PM: Prevent runtime suspend during system resume
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28
29 const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39
40 unsigned int pci_pm_d3_delay;
41
42 static void pci_pme_list_scan(struct work_struct *work);
43
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48 struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51 };
52
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63 }
64
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83 /*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91
92 /*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96 unsigned int pcibios_max_latency = 255;
97
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100
101 /**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->busn_res.end;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138
139 #define PCI_FIND_CAP_TTL 48
140
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 u8 pos, int cap, int *ttl)
143 {
144 u8 id;
145
146 while ((*ttl)--) {
147 pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 if (pos < 0x40)
149 break;
150 pos &= ~3;
151 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 &id);
153 if (id == 0xff)
154 break;
155 if (id == cap)
156 return pos;
157 pos += PCI_CAP_LIST_NEXT;
158 }
159 return 0;
160 }
161
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 u8 pos, int cap)
164 {
165 int ttl = PCI_FIND_CAP_TTL;
166
167 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 return __pci_find_next_cap(dev->bus, dev->devfn,
173 pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 unsigned int devfn, u8 hdr_type)
179 {
180 u16 status;
181
182 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 if (!(status & PCI_STATUS_CAP_LIST))
184 return 0;
185
186 switch (hdr_type) {
187 case PCI_HEADER_TYPE_NORMAL:
188 case PCI_HEADER_TYPE_BRIDGE:
189 return PCI_CAPABILITY_LIST;
190 case PCI_HEADER_TYPE_CARDBUS:
191 return PCI_CB_CAPABILITY_LIST;
192 default:
193 return 0;
194 }
195
196 return 0;
197 }
198
199 /**
200 * pci_find_capability - query for devices' capabilities
201 * @dev: PCI device to query
202 * @cap: capability code
203 *
204 * Tell if a device supports a given PCI capability.
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it. Possible values for @cap:
208 *
209 * %PCI_CAP_ID_PM Power Management
210 * %PCI_CAP_ID_AGP Accelerated Graphics Port
211 * %PCI_CAP_ID_VPD Vital Product Data
212 * %PCI_CAP_ID_SLOTID Slot Identification
213 * %PCI_CAP_ID_MSI Message Signalled Interrupts
214 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
215 * %PCI_CAP_ID_PCIX PCI-X
216 * %PCI_CAP_ID_EXP PCI Express
217 */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 int pos;
221
222 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 if (pos)
224 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225
226 return pos;
227 }
228
229 /**
230 * pci_bus_find_capability - query for devices' capabilities
231 * @bus: the PCI bus to query
232 * @devfn: PCI device to query
233 * @cap: capability code
234 *
235 * Like pci_find_capability() but works for pci devices that do not have a
236 * pci_dev structure set up yet.
237 *
238 * Returns the address of the requested capability structure within the
239 * device's PCI configuration space or 0 in case the device does not
240 * support it.
241 */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 int pos;
245 u8 hdr_type;
246
247 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248
249 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 if (pos)
251 pos = __pci_find_next_cap(bus, devfn, pos, cap);
252
253 return pos;
254 }
255
256 /**
257 * pci_pcie_cap2 - query for devices' PCI_CAP_ID_EXP v2 capability structure
258 * @dev: PCI device to check
259 *
260 * Like pci_pcie_cap() but also checks that the PCIe capability version is
261 * >= 2. Note that v1 capability structures could be sparse in that not
262 * all register fields were required. v2 requires the entire structure to
263 * be present size wise, while still allowing for non-implemented registers
264 * to exist but they must be hardwired to 0.
265 *
266 * Due to the differences in the versions of capability structures, one
267 * must be careful not to try and access non-existant registers that may
268 * exist in early versions - v1 - of Express devices.
269 *
270 * Returns the offset of the PCIe capability structure as long as the
271 * capability version is >= 2; otherwise 0 is returned.
272 */
273 static int pci_pcie_cap2(struct pci_dev *dev)
274 {
275 u16 flags;
276 int pos;
277
278 pos = pci_pcie_cap(dev);
279 if (pos) {
280 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
281 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
282 pos = 0;
283 }
284
285 return pos;
286 }
287
288 /**
289 * pci_find_ext_capability - Find an extended capability
290 * @dev: PCI device to query
291 * @cap: capability code
292 *
293 * Returns the address of the requested extended capability structure
294 * within the device's PCI configuration space or 0 if the device does
295 * not support it. Possible values for @cap:
296 *
297 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
298 * %PCI_EXT_CAP_ID_VC Virtual Channel
299 * %PCI_EXT_CAP_ID_DSN Device Serial Number
300 * %PCI_EXT_CAP_ID_PWR Power Budgeting
301 */
302 int pci_find_ext_capability(struct pci_dev *dev, int cap)
303 {
304 u32 header;
305 int ttl;
306 int pos = PCI_CFG_SPACE_SIZE;
307
308 /* minimum 8 bytes per capability */
309 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
310
311 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
312 return 0;
313
314 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
315 return 0;
316
317 /*
318 * If we have no capabilities, this is indicated by cap ID,
319 * cap version and next pointer all being 0.
320 */
321 if (header == 0)
322 return 0;
323
324 while (ttl-- > 0) {
325 if (PCI_EXT_CAP_ID(header) == cap)
326 return pos;
327
328 pos = PCI_EXT_CAP_NEXT(header);
329 if (pos < PCI_CFG_SPACE_SIZE)
330 break;
331
332 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
333 break;
334 }
335
336 return 0;
337 }
338 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
339
340 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
341 {
342 int rc, ttl = PCI_FIND_CAP_TTL;
343 u8 cap, mask;
344
345 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
346 mask = HT_3BIT_CAP_MASK;
347 else
348 mask = HT_5BIT_CAP_MASK;
349
350 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
351 PCI_CAP_ID_HT, &ttl);
352 while (pos) {
353 rc = pci_read_config_byte(dev, pos + 3, &cap);
354 if (rc != PCIBIOS_SUCCESSFUL)
355 return 0;
356
357 if ((cap & mask) == ht_cap)
358 return pos;
359
360 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
361 pos + PCI_CAP_LIST_NEXT,
362 PCI_CAP_ID_HT, &ttl);
363 }
364
365 return 0;
366 }
367 /**
368 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
369 * @dev: PCI device to query
370 * @pos: Position from which to continue searching
371 * @ht_cap: Hypertransport capability code
372 *
373 * To be used in conjunction with pci_find_ht_capability() to search for
374 * all capabilities matching @ht_cap. @pos should always be a value returned
375 * from pci_find_ht_capability().
376 *
377 * NB. To be 100% safe against broken PCI devices, the caller should take
378 * steps to avoid an infinite loop.
379 */
380 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
381 {
382 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
383 }
384 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
385
386 /**
387 * pci_find_ht_capability - query a device's Hypertransport capabilities
388 * @dev: PCI device to query
389 * @ht_cap: Hypertransport capability code
390 *
391 * Tell if a device supports a given Hypertransport capability.
392 * Returns an address within the device's PCI configuration space
393 * or 0 in case the device does not support the request capability.
394 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
395 * which has a Hypertransport capability matching @ht_cap.
396 */
397 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
398 {
399 int pos;
400
401 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
402 if (pos)
403 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
404
405 return pos;
406 }
407 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
408
409 /**
410 * pci_find_parent_resource - return resource region of parent bus of given region
411 * @dev: PCI device structure contains resources to be searched
412 * @res: child resource record for which parent is sought
413 *
414 * For given resource region of given device, return the resource
415 * region of parent bus the given region is contained in or where
416 * it should be allocated from.
417 */
418 struct resource *
419 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
420 {
421 const struct pci_bus *bus = dev->bus;
422 int i;
423 struct resource *best = NULL, *r;
424
425 pci_bus_for_each_resource(bus, r, i) {
426 if (!r)
427 continue;
428 if (res->start && !(res->start >= r->start && res->end <= r->end))
429 continue; /* Not contained */
430 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
431 continue; /* Wrong type */
432 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
433 return r; /* Exact match */
434 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
435 if (r->flags & IORESOURCE_PREFETCH)
436 continue;
437 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
438 if (!best)
439 best = r;
440 }
441 return best;
442 }
443
444 /**
445 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
446 * @dev: PCI device to have its BARs restored
447 *
448 * Restore the BAR values for a given device, so as to make it
449 * accessible by its driver.
450 */
451 static void
452 pci_restore_bars(struct pci_dev *dev)
453 {
454 int i;
455
456 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
457 pci_update_resource(dev, i);
458 }
459
460 static struct pci_platform_pm_ops *pci_platform_pm;
461
462 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
463 {
464 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
465 || !ops->sleep_wake || !ops->can_wakeup)
466 return -EINVAL;
467 pci_platform_pm = ops;
468 return 0;
469 }
470
471 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
472 {
473 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
474 }
475
476 static inline int platform_pci_set_power_state(struct pci_dev *dev,
477 pci_power_t t)
478 {
479 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
480 }
481
482 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
483 {
484 return pci_platform_pm ?
485 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
486 }
487
488 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
489 {
490 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
491 }
492
493 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
494 {
495 return pci_platform_pm ?
496 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
497 }
498
499 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
500 {
501 return pci_platform_pm ?
502 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
503 }
504
505 /**
506 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
507 * given PCI device
508 * @dev: PCI device to handle.
509 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
510 *
511 * RETURN VALUE:
512 * -EINVAL if the requested state is invalid.
513 * -EIO if device does not support PCI PM or its PM capabilities register has a
514 * wrong version, or device doesn't support the requested state.
515 * 0 if device already is in the requested state.
516 * 0 if device's power state has been successfully changed.
517 */
518 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
519 {
520 u16 pmcsr;
521 bool need_restore = false;
522
523 /* Check if we're already there */
524 if (dev->current_state == state)
525 return 0;
526
527 if (!dev->pm_cap)
528 return -EIO;
529
530 if (state < PCI_D0 || state > PCI_D3hot)
531 return -EINVAL;
532
533 /* Validate current state:
534 * Can enter D0 from any state, but if we can only go deeper
535 * to sleep if we're already in a low power state
536 */
537 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
538 && dev->current_state > state) {
539 dev_err(&dev->dev, "invalid power transition "
540 "(from state %d to %d)\n", dev->current_state, state);
541 return -EINVAL;
542 }
543
544 /* check if this device supports the desired state */
545 if ((state == PCI_D1 && !dev->d1_support)
546 || (state == PCI_D2 && !dev->d2_support))
547 return -EIO;
548
549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
550
551 /* If we're (effectively) in D3, force entire word to 0.
552 * This doesn't affect PME_Status, disables PME_En, and
553 * sets PowerState to 0.
554 */
555 switch (dev->current_state) {
556 case PCI_D0:
557 case PCI_D1:
558 case PCI_D2:
559 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
560 pmcsr |= state;
561 break;
562 case PCI_D3hot:
563 case PCI_D3cold:
564 case PCI_UNKNOWN: /* Boot-up */
565 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
566 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
567 need_restore = true;
568 /* Fall-through: force to D0 */
569 default:
570 pmcsr = 0;
571 break;
572 }
573
574 /* enter specified state */
575 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
576
577 /* Mandatory power management transition delays */
578 /* see PCI PM 1.1 5.6.1 table 18 */
579 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
580 pci_dev_d3_sleep(dev);
581 else if (state == PCI_D2 || dev->current_state == PCI_D2)
582 udelay(PCI_PM_D2_DELAY);
583
584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
585 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
586 if (dev->current_state != state && printk_ratelimit())
587 dev_info(&dev->dev, "Refused to change power state, "
588 "currently in D%d\n", dev->current_state);
589
590 /*
591 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
592 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
593 * from D3hot to D0 _may_ perform an internal reset, thereby
594 * going to "D0 Uninitialized" rather than "D0 Initialized".
595 * For example, at least some versions of the 3c905B and the
596 * 3c556B exhibit this behaviour.
597 *
598 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
599 * devices in a D3hot state at boot. Consequently, we need to
600 * restore at least the BARs so that the device will be
601 * accessible to its driver.
602 */
603 if (need_restore)
604 pci_restore_bars(dev);
605
606 if (dev->bus->self)
607 pcie_aspm_pm_state_change(dev->bus->self);
608
609 return 0;
610 }
611
612 /**
613 * pci_update_current_state - Read PCI power state of given device from its
614 * PCI PM registers and cache it
615 * @dev: PCI device to handle.
616 * @state: State to cache in case the device doesn't have the PM capability
617 */
618 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
619 {
620 if (dev->pm_cap) {
621 u16 pmcsr;
622
623 /*
624 * Configuration space is not accessible for device in
625 * D3cold, so just keep or set D3cold for safety
626 */
627 if (dev->current_state == PCI_D3cold)
628 return;
629 if (state == PCI_D3cold) {
630 dev->current_state = PCI_D3cold;
631 return;
632 }
633 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
634 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
635 } else {
636 dev->current_state = state;
637 }
638 }
639
640 /**
641 * pci_power_up - Put the given device into D0 forcibly
642 * @dev: PCI device to power up
643 */
644 void pci_power_up(struct pci_dev *dev)
645 {
646 if (platform_pci_power_manageable(dev))
647 platform_pci_set_power_state(dev, PCI_D0);
648
649 pci_raw_set_power_state(dev, PCI_D0);
650 pci_update_current_state(dev, PCI_D0);
651 }
652
653 /**
654 * pci_platform_power_transition - Use platform to change device power state
655 * @dev: PCI device to handle.
656 * @state: State to put the device into.
657 */
658 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
659 {
660 int error;
661
662 if (platform_pci_power_manageable(dev)) {
663 error = platform_pci_set_power_state(dev, state);
664 if (!error)
665 pci_update_current_state(dev, state);
666 /* Fall back to PCI_D0 if native PM is not supported */
667 if (!dev->pm_cap)
668 dev->current_state = PCI_D0;
669 } else {
670 error = -ENODEV;
671 /* Fall back to PCI_D0 if native PM is not supported */
672 if (!dev->pm_cap)
673 dev->current_state = PCI_D0;
674 }
675
676 return error;
677 }
678
679 /**
680 * __pci_start_power_transition - Start power transition of a PCI device
681 * @dev: PCI device to handle.
682 * @state: State to put the device into.
683 */
684 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
685 {
686 if (state == PCI_D0) {
687 pci_platform_power_transition(dev, PCI_D0);
688 /*
689 * Mandatory power management transition delays, see
690 * PCI Express Base Specification Revision 2.0 Section
691 * 6.6.1: Conventional Reset. Do not delay for
692 * devices powered on/off by corresponding bridge,
693 * because have already delayed for the bridge.
694 */
695 if (dev->runtime_d3cold) {
696 msleep(dev->d3cold_delay);
697 /*
698 * When powering on a bridge from D3cold, the
699 * whole hierarchy may be powered on into
700 * D0uninitialized state, resume them to give
701 * them a chance to suspend again
702 */
703 pci_wakeup_bus(dev->subordinate);
704 }
705 }
706 }
707
708 /**
709 * __pci_dev_set_current_state - Set current state of a PCI device
710 * @dev: Device to handle
711 * @data: pointer to state to be set
712 */
713 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
714 {
715 pci_power_t state = *(pci_power_t *)data;
716
717 dev->current_state = state;
718 return 0;
719 }
720
721 /**
722 * __pci_bus_set_current_state - Walk given bus and set current state of devices
723 * @bus: Top bus of the subtree to walk.
724 * @state: state to be set
725 */
726 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
727 {
728 if (bus)
729 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
730 }
731
732 /**
733 * __pci_complete_power_transition - Complete power transition of a PCI device
734 * @dev: PCI device to handle.
735 * @state: State to put the device into.
736 *
737 * This function should not be called directly by device drivers.
738 */
739 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
740 {
741 int ret;
742
743 if (state <= PCI_D0)
744 return -EINVAL;
745 ret = pci_platform_power_transition(dev, state);
746 /* Power off the bridge may power off the whole hierarchy */
747 if (!ret && state == PCI_D3cold)
748 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
749 return ret;
750 }
751 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
752
753 /**
754 * pci_set_power_state - Set the power state of a PCI device
755 * @dev: PCI device to handle.
756 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
757 *
758 * Transition a device to a new power state, using the platform firmware and/or
759 * the device's PCI PM registers.
760 *
761 * RETURN VALUE:
762 * -EINVAL if the requested state is invalid.
763 * -EIO if device does not support PCI PM or its PM capabilities register has a
764 * wrong version, or device doesn't support the requested state.
765 * 0 if device already is in the requested state.
766 * 0 if device's power state has been successfully changed.
767 */
768 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
769 {
770 int error;
771
772 /* bound the state we're entering */
773 if (state > PCI_D3cold)
774 state = PCI_D3cold;
775 else if (state < PCI_D0)
776 state = PCI_D0;
777 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
778 /*
779 * If the device or the parent bridge do not support PCI PM,
780 * ignore the request if we're doing anything other than putting
781 * it into D0 (which would only happen on boot).
782 */
783 return 0;
784
785 /* Check if we're already there */
786 if (dev->current_state == state)
787 return 0;
788
789 __pci_start_power_transition(dev, state);
790
791 /* This device is quirked not to be put into D3, so
792 don't put it in D3 */
793 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
794 return 0;
795
796 /*
797 * To put device in D3cold, we put device into D3hot in native
798 * way, then put device into D3cold with platform ops
799 */
800 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
801 PCI_D3hot : state);
802
803 if (!__pci_complete_power_transition(dev, state))
804 error = 0;
805 /*
806 * When aspm_policy is "powersave" this call ensures
807 * that ASPM is configured.
808 */
809 if (!error && dev->bus->self)
810 pcie_aspm_powersave_config_link(dev->bus->self);
811
812 return error;
813 }
814
815 /**
816 * pci_choose_state - Choose the power state of a PCI device
817 * @dev: PCI device to be suspended
818 * @state: target sleep state for the whole system. This is the value
819 * that is passed to suspend() function.
820 *
821 * Returns PCI power state suitable for given device and given system
822 * message.
823 */
824
825 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
826 {
827 pci_power_t ret;
828
829 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
830 return PCI_D0;
831
832 ret = platform_pci_choose_state(dev);
833 if (ret != PCI_POWER_ERROR)
834 return ret;
835
836 switch (state.event) {
837 case PM_EVENT_ON:
838 return PCI_D0;
839 case PM_EVENT_FREEZE:
840 case PM_EVENT_PRETHAW:
841 /* REVISIT both freeze and pre-thaw "should" use D0 */
842 case PM_EVENT_SUSPEND:
843 case PM_EVENT_HIBERNATE:
844 return PCI_D3hot;
845 default:
846 dev_info(&dev->dev, "unrecognized suspend event %d\n",
847 state.event);
848 BUG();
849 }
850 return PCI_D0;
851 }
852
853 EXPORT_SYMBOL(pci_choose_state);
854
855 #define PCI_EXP_SAVE_REGS 7
856
857 #define pcie_cap_has_devctl(type, flags) 1
858 #define pcie_cap_has_lnkctl(type, flags) \
859 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
860 (type == PCI_EXP_TYPE_ROOT_PORT || \
861 type == PCI_EXP_TYPE_ENDPOINT || \
862 type == PCI_EXP_TYPE_LEG_END))
863 #define pcie_cap_has_sltctl(type, flags) \
864 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
865 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
866 (type == PCI_EXP_TYPE_DOWNSTREAM && \
867 (flags & PCI_EXP_FLAGS_SLOT))))
868 #define pcie_cap_has_rtctl(type, flags) \
869 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
870 (type == PCI_EXP_TYPE_ROOT_PORT || \
871 type == PCI_EXP_TYPE_RC_EC))
872
873 static struct pci_cap_saved_state *pci_find_saved_cap(
874 struct pci_dev *pci_dev, char cap)
875 {
876 struct pci_cap_saved_state *tmp;
877 struct hlist_node *pos;
878
879 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
880 if (tmp->cap.cap_nr == cap)
881 return tmp;
882 }
883 return NULL;
884 }
885
886 static int pci_save_pcie_state(struct pci_dev *dev)
887 {
888 int pos, i = 0;
889 struct pci_cap_saved_state *save_state;
890 u16 *cap;
891 u16 flags;
892
893 pos = pci_pcie_cap(dev);
894 if (!pos)
895 return 0;
896
897 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
898 if (!save_state) {
899 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
900 return -ENOMEM;
901 }
902 cap = (u16 *)&save_state->cap.data[0];
903
904 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
905
906 if (pcie_cap_has_devctl(dev->pcie_type, flags))
907 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
908 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
909 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
910 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
911 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
912 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
913 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
914
915 pos = pci_pcie_cap2(dev);
916 if (!pos)
917 return 0;
918
919 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
920 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
921 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
922 return 0;
923 }
924
925 static void pci_restore_pcie_state(struct pci_dev *dev)
926 {
927 int i = 0, pos;
928 struct pci_cap_saved_state *save_state;
929 u16 *cap;
930 u16 flags;
931
932 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
933 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
934 if (!save_state || pos <= 0)
935 return;
936 cap = (u16 *)&save_state->cap.data[0];
937
938 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
939
940 if (pcie_cap_has_devctl(dev->pcie_type, flags))
941 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
942 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
943 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
944 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
945 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
946 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
947 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
948
949 pos = pci_pcie_cap2(dev);
950 if (!pos)
951 return;
952
953 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
954 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
955 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
956 }
957
958
959 static int pci_save_pcix_state(struct pci_dev *dev)
960 {
961 int pos;
962 struct pci_cap_saved_state *save_state;
963
964 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
965 if (pos <= 0)
966 return 0;
967
968 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
969 if (!save_state) {
970 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
971 return -ENOMEM;
972 }
973
974 pci_read_config_word(dev, pos + PCI_X_CMD,
975 (u16 *)save_state->cap.data);
976
977 return 0;
978 }
979
980 static void pci_restore_pcix_state(struct pci_dev *dev)
981 {
982 int i = 0, pos;
983 struct pci_cap_saved_state *save_state;
984 u16 *cap;
985
986 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
987 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
988 if (!save_state || pos <= 0)
989 return;
990 cap = (u16 *)&save_state->cap.data[0];
991
992 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
993 }
994
995
996 /**
997 * pci_save_state - save the PCI configuration space of a device before suspending
998 * @dev: - PCI device that we're dealing with
999 */
1000 int
1001 pci_save_state(struct pci_dev *dev)
1002 {
1003 int i;
1004 /* XXX: 100% dword access ok here? */
1005 for (i = 0; i < 16; i++)
1006 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1007 dev->state_saved = true;
1008 if ((i = pci_save_pcie_state(dev)) != 0)
1009 return i;
1010 if ((i = pci_save_pcix_state(dev)) != 0)
1011 return i;
1012 return 0;
1013 }
1014
1015 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1016 u32 saved_val, int retry)
1017 {
1018 u32 val;
1019
1020 pci_read_config_dword(pdev, offset, &val);
1021 if (val == saved_val)
1022 return;
1023
1024 for (;;) {
1025 dev_dbg(&pdev->dev, "restoring config space at offset "
1026 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1027 pci_write_config_dword(pdev, offset, saved_val);
1028 if (retry-- <= 0)
1029 return;
1030
1031 pci_read_config_dword(pdev, offset, &val);
1032 if (val == saved_val)
1033 return;
1034
1035 mdelay(1);
1036 }
1037 }
1038
1039 static void pci_restore_config_space_range(struct pci_dev *pdev,
1040 int start, int end, int retry)
1041 {
1042 int index;
1043
1044 for (index = end; index >= start; index--)
1045 pci_restore_config_dword(pdev, 4 * index,
1046 pdev->saved_config_space[index],
1047 retry);
1048 }
1049
1050 static void pci_restore_config_space(struct pci_dev *pdev)
1051 {
1052 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1053 pci_restore_config_space_range(pdev, 10, 15, 0);
1054 /* Restore BARs before the command register. */
1055 pci_restore_config_space_range(pdev, 4, 9, 10);
1056 pci_restore_config_space_range(pdev, 0, 3, 0);
1057 } else {
1058 pci_restore_config_space_range(pdev, 0, 15, 0);
1059 }
1060 }
1061
1062 /**
1063 * pci_restore_state - Restore the saved state of a PCI device
1064 * @dev: - PCI device that we're dealing with
1065 */
1066 void pci_restore_state(struct pci_dev *dev)
1067 {
1068 if (!dev->state_saved)
1069 return;
1070
1071 /* PCI Express register must be restored first */
1072 pci_restore_pcie_state(dev);
1073 pci_restore_ats_state(dev);
1074
1075 pci_restore_config_space(dev);
1076
1077 pci_restore_pcix_state(dev);
1078 pci_restore_msi_state(dev);
1079 pci_restore_iov_state(dev);
1080
1081 dev->state_saved = false;
1082 }
1083
1084 struct pci_saved_state {
1085 u32 config_space[16];
1086 struct pci_cap_saved_data cap[0];
1087 };
1088
1089 /**
1090 * pci_store_saved_state - Allocate and return an opaque struct containing
1091 * the device saved state.
1092 * @dev: PCI device that we're dealing with
1093 *
1094 * Rerturn NULL if no state or error.
1095 */
1096 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1097 {
1098 struct pci_saved_state *state;
1099 struct pci_cap_saved_state *tmp;
1100 struct pci_cap_saved_data *cap;
1101 struct hlist_node *pos;
1102 size_t size;
1103
1104 if (!dev->state_saved)
1105 return NULL;
1106
1107 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1108
1109 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1110 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1111
1112 state = kzalloc(size, GFP_KERNEL);
1113 if (!state)
1114 return NULL;
1115
1116 memcpy(state->config_space, dev->saved_config_space,
1117 sizeof(state->config_space));
1118
1119 cap = state->cap;
1120 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1121 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1122 memcpy(cap, &tmp->cap, len);
1123 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1124 }
1125 /* Empty cap_save terminates list */
1126
1127 return state;
1128 }
1129 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1130
1131 /**
1132 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1133 * @dev: PCI device that we're dealing with
1134 * @state: Saved state returned from pci_store_saved_state()
1135 */
1136 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1137 {
1138 struct pci_cap_saved_data *cap;
1139
1140 dev->state_saved = false;
1141
1142 if (!state)
1143 return 0;
1144
1145 memcpy(dev->saved_config_space, state->config_space,
1146 sizeof(state->config_space));
1147
1148 cap = state->cap;
1149 while (cap->size) {
1150 struct pci_cap_saved_state *tmp;
1151
1152 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1153 if (!tmp || tmp->cap.size != cap->size)
1154 return -EINVAL;
1155
1156 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1157 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1158 sizeof(struct pci_cap_saved_data) + cap->size);
1159 }
1160
1161 dev->state_saved = true;
1162 return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1165
1166 /**
1167 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1168 * and free the memory allocated for it.
1169 * @dev: PCI device that we're dealing with
1170 * @state: Pointer to saved state returned from pci_store_saved_state()
1171 */
1172 int pci_load_and_free_saved_state(struct pci_dev *dev,
1173 struct pci_saved_state **state)
1174 {
1175 int ret = pci_load_saved_state(dev, *state);
1176 kfree(*state);
1177 *state = NULL;
1178 return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1181
1182 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1183 {
1184 int err;
1185
1186 err = pci_set_power_state(dev, PCI_D0);
1187 if (err < 0 && err != -EIO)
1188 return err;
1189 err = pcibios_enable_device(dev, bars);
1190 if (err < 0)
1191 return err;
1192 pci_fixup_device(pci_fixup_enable, dev);
1193
1194 return 0;
1195 }
1196
1197 /**
1198 * pci_reenable_device - Resume abandoned device
1199 * @dev: PCI device to be resumed
1200 *
1201 * Note this function is a backend of pci_default_resume and is not supposed
1202 * to be called by normal code, write proper resume handler and use it instead.
1203 */
1204 int pci_reenable_device(struct pci_dev *dev)
1205 {
1206 if (pci_is_enabled(dev))
1207 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1208 return 0;
1209 }
1210
1211 static int __pci_enable_device_flags(struct pci_dev *dev,
1212 resource_size_t flags)
1213 {
1214 int err;
1215 int i, bars = 0;
1216
1217 /*
1218 * Power state could be unknown at this point, either due to a fresh
1219 * boot or a device removal call. So get the current power state
1220 * so that things like MSI message writing will behave as expected
1221 * (e.g. if the device really is in D0 at enable time).
1222 */
1223 if (dev->pm_cap) {
1224 u16 pmcsr;
1225 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1226 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1227 }
1228
1229 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1230 return 0; /* already enabled */
1231
1232 /* only skip sriov related */
1233 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1234 if (dev->resource[i].flags & flags)
1235 bars |= (1 << i);
1236 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1237 if (dev->resource[i].flags & flags)
1238 bars |= (1 << i);
1239
1240 err = do_pci_enable_device(dev, bars);
1241 if (err < 0)
1242 atomic_dec(&dev->enable_cnt);
1243 return err;
1244 }
1245
1246 /**
1247 * pci_enable_device_io - Initialize a device for use with IO space
1248 * @dev: PCI device to be initialized
1249 *
1250 * Initialize device before it's used by a driver. Ask low-level code
1251 * to enable I/O resources. Wake up the device if it was suspended.
1252 * Beware, this function can fail.
1253 */
1254 int pci_enable_device_io(struct pci_dev *dev)
1255 {
1256 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1257 }
1258
1259 /**
1260 * pci_enable_device_mem - Initialize a device for use with Memory space
1261 * @dev: PCI device to be initialized
1262 *
1263 * Initialize device before it's used by a driver. Ask low-level code
1264 * to enable Memory resources. Wake up the device if it was suspended.
1265 * Beware, this function can fail.
1266 */
1267 int pci_enable_device_mem(struct pci_dev *dev)
1268 {
1269 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1270 }
1271
1272 /**
1273 * pci_enable_device - Initialize device before it's used by a driver.
1274 * @dev: PCI device to be initialized
1275 *
1276 * Initialize device before it's used by a driver. Ask low-level code
1277 * to enable I/O and memory. Wake up the device if it was suspended.
1278 * Beware, this function can fail.
1279 *
1280 * Note we don't actually enable the device many times if we call
1281 * this function repeatedly (we just increment the count).
1282 */
1283 int pci_enable_device(struct pci_dev *dev)
1284 {
1285 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1286 }
1287
1288 /*
1289 * Managed PCI resources. This manages device on/off, intx/msi/msix
1290 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1291 * there's no need to track it separately. pci_devres is initialized
1292 * when a device is enabled using managed PCI device enable interface.
1293 */
1294 struct pci_devres {
1295 unsigned int enabled:1;
1296 unsigned int pinned:1;
1297 unsigned int orig_intx:1;
1298 unsigned int restore_intx:1;
1299 u32 region_mask;
1300 };
1301
1302 static void pcim_release(struct device *gendev, void *res)
1303 {
1304 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1305 struct pci_devres *this = res;
1306 int i;
1307
1308 if (dev->msi_enabled)
1309 pci_disable_msi(dev);
1310 if (dev->msix_enabled)
1311 pci_disable_msix(dev);
1312
1313 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1314 if (this->region_mask & (1 << i))
1315 pci_release_region(dev, i);
1316
1317 if (this->restore_intx)
1318 pci_intx(dev, this->orig_intx);
1319
1320 if (this->enabled && !this->pinned)
1321 pci_disable_device(dev);
1322 }
1323
1324 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1325 {
1326 struct pci_devres *dr, *new_dr;
1327
1328 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1329 if (dr)
1330 return dr;
1331
1332 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1333 if (!new_dr)
1334 return NULL;
1335 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1336 }
1337
1338 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1339 {
1340 if (pci_is_managed(pdev))
1341 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1342 return NULL;
1343 }
1344
1345 /**
1346 * pcim_enable_device - Managed pci_enable_device()
1347 * @pdev: PCI device to be initialized
1348 *
1349 * Managed pci_enable_device().
1350 */
1351 int pcim_enable_device(struct pci_dev *pdev)
1352 {
1353 struct pci_devres *dr;
1354 int rc;
1355
1356 dr = get_pci_dr(pdev);
1357 if (unlikely(!dr))
1358 return -ENOMEM;
1359 if (dr->enabled)
1360 return 0;
1361
1362 rc = pci_enable_device(pdev);
1363 if (!rc) {
1364 pdev->is_managed = 1;
1365 dr->enabled = 1;
1366 }
1367 return rc;
1368 }
1369
1370 /**
1371 * pcim_pin_device - Pin managed PCI device
1372 * @pdev: PCI device to pin
1373 *
1374 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1375 * driver detach. @pdev must have been enabled with
1376 * pcim_enable_device().
1377 */
1378 void pcim_pin_device(struct pci_dev *pdev)
1379 {
1380 struct pci_devres *dr;
1381
1382 dr = find_pci_dr(pdev);
1383 WARN_ON(!dr || !dr->enabled);
1384 if (dr)
1385 dr->pinned = 1;
1386 }
1387
1388 /**
1389 * pcibios_disable_device - disable arch specific PCI resources for device dev
1390 * @dev: the PCI device to disable
1391 *
1392 * Disables architecture specific PCI resources for the device. This
1393 * is the default implementation. Architecture implementations can
1394 * override this.
1395 */
1396 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1397
1398 static void do_pci_disable_device(struct pci_dev *dev)
1399 {
1400 u16 pci_command;
1401
1402 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1403 if (pci_command & PCI_COMMAND_MASTER) {
1404 pci_command &= ~PCI_COMMAND_MASTER;
1405 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1406 }
1407
1408 pcibios_disable_device(dev);
1409 }
1410
1411 /**
1412 * pci_disable_enabled_device - Disable device without updating enable_cnt
1413 * @dev: PCI device to disable
1414 *
1415 * NOTE: This function is a backend of PCI power management routines and is
1416 * not supposed to be called drivers.
1417 */
1418 void pci_disable_enabled_device(struct pci_dev *dev)
1419 {
1420 if (pci_is_enabled(dev))
1421 do_pci_disable_device(dev);
1422 }
1423
1424 /**
1425 * pci_disable_device - Disable PCI device after use
1426 * @dev: PCI device to be disabled
1427 *
1428 * Signal to the system that the PCI device is not in use by the system
1429 * anymore. This only involves disabling PCI bus-mastering, if active.
1430 *
1431 * Note we don't actually disable the device until all callers of
1432 * pci_enable_device() have called pci_disable_device().
1433 */
1434 void
1435 pci_disable_device(struct pci_dev *dev)
1436 {
1437 struct pci_devres *dr;
1438
1439 dr = find_pci_dr(dev);
1440 if (dr)
1441 dr->enabled = 0;
1442
1443 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1444 return;
1445
1446 do_pci_disable_device(dev);
1447
1448 dev->is_busmaster = 0;
1449 }
1450
1451 /**
1452 * pcibios_set_pcie_reset_state - set reset state for device dev
1453 * @dev: the PCIe device reset
1454 * @state: Reset state to enter into
1455 *
1456 *
1457 * Sets the PCIe reset state for the device. This is the default
1458 * implementation. Architecture implementations can override this.
1459 */
1460 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1461 enum pcie_reset_state state)
1462 {
1463 return -EINVAL;
1464 }
1465
1466 /**
1467 * pci_set_pcie_reset_state - set reset state for device dev
1468 * @dev: the PCIe device reset
1469 * @state: Reset state to enter into
1470 *
1471 *
1472 * Sets the PCI reset state for the device.
1473 */
1474 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1475 {
1476 return pcibios_set_pcie_reset_state(dev, state);
1477 }
1478
1479 /**
1480 * pci_check_pme_status - Check if given device has generated PME.
1481 * @dev: Device to check.
1482 *
1483 * Check the PME status of the device and if set, clear it and clear PME enable
1484 * (if set). Return 'true' if PME status and PME enable were both set or
1485 * 'false' otherwise.
1486 */
1487 bool pci_check_pme_status(struct pci_dev *dev)
1488 {
1489 int pmcsr_pos;
1490 u16 pmcsr;
1491 bool ret = false;
1492
1493 if (!dev->pm_cap)
1494 return false;
1495
1496 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1497 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1498 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1499 return false;
1500
1501 /* Clear PME status. */
1502 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1503 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1504 /* Disable PME to avoid interrupt flood. */
1505 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1506 ret = true;
1507 }
1508
1509 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1510
1511 return ret;
1512 }
1513
1514 /**
1515 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1516 * @dev: Device to handle.
1517 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1518 *
1519 * Check if @dev has generated PME and queue a resume request for it in that
1520 * case.
1521 */
1522 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1523 {
1524 if (pme_poll_reset && dev->pme_poll)
1525 dev->pme_poll = false;
1526
1527 if (pci_check_pme_status(dev)) {
1528 pci_wakeup_event(dev);
1529 pm_request_resume(&dev->dev);
1530 }
1531 return 0;
1532 }
1533
1534 /**
1535 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1536 * @bus: Top bus of the subtree to walk.
1537 */
1538 void pci_pme_wakeup_bus(struct pci_bus *bus)
1539 {
1540 if (bus)
1541 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1542 }
1543
1544 /**
1545 * pci_wakeup - Wake up a PCI device
1546 * @dev: Device to handle.
1547 * @ign: ignored parameter
1548 */
1549 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1550 {
1551 pci_wakeup_event(pci_dev);
1552 pm_request_resume(&pci_dev->dev);
1553 return 0;
1554 }
1555
1556 /**
1557 * pci_wakeup_bus - Walk given bus and wake up devices on it
1558 * @bus: Top bus of the subtree to walk.
1559 */
1560 void pci_wakeup_bus(struct pci_bus *bus)
1561 {
1562 if (bus)
1563 pci_walk_bus(bus, pci_wakeup, NULL);
1564 }
1565
1566 /**
1567 * pci_pme_capable - check the capability of PCI device to generate PME#
1568 * @dev: PCI device to handle.
1569 * @state: PCI state from which device will issue PME#.
1570 */
1571 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1572 {
1573 if (!dev->pm_cap)
1574 return false;
1575
1576 return !!(dev->pme_support & (1 << state));
1577 }
1578
1579 static void pci_pme_list_scan(struct work_struct *work)
1580 {
1581 struct pci_pme_device *pme_dev, *n;
1582
1583 mutex_lock(&pci_pme_list_mutex);
1584 if (!list_empty(&pci_pme_list)) {
1585 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1586 if (pme_dev->dev->pme_poll) {
1587 struct pci_dev *bridge;
1588
1589 bridge = pme_dev->dev->bus->self;
1590 /*
1591 * If bridge is in low power state, the
1592 * configuration space of subordinate devices
1593 * may be not accessible
1594 */
1595 if (bridge && bridge->current_state != PCI_D0)
1596 continue;
1597 pci_pme_wakeup(pme_dev->dev, NULL);
1598 } else {
1599 list_del(&pme_dev->list);
1600 kfree(pme_dev);
1601 }
1602 }
1603 if (!list_empty(&pci_pme_list))
1604 schedule_delayed_work(&pci_pme_work,
1605 msecs_to_jiffies(PME_TIMEOUT));
1606 }
1607 mutex_unlock(&pci_pme_list_mutex);
1608 }
1609
1610 /**
1611 * pci_pme_active - enable or disable PCI device's PME# function
1612 * @dev: PCI device to handle.
1613 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1614 *
1615 * The caller must verify that the device is capable of generating PME# before
1616 * calling this function with @enable equal to 'true'.
1617 */
1618 void pci_pme_active(struct pci_dev *dev, bool enable)
1619 {
1620 u16 pmcsr;
1621
1622 if (!dev->pm_cap)
1623 return;
1624
1625 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1626 /* Clear PME_Status by writing 1 to it and enable PME# */
1627 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1628 if (!enable)
1629 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1630
1631 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1632
1633 /* PCI (as opposed to PCIe) PME requires that the device have
1634 its PME# line hooked up correctly. Not all hardware vendors
1635 do this, so the PME never gets delivered and the device
1636 remains asleep. The easiest way around this is to
1637 periodically walk the list of suspended devices and check
1638 whether any have their PME flag set. The assumption is that
1639 we'll wake up often enough anyway that this won't be a huge
1640 hit, and the power savings from the devices will still be a
1641 win. */
1642
1643 if (dev->pme_poll) {
1644 struct pci_pme_device *pme_dev;
1645 if (enable) {
1646 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1647 GFP_KERNEL);
1648 if (!pme_dev)
1649 goto out;
1650 pme_dev->dev = dev;
1651 mutex_lock(&pci_pme_list_mutex);
1652 list_add(&pme_dev->list, &pci_pme_list);
1653 if (list_is_singular(&pci_pme_list))
1654 schedule_delayed_work(&pci_pme_work,
1655 msecs_to_jiffies(PME_TIMEOUT));
1656 mutex_unlock(&pci_pme_list_mutex);
1657 } else {
1658 mutex_lock(&pci_pme_list_mutex);
1659 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1660 if (pme_dev->dev == dev) {
1661 list_del(&pme_dev->list);
1662 kfree(pme_dev);
1663 break;
1664 }
1665 }
1666 mutex_unlock(&pci_pme_list_mutex);
1667 }
1668 }
1669
1670 out:
1671 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1672 }
1673
1674 /**
1675 * __pci_enable_wake - enable PCI device as wakeup event source
1676 * @dev: PCI device affected
1677 * @state: PCI state from which device will issue wakeup events
1678 * @runtime: True if the events are to be generated at run time
1679 * @enable: True to enable event generation; false to disable
1680 *
1681 * This enables the device as a wakeup event source, or disables it.
1682 * When such events involves platform-specific hooks, those hooks are
1683 * called automatically by this routine.
1684 *
1685 * Devices with legacy power management (no standard PCI PM capabilities)
1686 * always require such platform hooks.
1687 *
1688 * RETURN VALUE:
1689 * 0 is returned on success
1690 * -EINVAL is returned if device is not supposed to wake up the system
1691 * Error code depending on the platform is returned if both the platform and
1692 * the native mechanism fail to enable the generation of wake-up events
1693 */
1694 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1695 bool runtime, bool enable)
1696 {
1697 int ret = 0;
1698
1699 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1700 return -EINVAL;
1701
1702 /* Don't do the same thing twice in a row for one device. */
1703 if (!!enable == !!dev->wakeup_prepared)
1704 return 0;
1705
1706 /*
1707 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1708 * Anderson we should be doing PME# wake enable followed by ACPI wake
1709 * enable. To disable wake-up we call the platform first, for symmetry.
1710 */
1711
1712 if (enable) {
1713 int error;
1714
1715 if (pci_pme_capable(dev, state))
1716 pci_pme_active(dev, true);
1717 else
1718 ret = 1;
1719 error = runtime ? platform_pci_run_wake(dev, true) :
1720 platform_pci_sleep_wake(dev, true);
1721 if (ret)
1722 ret = error;
1723 if (!ret)
1724 dev->wakeup_prepared = true;
1725 } else {
1726 if (runtime)
1727 platform_pci_run_wake(dev, false);
1728 else
1729 platform_pci_sleep_wake(dev, false);
1730 pci_pme_active(dev, false);
1731 dev->wakeup_prepared = false;
1732 }
1733
1734 return ret;
1735 }
1736 EXPORT_SYMBOL(__pci_enable_wake);
1737
1738 /**
1739 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1740 * @dev: PCI device to prepare
1741 * @enable: True to enable wake-up event generation; false to disable
1742 *
1743 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1744 * and this function allows them to set that up cleanly - pci_enable_wake()
1745 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1746 * ordering constraints.
1747 *
1748 * This function only returns error code if the device is not capable of
1749 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1750 * enable wake-up power for it.
1751 */
1752 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1753 {
1754 return pci_pme_capable(dev, PCI_D3cold) ?
1755 pci_enable_wake(dev, PCI_D3cold, enable) :
1756 pci_enable_wake(dev, PCI_D3hot, enable);
1757 }
1758
1759 /**
1760 * pci_target_state - find an appropriate low power state for a given PCI dev
1761 * @dev: PCI device
1762 *
1763 * Use underlying platform code to find a supported low power state for @dev.
1764 * If the platform can't manage @dev, return the deepest state from which it
1765 * can generate wake events, based on any available PME info.
1766 */
1767 pci_power_t pci_target_state(struct pci_dev *dev)
1768 {
1769 pci_power_t target_state = PCI_D3hot;
1770
1771 if (platform_pci_power_manageable(dev)) {
1772 /*
1773 * Call the platform to choose the target state of the device
1774 * and enable wake-up from this state if supported.
1775 */
1776 pci_power_t state = platform_pci_choose_state(dev);
1777
1778 switch (state) {
1779 case PCI_POWER_ERROR:
1780 case PCI_UNKNOWN:
1781 break;
1782 case PCI_D1:
1783 case PCI_D2:
1784 if (pci_no_d1d2(dev))
1785 break;
1786 default:
1787 target_state = state;
1788 }
1789 } else if (!dev->pm_cap) {
1790 target_state = PCI_D0;
1791 } else if (device_may_wakeup(&dev->dev)) {
1792 /*
1793 * Find the deepest state from which the device can generate
1794 * wake-up events, make it the target state and enable device
1795 * to generate PME#.
1796 */
1797 if (dev->pme_support) {
1798 while (target_state
1799 && !(dev->pme_support & (1 << target_state)))
1800 target_state--;
1801 }
1802 }
1803
1804 return target_state;
1805 }
1806
1807 /**
1808 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1809 * @dev: Device to handle.
1810 *
1811 * Choose the power state appropriate for the device depending on whether
1812 * it can wake up the system and/or is power manageable by the platform
1813 * (PCI_D3hot is the default) and put the device into that state.
1814 */
1815 int pci_prepare_to_sleep(struct pci_dev *dev)
1816 {
1817 pci_power_t target_state = pci_target_state(dev);
1818 int error;
1819
1820 if (target_state == PCI_POWER_ERROR)
1821 return -EIO;
1822
1823 /* D3cold during system suspend/hibernate is not supported */
1824 if (target_state > PCI_D3hot)
1825 target_state = PCI_D3hot;
1826
1827 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1828
1829 error = pci_set_power_state(dev, target_state);
1830
1831 if (error)
1832 pci_enable_wake(dev, target_state, false);
1833
1834 return error;
1835 }
1836
1837 /**
1838 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1839 * @dev: Device to handle.
1840 *
1841 * Disable device's system wake-up capability and put it into D0.
1842 */
1843 int pci_back_from_sleep(struct pci_dev *dev)
1844 {
1845 pci_enable_wake(dev, PCI_D0, false);
1846 return pci_set_power_state(dev, PCI_D0);
1847 }
1848
1849 /**
1850 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1851 * @dev: PCI device being suspended.
1852 *
1853 * Prepare @dev to generate wake-up events at run time and put it into a low
1854 * power state.
1855 */
1856 int pci_finish_runtime_suspend(struct pci_dev *dev)
1857 {
1858 pci_power_t target_state = pci_target_state(dev);
1859 int error;
1860
1861 if (target_state == PCI_POWER_ERROR)
1862 return -EIO;
1863
1864 dev->runtime_d3cold = target_state == PCI_D3cold;
1865
1866 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1867
1868 error = pci_set_power_state(dev, target_state);
1869
1870 if (error) {
1871 __pci_enable_wake(dev, target_state, true, false);
1872 dev->runtime_d3cold = false;
1873 }
1874
1875 return error;
1876 }
1877
1878 /**
1879 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1880 * @dev: Device to check.
1881 *
1882 * Return true if the device itself is cabable of generating wake-up events
1883 * (through the platform or using the native PCIe PME) or if the device supports
1884 * PME and one of its upstream bridges can generate wake-up events.
1885 */
1886 bool pci_dev_run_wake(struct pci_dev *dev)
1887 {
1888 struct pci_bus *bus = dev->bus;
1889
1890 if (device_run_wake(&dev->dev))
1891 return true;
1892
1893 if (!dev->pme_support)
1894 return false;
1895
1896 while (bus->parent) {
1897 struct pci_dev *bridge = bus->self;
1898
1899 if (device_run_wake(&bridge->dev))
1900 return true;
1901
1902 bus = bus->parent;
1903 }
1904
1905 /* We have reached the root bus. */
1906 if (bus->bridge)
1907 return device_run_wake(bus->bridge);
1908
1909 return false;
1910 }
1911 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1912
1913 /**
1914 * pci_pm_init - Initialize PM functions of given PCI device
1915 * @dev: PCI device to handle.
1916 */
1917 void pci_pm_init(struct pci_dev *dev)
1918 {
1919 int pm;
1920 u16 pmc;
1921
1922 pm_runtime_forbid(&dev->dev);
1923 device_enable_async_suspend(&dev->dev);
1924 dev->wakeup_prepared = false;
1925
1926 dev->pm_cap = 0;
1927
1928 /* find PCI PM capability in list */
1929 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1930 if (!pm)
1931 return;
1932 /* Check device's ability to generate PME# */
1933 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1934
1935 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1936 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1937 pmc & PCI_PM_CAP_VER_MASK);
1938 return;
1939 }
1940
1941 dev->pm_cap = pm;
1942 dev->d3_delay = PCI_PM_D3_WAIT;
1943 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1944
1945 dev->d1_support = false;
1946 dev->d2_support = false;
1947 if (!pci_no_d1d2(dev)) {
1948 if (pmc & PCI_PM_CAP_D1)
1949 dev->d1_support = true;
1950 if (pmc & PCI_PM_CAP_D2)
1951 dev->d2_support = true;
1952
1953 if (dev->d1_support || dev->d2_support)
1954 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1955 dev->d1_support ? " D1" : "",
1956 dev->d2_support ? " D2" : "");
1957 }
1958
1959 pmc &= PCI_PM_CAP_PME_MASK;
1960 if (pmc) {
1961 dev_printk(KERN_DEBUG, &dev->dev,
1962 "PME# supported from%s%s%s%s%s\n",
1963 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1964 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1965 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1966 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1967 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1968 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1969 dev->pme_poll = true;
1970 /*
1971 * Make device's PM flags reflect the wake-up capability, but
1972 * let the user space enable it to wake up the system as needed.
1973 */
1974 device_set_wakeup_capable(&dev->dev, true);
1975 /* Disable the PME# generation functionality */
1976 pci_pme_active(dev, false);
1977 } else {
1978 dev->pme_support = 0;
1979 }
1980 }
1981
1982 /**
1983 * platform_pci_wakeup_init - init platform wakeup if present
1984 * @dev: PCI device
1985 *
1986 * Some devices don't have PCI PM caps but can still generate wakeup
1987 * events through platform methods (like ACPI events). If @dev supports
1988 * platform wakeup events, set the device flag to indicate as much. This
1989 * may be redundant if the device also supports PCI PM caps, but double
1990 * initialization should be safe in that case.
1991 */
1992 void platform_pci_wakeup_init(struct pci_dev *dev)
1993 {
1994 if (!platform_pci_can_wakeup(dev))
1995 return;
1996
1997 device_set_wakeup_capable(&dev->dev, true);
1998 platform_pci_sleep_wake(dev, false);
1999 }
2000
2001 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2002 struct pci_cap_saved_state *new_cap)
2003 {
2004 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2005 }
2006
2007 /**
2008 * pci_add_save_buffer - allocate buffer for saving given capability registers
2009 * @dev: the PCI device
2010 * @cap: the capability to allocate the buffer for
2011 * @size: requested size of the buffer
2012 */
2013 static int pci_add_cap_save_buffer(
2014 struct pci_dev *dev, char cap, unsigned int size)
2015 {
2016 int pos;
2017 struct pci_cap_saved_state *save_state;
2018
2019 pos = pci_find_capability(dev, cap);
2020 if (pos <= 0)
2021 return 0;
2022
2023 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2024 if (!save_state)
2025 return -ENOMEM;
2026
2027 save_state->cap.cap_nr = cap;
2028 save_state->cap.size = size;
2029 pci_add_saved_cap(dev, save_state);
2030
2031 return 0;
2032 }
2033
2034 /**
2035 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2036 * @dev: the PCI device
2037 */
2038 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2039 {
2040 int error;
2041
2042 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2043 PCI_EXP_SAVE_REGS * sizeof(u16));
2044 if (error)
2045 dev_err(&dev->dev,
2046 "unable to preallocate PCI Express save buffer\n");
2047
2048 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2049 if (error)
2050 dev_err(&dev->dev,
2051 "unable to preallocate PCI-X save buffer\n");
2052 }
2053
2054 void pci_free_cap_save_buffers(struct pci_dev *dev)
2055 {
2056 struct pci_cap_saved_state *tmp;
2057 struct hlist_node *pos, *n;
2058
2059 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
2060 kfree(tmp);
2061 }
2062
2063 /**
2064 * pci_enable_ari - enable ARI forwarding if hardware support it
2065 * @dev: the PCI device
2066 */
2067 void pci_enable_ari(struct pci_dev *dev)
2068 {
2069 int pos;
2070 u32 cap;
2071 u16 ctrl;
2072 struct pci_dev *bridge;
2073
2074 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2075 return;
2076
2077 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
2078 if (!pos)
2079 return;
2080
2081 bridge = dev->bus->self;
2082 if (!bridge)
2083 return;
2084
2085 /* ARI is a PCIe cap v2 feature */
2086 pos = pci_pcie_cap2(bridge);
2087 if (!pos)
2088 return;
2089
2090 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2091 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2092 return;
2093
2094 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2095 ctrl |= PCI_EXP_DEVCTL2_ARI;
2096 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2097
2098 bridge->ari_enabled = 1;
2099 }
2100
2101 /**
2102 * pci_enable_ido - enable ID-based Ordering on a device
2103 * @dev: the PCI device
2104 * @type: which types of IDO to enable
2105 *
2106 * Enable ID-based ordering on @dev. @type can contain the bits
2107 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2108 * which types of transactions are allowed to be re-ordered.
2109 */
2110 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2111 {
2112 int pos;
2113 u16 ctrl;
2114
2115 /* ID-based Ordering is a PCIe cap v2 feature */
2116 pos = pci_pcie_cap2(dev);
2117 if (!pos)
2118 return;
2119
2120 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2121 if (type & PCI_EXP_IDO_REQUEST)
2122 ctrl |= PCI_EXP_IDO_REQ_EN;
2123 if (type & PCI_EXP_IDO_COMPLETION)
2124 ctrl |= PCI_EXP_IDO_CMP_EN;
2125 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2126 }
2127 EXPORT_SYMBOL(pci_enable_ido);
2128
2129 /**
2130 * pci_disable_ido - disable ID-based ordering on a device
2131 * @dev: the PCI device
2132 * @type: which types of IDO to disable
2133 */
2134 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2135 {
2136 int pos;
2137 u16 ctrl;
2138
2139 /* ID-based Ordering is a PCIe cap v2 feature */
2140 pos = pci_pcie_cap2(dev);
2141 if (!pos)
2142 return;
2143
2144 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2145 if (type & PCI_EXP_IDO_REQUEST)
2146 ctrl &= ~PCI_EXP_IDO_REQ_EN;
2147 if (type & PCI_EXP_IDO_COMPLETION)
2148 ctrl &= ~PCI_EXP_IDO_CMP_EN;
2149 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2150 }
2151 EXPORT_SYMBOL(pci_disable_ido);
2152
2153 /**
2154 * pci_enable_obff - enable optimized buffer flush/fill
2155 * @dev: PCI device
2156 * @type: type of signaling to use
2157 *
2158 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2159 * signaling if possible, falling back to message signaling only if
2160 * WAKE# isn't supported. @type should indicate whether the PCIe link
2161 * be brought out of L0s or L1 to send the message. It should be either
2162 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2163 *
2164 * If your device can benefit from receiving all messages, even at the
2165 * power cost of bringing the link back up from a low power state, use
2166 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2167 * preferred type).
2168 *
2169 * RETURNS:
2170 * Zero on success, appropriate error number on failure.
2171 */
2172 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2173 {
2174 int pos;
2175 u32 cap;
2176 u16 ctrl;
2177 int ret;
2178
2179 /* OBFF is a PCIe cap v2 feature */
2180 pos = pci_pcie_cap2(dev);
2181 if (!pos)
2182 return -ENOTSUPP;
2183
2184 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2185 if (!(cap & PCI_EXP_OBFF_MASK))
2186 return -ENOTSUPP; /* no OBFF support at all */
2187
2188 /* Make sure the topology supports OBFF as well */
2189 if (dev->bus->self) {
2190 ret = pci_enable_obff(dev->bus->self, type);
2191 if (ret)
2192 return ret;
2193 }
2194
2195 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2196 if (cap & PCI_EXP_OBFF_WAKE)
2197 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2198 else {
2199 switch (type) {
2200 case PCI_EXP_OBFF_SIGNAL_L0:
2201 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2202 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2203 break;
2204 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2205 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2206 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2207 break;
2208 default:
2209 WARN(1, "bad OBFF signal type\n");
2210 return -ENOTSUPP;
2211 }
2212 }
2213 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2214
2215 return 0;
2216 }
2217 EXPORT_SYMBOL(pci_enable_obff);
2218
2219 /**
2220 * pci_disable_obff - disable optimized buffer flush/fill
2221 * @dev: PCI device
2222 *
2223 * Disable OBFF on @dev.
2224 */
2225 void pci_disable_obff(struct pci_dev *dev)
2226 {
2227 int pos;
2228 u16 ctrl;
2229
2230 /* OBFF is a PCIe cap v2 feature */
2231 pos = pci_pcie_cap2(dev);
2232 if (!pos)
2233 return;
2234
2235 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2236 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2237 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2238 }
2239 EXPORT_SYMBOL(pci_disable_obff);
2240
2241 /**
2242 * pci_ltr_supported - check whether a device supports LTR
2243 * @dev: PCI device
2244 *
2245 * RETURNS:
2246 * True if @dev supports latency tolerance reporting, false otherwise.
2247 */
2248 static bool pci_ltr_supported(struct pci_dev *dev)
2249 {
2250 int pos;
2251 u32 cap;
2252
2253 /* LTR is a PCIe cap v2 feature */
2254 pos = pci_pcie_cap2(dev);
2255 if (!pos)
2256 return false;
2257
2258 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2259
2260 return cap & PCI_EXP_DEVCAP2_LTR;
2261 }
2262
2263 /**
2264 * pci_enable_ltr - enable latency tolerance reporting
2265 * @dev: PCI device
2266 *
2267 * Enable LTR on @dev if possible, which means enabling it first on
2268 * upstream ports.
2269 *
2270 * RETURNS:
2271 * Zero on success, errno on failure.
2272 */
2273 int pci_enable_ltr(struct pci_dev *dev)
2274 {
2275 int pos;
2276 u16 ctrl;
2277 int ret;
2278
2279 if (!pci_ltr_supported(dev))
2280 return -ENOTSUPP;
2281
2282 /* LTR is a PCIe cap v2 feature */
2283 pos = pci_pcie_cap2(dev);
2284 if (!pos)
2285 return -ENOTSUPP;
2286
2287 /* Only primary function can enable/disable LTR */
2288 if (PCI_FUNC(dev->devfn) != 0)
2289 return -EINVAL;
2290
2291 /* Enable upstream ports first */
2292 if (dev->bus->self) {
2293 ret = pci_enable_ltr(dev->bus->self);
2294 if (ret)
2295 return ret;
2296 }
2297
2298 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2299 ctrl |= PCI_EXP_LTR_EN;
2300 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2301
2302 return 0;
2303 }
2304 EXPORT_SYMBOL(pci_enable_ltr);
2305
2306 /**
2307 * pci_disable_ltr - disable latency tolerance reporting
2308 * @dev: PCI device
2309 */
2310 void pci_disable_ltr(struct pci_dev *dev)
2311 {
2312 int pos;
2313 u16 ctrl;
2314
2315 if (!pci_ltr_supported(dev))
2316 return;
2317
2318 /* LTR is a PCIe cap v2 feature */
2319 pos = pci_pcie_cap2(dev);
2320 if (!pos)
2321 return;
2322
2323 /* Only primary function can enable/disable LTR */
2324 if (PCI_FUNC(dev->devfn) != 0)
2325 return;
2326
2327 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2328 ctrl &= ~PCI_EXP_LTR_EN;
2329 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2330 }
2331 EXPORT_SYMBOL(pci_disable_ltr);
2332
2333 static int __pci_ltr_scale(int *val)
2334 {
2335 int scale = 0;
2336
2337 while (*val > 1023) {
2338 *val = (*val + 31) / 32;
2339 scale++;
2340 }
2341 return scale;
2342 }
2343
2344 /**
2345 * pci_set_ltr - set LTR latency values
2346 * @dev: PCI device
2347 * @snoop_lat_ns: snoop latency in nanoseconds
2348 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2349 *
2350 * Figure out the scale and set the LTR values accordingly.
2351 */
2352 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2353 {
2354 int pos, ret, snoop_scale, nosnoop_scale;
2355 u16 val;
2356
2357 if (!pci_ltr_supported(dev))
2358 return -ENOTSUPP;
2359
2360 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2361 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2362
2363 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2364 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2365 return -EINVAL;
2366
2367 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2368 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2369 return -EINVAL;
2370
2371 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2372 if (!pos)
2373 return -ENOTSUPP;
2374
2375 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2376 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2377 if (ret != 4)
2378 return -EIO;
2379
2380 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2381 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2382 if (ret != 4)
2383 return -EIO;
2384
2385 return 0;
2386 }
2387 EXPORT_SYMBOL(pci_set_ltr);
2388
2389 static int pci_acs_enable;
2390
2391 /**
2392 * pci_request_acs - ask for ACS to be enabled if supported
2393 */
2394 void pci_request_acs(void)
2395 {
2396 pci_acs_enable = 1;
2397 }
2398
2399 /**
2400 * pci_enable_acs - enable ACS if hardware support it
2401 * @dev: the PCI device
2402 */
2403 void pci_enable_acs(struct pci_dev *dev)
2404 {
2405 int pos;
2406 u16 cap;
2407 u16 ctrl;
2408
2409 if (!pci_acs_enable)
2410 return;
2411
2412 if (!pci_is_pcie(dev))
2413 return;
2414
2415 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2416 if (!pos)
2417 return;
2418
2419 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2420 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2421
2422 /* Source Validation */
2423 ctrl |= (cap & PCI_ACS_SV);
2424
2425 /* P2P Request Redirect */
2426 ctrl |= (cap & PCI_ACS_RR);
2427
2428 /* P2P Completion Redirect */
2429 ctrl |= (cap & PCI_ACS_CR);
2430
2431 /* Upstream Forwarding */
2432 ctrl |= (cap & PCI_ACS_UF);
2433
2434 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2435 }
2436
2437 /**
2438 * pci_acs_enabled - test ACS against required flags for a given device
2439 * @pdev: device to test
2440 * @acs_flags: required PCI ACS flags
2441 *
2442 * Return true if the device supports the provided flags. Automatically
2443 * filters out flags that are not implemented on multifunction devices.
2444 */
2445 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2446 {
2447 int pos, ret;
2448 u16 ctrl;
2449
2450 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2451 if (ret >= 0)
2452 return ret > 0;
2453
2454 if (!pci_is_pcie(pdev))
2455 return false;
2456
2457 /* Filter out flags not applicable to multifunction */
2458 if (pdev->multifunction)
2459 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2460 PCI_ACS_EC | PCI_ACS_DT);
2461
2462 if (pdev->pcie_type == PCI_EXP_TYPE_DOWNSTREAM ||
2463 pdev->pcie_type == PCI_EXP_TYPE_ROOT_PORT ||
2464 pdev->multifunction) {
2465 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2466 if (!pos)
2467 return false;
2468
2469 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2470 if ((ctrl & acs_flags) != acs_flags)
2471 return false;
2472 }
2473
2474 return true;
2475 }
2476
2477 /**
2478 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2479 * @start: starting downstream device
2480 * @end: ending upstream device or NULL to search to the root bus
2481 * @acs_flags: required flags
2482 *
2483 * Walk up a device tree from start to end testing PCI ACS support. If
2484 * any step along the way does not support the required flags, return false.
2485 */
2486 bool pci_acs_path_enabled(struct pci_dev *start,
2487 struct pci_dev *end, u16 acs_flags)
2488 {
2489 struct pci_dev *pdev, *parent = start;
2490
2491 do {
2492 pdev = parent;
2493
2494 if (!pci_acs_enabled(pdev, acs_flags))
2495 return false;
2496
2497 if (pci_is_root_bus(pdev->bus))
2498 return (end == NULL);
2499
2500 parent = pdev->bus->self;
2501 } while (pdev != end);
2502
2503 return true;
2504 }
2505
2506 /**
2507 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2508 * @dev: the PCI device
2509 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2510 *
2511 * Perform INTx swizzling for a device behind one level of bridge. This is
2512 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2513 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2514 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2515 * the PCI Express Base Specification, Revision 2.1)
2516 */
2517 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2518 {
2519 int slot;
2520
2521 if (pci_ari_enabled(dev->bus))
2522 slot = 0;
2523 else
2524 slot = PCI_SLOT(dev->devfn);
2525
2526 return (((pin - 1) + slot) % 4) + 1;
2527 }
2528
2529 int
2530 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2531 {
2532 u8 pin;
2533
2534 pin = dev->pin;
2535 if (!pin)
2536 return -1;
2537
2538 while (!pci_is_root_bus(dev->bus)) {
2539 pin = pci_swizzle_interrupt_pin(dev, pin);
2540 dev = dev->bus->self;
2541 }
2542 *bridge = dev;
2543 return pin;
2544 }
2545
2546 /**
2547 * pci_common_swizzle - swizzle INTx all the way to root bridge
2548 * @dev: the PCI device
2549 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2550 *
2551 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2552 * bridges all the way up to a PCI root bus.
2553 */
2554 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2555 {
2556 u8 pin = *pinp;
2557
2558 while (!pci_is_root_bus(dev->bus)) {
2559 pin = pci_swizzle_interrupt_pin(dev, pin);
2560 dev = dev->bus->self;
2561 }
2562 *pinp = pin;
2563 return PCI_SLOT(dev->devfn);
2564 }
2565
2566 /**
2567 * pci_release_region - Release a PCI bar
2568 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2569 * @bar: BAR to release
2570 *
2571 * Releases the PCI I/O and memory resources previously reserved by a
2572 * successful call to pci_request_region. Call this function only
2573 * after all use of the PCI regions has ceased.
2574 */
2575 void pci_release_region(struct pci_dev *pdev, int bar)
2576 {
2577 struct pci_devres *dr;
2578
2579 if (pci_resource_len(pdev, bar) == 0)
2580 return;
2581 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2582 release_region(pci_resource_start(pdev, bar),
2583 pci_resource_len(pdev, bar));
2584 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2585 release_mem_region(pci_resource_start(pdev, bar),
2586 pci_resource_len(pdev, bar));
2587
2588 dr = find_pci_dr(pdev);
2589 if (dr)
2590 dr->region_mask &= ~(1 << bar);
2591 }
2592
2593 /**
2594 * __pci_request_region - Reserved PCI I/O and memory resource
2595 * @pdev: PCI device whose resources are to be reserved
2596 * @bar: BAR to be reserved
2597 * @res_name: Name to be associated with resource.
2598 * @exclusive: whether the region access is exclusive or not
2599 *
2600 * Mark the PCI region associated with PCI device @pdev BR @bar as
2601 * being reserved by owner @res_name. Do not access any
2602 * address inside the PCI regions unless this call returns
2603 * successfully.
2604 *
2605 * If @exclusive is set, then the region is marked so that userspace
2606 * is explicitly not allowed to map the resource via /dev/mem or
2607 * sysfs MMIO access.
2608 *
2609 * Returns 0 on success, or %EBUSY on error. A warning
2610 * message is also printed on failure.
2611 */
2612 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2613 int exclusive)
2614 {
2615 struct pci_devres *dr;
2616
2617 if (pci_resource_len(pdev, bar) == 0)
2618 return 0;
2619
2620 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2621 if (!request_region(pci_resource_start(pdev, bar),
2622 pci_resource_len(pdev, bar), res_name))
2623 goto err_out;
2624 }
2625 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2626 if (!__request_mem_region(pci_resource_start(pdev, bar),
2627 pci_resource_len(pdev, bar), res_name,
2628 exclusive))
2629 goto err_out;
2630 }
2631
2632 dr = find_pci_dr(pdev);
2633 if (dr)
2634 dr->region_mask |= 1 << bar;
2635
2636 return 0;
2637
2638 err_out:
2639 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2640 &pdev->resource[bar]);
2641 return -EBUSY;
2642 }
2643
2644 /**
2645 * pci_request_region - Reserve PCI I/O and memory resource
2646 * @pdev: PCI device whose resources are to be reserved
2647 * @bar: BAR to be reserved
2648 * @res_name: Name to be associated with resource
2649 *
2650 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2651 * being reserved by owner @res_name. Do not access any
2652 * address inside the PCI regions unless this call returns
2653 * successfully.
2654 *
2655 * Returns 0 on success, or %EBUSY on error. A warning
2656 * message is also printed on failure.
2657 */
2658 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2659 {
2660 return __pci_request_region(pdev, bar, res_name, 0);
2661 }
2662
2663 /**
2664 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2665 * @pdev: PCI device whose resources are to be reserved
2666 * @bar: BAR to be reserved
2667 * @res_name: Name to be associated with resource.
2668 *
2669 * Mark the PCI region associated with PCI device @pdev BR @bar as
2670 * being reserved by owner @res_name. Do not access any
2671 * address inside the PCI regions unless this call returns
2672 * successfully.
2673 *
2674 * Returns 0 on success, or %EBUSY on error. A warning
2675 * message is also printed on failure.
2676 *
2677 * The key difference that _exclusive makes it that userspace is
2678 * explicitly not allowed to map the resource via /dev/mem or
2679 * sysfs.
2680 */
2681 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2682 {
2683 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2684 }
2685 /**
2686 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2687 * @pdev: PCI device whose resources were previously reserved
2688 * @bars: Bitmask of BARs to be released
2689 *
2690 * Release selected PCI I/O and memory resources previously reserved.
2691 * Call this function only after all use of the PCI regions has ceased.
2692 */
2693 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2694 {
2695 int i;
2696
2697 for (i = 0; i < 6; i++)
2698 if (bars & (1 << i))
2699 pci_release_region(pdev, i);
2700 }
2701
2702 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2703 const char *res_name, int excl)
2704 {
2705 int i;
2706
2707 for (i = 0; i < 6; i++)
2708 if (bars & (1 << i))
2709 if (__pci_request_region(pdev, i, res_name, excl))
2710 goto err_out;
2711 return 0;
2712
2713 err_out:
2714 while(--i >= 0)
2715 if (bars & (1 << i))
2716 pci_release_region(pdev, i);
2717
2718 return -EBUSY;
2719 }
2720
2721
2722 /**
2723 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2724 * @pdev: PCI device whose resources are to be reserved
2725 * @bars: Bitmask of BARs to be requested
2726 * @res_name: Name to be associated with resource
2727 */
2728 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2729 const char *res_name)
2730 {
2731 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2732 }
2733
2734 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2735 int bars, const char *res_name)
2736 {
2737 return __pci_request_selected_regions(pdev, bars, res_name,
2738 IORESOURCE_EXCLUSIVE);
2739 }
2740
2741 /**
2742 * pci_release_regions - Release reserved PCI I/O and memory resources
2743 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2744 *
2745 * Releases all PCI I/O and memory resources previously reserved by a
2746 * successful call to pci_request_regions. Call this function only
2747 * after all use of the PCI regions has ceased.
2748 */
2749
2750 void pci_release_regions(struct pci_dev *pdev)
2751 {
2752 pci_release_selected_regions(pdev, (1 << 6) - 1);
2753 }
2754
2755 /**
2756 * pci_request_regions - Reserved PCI I/O and memory resources
2757 * @pdev: PCI device whose resources are to be reserved
2758 * @res_name: Name to be associated with resource.
2759 *
2760 * Mark all PCI regions associated with PCI device @pdev as
2761 * being reserved by owner @res_name. Do not access any
2762 * address inside the PCI regions unless this call returns
2763 * successfully.
2764 *
2765 * Returns 0 on success, or %EBUSY on error. A warning
2766 * message is also printed on failure.
2767 */
2768 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2769 {
2770 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2771 }
2772
2773 /**
2774 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2775 * @pdev: PCI device whose resources are to be reserved
2776 * @res_name: Name to be associated with resource.
2777 *
2778 * Mark all PCI regions associated with PCI device @pdev as
2779 * being reserved by owner @res_name. Do not access any
2780 * address inside the PCI regions unless this call returns
2781 * successfully.
2782 *
2783 * pci_request_regions_exclusive() will mark the region so that
2784 * /dev/mem and the sysfs MMIO access will not be allowed.
2785 *
2786 * Returns 0 on success, or %EBUSY on error. A warning
2787 * message is also printed on failure.
2788 */
2789 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2790 {
2791 return pci_request_selected_regions_exclusive(pdev,
2792 ((1 << 6) - 1), res_name);
2793 }
2794
2795 static void __pci_set_master(struct pci_dev *dev, bool enable)
2796 {
2797 u16 old_cmd, cmd;
2798
2799 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2800 if (enable)
2801 cmd = old_cmd | PCI_COMMAND_MASTER;
2802 else
2803 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2804 if (cmd != old_cmd) {
2805 dev_dbg(&dev->dev, "%s bus mastering\n",
2806 enable ? "enabling" : "disabling");
2807 pci_write_config_word(dev, PCI_COMMAND, cmd);
2808 }
2809 dev->is_busmaster = enable;
2810 }
2811
2812 /**
2813 * pcibios_setup - process "pci=" kernel boot arguments
2814 * @str: string used to pass in "pci=" kernel boot arguments
2815 *
2816 * Process kernel boot arguments. This is the default implementation.
2817 * Architecture specific implementations can override this as necessary.
2818 */
2819 char * __weak __init pcibios_setup(char *str)
2820 {
2821 return str;
2822 }
2823
2824 /**
2825 * pcibios_set_master - enable PCI bus-mastering for device dev
2826 * @dev: the PCI device to enable
2827 *
2828 * Enables PCI bus-mastering for the device. This is the default
2829 * implementation. Architecture specific implementations can override
2830 * this if necessary.
2831 */
2832 void __weak pcibios_set_master(struct pci_dev *dev)
2833 {
2834 u8 lat;
2835
2836 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2837 if (pci_is_pcie(dev))
2838 return;
2839
2840 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2841 if (lat < 16)
2842 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2843 else if (lat > pcibios_max_latency)
2844 lat = pcibios_max_latency;
2845 else
2846 return;
2847 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2848 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2849 }
2850
2851 /**
2852 * pci_set_master - enables bus-mastering for device dev
2853 * @dev: the PCI device to enable
2854 *
2855 * Enables bus-mastering on the device and calls pcibios_set_master()
2856 * to do the needed arch specific settings.
2857 */
2858 void pci_set_master(struct pci_dev *dev)
2859 {
2860 __pci_set_master(dev, true);
2861 pcibios_set_master(dev);
2862 }
2863
2864 /**
2865 * pci_clear_master - disables bus-mastering for device dev
2866 * @dev: the PCI device to disable
2867 */
2868 void pci_clear_master(struct pci_dev *dev)
2869 {
2870 __pci_set_master(dev, false);
2871 }
2872
2873 /**
2874 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2875 * @dev: the PCI device for which MWI is to be enabled
2876 *
2877 * Helper function for pci_set_mwi.
2878 * Originally copied from drivers/net/acenic.c.
2879 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2880 *
2881 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2882 */
2883 int pci_set_cacheline_size(struct pci_dev *dev)
2884 {
2885 u8 cacheline_size;
2886
2887 if (!pci_cache_line_size)
2888 return -EINVAL;
2889
2890 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2891 equal to or multiple of the right value. */
2892 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2893 if (cacheline_size >= pci_cache_line_size &&
2894 (cacheline_size % pci_cache_line_size) == 0)
2895 return 0;
2896
2897 /* Write the correct value. */
2898 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2899 /* Read it back. */
2900 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2901 if (cacheline_size == pci_cache_line_size)
2902 return 0;
2903
2904 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2905 "supported\n", pci_cache_line_size << 2);
2906
2907 return -EINVAL;
2908 }
2909 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2910
2911 #ifdef PCI_DISABLE_MWI
2912 int pci_set_mwi(struct pci_dev *dev)
2913 {
2914 return 0;
2915 }
2916
2917 int pci_try_set_mwi(struct pci_dev *dev)
2918 {
2919 return 0;
2920 }
2921
2922 void pci_clear_mwi(struct pci_dev *dev)
2923 {
2924 }
2925
2926 #else
2927
2928 /**
2929 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2930 * @dev: the PCI device for which MWI is enabled
2931 *
2932 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2933 *
2934 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2935 */
2936 int
2937 pci_set_mwi(struct pci_dev *dev)
2938 {
2939 int rc;
2940 u16 cmd;
2941
2942 rc = pci_set_cacheline_size(dev);
2943 if (rc)
2944 return rc;
2945
2946 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2947 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2948 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2949 cmd |= PCI_COMMAND_INVALIDATE;
2950 pci_write_config_word(dev, PCI_COMMAND, cmd);
2951 }
2952
2953 return 0;
2954 }
2955
2956 /**
2957 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2958 * @dev: the PCI device for which MWI is enabled
2959 *
2960 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2961 * Callers are not required to check the return value.
2962 *
2963 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2964 */
2965 int pci_try_set_mwi(struct pci_dev *dev)
2966 {
2967 int rc = pci_set_mwi(dev);
2968 return rc;
2969 }
2970
2971 /**
2972 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2973 * @dev: the PCI device to disable
2974 *
2975 * Disables PCI Memory-Write-Invalidate transaction on the device
2976 */
2977 void
2978 pci_clear_mwi(struct pci_dev *dev)
2979 {
2980 u16 cmd;
2981
2982 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2983 if (cmd & PCI_COMMAND_INVALIDATE) {
2984 cmd &= ~PCI_COMMAND_INVALIDATE;
2985 pci_write_config_word(dev, PCI_COMMAND, cmd);
2986 }
2987 }
2988 #endif /* ! PCI_DISABLE_MWI */
2989
2990 /**
2991 * pci_intx - enables/disables PCI INTx for device dev
2992 * @pdev: the PCI device to operate on
2993 * @enable: boolean: whether to enable or disable PCI INTx
2994 *
2995 * Enables/disables PCI INTx for device dev
2996 */
2997 void
2998 pci_intx(struct pci_dev *pdev, int enable)
2999 {
3000 u16 pci_command, new;
3001
3002 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3003
3004 if (enable) {
3005 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3006 } else {
3007 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3008 }
3009
3010 if (new != pci_command) {
3011 struct pci_devres *dr;
3012
3013 pci_write_config_word(pdev, PCI_COMMAND, new);
3014
3015 dr = find_pci_dr(pdev);
3016 if (dr && !dr->restore_intx) {
3017 dr->restore_intx = 1;
3018 dr->orig_intx = !enable;
3019 }
3020 }
3021 }
3022
3023 /**
3024 * pci_intx_mask_supported - probe for INTx masking support
3025 * @dev: the PCI device to operate on
3026 *
3027 * Check if the device dev support INTx masking via the config space
3028 * command word.
3029 */
3030 bool pci_intx_mask_supported(struct pci_dev *dev)
3031 {
3032 bool mask_supported = false;
3033 u16 orig, new;
3034
3035 if (dev->broken_intx_masking)
3036 return false;
3037
3038 pci_cfg_access_lock(dev);
3039
3040 pci_read_config_word(dev, PCI_COMMAND, &orig);
3041 pci_write_config_word(dev, PCI_COMMAND,
3042 orig ^ PCI_COMMAND_INTX_DISABLE);
3043 pci_read_config_word(dev, PCI_COMMAND, &new);
3044
3045 /*
3046 * There's no way to protect against hardware bugs or detect them
3047 * reliably, but as long as we know what the value should be, let's
3048 * go ahead and check it.
3049 */
3050 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3051 dev_err(&dev->dev, "Command register changed from "
3052 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
3053 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3054 mask_supported = true;
3055 pci_write_config_word(dev, PCI_COMMAND, orig);
3056 }
3057
3058 pci_cfg_access_unlock(dev);
3059 return mask_supported;
3060 }
3061 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3062
3063 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3064 {
3065 struct pci_bus *bus = dev->bus;
3066 bool mask_updated = true;
3067 u32 cmd_status_dword;
3068 u16 origcmd, newcmd;
3069 unsigned long flags;
3070 bool irq_pending;
3071
3072 /*
3073 * We do a single dword read to retrieve both command and status.
3074 * Document assumptions that make this possible.
3075 */
3076 BUILD_BUG_ON(PCI_COMMAND % 4);
3077 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3078
3079 raw_spin_lock_irqsave(&pci_lock, flags);
3080
3081 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3082
3083 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3084
3085 /*
3086 * Check interrupt status register to see whether our device
3087 * triggered the interrupt (when masking) or the next IRQ is
3088 * already pending (when unmasking).
3089 */
3090 if (mask != irq_pending) {
3091 mask_updated = false;
3092 goto done;
3093 }
3094
3095 origcmd = cmd_status_dword;
3096 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3097 if (mask)
3098 newcmd |= PCI_COMMAND_INTX_DISABLE;
3099 if (newcmd != origcmd)
3100 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3101
3102 done:
3103 raw_spin_unlock_irqrestore(&pci_lock, flags);
3104
3105 return mask_updated;
3106 }
3107
3108 /**
3109 * pci_check_and_mask_intx - mask INTx on pending interrupt
3110 * @dev: the PCI device to operate on
3111 *
3112 * Check if the device dev has its INTx line asserted, mask it and
3113 * return true in that case. False is returned if not interrupt was
3114 * pending.
3115 */
3116 bool pci_check_and_mask_intx(struct pci_dev *dev)
3117 {
3118 return pci_check_and_set_intx_mask(dev, true);
3119 }
3120 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3121
3122 /**
3123 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3124 * @dev: the PCI device to operate on
3125 *
3126 * Check if the device dev has its INTx line asserted, unmask it if not
3127 * and return true. False is returned and the mask remains active if
3128 * there was still an interrupt pending.
3129 */
3130 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3131 {
3132 return pci_check_and_set_intx_mask(dev, false);
3133 }
3134 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3135
3136 /**
3137 * pci_msi_off - disables any msi or msix capabilities
3138 * @dev: the PCI device to operate on
3139 *
3140 * If you want to use msi see pci_enable_msi and friends.
3141 * This is a lower level primitive that allows us to disable
3142 * msi operation at the device level.
3143 */
3144 void pci_msi_off(struct pci_dev *dev)
3145 {
3146 int pos;
3147 u16 control;
3148
3149 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3150 if (pos) {
3151 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3152 control &= ~PCI_MSI_FLAGS_ENABLE;
3153 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3154 }
3155 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3156 if (pos) {
3157 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3158 control &= ~PCI_MSIX_FLAGS_ENABLE;
3159 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3160 }
3161 }
3162 EXPORT_SYMBOL_GPL(pci_msi_off);
3163
3164 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3165 {
3166 return dma_set_max_seg_size(&dev->dev, size);
3167 }
3168 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3169
3170 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3171 {
3172 return dma_set_seg_boundary(&dev->dev, mask);
3173 }
3174 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3175
3176 static int pcie_flr(struct pci_dev *dev, int probe)
3177 {
3178 int i;
3179 int pos;
3180 u32 cap;
3181 u16 status, control;
3182
3183 pos = pci_pcie_cap(dev);
3184 if (!pos)
3185 return -ENOTTY;
3186
3187 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3188 if (!(cap & PCI_EXP_DEVCAP_FLR))
3189 return -ENOTTY;
3190
3191 if (probe)
3192 return 0;
3193
3194 /* Wait for Transaction Pending bit clean */
3195 for (i = 0; i < 4; i++) {
3196 if (i)
3197 msleep((1 << (i - 1)) * 100);
3198
3199 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3200 if (!(status & PCI_EXP_DEVSTA_TRPND))
3201 goto clear;
3202 }
3203
3204 dev_err(&dev->dev, "transaction is not cleared; "
3205 "proceeding with reset anyway\n");
3206
3207 clear:
3208 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3209 control |= PCI_EXP_DEVCTL_BCR_FLR;
3210 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3211
3212 msleep(100);
3213
3214 return 0;
3215 }
3216
3217 static int pci_af_flr(struct pci_dev *dev, int probe)
3218 {
3219 int i;
3220 int pos;
3221 u8 cap;
3222 u8 status;
3223
3224 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3225 if (!pos)
3226 return -ENOTTY;
3227
3228 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3229 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3230 return -ENOTTY;
3231
3232 if (probe)
3233 return 0;
3234
3235 /* Wait for Transaction Pending bit clean */
3236 for (i = 0; i < 4; i++) {
3237 if (i)
3238 msleep((1 << (i - 1)) * 100);
3239
3240 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3241 if (!(status & PCI_AF_STATUS_TP))
3242 goto clear;
3243 }
3244
3245 dev_err(&dev->dev, "transaction is not cleared; "
3246 "proceeding with reset anyway\n");
3247
3248 clear:
3249 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3250 msleep(100);
3251
3252 return 0;
3253 }
3254
3255 /**
3256 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3257 * @dev: Device to reset.
3258 * @probe: If set, only check if the device can be reset this way.
3259 *
3260 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3261 * unset, it will be reinitialized internally when going from PCI_D3hot to
3262 * PCI_D0. If that's the case and the device is not in a low-power state
3263 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3264 *
3265 * NOTE: This causes the caller to sleep for twice the device power transition
3266 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3267 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3268 * Moreover, only devices in D0 can be reset by this function.
3269 */
3270 static int pci_pm_reset(struct pci_dev *dev, int probe)
3271 {
3272 u16 csr;
3273
3274 if (!dev->pm_cap)
3275 return -ENOTTY;
3276
3277 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3278 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3279 return -ENOTTY;
3280
3281 if (probe)
3282 return 0;
3283
3284 if (dev->current_state != PCI_D0)
3285 return -EINVAL;
3286
3287 csr &= ~PCI_PM_CTRL_STATE_MASK;
3288 csr |= PCI_D3hot;
3289 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3290 pci_dev_d3_sleep(dev);
3291
3292 csr &= ~PCI_PM_CTRL_STATE_MASK;
3293 csr |= PCI_D0;
3294 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3295 pci_dev_d3_sleep(dev);
3296
3297 return 0;
3298 }
3299
3300 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3301 {
3302 u16 ctrl;
3303 struct pci_dev *pdev;
3304
3305 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3306 return -ENOTTY;
3307
3308 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3309 if (pdev != dev)
3310 return -ENOTTY;
3311
3312 if (probe)
3313 return 0;
3314
3315 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3316 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3317 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3318 msleep(100);
3319
3320 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3321 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3322 msleep(100);
3323
3324 return 0;
3325 }
3326
3327 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3328 {
3329 int rc;
3330
3331 might_sleep();
3332
3333 rc = pci_dev_specific_reset(dev, probe);
3334 if (rc != -ENOTTY)
3335 goto done;
3336
3337 rc = pcie_flr(dev, probe);
3338 if (rc != -ENOTTY)
3339 goto done;
3340
3341 rc = pci_af_flr(dev, probe);
3342 if (rc != -ENOTTY)
3343 goto done;
3344
3345 rc = pci_pm_reset(dev, probe);
3346 if (rc != -ENOTTY)
3347 goto done;
3348
3349 rc = pci_parent_bus_reset(dev, probe);
3350 done:
3351 return rc;
3352 }
3353
3354 static int pci_dev_reset(struct pci_dev *dev, int probe)
3355 {
3356 int rc;
3357
3358 if (!probe) {
3359 pci_cfg_access_lock(dev);
3360 /* block PM suspend, driver probe, etc. */
3361 device_lock(&dev->dev);
3362 }
3363
3364 rc = __pci_dev_reset(dev, probe);
3365
3366 if (!probe) {
3367 device_unlock(&dev->dev);
3368 pci_cfg_access_unlock(dev);
3369 }
3370 return rc;
3371 }
3372 /**
3373 * __pci_reset_function - reset a PCI device function
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device. The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * The device function is presumed to be unused when this function is called.
3381 * Resetting the device will make the contents of PCI configuration space
3382 * random, so any caller of this must be prepared to reinitialise the
3383 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3384 * etc.
3385 *
3386 * Returns 0 if the device function was successfully reset or negative if the
3387 * device doesn't support resetting a single function.
3388 */
3389 int __pci_reset_function(struct pci_dev *dev)
3390 {
3391 return pci_dev_reset(dev, 0);
3392 }
3393 EXPORT_SYMBOL_GPL(__pci_reset_function);
3394
3395 /**
3396 * __pci_reset_function_locked - reset a PCI device function while holding
3397 * the @dev mutex lock.
3398 * @dev: PCI device to reset
3399 *
3400 * Some devices allow an individual function to be reset without affecting
3401 * other functions in the same device. The PCI device must be responsive
3402 * to PCI config space in order to use this function.
3403 *
3404 * The device function is presumed to be unused and the caller is holding
3405 * the device mutex lock when this function is called.
3406 * Resetting the device will make the contents of PCI configuration space
3407 * random, so any caller of this must be prepared to reinitialise the
3408 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3409 * etc.
3410 *
3411 * Returns 0 if the device function was successfully reset or negative if the
3412 * device doesn't support resetting a single function.
3413 */
3414 int __pci_reset_function_locked(struct pci_dev *dev)
3415 {
3416 return __pci_dev_reset(dev, 0);
3417 }
3418 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3419
3420 /**
3421 * pci_probe_reset_function - check whether the device can be safely reset
3422 * @dev: PCI device to reset
3423 *
3424 * Some devices allow an individual function to be reset without affecting
3425 * other functions in the same device. The PCI device must be responsive
3426 * to PCI config space in order to use this function.
3427 *
3428 * Returns 0 if the device function can be reset or negative if the
3429 * device doesn't support resetting a single function.
3430 */
3431 int pci_probe_reset_function(struct pci_dev *dev)
3432 {
3433 return pci_dev_reset(dev, 1);
3434 }
3435
3436 /**
3437 * pci_reset_function - quiesce and reset a PCI device function
3438 * @dev: PCI device to reset
3439 *
3440 * Some devices allow an individual function to be reset without affecting
3441 * other functions in the same device. The PCI device must be responsive
3442 * to PCI config space in order to use this function.
3443 *
3444 * This function does not just reset the PCI portion of a device, but
3445 * clears all the state associated with the device. This function differs
3446 * from __pci_reset_function in that it saves and restores device state
3447 * over the reset.
3448 *
3449 * Returns 0 if the device function was successfully reset or negative if the
3450 * device doesn't support resetting a single function.
3451 */
3452 int pci_reset_function(struct pci_dev *dev)
3453 {
3454 int rc;
3455
3456 rc = pci_dev_reset(dev, 1);
3457 if (rc)
3458 return rc;
3459
3460 pci_save_state(dev);
3461
3462 /*
3463 * both INTx and MSI are disabled after the Interrupt Disable bit
3464 * is set and the Bus Master bit is cleared.
3465 */
3466 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3467
3468 rc = pci_dev_reset(dev, 0);
3469
3470 pci_restore_state(dev);
3471
3472 return rc;
3473 }
3474 EXPORT_SYMBOL_GPL(pci_reset_function);
3475
3476 /**
3477 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3478 * @dev: PCI device to query
3479 *
3480 * Returns mmrbc: maximum designed memory read count in bytes
3481 * or appropriate error value.
3482 */
3483 int pcix_get_max_mmrbc(struct pci_dev *dev)
3484 {
3485 int cap;
3486 u32 stat;
3487
3488 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3489 if (!cap)
3490 return -EINVAL;
3491
3492 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3493 return -EINVAL;
3494
3495 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3496 }
3497 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3498
3499 /**
3500 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3501 * @dev: PCI device to query
3502 *
3503 * Returns mmrbc: maximum memory read count in bytes
3504 * or appropriate error value.
3505 */
3506 int pcix_get_mmrbc(struct pci_dev *dev)
3507 {
3508 int cap;
3509 u16 cmd;
3510
3511 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3512 if (!cap)
3513 return -EINVAL;
3514
3515 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3516 return -EINVAL;
3517
3518 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3519 }
3520 EXPORT_SYMBOL(pcix_get_mmrbc);
3521
3522 /**
3523 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3524 * @dev: PCI device to query
3525 * @mmrbc: maximum memory read count in bytes
3526 * valid values are 512, 1024, 2048, 4096
3527 *
3528 * If possible sets maximum memory read byte count, some bridges have erratas
3529 * that prevent this.
3530 */
3531 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3532 {
3533 int cap;
3534 u32 stat, v, o;
3535 u16 cmd;
3536
3537 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3538 return -EINVAL;
3539
3540 v = ffs(mmrbc) - 10;
3541
3542 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3543 if (!cap)
3544 return -EINVAL;
3545
3546 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3547 return -EINVAL;
3548
3549 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3550 return -E2BIG;
3551
3552 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3553 return -EINVAL;
3554
3555 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3556 if (o != v) {
3557 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3558 return -EIO;
3559
3560 cmd &= ~PCI_X_CMD_MAX_READ;
3561 cmd |= v << 2;
3562 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3563 return -EIO;
3564 }
3565 return 0;
3566 }
3567 EXPORT_SYMBOL(pcix_set_mmrbc);
3568
3569 /**
3570 * pcie_get_readrq - get PCI Express read request size
3571 * @dev: PCI device to query
3572 *
3573 * Returns maximum memory read request in bytes
3574 * or appropriate error value.
3575 */
3576 int pcie_get_readrq(struct pci_dev *dev)
3577 {
3578 int ret, cap;
3579 u16 ctl;
3580
3581 cap = pci_pcie_cap(dev);
3582 if (!cap)
3583 return -EINVAL;
3584
3585 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3586 if (!ret)
3587 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3588
3589 return ret;
3590 }
3591 EXPORT_SYMBOL(pcie_get_readrq);
3592
3593 /**
3594 * pcie_set_readrq - set PCI Express maximum memory read request
3595 * @dev: PCI device to query
3596 * @rq: maximum memory read count in bytes
3597 * valid values are 128, 256, 512, 1024, 2048, 4096
3598 *
3599 * If possible sets maximum memory read request in bytes
3600 */
3601 int pcie_set_readrq(struct pci_dev *dev, int rq)
3602 {
3603 int cap, err = -EINVAL;
3604 u16 ctl, v;
3605
3606 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3607 goto out;
3608
3609 cap = pci_pcie_cap(dev);
3610 if (!cap)
3611 goto out;
3612
3613 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3614 if (err)
3615 goto out;
3616 /*
3617 * If using the "performance" PCIe config, we clamp the
3618 * read rq size to the max packet size to prevent the
3619 * host bridge generating requests larger than we can
3620 * cope with
3621 */
3622 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3623 int mps = pcie_get_mps(dev);
3624
3625 if (mps < 0)
3626 return mps;
3627 if (mps < rq)
3628 rq = mps;
3629 }
3630
3631 v = (ffs(rq) - 8) << 12;
3632
3633 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3634 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3635 ctl |= v;
3636 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3637 }
3638
3639 out:
3640 return err;
3641 }
3642 EXPORT_SYMBOL(pcie_set_readrq);
3643
3644 /**
3645 * pcie_get_mps - get PCI Express maximum payload size
3646 * @dev: PCI device to query
3647 *
3648 * Returns maximum payload size in bytes
3649 * or appropriate error value.
3650 */
3651 int pcie_get_mps(struct pci_dev *dev)
3652 {
3653 int ret, cap;
3654 u16 ctl;
3655
3656 cap = pci_pcie_cap(dev);
3657 if (!cap)
3658 return -EINVAL;
3659
3660 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3661 if (!ret)
3662 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3663
3664 return ret;
3665 }
3666
3667 /**
3668 * pcie_set_mps - set PCI Express maximum payload size
3669 * @dev: PCI device to query
3670 * @mps: maximum payload size in bytes
3671 * valid values are 128, 256, 512, 1024, 2048, 4096
3672 *
3673 * If possible sets maximum payload size
3674 */
3675 int pcie_set_mps(struct pci_dev *dev, int mps)
3676 {
3677 int cap, err = -EINVAL;
3678 u16 ctl, v;
3679
3680 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3681 goto out;
3682
3683 v = ffs(mps) - 8;
3684 if (v > dev->pcie_mpss)
3685 goto out;
3686 v <<= 5;
3687
3688 cap = pci_pcie_cap(dev);
3689 if (!cap)
3690 goto out;
3691
3692 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3693 if (err)
3694 goto out;
3695
3696 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3697 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3698 ctl |= v;
3699 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3700 }
3701 out:
3702 return err;
3703 }
3704
3705 /**
3706 * pci_select_bars - Make BAR mask from the type of resource
3707 * @dev: the PCI device for which BAR mask is made
3708 * @flags: resource type mask to be selected
3709 *
3710 * This helper routine makes bar mask from the type of resource.
3711 */
3712 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3713 {
3714 int i, bars = 0;
3715 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3716 if (pci_resource_flags(dev, i) & flags)
3717 bars |= (1 << i);
3718 return bars;
3719 }
3720
3721 /**
3722 * pci_resource_bar - get position of the BAR associated with a resource
3723 * @dev: the PCI device
3724 * @resno: the resource number
3725 * @type: the BAR type to be filled in
3726 *
3727 * Returns BAR position in config space, or 0 if the BAR is invalid.
3728 */
3729 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3730 {
3731 int reg;
3732
3733 if (resno < PCI_ROM_RESOURCE) {
3734 *type = pci_bar_unknown;
3735 return PCI_BASE_ADDRESS_0 + 4 * resno;
3736 } else if (resno == PCI_ROM_RESOURCE) {
3737 *type = pci_bar_mem32;
3738 return dev->rom_base_reg;
3739 } else if (resno < PCI_BRIDGE_RESOURCES) {
3740 /* device specific resource */
3741 reg = pci_iov_resource_bar(dev, resno, type);
3742 if (reg)
3743 return reg;
3744 }
3745
3746 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3747 return 0;
3748 }
3749
3750 /* Some architectures require additional programming to enable VGA */
3751 static arch_set_vga_state_t arch_set_vga_state;
3752
3753 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3754 {
3755 arch_set_vga_state = func; /* NULL disables */
3756 }
3757
3758 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3759 unsigned int command_bits, u32 flags)
3760 {
3761 if (arch_set_vga_state)
3762 return arch_set_vga_state(dev, decode, command_bits,
3763 flags);
3764 return 0;
3765 }
3766
3767 /**
3768 * pci_set_vga_state - set VGA decode state on device and parents if requested
3769 * @dev: the PCI device
3770 * @decode: true = enable decoding, false = disable decoding
3771 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3772 * @flags: traverse ancestors and change bridges
3773 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3774 */
3775 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3776 unsigned int command_bits, u32 flags)
3777 {
3778 struct pci_bus *bus;
3779 struct pci_dev *bridge;
3780 u16 cmd;
3781 int rc;
3782
3783 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3784
3785 /* ARCH specific VGA enables */
3786 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3787 if (rc)
3788 return rc;
3789
3790 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3791 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3792 if (decode == true)
3793 cmd |= command_bits;
3794 else
3795 cmd &= ~command_bits;
3796 pci_write_config_word(dev, PCI_COMMAND, cmd);
3797 }
3798
3799 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3800 return 0;
3801
3802 bus = dev->bus;
3803 while (bus) {
3804 bridge = bus->self;
3805 if (bridge) {
3806 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3807 &cmd);
3808 if (decode == true)
3809 cmd |= PCI_BRIDGE_CTL_VGA;
3810 else
3811 cmd &= ~PCI_BRIDGE_CTL_VGA;
3812 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3813 cmd);
3814 }
3815 bus = bus->parent;
3816 }
3817 return 0;
3818 }
3819
3820 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3821 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3822 static DEFINE_SPINLOCK(resource_alignment_lock);
3823
3824 /**
3825 * pci_specified_resource_alignment - get resource alignment specified by user.
3826 * @dev: the PCI device to get
3827 *
3828 * RETURNS: Resource alignment if it is specified.
3829 * Zero if it is not specified.
3830 */
3831 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3832 {
3833 int seg, bus, slot, func, align_order, count;
3834 resource_size_t align = 0;
3835 char *p;
3836
3837 spin_lock(&resource_alignment_lock);
3838 p = resource_alignment_param;
3839 while (*p) {
3840 count = 0;
3841 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3842 p[count] == '@') {
3843 p += count + 1;
3844 } else {
3845 align_order = -1;
3846 }
3847 if (sscanf(p, "%x:%x:%x.%x%n",
3848 &seg, &bus, &slot, &func, &count) != 4) {
3849 seg = 0;
3850 if (sscanf(p, "%x:%x.%x%n",
3851 &bus, &slot, &func, &count) != 3) {
3852 /* Invalid format */
3853 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3854 p);
3855 break;
3856 }
3857 }
3858 p += count;
3859 if (seg == pci_domain_nr(dev->bus) &&
3860 bus == dev->bus->number &&
3861 slot == PCI_SLOT(dev->devfn) &&
3862 func == PCI_FUNC(dev->devfn)) {
3863 if (align_order == -1) {
3864 align = PAGE_SIZE;
3865 } else {
3866 align = 1 << align_order;
3867 }
3868 /* Found */
3869 break;
3870 }
3871 if (*p != ';' && *p != ',') {
3872 /* End of param or invalid format */
3873 break;
3874 }
3875 p++;
3876 }
3877 spin_unlock(&resource_alignment_lock);
3878 return align;
3879 }
3880
3881 /**
3882 * pci_is_reassigndev - check if specified PCI is target device to reassign
3883 * @dev: the PCI device to check
3884 *
3885 * RETURNS: non-zero for PCI device is a target device to reassign,
3886 * or zero is not.
3887 */
3888 int pci_is_reassigndev(struct pci_dev *dev)
3889 {
3890 return (pci_specified_resource_alignment(dev) != 0);
3891 }
3892
3893 /*
3894 * This function disables memory decoding and releases memory resources
3895 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3896 * It also rounds up size to specified alignment.
3897 * Later on, the kernel will assign page-aligned memory resource back
3898 * to the device.
3899 */
3900 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3901 {
3902 int i;
3903 struct resource *r;
3904 resource_size_t align, size;
3905 u16 command;
3906
3907 if (!pci_is_reassigndev(dev))
3908 return;
3909
3910 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3911 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3912 dev_warn(&dev->dev,
3913 "Can't reassign resources to host bridge.\n");
3914 return;
3915 }
3916
3917 dev_info(&dev->dev,
3918 "Disabling memory decoding and releasing memory resources.\n");
3919 pci_read_config_word(dev, PCI_COMMAND, &command);
3920 command &= ~PCI_COMMAND_MEMORY;
3921 pci_write_config_word(dev, PCI_COMMAND, command);
3922
3923 align = pci_specified_resource_alignment(dev);
3924 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3925 r = &dev->resource[i];
3926 if (!(r->flags & IORESOURCE_MEM))
3927 continue;
3928 size = resource_size(r);
3929 if (size < align) {
3930 size = align;
3931 dev_info(&dev->dev,
3932 "Rounding up size of resource #%d to %#llx.\n",
3933 i, (unsigned long long)size);
3934 }
3935 r->end = size - 1;
3936 r->start = 0;
3937 }
3938 /* Need to disable bridge's resource window,
3939 * to enable the kernel to reassign new resource
3940 * window later on.
3941 */
3942 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3943 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3944 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3945 r = &dev->resource[i];
3946 if (!(r->flags & IORESOURCE_MEM))
3947 continue;
3948 r->end = resource_size(r) - 1;
3949 r->start = 0;
3950 }
3951 pci_disable_bridge_window(dev);
3952 }
3953 }
3954
3955 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3956 {
3957 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3958 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3959 spin_lock(&resource_alignment_lock);
3960 strncpy(resource_alignment_param, buf, count);
3961 resource_alignment_param[count] = '\0';
3962 spin_unlock(&resource_alignment_lock);
3963 return count;
3964 }
3965
3966 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3967 {
3968 size_t count;
3969 spin_lock(&resource_alignment_lock);
3970 count = snprintf(buf, size, "%s", resource_alignment_param);
3971 spin_unlock(&resource_alignment_lock);
3972 return count;
3973 }
3974
3975 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3976 {
3977 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3978 }
3979
3980 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3981 const char *buf, size_t count)
3982 {
3983 return pci_set_resource_alignment_param(buf, count);
3984 }
3985
3986 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3987 pci_resource_alignment_store);
3988
3989 static int __init pci_resource_alignment_sysfs_init(void)
3990 {
3991 return bus_create_file(&pci_bus_type,
3992 &bus_attr_resource_alignment);
3993 }
3994
3995 late_initcall(pci_resource_alignment_sysfs_init);
3996
3997 static void __devinit pci_no_domains(void)
3998 {
3999 #ifdef CONFIG_PCI_DOMAINS
4000 pci_domains_supported = 0;
4001 #endif
4002 }
4003
4004 /**
4005 * pci_ext_cfg_enabled - can we access extended PCI config space?
4006 * @dev: The PCI device of the root bridge.
4007 *
4008 * Returns 1 if we can access PCI extended config space (offsets
4009 * greater than 0xff). This is the default implementation. Architecture
4010 * implementations can override this.
4011 */
4012 int __weak pci_ext_cfg_avail(struct pci_dev *dev)
4013 {
4014 return 1;
4015 }
4016
4017 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4018 {
4019 }
4020 EXPORT_SYMBOL(pci_fixup_cardbus);
4021
4022 static int __init pci_setup(char *str)
4023 {
4024 while (str) {
4025 char *k = strchr(str, ',');
4026 if (k)
4027 *k++ = 0;
4028 if (*str && (str = pcibios_setup(str)) && *str) {
4029 if (!strcmp(str, "nomsi")) {
4030 pci_no_msi();
4031 } else if (!strcmp(str, "noaer")) {
4032 pci_no_aer();
4033 } else if (!strncmp(str, "realloc=", 8)) {
4034 pci_realloc_get_opt(str + 8);
4035 } else if (!strncmp(str, "realloc", 7)) {
4036 pci_realloc_get_opt("on");
4037 } else if (!strcmp(str, "nodomains")) {
4038 pci_no_domains();
4039 } else if (!strncmp(str, "noari", 5)) {
4040 pcie_ari_disabled = true;
4041 } else if (!strncmp(str, "cbiosize=", 9)) {
4042 pci_cardbus_io_size = memparse(str + 9, &str);
4043 } else if (!strncmp(str, "cbmemsize=", 10)) {
4044 pci_cardbus_mem_size = memparse(str + 10, &str);
4045 } else if (!strncmp(str, "resource_alignment=", 19)) {
4046 pci_set_resource_alignment_param(str + 19,
4047 strlen(str + 19));
4048 } else if (!strncmp(str, "ecrc=", 5)) {
4049 pcie_ecrc_get_policy(str + 5);
4050 } else if (!strncmp(str, "hpiosize=", 9)) {
4051 pci_hotplug_io_size = memparse(str + 9, &str);
4052 } else if (!strncmp(str, "hpmemsize=", 10)) {
4053 pci_hotplug_mem_size = memparse(str + 10, &str);
4054 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4055 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4056 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4057 pcie_bus_config = PCIE_BUS_SAFE;
4058 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4059 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4060 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4061 pcie_bus_config = PCIE_BUS_PEER2PEER;
4062 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4063 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4064 } else {
4065 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4066 str);
4067 }
4068 }
4069 str = k;
4070 }
4071 return 0;
4072 }
4073 early_param("pci", pci_setup);
4074
4075 EXPORT_SYMBOL(pci_reenable_device);
4076 EXPORT_SYMBOL(pci_enable_device_io);
4077 EXPORT_SYMBOL(pci_enable_device_mem);
4078 EXPORT_SYMBOL(pci_enable_device);
4079 EXPORT_SYMBOL(pcim_enable_device);
4080 EXPORT_SYMBOL(pcim_pin_device);
4081 EXPORT_SYMBOL(pci_disable_device);
4082 EXPORT_SYMBOL(pci_find_capability);
4083 EXPORT_SYMBOL(pci_bus_find_capability);
4084 EXPORT_SYMBOL(pci_release_regions);
4085 EXPORT_SYMBOL(pci_request_regions);
4086 EXPORT_SYMBOL(pci_request_regions_exclusive);
4087 EXPORT_SYMBOL(pci_release_region);
4088 EXPORT_SYMBOL(pci_request_region);
4089 EXPORT_SYMBOL(pci_request_region_exclusive);
4090 EXPORT_SYMBOL(pci_release_selected_regions);
4091 EXPORT_SYMBOL(pci_request_selected_regions);
4092 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4093 EXPORT_SYMBOL(pci_set_master);
4094 EXPORT_SYMBOL(pci_clear_master);
4095 EXPORT_SYMBOL(pci_set_mwi);
4096 EXPORT_SYMBOL(pci_try_set_mwi);
4097 EXPORT_SYMBOL(pci_clear_mwi);
4098 EXPORT_SYMBOL_GPL(pci_intx);
4099 EXPORT_SYMBOL(pci_assign_resource);
4100 EXPORT_SYMBOL(pci_find_parent_resource);
4101 EXPORT_SYMBOL(pci_select_bars);
4102
4103 EXPORT_SYMBOL(pci_set_power_state);
4104 EXPORT_SYMBOL(pci_save_state);
4105 EXPORT_SYMBOL(pci_restore_state);
4106 EXPORT_SYMBOL(pci_pme_capable);
4107 EXPORT_SYMBOL(pci_pme_active);
4108 EXPORT_SYMBOL(pci_wake_from_d3);
4109 EXPORT_SYMBOL(pci_target_state);
4110 EXPORT_SYMBOL(pci_prepare_to_sleep);
4111 EXPORT_SYMBOL(pci_back_from_sleep);
4112 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.423109 seconds and 5 git commands to generate.