32 cap;
3135
3136 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3137 if (!(cap & PCI_EXP_DEVCAP_FLR))
3138 return -ENOTTY;
3139
3140 if (probe)
3141 return 0;
3142
3143 if (!pci_wait_for_pending_transaction(dev))
3144 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3145
3146 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3147 msleep(100);
3148 return 0;
3149 }
3150
3151 static int pci_af_flr(struct pci_dev *dev, int probe)
3152 {
3153 int pos;
3154 u8 cap;
3155
3156 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3157 if (!pos)
3158 return -ENOTTY;
3159
3160 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3161 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3162 return -ENOTTY;
3163
3164 if (probe)
3165 return 0;
3166
3167 /*
3168 * Wait for Transaction Pending bit to clear. A word-aligned test
3169 * is used, so we use the conrol offset rather than status and shift
3170 * the test bit to match.
3171 */
3172 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3173 PCI_AF_STATUS_TP << 8))
3174 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3175
3176 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3177 msleep(100);
3178 return 0;
3179 }
3180
3181 /**
3182 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3183 * @dev: Device to reset.
3184 * @probe: If set, only check if the device can be reset this way.
3185 *
3186 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3187 * unset, it will be reinitialized internally when going from PCI_D3hot to
3188 * PCI_D0. If that's the case and the device is not in a low-power state
3189 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3190 *
3191 * NOTE: This causes the caller to sleep for twice the device power transition
3192 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3193 * by default (i.e. unless the @dev's d3_delay field has a different value).
3194 * Moreover, only devices in D0 can be reset by this function.
3195 */
3196 static int pci_pm_reset(struct pci_dev *dev, int probe)
3197 {
3198 u16 csr;
3199
3200 if (!dev->pm_cap)
3201 return -ENOTTY;
3202
3203 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3204 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3205 return -ENOTTY;
3206
3207 if (probe)
3208 return 0;
3209
3210 if (dev->current_state != PCI_D0)
3211 return -EINVAL;
3212
3213 csr &= ~PCI_PM_CTRL_STATE_MASK;
3214 csr |= PCI_D3hot;
3215 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3216 pci_dev_d3_sleep(dev);
3217
3218 csr &= ~PCI_PM_CTRL_STATE_MASK;
3219 csr |= PCI_D0;
3220 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3221 pci_dev_d3_sleep(dev);
3222
3223 return 0;
3224 }
3225
3226 void pci_reset_secondary_bus(struct pci_dev *dev)
3227 {
3228 u16 ctrl;
3229
3230 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3231 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3232 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3233 /*
3234 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3235 * this to 2ms to ensure that we meet the minimum requirement.
3236 */
3237 msleep(2);
3238
3239 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3240 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3241
3242 /*
3243 * Trhfa for conventional PCI is 2^25 clock cycles.
3244 * Assuming a minimum 33MHz clock this results in a 1s
3245 * delay before we can consider subordinate devices to
3246 * be re-initialized. PCIe has some ways to shorten this,
3247 * but we don't make use of them yet.
3248 */
3249 ssleep(1);
3250 }
3251
3252 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3253 {
3254 pci_reset_secondary_bus(dev);
3255 }
3256
3257 /**
3258 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3259 * @dev: Bridge device
3260 *
3261 * Use the bridge control register to assert reset on the secondary bus.
3262 * Devices on the secondary bus are left in power-on state.
3263 */
3264 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3265 {
3266 pcibios_reset_secondary_bus(dev);
3267 }
3268 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3269
3270 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3271 {
3272 struct pci_dev *pdev;
3273
3274 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3275 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3276 return -ENOTTY;
3277
3278 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3279 if (pdev != dev)
3280 return -ENOTTY;
3281
3282 if (probe)
3283 return 0;
3284
3285 pci_reset_bridge_secondary_bus(dev->bus->self);
3286
3287 return 0;
3288 }
3289
3290 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3291 {
3292 int rc = -ENOTTY;
3293
3294 if (!hotplug || !try_module_get(hotplug->ops->owner))
3295 return rc;
3296
3297 if (hotplug->ops->reset_slot)
3298 rc = hotplug->ops->reset_slot(hotplug, probe);
3299
3300 module_put(hotplug->ops->owner);
3301
3302 return rc;
3303 }
3304
3305 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3306 {
3307 struct pci_dev *pdev;
3308
3309 if (dev->subordinate || !dev->slot ||
3310 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3311 return -ENOTTY;
3312
3313 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3314 if (pdev != dev && pdev->slot == dev->slot)
3315 return -ENOTTY;
3316
3317 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3318 }
3319
3320 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3321 {
3322 int rc;
3323
3324 might_sleep();
3325
3326 rc = pci_dev_specific_reset(dev, probe);
3327 if (rc != -ENOTTY)
3328 goto done;
3329
3330 rc = pcie_flr(dev, probe);
3331 if (rc != -ENOTTY)
3332 goto done;
3333
3334 rc = pci_af_flr(dev, probe);
3335 if (rc != -ENOTTY)
3336 goto done;
3337
3338 rc = pci_pm_reset(dev, probe);
3339 if (rc != -ENOTTY)
3340 goto done;
3341
3342 rc = pci_dev_reset_slot_function(dev, probe);
3343 if (rc != -ENOTTY)
3344 goto done;
3345
3346 rc = pci_parent_bus_reset(dev, probe);
3347 done:
3348 return rc;
3349 }
3350
3351 static void pci_dev_lock(struct pci_dev *dev)
3352 {
3353 pci_cfg_access_lock(dev);
3354 /* block PM suspend, driver probe, etc. */
3355 device_lock(&dev->dev);
3356 }
3357
3358 /* Return 1 on successful lock, 0 on contention */
3359 static int pci_dev_trylock(struct pci_dev *dev)
3360 {
3361 if (pci_cfg_access_trylock(dev)) {
3362 if (device_trylock(&dev->dev))
3363 return 1;
3364 pci_cfg_access_unlock(dev);
3365 }
3366
3367 return 0;
3368 }
3369
3370 static void pci_dev_unlock(struct pci_dev *dev)
3371 {
3372 device_unlock(&dev->dev);
3373 pci_cfg_access_unlock(dev);
3374 }
3375
3376 /**
3377 * pci_reset_notify - notify device driver of reset
3378 * @dev: device to be notified of reset
3379 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3380 * completed
3381 *
3382 * Must be called prior to device access being disabled and after device
3383 * access is restored.
3384 */
3385 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3386 {
3387 const struct pci_error_handlers *err_handler =
3388 dev->driver ? dev->driver->err_handler : NULL;
3389 if (err_handler && err_handler->reset_notify)
3390 err_handler->reset_notify(dev, prepare);
3391 }
3392
3393 static void pci_dev_save_and_disable(struct pci_dev *dev)
3394 {
3395 pci_reset_notify(dev, true);
3396
3397 /*
3398 * Wake-up device prior to save. PM registers default to D0 after
3399 * reset and a simple register restore doesn't reliably return
3400 * to a non-D0 state anyway.
3401 */
3402 pci_set_power_state(dev, PCI_D0);
3403
3404 pci_save_state(dev);
3405 /*
3406 * Disable the device by clearing the Command register, except for
3407 * INTx-disable which is set. This not only disables MMIO and I/O port
3408 * BARs, but also prevents the device from being Bus Master, preventing
3409 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3410 * compliant devices, INTx-disable prevents legacy interrupts.
3411 */
3412 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3413 }
3414
3415 static void pci_dev_restore(struct pci_dev *dev)
3416 {
3417 pci_restore_state(dev);
3418 pci_reset_notify(dev, false);
3419 }
3420
3421 static int pci_dev_reset(struct pci_dev *dev, int probe)
3422 {
3423 int rc;
3424
3425 if (!probe)
3426 pci_dev_lock(dev);
3427
3428 rc = __pci_dev_reset(dev, probe);
3429
3430 if (!probe)
3431 pci_dev_unlock(dev);
3432
3433 return rc;
3434 }
3435
3436 /**
3437 * __pci_reset_function - reset a PCI device function
3438 * @dev: PCI device to reset
3439 *
3440 * Some devices allow an individual function to be reset without affecting
3441 * other functions in the same device. The PCI device must be responsive
3442 * to PCI config space in order to use this function.
3443 *
3444 * The device function is presumed to be unused when this function is called.
3445 * Resetting the device will make the contents of PCI configuration space
3446 * random, so any caller of this must be prepared to reinitialise the
3447 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3448 * etc.
3449 *
3450 * Returns 0 if the device function was successfully reset or negative if the
3451 * device doesn't support resetting a single function.
3452 */
3453 int __pci_reset_function(struct pci_dev *dev)
3454 {
3455 return pci_dev_reset(dev, 0);
3456 }
3457 EXPORT_SYMBOL_GPL(__pci_reset_function);
3458
3459 /**
3460 * __pci_reset_function_locked - reset a PCI device function while holding
3461 * the @dev mutex lock.
3462 * @dev: PCI device to reset
3463 *
3464 * Some devices allow an individual function to be reset without affecting
3465 * other functions in the same device. The PCI device must be responsive
3466 * to PCI config space in order to use this function.
3467 *
3468 * The device function is presumed to be unused and the caller is holding
3469 * the device mutex lock when this function is called.
3470 * Resetting the device will make the contents of PCI configuration space
3471 * random, so any caller of this must be prepared to reinitialise the
3472 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3473 * etc.
3474 *
3475 * Returns 0 if the device function was successfully reset or negative if the
3476 * device doesn't support resetting a single function.
3477 */
3478 int __pci_reset_function_locked(struct pci_dev *dev)
3479 {
3480 return __pci_dev_reset(dev, 0);
3481 }
3482 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3483
3484 /**
3485 * pci_probe_reset_function - check whether the device can be safely reset
3486 * @dev: PCI device to reset
3487 *
3488 * Some devices allow an individual function to be reset without affecting
3489 * other functions in the same device. The PCI device must be responsive
3490 * to PCI config space in order to use this function.
3491 *
3492 * Returns 0 if the device function can be reset or negative if the
3493 * device doesn't support resetting a single function.
3494 */
3495 int pci_probe_reset_function(struct pci_dev *dev)
3496 {
3497 return pci_dev_reset(dev, 1);
3498 }
3499
3500 /**
3501 * pci_reset_function - quiesce and reset a PCI device function
3502 * @dev: PCI device to reset
3503 *
3504 * Some devices allow an individual function to be reset without affecting
3505 * other functions in the same device. The PCI device must be responsive
3506 * to PCI config space in order to use this function.
3507 *
3508 * This function does not just reset the PCI portion of a device, but
3509 * clears all the state associated with the device. This function differs
3510 * from __pci_reset_function in that it saves and restores device state
3511 * over the reset.
3512 *
3513 * Returns 0 if the device function was successfully reset or negative if the
3514 * device doesn't support resetting a single function.
3515 */
3516 int pci_reset_function(struct pci_dev *dev)
3517 {
3518 int rc;
3519
3520 rc = pci_dev_reset(dev, 1);
3521 if (rc)
3522 return rc;
3523
3524 pci_dev_save_and_disable(dev);
3525
3526 rc = pci_dev_reset(dev, 0);
3527
3528 pci_dev_restore(dev);
3529
3530 return rc;
3531 }
3532 EXPORT_SYMBOL_GPL(pci_reset_function);
3533
3534 /**
3535 * pci_try_reset_function - quiesce and reset a PCI device function
3536 * @dev: PCI device to reset
3537 *
3538 * Same as above, except return -EAGAIN if unable to lock device.
3539 */
3540 int pci_try_reset_function(struct pci_dev *dev)
3541 {
3542 int rc;
3543
3544 rc = pci_dev_reset(dev, 1);
3545 if (rc)
3546 return rc;
3547
3548 pci_dev_save_and_disable(dev);
3549
3550 if (pci_dev_trylock(dev)) {
3551 rc = __pci_dev_reset(dev, 0);
3552 pci_dev_unlock(dev);
3553 } else
3554 rc = -EAGAIN;
3555
3556 pci_dev_restore(dev);
3557
3558 return rc;
3559 }
3560 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3561
3562 /* Do any devices on or below this bus prevent a bus reset? */
3563 static bool pci_bus_resetable(struct pci_bus *bus)
3564 {
3565 struct pci_dev *dev;
3566
3567 list_for_each_entry(dev, &bus->devices, bus_list) {
3568 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3569 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3570 return false;
3571 }
3572
3573 return true;
3574 }
3575
3576 /* Lock devices from the top of the tree down */
3577 static void pci_bus_lock(struct pci_bus *bus)
3578 {
3579 struct pci_dev *dev;
3580
3581 list_for_each_entry(dev, &bus->devices, bus_list) {
3582 pci_dev_lock(dev);
3583 if (dev->subordinate)
3584 pci_bus_lock(dev->subordinate);
3585 }
3586 }
3587
3588 /* Unlock devices from the bottom of the tree up */
3589 static void pci_bus_unlock(struct pci_bus *bus)
3590 {
3591 struct pci_dev *dev;
3592
3593 list_for_each_entry(dev, &bus->devices, bus_list) {
3594 if (dev->subordinate)
3595 pci_bus_unlock(dev->subordinate);
3596 pci_dev_unlock(dev);
3597 }
3598 }
3599
3600 /* Return 1 on successful lock, 0 on contention */
3601 static int pci_bus_trylock(struct pci_bus *bus)
3602 {
3603 struct pci_dev *dev;
3604
3605 list_for_each_entry(dev, &bus->devices, bus_list) {
3606 if (!pci_dev_trylock(dev))
3607 goto unlock;
3608 if (dev->subordinate) {
3609 if (!pci_bus_trylock(dev->subordinate)) {
3610 pci_dev_unlock(dev);
3611 goto unlock;
3612 }
3613 }
3614 }
3615 return 1;
3616
3617 unlock:
3618 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3619 if (dev->subordinate)
3620 pci_bus_unlock(dev->subordinate);
3621 pci_dev_unlock(dev);
3622 }
3623 return 0;
3624 }
3625
3626 /* Do any devices on or below this slot prevent a bus reset? */
3627 static bool pci_slot_resetable(struct pci_slot *slot)
3628 {
3629 struct pci_dev *dev;
3630
3631 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3632 if (!dev->slot || dev->slot != slot)
3633 continue;
3634 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3635 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3636 return false;
3637 }
3638
3639 return true;
3640 }
3641
3642 /* Lock devices from the top of the tree down */
3643 static void pci_slot_lock(struct pci_slot *slot)
3644 {
3645 struct pci_dev *dev;
3646
3647 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3648 if (!dev->slot || dev->slot != slot)
3649 continue;
3650 pci_dev_lock(dev);
3651 if (dev->subordinate)
3652 pci_bus_lock(dev->subordinate);
3653 }
3654 }
3655
3656 /* Unlock devices from the bottom of the tree up */
3657 static void pci_slot_unlock(struct pci_slot *slot)
3658 {
3659 struct pci_dev *dev;
3660
3661 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3662 if (!dev->slot || dev->slot != slot)
3663 continue;
3664 if (dev->subordinate)
3665 pci_bus_unlock(dev->subordinate);
3666 pci_dev_unlock(dev);
3667 }
3668 }
3669
3670 /* Return 1 on successful lock, 0 on contention */
3671 static int pci_slot_trylock(struct pci_slot *slot)
3672 {
3673 struct pci_dev *dev;
3674
3675 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3676 if (!dev->slot || dev->slot != slot)
3677 continue;
3678 if (!pci_dev_trylock(dev))
3679 goto unlock;
3680 if (dev->subordinate) {
3681 if (!pci_bus_trylock(dev->subordinate)) {
3682 pci_dev_unlock(dev);
3683 goto unlock;
3684 }
3685 }
3686 }
3687 return 1;
3688
3689 unlock:
3690 list_for_each_entry_continue_reverse(dev,
3691 &slot->bus->devices, bus_list) {
3692 if (!dev->slot || dev->slot != slot)
3693 continue;
3694 if (dev->subordinate)
3695 pci_bus_unlock(dev->subordinate);
3696 pci_dev_unlock(dev);
3697 }
3698 return 0;
3699 }
3700
3701 /* Save and disable devices from the top of the tree down */
3702 static void pci_bus_save_and_disable(struct pci_bus *bus)
3703 {
3704 struct pci_dev *dev;
3705
3706 list_for_each_entry(dev, &bus->devices, bus_list) {
3707 pci_dev_save_and_disable(dev);
3708 if (dev->subordinate)
3709 pci_bus_save_and_disable(dev->subordinate);
3710 }
3711 }
3712
3713 /*
3714 * Restore devices from top of the tree down - parent bridges need to be
3715 * restored before we can get to subordinate devices.
3716 */
3717 static void pci_bus_restore(struct pci_bus *bus)
3718 {
3719 struct pci_dev *dev;
3720
3721 list_for_each_entry(dev, &bus->devices, bus_list) {
3722 pci_dev_restore(dev);
3723 if (dev->subordinate)
3724 pci_bus_restore(dev->subordinate);
3725 }
3726 }
3727
3728 /* Save and disable devices from the top of the tree down */
3729 static void pci_slot_save_and_disable(struct pci_slot *slot)
3730 {
3731 struct pci_dev *dev;
3732
3733 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3734 if (!dev->slot || dev->slot != slot)
3735 continue;
3736 pci_dev_save_and_disable(dev);
3737 if (dev->subordinate)
3738 pci_bus_save_and_disable(dev->subordinate);
3739 }
3740 }
3741
3742 /*
3743 * Restore devices from top of the tree down - parent bridges need to be
3744 * restored before we can get to subordinate devices.
3745 */
3746 static void pci_slot_restore(struct pci_slot *slot)
3747 {
3748 struct pci_dev *dev;
3749
3750 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3751 if (!dev->slot || dev->slot != slot)
3752 continue;
3753 pci_dev_restore(dev);
3754 if (dev->subordinate)
3755 pci_bus_restore(dev->subordinate);
3756 }
3757 }
3758
3759 static int pci_slot_reset(struct pci_slot *slot, int probe)
3760 {
3761 int rc;
3762
3763 if (!slot || !pci_slot_resetable(slot))
3764 return -ENOTTY;
3765
3766 if (!probe)
3767 pci_slot_lock(slot);
3768
3769 might_sleep();
3770
3771 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3772
3773 if (!probe)
3774 pci_slot_unlock(slot);
3775
3776 return rc;
3777 }
3778
3779 /**
3780 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3781 * @slot: PCI slot to probe
3782 *
3783 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3784 */
3785 int pci_probe_reset_slot(struct pci_slot *slot)
3786 {
3787 return pci_slot_reset(slot, 1);
3788 }
3789 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3790
3791 /**
3792 * pci_reset_slot - reset a PCI slot
3793 * @slot: PCI slot to reset
3794 *
3795 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3796 * independent of other slots. For instance, some slots may support slot power
3797 * control. In the case of a 1:1 bus to slot architecture, this function may
3798 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3799 * Generally a slot reset should be attempted before a bus reset. All of the
3800 * function of the slot and any subordinate buses behind the slot are reset
3801 * through this function. PCI config space of all devices in the slot and
3802 * behind the slot is saved before and restored after reset.
3803 *
3804 * Return 0 on success, non-zero on error.
3805 */
3806 int pci_reset_slot(struct pci_slot *slot)
3807 {
3808 int rc;
3809
3810 rc = pci_slot_reset(slot, 1);
3811 if (rc)
3812 return rc;
3813
3814 pci_slot_save_and_disable(slot);
3815
3816 rc = pci_slot_reset(slot, 0);
3817
3818 pci_slot_restore(slot);
3819
3820 return rc;
3821 }
3822 EXPORT_SYMBOL_GPL(pci_reset_slot);
3823
3824 /**
3825 * pci_try_reset_slot - Try to reset a PCI slot
3826 * @slot: PCI slot to reset
3827 *
3828 * Same as above except return -EAGAIN if the slot cannot be locked
3829 */
3830 int pci_try_reset_slot(struct pci_slot *slot)
3831 {
3832 int rc;
3833
3834 rc = pci_slot_reset(slot, 1);
3835 if (rc)
3836 return rc;
3837
3838 pci_slot_save_and_disable(slot);
3839
3840 if (pci_slot_trylock(slot)) {
3841 might_sleep();
3842 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3843 pci_slot_unlock(slot);
3844 } else
3845 rc = -EAGAIN;
3846
3847 pci_slot_restore(slot);
3848
3849 return rc;
3850 }
3851 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3852
3853 static int pci_bus_reset(struct pci_bus *bus, int probe)
3854 {
3855 if (!bus->self || !pci_bus_resetable(bus))
3856 return -ENOTTY;
3857
3858 if (probe)
3859 return 0;
3860
3861 pci_bus_lock(bus);
3862
3863 might_sleep();
3864
3865 pci_reset_bridge_secondary_bus(bus->self);
3866
3867 pci_bus_unlock(bus);
3868
3869 return 0;
3870 }
3871
3872 /**
3873 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3874 * @bus: PCI bus to probe
3875 *
3876 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3877 */
3878 int pci_probe_reset_bus(struct pci_bus *bus)
3879 {
3880 return pci_bus_reset(bus, 1);
3881 }
3882 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3883
3884 /**
3885 * pci_reset_bus - reset a PCI bus
3886 * @bus: top level PCI bus to reset
3887 *
3888 * Do a bus reset on the given bus and any subordinate buses, saving
3889 * and restoring state of all devices.
3890 *
3891 * Return 0 on success, non-zero on error.
3892 */
3893 int pci_reset_bus(struct pci_bus *bus)
3894 {
3895 int rc;
3896
3897 rc = pci_bus_reset(bus, 1);
3898 if (rc)
3899 return rc;
3900
3901 pci_bus_save_and_disable(bus);
3902
3903 rc = pci_bus_reset(bus, 0);
3904
3905 pci_bus_restore(bus);
3906
3907 return rc;
3908 }
3909 EXPORT_SYMBOL_GPL(pci_reset_bus);
3910
3911 /**
3912 * pci_try_reset_bus - Try to reset a PCI bus
3913 * @bus: top level PCI bus to reset
3914 *
3915 * Same as above except return -EAGAIN if the bus cannot be locked
3916 */
3917 int pci_try_reset_bus(struct pci_bus *bus)
3918 {
3919 int rc;
3920
3921 rc = pci_bus_reset(bus, 1);
3922 if (rc)
3923 return rc;
3924
3925 pci_bus_save_and_disable(bus);
3926
3927 if (pci_bus_trylock(bus)) {
3928 might_sleep();
3929 pci_reset_bridge_secondary_bus(bus->self);
3930 pci_bus_unlock(bus);
3931 } else
3932 rc = -EAGAIN;
3933
3934 pci_bus_restore(bus);
3935
3936 return rc;
3937 }
3938 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3939
3940 /**
3941 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3942 * @dev: PCI device to query
3943 *
3944 * Returns mmrbc: maximum designed memory read count in bytes
3945 * or appropriate error value.
3946 */
3947 int pcix_get_max_mmrbc(struct pci_dev *dev)
3948 {
3949 int cap;
3950 u32 stat;
3951
3952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3953 if (!cap)
3954 return -EINVAL;
3955
3956 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3957 return -EINVAL;
3958
3959 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3960 }
3961 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3962
3963 /**
3964 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3965 * @dev: PCI device to query
3966 *
3967 * Returns mmrbc: maximum memory read count in bytes
3968 * or appropriate error value.
3969 */
3970 int pcix_get_mmrbc(struct pci_dev *dev)
3971 {
3972 int cap;
3973 u16 cmd;
3974
3975 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3976 if (!cap)
3977 return -EINVAL;
3978
3979 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3980 return -EINVAL;
3981
3982 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3983 }
3984 EXPORT_SYMBOL(pcix_get_mmrbc);
3985
3986 /**
3987 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3988 * @dev: PCI device to query
3989 * @mmrbc: maximum memory read count in bytes
3990 * valid values are 512, 1024, 2048, 4096
3991 *
3992 * If possible sets maximum memory read byte count, some bridges have erratas
3993 * that prevent this.
3994 */
3995 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3996 {
3997 int cap;
3998 u32 stat, v, o;
3999 u16 cmd;
4000
4001 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4002 return -EINVAL;
4003
4004 v = ffs(mmrbc) - 10;
4005
4006 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4007 if (!cap)
4008 return -EINVAL;
4009
4010 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4011 return -EINVAL;
4012
4013 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4014 return -E2BIG;
4015
4016 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4017 return -EINVAL;
4018
4019 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4020 if (o != v) {
4021 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4022 return -EIO;
4023
4024 cmd &= ~PCI_X_CMD_MAX_READ;
4025 cmd |= v << 2;
4026 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4027 return -EIO;
4028 }
4029 return 0;
4030 }
4031 EXPORT_SYMBOL(pcix_set_mmrbc);
4032
4033 /**
4034 * pcie_get_readrq - get PCI Express read request size
4035 * @dev: PCI device to query
4036 *
4037 * Returns maximum memory read request in bytes
4038 * or appropriate error value.
4039 */
4040 int pcie_get_readrq(struct pci_dev *dev)
4041 {
4042 u16 ctl;
4043
4044 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4045
4046 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4047 }
4048 EXPORT_SYMBOL(pcie_get_readrq);
4049
4050 /**
4051 * pcie_set_readrq - set PCI Express maximum memory read request
4052 * @dev: PCI device to query
4053 * @rq: maximum memory read count in bytes
4054 * valid values are 128, 256, 512, 1024, 2048, 4096
4055 *
4056 * If possible sets maximum memory read request in bytes
4057 */
4058 int pcie_set_readrq(struct pci_dev *dev, int rq)
4059 {
4060 u16 v;
4061
4062 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4063 return -EINVAL;
4064
4065 /*
4066 * If using the "performance" PCIe config, we clamp the
4067 * read rq size to the max packet size to prevent the
4068 * host bridge generating requests larger than we can
4069 * cope with
4070 */
4071 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4072 int mps = pcie_get_mps(dev);
4073
4074 if (mps < rq)
4075 rq = mps;
4076 }
4077
4078 v = (ffs(rq) - 8) << 12;
4079
4080 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4081 PCI_EXP_DEVCTL_READRQ, v);
4082 }
4083 EXPORT_SYMBOL(pcie_set_readrq);
4084
4085 /**
4086 * pcie_get_mps - get PCI Express maximum payload size
4087 * @dev: PCI device to query
4088 *
4089 * Returns maximum payload size in bytes
4090 */
4091 int pcie_get_mps(struct pci_dev *dev)
4092 {
4093 u16 ctl;
4094
4095 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4096
4097 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4098 }
4099 EXPORT_SYMBOL(pcie_get_mps);
4100
4101 /**
4102 * pcie_set_mps - set PCI Express maximum payload size
4103 * @dev: PCI device to query
4104 * @mps: maximum payload size in bytes
4105 * valid values are 128, 256, 512, 1024, 2048, 4096
4106 *
4107 * If possible sets maximum payload size
4108 */
4109 int pcie_set_mps(struct pci_dev *dev, int mps)
4110 {
4111 u16 v;
4112
4113 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4114 return -EINVAL;
4115
4116 v = ffs(mps) - 8;
4117 if (v > dev->pcie_mpss)
4118 return -EINVAL;
4119 v <<= 5;
4120
4121 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4122 PCI_EXP_DEVCTL_PAYLOAD, v);
4123 }
4124 EXPORT_SYMBOL(pcie_set_mps);
4125
4126 /**
4127 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4128 * @dev: PCI device to query
4129 * @speed: storage for minimum speed
4130 * @width: storage for minimum width
4131 *
4132 * This function will walk up the PCI device chain and determine the minimum
4133 * link width and speed of the device.
4134 */
4135 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4136 enum pcie_link_width *width)
4137 {
4138 int ret;
4139
4140 *speed = PCI_SPEED_UNKNOWN;
4141 *width = PCIE_LNK_WIDTH_UNKNOWN;
4142
4143 while (dev) {
4144 u16 lnksta;
4145 enum pci_bus_speed next_speed;
4146 enum pcie_link_width next_width;
4147
4148 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4149 if (ret)
4150 return ret;
4151
4152 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4153 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4154 PCI_EXP_LNKSTA_NLW_SHIFT;
4155
4156 if (next_speed < *speed)
4157 *speed = next_speed;
4158
4159 if (next_width < *width)
4160 *width = next_width;
4161
4162 dev = dev->bus->self;
4163 }
4164
4165 return 0;
4166 }
4167 EXPORT_SYMBOL(pcie_get_minimum_link);
4168
4169 /**
4170 * pci_select_bars - Make BAR mask from the type of resource
4171 * @dev: the PCI device for which BAR mask is made
4172 * @flags: resource type mask to be selected
4173 *
4174 * This helper routine makes bar mask from the type of resource.
4175 */
4176 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4177 {
4178 int i, bars = 0;
4179 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4180 if (pci_resource_flags(dev, i) & flags)
4181 bars |= (1 << i);
4182 return bars;
4183 }
4184 EXPORT_SYMBOL(pci_select_bars);
4185
4186 /**
4187 * pci_resource_bar - get position of the BAR associated with a resource
4188 * @dev: the PCI device
4189 * @resno: the resource number
4190 * @type: the BAR type to be filled in
4191 *
4192 * Returns BAR position in config space, or 0 if the BAR is invalid.
4193 */
4194 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4195 {
4196 int reg;
4197
4198 if (resno < PCI_ROM_RESOURCE) {
4199 *type = pci_bar_unknown;
4200 return PCI_BASE_ADDRESS_0 + 4 * resno;
4201 } else if (resno == PCI_ROM_RESOURCE) {
4202 *type = pci_bar_mem32;
4203 return dev->rom_base_reg;
4204 } else if (resno < PCI_BRIDGE_RESOURCES) {
4205 /* device specific resource */
4206 *type = pci_bar_unknown;
4207 reg = pci_iov_resource_bar(dev, resno);
4208 if (reg)
4209 return reg;
4210 }
4211
4212 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4213 return 0;
4214 }
4215
4216 /* Some architectures require additional programming to enable VGA */
4217 static arch_set_vga_state_t arch_set_vga_state;
4218
4219 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4220 {
4221 arch_set_vga_state = func; /* NULL disables */
4222 }
4223
4224 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4225 unsigned int command_bits, u32 flags)
4226 {
4227 if (arch_set_vga_state)
4228 return arch_set_vga_state(dev, decode, command_bits,
4229 flags);
4230 return 0;
4231 }
4232
4233 /**
4234 * pci_set_vga_state - set VGA decode state on device and parents if requested
4235 * @dev: the PCI device
4236 * @decode: true = enable decoding, false = disable decoding
4237 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4238 * @flags: traverse ancestors and change bridges
4239 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4240 */
4241 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4242 unsigned int command_bits, u32 flags)
4243 {
4244 struct pci_bus *bus;
4245 struct pci_dev *bridge;
4246 u16 cmd;
4247 int rc;
4248
4249 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4250
4251 /* ARCH specific VGA enables */
4252 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4253 if (rc)
4254 return rc;
4255
4256 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4257 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4258 if (decode == true)
4259 cmd |= command_bits;
4260 else
4261 cmd &= ~command_bits;
4262 pci_write_config_word(dev, PCI_COMMAND, cmd);
4263 }
4264
4265 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4266 return 0;
4267
4268 bus = dev->bus;
4269 while (bus) {
4270 bridge = bus->self;
4271 if (bridge) {
4272 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4273 &cmd);
4274 if (decode == true)
4275 cmd |= PCI_BRIDGE_CTL_VGA;
4276 else
4277 cmd &= ~PCI_BRIDGE_CTL_VGA;
4278 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4279 cmd);
4280 }
4281 bus = bus->parent;
4282 }
4283 return 0;
4284 }
4285
4286 bool pci_device_is_present(struct pci_dev *pdev)
4287 {
4288 u32 v;
4289
4290 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4291 }
4292 EXPORT_SYMBOL_GPL(pci_device_is_present);
4293
4294 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4295 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4296 static DEFINE_SPINLOCK(resource_alignment_lock);
4297
4298 /**
4299 * pci_specified_resource_alignment - get resource alignment specified by user.
4300 * @dev: the PCI device to get
4301 *
4302 * RETURNS: Resource alignment if it is specified.
4303 * Zero if it is not specified.
4304 */
4305 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4306 {
4307 int seg, bus, slot, func, align_order, count;
4308 resource_size_t align = 0;
4309 char *p;
4310
4311 spin_lock(&resource_alignment_lock);
4312 p = resource_alignment_param;
4313 while (*p) {
4314 count = 0;
4315 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4316 p[count] == '@') {
4317 p += count + 1;
4318 } else {
4319 align_order = -1;
4320 }
4321 if (sscanf(p, "%x:%x:%x.%x%n",
4322 &seg, &bus, &slot, &func, &count) != 4) {
4323 seg = 0;
4324 if (sscanf(p, "%x:%x.%x%n",
4325 &bus, &slot, &func, &count) != 3) {
4326 /* Invalid format */
4327 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4328 p);
4329 break;
4330 }
4331 }
4332 p += count;
4333 if (seg == pci_domain_nr(dev->bus) &&
4334 bus == dev->bus->number &&
4335 slot == PCI_SLOT(dev->devfn) &&
4336 func == PCI_FUNC(dev->devfn)) {
4337 if (align_order == -1)
4338 align = PAGE_SIZE;
4339 else
4340 align = 1 << align_order;
4341 /* Found */
4342 break;
4343 }
4344 if (*p != ';' && *p != ',') {
4345 /* End of param or invalid format */
4346 break;
4347 }
4348 p++;
4349 }
4350 spin_unlock(&resource_alignment_lock);
4351 return align;
4352 }
4353
4354 /*
4355 * This function disables memory decoding and releases memory resources
4356 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4357 * It also rounds up size to specified alignment.
4358 * Later on, the kernel will assign page-aligned memory resource back
4359 * to the device.
4360 */
4361 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4362 {
4363 int i;
4364 struct resource *r;
4365 resource_size_t align, size;
4366 u16 command;
4367
4368 /* check if specified PCI is target device to reassign */
4369 align = pci_specified_resource_alignment(dev);
4370 if (!align)
4371 return;
4372
4373 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4374 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4375 dev_warn(&dev->dev,
4376 "Can't reassign resources to host bridge.\n");
4377 return;
4378 }
4379
4380 dev_info(&dev->dev,
4381 "Disabling memory decoding and releasing memory resources.\n");
4382 pci_read_config_word(dev, PCI_COMMAND, &command);
4383 command &= ~PCI_COMMAND_MEMORY;
4384 pci_write_config_word(dev, PCI_COMMAND, command);
4385
4386 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4387 r = &dev->resource[i];
4388 if (!(r->flags & IORESOURCE_MEM))
4389 continue;
4390 size = resource_size(r);
4391 if (size < align) {
4392 size = align;
4393 dev_info(&dev->dev,
4394 "Rounding up size of resource #%d to %#llx.\n",
4395 i, (unsigned long long)size);
4396 }
4397 r->flags |= IORESOURCE_UNSET;
4398 r->end = size - 1;
4399 r->start = 0;
4400 }
4401 /* Need to disable bridge's resource window,
4402 * to enable the kernel to reassign new resource
4403 * window later on.
4404 */
4405 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4406 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4407 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4408 r = &dev->resource[i];
4409 if (!(r->flags & IORESOURCE_MEM))
4410 continue;
4411 r->flags |= IORESOURCE_UNSET;
4412 r->end = resource_size(r) - 1;
4413 r->start = 0;
4414 }
4415 pci_disable_bridge_window(dev);
4416 }
4417 }
4418
4419 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4420 {
4421 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4422 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4423 spin_lock(&resource_alignment_lock);
4424 strncpy(resource_alignment_param, buf, count);
4425 resource_alignment_param[count] = '\0';
4426 spin_unlock(&resource_alignment_lock);
4427 return count;
4428 }
4429
4430 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4431 {
4432 size_t count;
4433 spin_lock(&resource_alignment_lock);
4434 count = snprintf(buf, size, "%s", resource_alignment_param);
4435 spin_unlock(&resource_alignment_lock);
4436 return count;
4437 }
4438
4439 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4440 {
4441 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4442 }
4443
4444 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4445 const char *buf, size_t count)
4446 {
4447 return pci_set_resource_alignment_param(buf, count);
4448 }
4449
4450 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4451 pci_resource_alignment_store);
4452
4453 static int __init pci_resource_alignment_sysfs_init(void)
4454 {
4455 return bus_create_file(&pci_bus_type,
4456 &bus_attr_resource_alignment);
4457 }
4458 late_initcall(pci_resource_alignment_sysfs_init);
4459
4460 static void pci_no_domains(void)
4461 {
4462 #ifdef CONFIG_PCI_DOMAINS
4463 pci_domains_supported = 0;
4464 #endif
4465 }
4466
4467 #ifdef CONFIG_PCI_DOMAINS
4468 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4469
4470 int pci_get_new_domain_nr(void)
4471 {
4472 return atomic_inc_return(&__domain_nr);
4473 }
4474 #endif
4475
4476 /**
4477 * pci_ext_cfg_avail - can we access extended PCI config space?
4478 *
4479 * Returns 1 if we can access PCI extended config space (offsets
4480 * greater than 0xff). This is the default implementation. Architecture
4481 * implementations can override this.
4482 */
4483 int __weak pci_ext_cfg_avail(void)
4484 {
4485 return 1;
4486 }
4487
4488 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4489 {
4490 }
4491 EXPORT_SYMBOL(pci_fixup_cardbus);
4492
4493 static int __init pci_setup(char *str)
4494 {
4495 while (str) {
4496 char *k = strchr(str, ',');
4497 if (k)
4498 *k++ = 0;
4499 if (*str && (str = pcibios_setup(str)) && *str) {
4500 if (!strcmp(str, "nomsi")) {
4501 pci_no_msi();
4502 } else if (!strcmp(str, "noaer")) {
4503 pci_no_aer();
4504 } else if (!strncmp(str, "realloc=", 8)) {
4505 pci_realloc_get_opt(str + 8);
4506 } else if (!strncmp(str, "realloc", 7)) {
4507 pci_realloc_get_opt("on");
4508 } else if (!strcmp(str, "nodomains")) {
4509 pci_no_domains();
4510 } else if (!strncmp(str, "noari", 5)) {
4511 pcie_ari_disabled = true;
4512 } else if (!strncmp(str, "cbiosize=", 9)) {
4513 pci_cardbus_io_size = memparse(str + 9, &str);
4514 } else if (!strncmp(str, "cbmemsize=", 10)) {
4515 pci_cardbus_mem_size = memparse(str + 10, &str);
4516 } else if (!strncmp(str, "resource_alignment=", 19)) {
4517 pci_set_resource_alignment_param(str + 19,
4518 strlen(str + 19));
4519 } else if (!strncmp(str, "ecrc=", 5)) {
4520 pcie_ecrc_get_policy(str + 5);
4521 } else if (!strncmp(str, "hpiosize=", 9)) {
4522 pci_hotplug_io_size = memparse(str + 9, &str);
4523 } else if (!strncmp(str, "hpmemsize=", 10)) {
4524 pci_hotplug_mem_size = memparse(str + 10, &str);
4525 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4526 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4527 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4528 pcie_bus_config = PCIE_BUS_SAFE;
4529 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4530 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4531 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4532 pcie_bus_config = PCIE_BUS_PEER2PEER;
4533 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4534 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4535 } else {
4536 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4537 str);
4538 }
4539 }
4540 str = k;
4541 }
4542 return 0;
4543 }
4544 early_param("pci", pci_setup);
This page took 0.125801 seconds and 5 git commands to generate.