PCI PM: Introduce pci_prepare_to_sleep and pci_back_from_sleep
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <asm/dma.h> /* isa_dma_bridge_buggy */
21 #include "pci.h"
22
23 unsigned int pci_pm_d3_delay = 10;
24
25 #ifdef CONFIG_PCI_DOMAINS
26 int pci_domains_supported = 1;
27 #endif
28
29 #define DEFAULT_CARDBUS_IO_SIZE (256)
30 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
31 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
32 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
33 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
34
35 /**
36 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
37 * @bus: pointer to PCI bus structure to search
38 *
39 * Given a PCI bus, returns the highest PCI bus number present in the set
40 * including the given PCI bus and its list of child PCI buses.
41 */
42 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
43 {
44 struct list_head *tmp;
45 unsigned char max, n;
46
47 max = bus->subordinate;
48 list_for_each(tmp, &bus->children) {
49 n = pci_bus_max_busnr(pci_bus_b(tmp));
50 if(n > max)
51 max = n;
52 }
53 return max;
54 }
55 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
56
57 #if 0
58 /**
59 * pci_max_busnr - returns maximum PCI bus number
60 *
61 * Returns the highest PCI bus number present in the system global list of
62 * PCI buses.
63 */
64 unsigned char __devinit
65 pci_max_busnr(void)
66 {
67 struct pci_bus *bus = NULL;
68 unsigned char max, n;
69
70 max = 0;
71 while ((bus = pci_find_next_bus(bus)) != NULL) {
72 n = pci_bus_max_busnr(bus);
73 if(n > max)
74 max = n;
75 }
76 return max;
77 }
78
79 #endif /* 0 */
80
81 #define PCI_FIND_CAP_TTL 48
82
83 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
84 u8 pos, int cap, int *ttl)
85 {
86 u8 id;
87
88 while ((*ttl)--) {
89 pci_bus_read_config_byte(bus, devfn, pos, &pos);
90 if (pos < 0x40)
91 break;
92 pos &= ~3;
93 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
94 &id);
95 if (id == 0xff)
96 break;
97 if (id == cap)
98 return pos;
99 pos += PCI_CAP_LIST_NEXT;
100 }
101 return 0;
102 }
103
104 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
105 u8 pos, int cap)
106 {
107 int ttl = PCI_FIND_CAP_TTL;
108
109 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
110 }
111
112 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
113 {
114 return __pci_find_next_cap(dev->bus, dev->devfn,
115 pos + PCI_CAP_LIST_NEXT, cap);
116 }
117 EXPORT_SYMBOL_GPL(pci_find_next_capability);
118
119 static int __pci_bus_find_cap_start(struct pci_bus *bus,
120 unsigned int devfn, u8 hdr_type)
121 {
122 u16 status;
123
124 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
125 if (!(status & PCI_STATUS_CAP_LIST))
126 return 0;
127
128 switch (hdr_type) {
129 case PCI_HEADER_TYPE_NORMAL:
130 case PCI_HEADER_TYPE_BRIDGE:
131 return PCI_CAPABILITY_LIST;
132 case PCI_HEADER_TYPE_CARDBUS:
133 return PCI_CB_CAPABILITY_LIST;
134 default:
135 return 0;
136 }
137
138 return 0;
139 }
140
141 /**
142 * pci_find_capability - query for devices' capabilities
143 * @dev: PCI device to query
144 * @cap: capability code
145 *
146 * Tell if a device supports a given PCI capability.
147 * Returns the address of the requested capability structure within the
148 * device's PCI configuration space or 0 in case the device does not
149 * support it. Possible values for @cap:
150 *
151 * %PCI_CAP_ID_PM Power Management
152 * %PCI_CAP_ID_AGP Accelerated Graphics Port
153 * %PCI_CAP_ID_VPD Vital Product Data
154 * %PCI_CAP_ID_SLOTID Slot Identification
155 * %PCI_CAP_ID_MSI Message Signalled Interrupts
156 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
157 * %PCI_CAP_ID_PCIX PCI-X
158 * %PCI_CAP_ID_EXP PCI Express
159 */
160 int pci_find_capability(struct pci_dev *dev, int cap)
161 {
162 int pos;
163
164 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
165 if (pos)
166 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
167
168 return pos;
169 }
170
171 /**
172 * pci_bus_find_capability - query for devices' capabilities
173 * @bus: the PCI bus to query
174 * @devfn: PCI device to query
175 * @cap: capability code
176 *
177 * Like pci_find_capability() but works for pci devices that do not have a
178 * pci_dev structure set up yet.
179 *
180 * Returns the address of the requested capability structure within the
181 * device's PCI configuration space or 0 in case the device does not
182 * support it.
183 */
184 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
185 {
186 int pos;
187 u8 hdr_type;
188
189 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
190
191 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
192 if (pos)
193 pos = __pci_find_next_cap(bus, devfn, pos, cap);
194
195 return pos;
196 }
197
198 /**
199 * pci_find_ext_capability - Find an extended capability
200 * @dev: PCI device to query
201 * @cap: capability code
202 *
203 * Returns the address of the requested extended capability structure
204 * within the device's PCI configuration space or 0 if the device does
205 * not support it. Possible values for @cap:
206 *
207 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
208 * %PCI_EXT_CAP_ID_VC Virtual Channel
209 * %PCI_EXT_CAP_ID_DSN Device Serial Number
210 * %PCI_EXT_CAP_ID_PWR Power Budgeting
211 */
212 int pci_find_ext_capability(struct pci_dev *dev, int cap)
213 {
214 u32 header;
215 int ttl = 480; /* 3840 bytes, minimum 8 bytes per capability */
216 int pos = 0x100;
217
218 if (dev->cfg_size <= 256)
219 return 0;
220
221 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
222 return 0;
223
224 /*
225 * If we have no capabilities, this is indicated by cap ID,
226 * cap version and next pointer all being 0.
227 */
228 if (header == 0)
229 return 0;
230
231 while (ttl-- > 0) {
232 if (PCI_EXT_CAP_ID(header) == cap)
233 return pos;
234
235 pos = PCI_EXT_CAP_NEXT(header);
236 if (pos < 0x100)
237 break;
238
239 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
240 break;
241 }
242
243 return 0;
244 }
245 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
246
247 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
248 {
249 int rc, ttl = PCI_FIND_CAP_TTL;
250 u8 cap, mask;
251
252 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
253 mask = HT_3BIT_CAP_MASK;
254 else
255 mask = HT_5BIT_CAP_MASK;
256
257 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
258 PCI_CAP_ID_HT, &ttl);
259 while (pos) {
260 rc = pci_read_config_byte(dev, pos + 3, &cap);
261 if (rc != PCIBIOS_SUCCESSFUL)
262 return 0;
263
264 if ((cap & mask) == ht_cap)
265 return pos;
266
267 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
268 pos + PCI_CAP_LIST_NEXT,
269 PCI_CAP_ID_HT, &ttl);
270 }
271
272 return 0;
273 }
274 /**
275 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
276 * @dev: PCI device to query
277 * @pos: Position from which to continue searching
278 * @ht_cap: Hypertransport capability code
279 *
280 * To be used in conjunction with pci_find_ht_capability() to search for
281 * all capabilities matching @ht_cap. @pos should always be a value returned
282 * from pci_find_ht_capability().
283 *
284 * NB. To be 100% safe against broken PCI devices, the caller should take
285 * steps to avoid an infinite loop.
286 */
287 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
288 {
289 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
290 }
291 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
292
293 /**
294 * pci_find_ht_capability - query a device's Hypertransport capabilities
295 * @dev: PCI device to query
296 * @ht_cap: Hypertransport capability code
297 *
298 * Tell if a device supports a given Hypertransport capability.
299 * Returns an address within the device's PCI configuration space
300 * or 0 in case the device does not support the request capability.
301 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
302 * which has a Hypertransport capability matching @ht_cap.
303 */
304 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
305 {
306 int pos;
307
308 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
309 if (pos)
310 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
311
312 return pos;
313 }
314 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
315
316 /**
317 * pci_find_parent_resource - return resource region of parent bus of given region
318 * @dev: PCI device structure contains resources to be searched
319 * @res: child resource record for which parent is sought
320 *
321 * For given resource region of given device, return the resource
322 * region of parent bus the given region is contained in or where
323 * it should be allocated from.
324 */
325 struct resource *
326 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
327 {
328 const struct pci_bus *bus = dev->bus;
329 int i;
330 struct resource *best = NULL;
331
332 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
333 struct resource *r = bus->resource[i];
334 if (!r)
335 continue;
336 if (res->start && !(res->start >= r->start && res->end <= r->end))
337 continue; /* Not contained */
338 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
339 continue; /* Wrong type */
340 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
341 return r; /* Exact match */
342 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
343 best = r; /* Approximating prefetchable by non-prefetchable */
344 }
345 return best;
346 }
347
348 /**
349 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
350 * @dev: PCI device to have its BARs restored
351 *
352 * Restore the BAR values for a given device, so as to make it
353 * accessible by its driver.
354 */
355 static void
356 pci_restore_bars(struct pci_dev *dev)
357 {
358 int i, numres;
359
360 switch (dev->hdr_type) {
361 case PCI_HEADER_TYPE_NORMAL:
362 numres = 6;
363 break;
364 case PCI_HEADER_TYPE_BRIDGE:
365 numres = 2;
366 break;
367 case PCI_HEADER_TYPE_CARDBUS:
368 numres = 1;
369 break;
370 default:
371 /* Should never get here, but just in case... */
372 return;
373 }
374
375 for (i = 0; i < numres; i ++)
376 pci_update_resource(dev, &dev->resource[i], i);
377 }
378
379 static struct pci_platform_pm_ops *pci_platform_pm;
380
381 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
382 {
383 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
384 || !ops->sleep_wake || !ops->can_wakeup)
385 return -EINVAL;
386 pci_platform_pm = ops;
387 return 0;
388 }
389
390 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
391 {
392 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
393 }
394
395 static inline int platform_pci_set_power_state(struct pci_dev *dev,
396 pci_power_t t)
397 {
398 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
399 }
400
401 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
402 {
403 return pci_platform_pm ?
404 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
405 }
406
407 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
408 {
409 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
410 }
411
412 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
413 {
414 return pci_platform_pm ?
415 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
416 }
417
418 /**
419 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
420 * given PCI device
421 * @dev: PCI device to handle.
422 * @pm: PCI PM capability offset of the device.
423 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
424 *
425 * RETURN VALUE:
426 * -EINVAL if the requested state is invalid.
427 * -EIO if device does not support PCI PM or its PM capabilities register has a
428 * wrong version, or device doesn't support the requested state.
429 * 0 if device already is in the requested state.
430 * 0 if device's power state has been successfully changed.
431 */
432 static int
433 pci_raw_set_power_state(struct pci_dev *dev, int pm, pci_power_t state)
434 {
435 u16 pmcsr, pmc;
436 bool need_restore = false;
437
438 if (!pm)
439 return -EIO;
440
441 if (state < PCI_D0 || state > PCI_D3hot)
442 return -EINVAL;
443
444 /* Validate current state:
445 * Can enter D0 from any state, but if we can only go deeper
446 * to sleep if we're already in a low power state
447 */
448 if (dev->current_state == state) {
449 /* we're already there */
450 return 0;
451 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
452 && dev->current_state > state) {
453 dev_err(&dev->dev, "invalid power transition "
454 "(from state %d to %d)\n", dev->current_state, state);
455 return -EINVAL;
456 }
457
458 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
459
460 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
461 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
462 pmc & PCI_PM_CAP_VER_MASK);
463 return -EIO;
464 }
465
466 /* check if this device supports the desired state */
467 if ((state == PCI_D1 && !(pmc & PCI_PM_CAP_D1))
468 || (state == PCI_D2 && !(pmc & PCI_PM_CAP_D2)))
469 return -EIO;
470
471 pci_read_config_word(dev, pm + PCI_PM_CTRL, &pmcsr);
472
473 /* If we're (effectively) in D3, force entire word to 0.
474 * This doesn't affect PME_Status, disables PME_En, and
475 * sets PowerState to 0.
476 */
477 switch (dev->current_state) {
478 case PCI_D0:
479 case PCI_D1:
480 case PCI_D2:
481 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
482 pmcsr |= state;
483 break;
484 case PCI_UNKNOWN: /* Boot-up */
485 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
486 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
487 need_restore = true;
488 /* Fall-through: force to D0 */
489 default:
490 pmcsr = 0;
491 break;
492 }
493
494 /* enter specified state */
495 pci_write_config_word(dev, pm + PCI_PM_CTRL, pmcsr);
496
497 /* Mandatory power management transition delays */
498 /* see PCI PM 1.1 5.6.1 table 18 */
499 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
500 msleep(pci_pm_d3_delay);
501 else if (state == PCI_D2 || dev->current_state == PCI_D2)
502 udelay(200);
503
504 dev->current_state = state;
505
506 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
507 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
508 * from D3hot to D0 _may_ perform an internal reset, thereby
509 * going to "D0 Uninitialized" rather than "D0 Initialized".
510 * For example, at least some versions of the 3c905B and the
511 * 3c556B exhibit this behaviour.
512 *
513 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
514 * devices in a D3hot state at boot. Consequently, we need to
515 * restore at least the BARs so that the device will be
516 * accessible to its driver.
517 */
518 if (need_restore)
519 pci_restore_bars(dev);
520
521 if (dev->bus->self)
522 pcie_aspm_pm_state_change(dev->bus->self);
523
524 return 0;
525 }
526
527 /**
528 * pci_update_current_state - Read PCI power state of given device from its
529 * PCI PM registers and cache it
530 * @dev: PCI device to handle.
531 * @pm: PCI PM capability offset of the device.
532 */
533 static void pci_update_current_state(struct pci_dev *dev, int pm)
534 {
535 if (pm) {
536 u16 pmcsr;
537
538 pci_read_config_word(dev, pm + PCI_PM_CTRL, &pmcsr);
539 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
540 }
541 }
542
543 /**
544 * pci_set_power_state - Set the power state of a PCI device
545 * @dev: PCI device to handle.
546 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
547 *
548 * Transition a device to a new power state, using the platform formware and/or
549 * the device's PCI PM registers.
550 *
551 * RETURN VALUE:
552 * -EINVAL if the requested state is invalid.
553 * -EIO if device does not support PCI PM or its PM capabilities register has a
554 * wrong version, or device doesn't support the requested state.
555 * 0 if device already is in the requested state.
556 * 0 if device's power state has been successfully changed.
557 */
558 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
559 {
560 int pm, error;
561
562 /* bound the state we're entering */
563 if (state > PCI_D3hot)
564 state = PCI_D3hot;
565 else if (state < PCI_D0)
566 state = PCI_D0;
567 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
568 /*
569 * If the device or the parent bridge do not support PCI PM,
570 * ignore the request if we're doing anything other than putting
571 * it into D0 (which would only happen on boot).
572 */
573 return 0;
574
575 /* Find PCI PM capability in the list */
576 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
577
578 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
579 /*
580 * Allow the platform to change the state, for example via ACPI
581 * _PR0, _PS0 and some such, but do not trust it.
582 */
583 int ret = platform_pci_set_power_state(dev, PCI_D0);
584 if (!ret)
585 pci_update_current_state(dev, pm);
586 }
587
588 error = pci_raw_set_power_state(dev, pm, state);
589
590 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
591 /* Allow the platform to finalize the transition */
592 int ret = platform_pci_set_power_state(dev, state);
593 if (!ret) {
594 pci_update_current_state(dev, pm);
595 error = 0;
596 }
597 }
598
599 return error;
600 }
601
602 /**
603 * pci_choose_state - Choose the power state of a PCI device
604 * @dev: PCI device to be suspended
605 * @state: target sleep state for the whole system. This is the value
606 * that is passed to suspend() function.
607 *
608 * Returns PCI power state suitable for given device and given system
609 * message.
610 */
611
612 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
613 {
614 pci_power_t ret;
615
616 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
617 return PCI_D0;
618
619 ret = platform_pci_choose_state(dev);
620 if (ret != PCI_POWER_ERROR)
621 return ret;
622
623 switch (state.event) {
624 case PM_EVENT_ON:
625 return PCI_D0;
626 case PM_EVENT_FREEZE:
627 case PM_EVENT_PRETHAW:
628 /* REVISIT both freeze and pre-thaw "should" use D0 */
629 case PM_EVENT_SUSPEND:
630 case PM_EVENT_HIBERNATE:
631 return PCI_D3hot;
632 default:
633 dev_info(&dev->dev, "unrecognized suspend event %d\n",
634 state.event);
635 BUG();
636 }
637 return PCI_D0;
638 }
639
640 EXPORT_SYMBOL(pci_choose_state);
641
642 static int pci_save_pcie_state(struct pci_dev *dev)
643 {
644 int pos, i = 0;
645 struct pci_cap_saved_state *save_state;
646 u16 *cap;
647 int found = 0;
648
649 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
650 if (pos <= 0)
651 return 0;
652
653 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
654 if (!save_state)
655 save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL);
656 else
657 found = 1;
658 if (!save_state) {
659 dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
660 return -ENOMEM;
661 }
662 cap = (u16 *)&save_state->data[0];
663
664 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
665 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
666 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
667 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
668 save_state->cap_nr = PCI_CAP_ID_EXP;
669 if (!found)
670 pci_add_saved_cap(dev, save_state);
671 return 0;
672 }
673
674 static void pci_restore_pcie_state(struct pci_dev *dev)
675 {
676 int i = 0, pos;
677 struct pci_cap_saved_state *save_state;
678 u16 *cap;
679
680 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
681 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
682 if (!save_state || pos <= 0)
683 return;
684 cap = (u16 *)&save_state->data[0];
685
686 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
687 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
688 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
689 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
690 }
691
692
693 static int pci_save_pcix_state(struct pci_dev *dev)
694 {
695 int pos, i = 0;
696 struct pci_cap_saved_state *save_state;
697 u16 *cap;
698 int found = 0;
699
700 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
701 if (pos <= 0)
702 return 0;
703
704 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
705 if (!save_state)
706 save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL);
707 else
708 found = 1;
709 if (!save_state) {
710 dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
711 return -ENOMEM;
712 }
713 cap = (u16 *)&save_state->data[0];
714
715 pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]);
716 save_state->cap_nr = PCI_CAP_ID_PCIX;
717 if (!found)
718 pci_add_saved_cap(dev, save_state);
719 return 0;
720 }
721
722 static void pci_restore_pcix_state(struct pci_dev *dev)
723 {
724 int i = 0, pos;
725 struct pci_cap_saved_state *save_state;
726 u16 *cap;
727
728 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
729 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
730 if (!save_state || pos <= 0)
731 return;
732 cap = (u16 *)&save_state->data[0];
733
734 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
735 }
736
737
738 /**
739 * pci_save_state - save the PCI configuration space of a device before suspending
740 * @dev: - PCI device that we're dealing with
741 */
742 int
743 pci_save_state(struct pci_dev *dev)
744 {
745 int i;
746 /* XXX: 100% dword access ok here? */
747 for (i = 0; i < 16; i++)
748 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
749 if ((i = pci_save_pcie_state(dev)) != 0)
750 return i;
751 if ((i = pci_save_pcix_state(dev)) != 0)
752 return i;
753 return 0;
754 }
755
756 /**
757 * pci_restore_state - Restore the saved state of a PCI device
758 * @dev: - PCI device that we're dealing with
759 */
760 int
761 pci_restore_state(struct pci_dev *dev)
762 {
763 int i;
764 u32 val;
765
766 /* PCI Express register must be restored first */
767 pci_restore_pcie_state(dev);
768
769 /*
770 * The Base Address register should be programmed before the command
771 * register(s)
772 */
773 for (i = 15; i >= 0; i--) {
774 pci_read_config_dword(dev, i * 4, &val);
775 if (val != dev->saved_config_space[i]) {
776 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
777 "space at offset %#x (was %#x, writing %#x)\n",
778 i, val, (int)dev->saved_config_space[i]);
779 pci_write_config_dword(dev,i * 4,
780 dev->saved_config_space[i]);
781 }
782 }
783 pci_restore_pcix_state(dev);
784 pci_restore_msi_state(dev);
785
786 return 0;
787 }
788
789 static int do_pci_enable_device(struct pci_dev *dev, int bars)
790 {
791 int err;
792
793 err = pci_set_power_state(dev, PCI_D0);
794 if (err < 0 && err != -EIO)
795 return err;
796 err = pcibios_enable_device(dev, bars);
797 if (err < 0)
798 return err;
799 pci_fixup_device(pci_fixup_enable, dev);
800
801 return 0;
802 }
803
804 /**
805 * pci_reenable_device - Resume abandoned device
806 * @dev: PCI device to be resumed
807 *
808 * Note this function is a backend of pci_default_resume and is not supposed
809 * to be called by normal code, write proper resume handler and use it instead.
810 */
811 int pci_reenable_device(struct pci_dev *dev)
812 {
813 if (atomic_read(&dev->enable_cnt))
814 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
815 return 0;
816 }
817
818 static int __pci_enable_device_flags(struct pci_dev *dev,
819 resource_size_t flags)
820 {
821 int err;
822 int i, bars = 0;
823
824 if (atomic_add_return(1, &dev->enable_cnt) > 1)
825 return 0; /* already enabled */
826
827 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
828 if (dev->resource[i].flags & flags)
829 bars |= (1 << i);
830
831 err = do_pci_enable_device(dev, bars);
832 if (err < 0)
833 atomic_dec(&dev->enable_cnt);
834 return err;
835 }
836
837 /**
838 * pci_enable_device_io - Initialize a device for use with IO space
839 * @dev: PCI device to be initialized
840 *
841 * Initialize device before it's used by a driver. Ask low-level code
842 * to enable I/O resources. Wake up the device if it was suspended.
843 * Beware, this function can fail.
844 */
845 int pci_enable_device_io(struct pci_dev *dev)
846 {
847 return __pci_enable_device_flags(dev, IORESOURCE_IO);
848 }
849
850 /**
851 * pci_enable_device_mem - Initialize a device for use with Memory space
852 * @dev: PCI device to be initialized
853 *
854 * Initialize device before it's used by a driver. Ask low-level code
855 * to enable Memory resources. Wake up the device if it was suspended.
856 * Beware, this function can fail.
857 */
858 int pci_enable_device_mem(struct pci_dev *dev)
859 {
860 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
861 }
862
863 /**
864 * pci_enable_device - Initialize device before it's used by a driver.
865 * @dev: PCI device to be initialized
866 *
867 * Initialize device before it's used by a driver. Ask low-level code
868 * to enable I/O and memory. Wake up the device if it was suspended.
869 * Beware, this function can fail.
870 *
871 * Note we don't actually enable the device many times if we call
872 * this function repeatedly (we just increment the count).
873 */
874 int pci_enable_device(struct pci_dev *dev)
875 {
876 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
877 }
878
879 /*
880 * Managed PCI resources. This manages device on/off, intx/msi/msix
881 * on/off and BAR regions. pci_dev itself records msi/msix status, so
882 * there's no need to track it separately. pci_devres is initialized
883 * when a device is enabled using managed PCI device enable interface.
884 */
885 struct pci_devres {
886 unsigned int enabled:1;
887 unsigned int pinned:1;
888 unsigned int orig_intx:1;
889 unsigned int restore_intx:1;
890 u32 region_mask;
891 };
892
893 static void pcim_release(struct device *gendev, void *res)
894 {
895 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
896 struct pci_devres *this = res;
897 int i;
898
899 if (dev->msi_enabled)
900 pci_disable_msi(dev);
901 if (dev->msix_enabled)
902 pci_disable_msix(dev);
903
904 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
905 if (this->region_mask & (1 << i))
906 pci_release_region(dev, i);
907
908 if (this->restore_intx)
909 pci_intx(dev, this->orig_intx);
910
911 if (this->enabled && !this->pinned)
912 pci_disable_device(dev);
913 }
914
915 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
916 {
917 struct pci_devres *dr, *new_dr;
918
919 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
920 if (dr)
921 return dr;
922
923 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
924 if (!new_dr)
925 return NULL;
926 return devres_get(&pdev->dev, new_dr, NULL, NULL);
927 }
928
929 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
930 {
931 if (pci_is_managed(pdev))
932 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
933 return NULL;
934 }
935
936 /**
937 * pcim_enable_device - Managed pci_enable_device()
938 * @pdev: PCI device to be initialized
939 *
940 * Managed pci_enable_device().
941 */
942 int pcim_enable_device(struct pci_dev *pdev)
943 {
944 struct pci_devres *dr;
945 int rc;
946
947 dr = get_pci_dr(pdev);
948 if (unlikely(!dr))
949 return -ENOMEM;
950 if (dr->enabled)
951 return 0;
952
953 rc = pci_enable_device(pdev);
954 if (!rc) {
955 pdev->is_managed = 1;
956 dr->enabled = 1;
957 }
958 return rc;
959 }
960
961 /**
962 * pcim_pin_device - Pin managed PCI device
963 * @pdev: PCI device to pin
964 *
965 * Pin managed PCI device @pdev. Pinned device won't be disabled on
966 * driver detach. @pdev must have been enabled with
967 * pcim_enable_device().
968 */
969 void pcim_pin_device(struct pci_dev *pdev)
970 {
971 struct pci_devres *dr;
972
973 dr = find_pci_dr(pdev);
974 WARN_ON(!dr || !dr->enabled);
975 if (dr)
976 dr->pinned = 1;
977 }
978
979 /**
980 * pcibios_disable_device - disable arch specific PCI resources for device dev
981 * @dev: the PCI device to disable
982 *
983 * Disables architecture specific PCI resources for the device. This
984 * is the default implementation. Architecture implementations can
985 * override this.
986 */
987 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
988
989 /**
990 * pci_disable_device - Disable PCI device after use
991 * @dev: PCI device to be disabled
992 *
993 * Signal to the system that the PCI device is not in use by the system
994 * anymore. This only involves disabling PCI bus-mastering, if active.
995 *
996 * Note we don't actually disable the device until all callers of
997 * pci_device_enable() have called pci_device_disable().
998 */
999 void
1000 pci_disable_device(struct pci_dev *dev)
1001 {
1002 struct pci_devres *dr;
1003 u16 pci_command;
1004
1005 dr = find_pci_dr(dev);
1006 if (dr)
1007 dr->enabled = 0;
1008
1009 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1010 return;
1011
1012 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1013 if (pci_command & PCI_COMMAND_MASTER) {
1014 pci_command &= ~PCI_COMMAND_MASTER;
1015 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1016 }
1017 dev->is_busmaster = 0;
1018
1019 pcibios_disable_device(dev);
1020 }
1021
1022 /**
1023 * pcibios_set_pcie_reset_state - set reset state for device dev
1024 * @dev: the PCI-E device reset
1025 * @state: Reset state to enter into
1026 *
1027 *
1028 * Sets the PCI-E reset state for the device. This is the default
1029 * implementation. Architecture implementations can override this.
1030 */
1031 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1032 enum pcie_reset_state state)
1033 {
1034 return -EINVAL;
1035 }
1036
1037 /**
1038 * pci_set_pcie_reset_state - set reset state for device dev
1039 * @dev: the PCI-E device reset
1040 * @state: Reset state to enter into
1041 *
1042 *
1043 * Sets the PCI reset state for the device.
1044 */
1045 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1046 {
1047 return pcibios_set_pcie_reset_state(dev, state);
1048 }
1049
1050 /**
1051 * pci_pme_capable - check the capability of PCI device to generate PME#
1052 * @dev: PCI device to handle.
1053 * @pm: PCI PM capability offset of the device.
1054 * @state: PCI state from which device will issue PME#.
1055 */
1056 static bool pci_pme_capable(struct pci_dev *dev, int pm, pci_power_t state)
1057 {
1058 u16 pmc;
1059
1060 if (!pm)
1061 return false;
1062
1063 /* Check device's ability to generate PME# from given state */
1064 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1065
1066 pmc &= PCI_PM_CAP_PME_MASK;
1067 pmc >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
1068
1069 return !!(pmc & (1 << state));
1070 }
1071
1072 /**
1073 * pci_pme_active - enable or disable PCI device's PME# function
1074 * @dev: PCI device to handle.
1075 * @pm: PCI PM capability offset of the device.
1076 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1077 *
1078 * The caller must verify that the device is capable of generating PME# before
1079 * calling this function with @enable equal to 'true'.
1080 */
1081 static void pci_pme_active(struct pci_dev *dev, int pm, bool enable)
1082 {
1083 u16 pmcsr;
1084
1085 if (!pm)
1086 return;
1087
1088 pci_read_config_word(dev, pm + PCI_PM_CTRL, &pmcsr);
1089 /* Clear PME_Status by writing 1 to it and enable PME# */
1090 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1091 if (!enable)
1092 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1093
1094 pci_write_config_word(dev, pm + PCI_PM_CTRL, pmcsr);
1095
1096 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1097 enable ? "enabled" : "disabled");
1098 }
1099
1100 /**
1101 * pci_enable_wake - enable PCI device as wakeup event source
1102 * @dev: PCI device affected
1103 * @state: PCI state from which device will issue wakeup events
1104 * @enable: True to enable event generation; false to disable
1105 *
1106 * This enables the device as a wakeup event source, or disables it.
1107 * When such events involves platform-specific hooks, those hooks are
1108 * called automatically by this routine.
1109 *
1110 * Devices with legacy power management (no standard PCI PM capabilities)
1111 * always require such platform hooks.
1112 *
1113 * RETURN VALUE:
1114 * 0 is returned on success
1115 * -EINVAL is returned if device is not supposed to wake up the system
1116 * Error code depending on the platform is returned if both the platform and
1117 * the native mechanism fail to enable the generation of wake-up events
1118 */
1119 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1120 {
1121 int pm;
1122 int error = 0;
1123 bool pme_done = false;
1124
1125 if (!device_may_wakeup(&dev->dev))
1126 return -EINVAL;
1127
1128 /*
1129 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1130 * Anderson we should be doing PME# wake enable followed by ACPI wake
1131 * enable. To disable wake-up we call the platform first, for symmetry.
1132 */
1133
1134 if (!enable && platform_pci_can_wakeup(dev))
1135 error = platform_pci_sleep_wake(dev, false);
1136
1137 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1138 if (!enable || pci_pme_capable(dev, pm, state)) {
1139 pci_pme_active(dev, pm, enable);
1140 pme_done = true;
1141 }
1142
1143 if (enable && platform_pci_can_wakeup(dev))
1144 error = platform_pci_sleep_wake(dev, true);
1145
1146 return pme_done ? 0 : error;
1147 }
1148
1149 /**
1150 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into
1151 * a sleep state
1152 * @dev: Device to handle.
1153 *
1154 * Choose the power state appropriate for the device depending on whether
1155 * it can wake up the system and/or is power manageable by the platform
1156 * (PCI_D3hot is the default) and put the device into that state.
1157 */
1158 int pci_prepare_to_sleep(struct pci_dev *dev)
1159 {
1160 pci_power_t target_state = PCI_D3hot;
1161 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1162 int error;
1163
1164 if (platform_pci_power_manageable(dev)) {
1165 /*
1166 * Call the platform to choose the target state of the device
1167 * and enable wake-up from this state if supported.
1168 */
1169 pci_power_t state = platform_pci_choose_state(dev);
1170
1171 switch (state) {
1172 case PCI_POWER_ERROR:
1173 case PCI_UNKNOWN:
1174 break;
1175 case PCI_D1:
1176 case PCI_D2:
1177 if (pci_no_d1d2(dev))
1178 break;
1179 default:
1180 target_state = state;
1181 pci_enable_wake(dev, target_state, true);
1182 }
1183 } else if (device_may_wakeup(&dev->dev)) {
1184 /*
1185 * Find the deepest state from which the device can generate
1186 * wake-up events, make it the target state and enable device
1187 * to generate PME#.
1188 */
1189 u16 pmc;
1190
1191 if (!pm)
1192 return -EIO;
1193
1194 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1195 if (pmc & PCI_PM_CAP_PME_MASK) {
1196 if (!(pmc & PCI_PM_CAP_PME_D3)) {
1197 /* Device cannot generate PME# from D3_hot */
1198 if (pmc & PCI_PM_CAP_PME_D2)
1199 target_state = PCI_D2;
1200 else if (pmc & PCI_PM_CAP_PME_D1)
1201 target_state = PCI_D1;
1202 else
1203 target_state = PCI_D0;
1204 }
1205 pci_pme_active(dev, pm, true);
1206 }
1207 }
1208
1209 error = pci_set_power_state(dev, target_state);
1210
1211 if (error)
1212 pci_enable_wake(dev, target_state, false);
1213
1214 return error;
1215 }
1216
1217 /**
1218 * pci_back_from_sleep - turn PCI device on during system-wide transition into
1219 * the working state a sleep state
1220 * @dev: Device to handle.
1221 *
1222 * Disable device's sytem wake-up capability and put it into D0.
1223 */
1224 int pci_back_from_sleep(struct pci_dev *dev)
1225 {
1226 pci_enable_wake(dev, PCI_D0, false);
1227 return pci_set_power_state(dev, PCI_D0);
1228 }
1229
1230 /**
1231 * pci_pm_init - Initialize PM functions of given PCI device
1232 * @dev: PCI device to handle.
1233 */
1234 void pci_pm_init(struct pci_dev *dev)
1235 {
1236 int pm;
1237 u16 pmc;
1238
1239 /* find PCI PM capability in list */
1240 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1241 if (!pm)
1242 return;
1243 /* Check device's ability to generate PME# */
1244 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1245
1246 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1247 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1248 pmc & PCI_PM_CAP_VER_MASK);
1249 return;
1250 }
1251
1252 if (pmc & PCI_PM_CAP_PME_MASK) {
1253 dev_printk(KERN_INFO, &dev->dev,
1254 "PME# supported from%s%s%s%s%s\n",
1255 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1256 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1257 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1258 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1259 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1260 /*
1261 * Make device's PM flags reflect the wake-up capability, but
1262 * let the user space enable it to wake up the system as needed.
1263 */
1264 device_set_wakeup_capable(&dev->dev, true);
1265 device_set_wakeup_enable(&dev->dev, false);
1266 /* Disable the PME# generation functionality */
1267 pci_pme_active(dev, pm, false);
1268 }
1269 }
1270
1271 int
1272 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1273 {
1274 u8 pin;
1275
1276 pin = dev->pin;
1277 if (!pin)
1278 return -1;
1279 pin--;
1280 while (dev->bus->self) {
1281 pin = (pin + PCI_SLOT(dev->devfn)) % 4;
1282 dev = dev->bus->self;
1283 }
1284 *bridge = dev;
1285 return pin;
1286 }
1287
1288 /**
1289 * pci_release_region - Release a PCI bar
1290 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1291 * @bar: BAR to release
1292 *
1293 * Releases the PCI I/O and memory resources previously reserved by a
1294 * successful call to pci_request_region. Call this function only
1295 * after all use of the PCI regions has ceased.
1296 */
1297 void pci_release_region(struct pci_dev *pdev, int bar)
1298 {
1299 struct pci_devres *dr;
1300
1301 if (pci_resource_len(pdev, bar) == 0)
1302 return;
1303 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1304 release_region(pci_resource_start(pdev, bar),
1305 pci_resource_len(pdev, bar));
1306 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1307 release_mem_region(pci_resource_start(pdev, bar),
1308 pci_resource_len(pdev, bar));
1309
1310 dr = find_pci_dr(pdev);
1311 if (dr)
1312 dr->region_mask &= ~(1 << bar);
1313 }
1314
1315 /**
1316 * pci_request_region - Reserved PCI I/O and memory resource
1317 * @pdev: PCI device whose resources are to be reserved
1318 * @bar: BAR to be reserved
1319 * @res_name: Name to be associated with resource.
1320 *
1321 * Mark the PCI region associated with PCI device @pdev BR @bar as
1322 * being reserved by owner @res_name. Do not access any
1323 * address inside the PCI regions unless this call returns
1324 * successfully.
1325 *
1326 * Returns 0 on success, or %EBUSY on error. A warning
1327 * message is also printed on failure.
1328 */
1329 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1330 {
1331 struct pci_devres *dr;
1332
1333 if (pci_resource_len(pdev, bar) == 0)
1334 return 0;
1335
1336 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1337 if (!request_region(pci_resource_start(pdev, bar),
1338 pci_resource_len(pdev, bar), res_name))
1339 goto err_out;
1340 }
1341 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1342 if (!request_mem_region(pci_resource_start(pdev, bar),
1343 pci_resource_len(pdev, bar), res_name))
1344 goto err_out;
1345 }
1346
1347 dr = find_pci_dr(pdev);
1348 if (dr)
1349 dr->region_mask |= 1 << bar;
1350
1351 return 0;
1352
1353 err_out:
1354 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region [%#llx-%#llx]\n",
1355 bar,
1356 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1357 (unsigned long long)pci_resource_start(pdev, bar),
1358 (unsigned long long)pci_resource_end(pdev, bar));
1359 return -EBUSY;
1360 }
1361
1362 /**
1363 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1364 * @pdev: PCI device whose resources were previously reserved
1365 * @bars: Bitmask of BARs to be released
1366 *
1367 * Release selected PCI I/O and memory resources previously reserved.
1368 * Call this function only after all use of the PCI regions has ceased.
1369 */
1370 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1371 {
1372 int i;
1373
1374 for (i = 0; i < 6; i++)
1375 if (bars & (1 << i))
1376 pci_release_region(pdev, i);
1377 }
1378
1379 /**
1380 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1381 * @pdev: PCI device whose resources are to be reserved
1382 * @bars: Bitmask of BARs to be requested
1383 * @res_name: Name to be associated with resource
1384 */
1385 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1386 const char *res_name)
1387 {
1388 int i;
1389
1390 for (i = 0; i < 6; i++)
1391 if (bars & (1 << i))
1392 if(pci_request_region(pdev, i, res_name))
1393 goto err_out;
1394 return 0;
1395
1396 err_out:
1397 while(--i >= 0)
1398 if (bars & (1 << i))
1399 pci_release_region(pdev, i);
1400
1401 return -EBUSY;
1402 }
1403
1404 /**
1405 * pci_release_regions - Release reserved PCI I/O and memory resources
1406 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1407 *
1408 * Releases all PCI I/O and memory resources previously reserved by a
1409 * successful call to pci_request_regions. Call this function only
1410 * after all use of the PCI regions has ceased.
1411 */
1412
1413 void pci_release_regions(struct pci_dev *pdev)
1414 {
1415 pci_release_selected_regions(pdev, (1 << 6) - 1);
1416 }
1417
1418 /**
1419 * pci_request_regions - Reserved PCI I/O and memory resources
1420 * @pdev: PCI device whose resources are to be reserved
1421 * @res_name: Name to be associated with resource.
1422 *
1423 * Mark all PCI regions associated with PCI device @pdev as
1424 * being reserved by owner @res_name. Do not access any
1425 * address inside the PCI regions unless this call returns
1426 * successfully.
1427 *
1428 * Returns 0 on success, or %EBUSY on error. A warning
1429 * message is also printed on failure.
1430 */
1431 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1432 {
1433 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1434 }
1435
1436 /**
1437 * pci_set_master - enables bus-mastering for device dev
1438 * @dev: the PCI device to enable
1439 *
1440 * Enables bus-mastering on the device and calls pcibios_set_master()
1441 * to do the needed arch specific settings.
1442 */
1443 void
1444 pci_set_master(struct pci_dev *dev)
1445 {
1446 u16 cmd;
1447
1448 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1449 if (! (cmd & PCI_COMMAND_MASTER)) {
1450 dev_dbg(&dev->dev, "enabling bus mastering\n");
1451 cmd |= PCI_COMMAND_MASTER;
1452 pci_write_config_word(dev, PCI_COMMAND, cmd);
1453 }
1454 dev->is_busmaster = 1;
1455 pcibios_set_master(dev);
1456 }
1457
1458 #ifdef PCI_DISABLE_MWI
1459 int pci_set_mwi(struct pci_dev *dev)
1460 {
1461 return 0;
1462 }
1463
1464 int pci_try_set_mwi(struct pci_dev *dev)
1465 {
1466 return 0;
1467 }
1468
1469 void pci_clear_mwi(struct pci_dev *dev)
1470 {
1471 }
1472
1473 #else
1474
1475 #ifndef PCI_CACHE_LINE_BYTES
1476 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1477 #endif
1478
1479 /* This can be overridden by arch code. */
1480 /* Don't forget this is measured in 32-bit words, not bytes */
1481 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1482
1483 /**
1484 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1485 * @dev: the PCI device for which MWI is to be enabled
1486 *
1487 * Helper function for pci_set_mwi.
1488 * Originally copied from drivers/net/acenic.c.
1489 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1490 *
1491 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1492 */
1493 static int
1494 pci_set_cacheline_size(struct pci_dev *dev)
1495 {
1496 u8 cacheline_size;
1497
1498 if (!pci_cache_line_size)
1499 return -EINVAL; /* The system doesn't support MWI. */
1500
1501 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1502 equal to or multiple of the right value. */
1503 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1504 if (cacheline_size >= pci_cache_line_size &&
1505 (cacheline_size % pci_cache_line_size) == 0)
1506 return 0;
1507
1508 /* Write the correct value. */
1509 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1510 /* Read it back. */
1511 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1512 if (cacheline_size == pci_cache_line_size)
1513 return 0;
1514
1515 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1516 "supported\n", pci_cache_line_size << 2);
1517
1518 return -EINVAL;
1519 }
1520
1521 /**
1522 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1523 * @dev: the PCI device for which MWI is enabled
1524 *
1525 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1526 *
1527 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1528 */
1529 int
1530 pci_set_mwi(struct pci_dev *dev)
1531 {
1532 int rc;
1533 u16 cmd;
1534
1535 rc = pci_set_cacheline_size(dev);
1536 if (rc)
1537 return rc;
1538
1539 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1540 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1541 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1542 cmd |= PCI_COMMAND_INVALIDATE;
1543 pci_write_config_word(dev, PCI_COMMAND, cmd);
1544 }
1545
1546 return 0;
1547 }
1548
1549 /**
1550 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1551 * @dev: the PCI device for which MWI is enabled
1552 *
1553 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1554 * Callers are not required to check the return value.
1555 *
1556 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1557 */
1558 int pci_try_set_mwi(struct pci_dev *dev)
1559 {
1560 int rc = pci_set_mwi(dev);
1561 return rc;
1562 }
1563
1564 /**
1565 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1566 * @dev: the PCI device to disable
1567 *
1568 * Disables PCI Memory-Write-Invalidate transaction on the device
1569 */
1570 void
1571 pci_clear_mwi(struct pci_dev *dev)
1572 {
1573 u16 cmd;
1574
1575 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1576 if (cmd & PCI_COMMAND_INVALIDATE) {
1577 cmd &= ~PCI_COMMAND_INVALIDATE;
1578 pci_write_config_word(dev, PCI_COMMAND, cmd);
1579 }
1580 }
1581 #endif /* ! PCI_DISABLE_MWI */
1582
1583 /**
1584 * pci_intx - enables/disables PCI INTx for device dev
1585 * @pdev: the PCI device to operate on
1586 * @enable: boolean: whether to enable or disable PCI INTx
1587 *
1588 * Enables/disables PCI INTx for device dev
1589 */
1590 void
1591 pci_intx(struct pci_dev *pdev, int enable)
1592 {
1593 u16 pci_command, new;
1594
1595 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1596
1597 if (enable) {
1598 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1599 } else {
1600 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1601 }
1602
1603 if (new != pci_command) {
1604 struct pci_devres *dr;
1605
1606 pci_write_config_word(pdev, PCI_COMMAND, new);
1607
1608 dr = find_pci_dr(pdev);
1609 if (dr && !dr->restore_intx) {
1610 dr->restore_intx = 1;
1611 dr->orig_intx = !enable;
1612 }
1613 }
1614 }
1615
1616 /**
1617 * pci_msi_off - disables any msi or msix capabilities
1618 * @dev: the PCI device to operate on
1619 *
1620 * If you want to use msi see pci_enable_msi and friends.
1621 * This is a lower level primitive that allows us to disable
1622 * msi operation at the device level.
1623 */
1624 void pci_msi_off(struct pci_dev *dev)
1625 {
1626 int pos;
1627 u16 control;
1628
1629 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1630 if (pos) {
1631 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1632 control &= ~PCI_MSI_FLAGS_ENABLE;
1633 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1634 }
1635 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1636 if (pos) {
1637 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1638 control &= ~PCI_MSIX_FLAGS_ENABLE;
1639 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1640 }
1641 }
1642
1643 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1644 /*
1645 * These can be overridden by arch-specific implementations
1646 */
1647 int
1648 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1649 {
1650 if (!pci_dma_supported(dev, mask))
1651 return -EIO;
1652
1653 dev->dma_mask = mask;
1654
1655 return 0;
1656 }
1657
1658 int
1659 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1660 {
1661 if (!pci_dma_supported(dev, mask))
1662 return -EIO;
1663
1664 dev->dev.coherent_dma_mask = mask;
1665
1666 return 0;
1667 }
1668 #endif
1669
1670 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1671 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1672 {
1673 return dma_set_max_seg_size(&dev->dev, size);
1674 }
1675 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1676 #endif
1677
1678 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1679 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1680 {
1681 return dma_set_seg_boundary(&dev->dev, mask);
1682 }
1683 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1684 #endif
1685
1686 /**
1687 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
1688 * @dev: PCI device to query
1689 *
1690 * Returns mmrbc: maximum designed memory read count in bytes
1691 * or appropriate error value.
1692 */
1693 int pcix_get_max_mmrbc(struct pci_dev *dev)
1694 {
1695 int err, cap;
1696 u32 stat;
1697
1698 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1699 if (!cap)
1700 return -EINVAL;
1701
1702 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
1703 if (err)
1704 return -EINVAL;
1705
1706 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
1707 }
1708 EXPORT_SYMBOL(pcix_get_max_mmrbc);
1709
1710 /**
1711 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
1712 * @dev: PCI device to query
1713 *
1714 * Returns mmrbc: maximum memory read count in bytes
1715 * or appropriate error value.
1716 */
1717 int pcix_get_mmrbc(struct pci_dev *dev)
1718 {
1719 int ret, cap;
1720 u32 cmd;
1721
1722 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1723 if (!cap)
1724 return -EINVAL;
1725
1726 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
1727 if (!ret)
1728 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
1729
1730 return ret;
1731 }
1732 EXPORT_SYMBOL(pcix_get_mmrbc);
1733
1734 /**
1735 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
1736 * @dev: PCI device to query
1737 * @mmrbc: maximum memory read count in bytes
1738 * valid values are 512, 1024, 2048, 4096
1739 *
1740 * If possible sets maximum memory read byte count, some bridges have erratas
1741 * that prevent this.
1742 */
1743 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
1744 {
1745 int cap, err = -EINVAL;
1746 u32 stat, cmd, v, o;
1747
1748 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
1749 goto out;
1750
1751 v = ffs(mmrbc) - 10;
1752
1753 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1754 if (!cap)
1755 goto out;
1756
1757 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
1758 if (err)
1759 goto out;
1760
1761 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
1762 return -E2BIG;
1763
1764 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
1765 if (err)
1766 goto out;
1767
1768 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
1769 if (o != v) {
1770 if (v > o && dev->bus &&
1771 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
1772 return -EIO;
1773
1774 cmd &= ~PCI_X_CMD_MAX_READ;
1775 cmd |= v << 2;
1776 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
1777 }
1778 out:
1779 return err;
1780 }
1781 EXPORT_SYMBOL(pcix_set_mmrbc);
1782
1783 /**
1784 * pcie_get_readrq - get PCI Express read request size
1785 * @dev: PCI device to query
1786 *
1787 * Returns maximum memory read request in bytes
1788 * or appropriate error value.
1789 */
1790 int pcie_get_readrq(struct pci_dev *dev)
1791 {
1792 int ret, cap;
1793 u16 ctl;
1794
1795 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
1796 if (!cap)
1797 return -EINVAL;
1798
1799 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
1800 if (!ret)
1801 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
1802
1803 return ret;
1804 }
1805 EXPORT_SYMBOL(pcie_get_readrq);
1806
1807 /**
1808 * pcie_set_readrq - set PCI Express maximum memory read request
1809 * @dev: PCI device to query
1810 * @rq: maximum memory read count in bytes
1811 * valid values are 128, 256, 512, 1024, 2048, 4096
1812 *
1813 * If possible sets maximum read byte count
1814 */
1815 int pcie_set_readrq(struct pci_dev *dev, int rq)
1816 {
1817 int cap, err = -EINVAL;
1818 u16 ctl, v;
1819
1820 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
1821 goto out;
1822
1823 v = (ffs(rq) - 8) << 12;
1824
1825 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
1826 if (!cap)
1827 goto out;
1828
1829 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
1830 if (err)
1831 goto out;
1832
1833 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
1834 ctl &= ~PCI_EXP_DEVCTL_READRQ;
1835 ctl |= v;
1836 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
1837 }
1838
1839 out:
1840 return err;
1841 }
1842 EXPORT_SYMBOL(pcie_set_readrq);
1843
1844 /**
1845 * pci_select_bars - Make BAR mask from the type of resource
1846 * @dev: the PCI device for which BAR mask is made
1847 * @flags: resource type mask to be selected
1848 *
1849 * This helper routine makes bar mask from the type of resource.
1850 */
1851 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
1852 {
1853 int i, bars = 0;
1854 for (i = 0; i < PCI_NUM_RESOURCES; i++)
1855 if (pci_resource_flags(dev, i) & flags)
1856 bars |= (1 << i);
1857 return bars;
1858 }
1859
1860 static void __devinit pci_no_domains(void)
1861 {
1862 #ifdef CONFIG_PCI_DOMAINS
1863 pci_domains_supported = 0;
1864 #endif
1865 }
1866
1867 static int __devinit pci_init(void)
1868 {
1869 struct pci_dev *dev = NULL;
1870
1871 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1872 pci_fixup_device(pci_fixup_final, dev);
1873 }
1874 return 0;
1875 }
1876
1877 static int __devinit pci_setup(char *str)
1878 {
1879 while (str) {
1880 char *k = strchr(str, ',');
1881 if (k)
1882 *k++ = 0;
1883 if (*str && (str = pcibios_setup(str)) && *str) {
1884 if (!strcmp(str, "nomsi")) {
1885 pci_no_msi();
1886 } else if (!strcmp(str, "noaer")) {
1887 pci_no_aer();
1888 } else if (!strcmp(str, "nodomains")) {
1889 pci_no_domains();
1890 } else if (!strncmp(str, "cbiosize=", 9)) {
1891 pci_cardbus_io_size = memparse(str + 9, &str);
1892 } else if (!strncmp(str, "cbmemsize=", 10)) {
1893 pci_cardbus_mem_size = memparse(str + 10, &str);
1894 } else {
1895 printk(KERN_ERR "PCI: Unknown option `%s'\n",
1896 str);
1897 }
1898 }
1899 str = k;
1900 }
1901 return 0;
1902 }
1903 early_param("pci", pci_setup);
1904
1905 device_initcall(pci_init);
1906
1907 EXPORT_SYMBOL(pci_reenable_device);
1908 EXPORT_SYMBOL(pci_enable_device_io);
1909 EXPORT_SYMBOL(pci_enable_device_mem);
1910 EXPORT_SYMBOL(pci_enable_device);
1911 EXPORT_SYMBOL(pcim_enable_device);
1912 EXPORT_SYMBOL(pcim_pin_device);
1913 EXPORT_SYMBOL(pci_disable_device);
1914 EXPORT_SYMBOL(pci_find_capability);
1915 EXPORT_SYMBOL(pci_bus_find_capability);
1916 EXPORT_SYMBOL(pci_release_regions);
1917 EXPORT_SYMBOL(pci_request_regions);
1918 EXPORT_SYMBOL(pci_release_region);
1919 EXPORT_SYMBOL(pci_request_region);
1920 EXPORT_SYMBOL(pci_release_selected_regions);
1921 EXPORT_SYMBOL(pci_request_selected_regions);
1922 EXPORT_SYMBOL(pci_set_master);
1923 EXPORT_SYMBOL(pci_set_mwi);
1924 EXPORT_SYMBOL(pci_try_set_mwi);
1925 EXPORT_SYMBOL(pci_clear_mwi);
1926 EXPORT_SYMBOL_GPL(pci_intx);
1927 EXPORT_SYMBOL(pci_set_dma_mask);
1928 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
1929 EXPORT_SYMBOL(pci_assign_resource);
1930 EXPORT_SYMBOL(pci_find_parent_resource);
1931 EXPORT_SYMBOL(pci_select_bars);
1932
1933 EXPORT_SYMBOL(pci_set_power_state);
1934 EXPORT_SYMBOL(pci_save_state);
1935 EXPORT_SYMBOL(pci_restore_state);
1936 EXPORT_SYMBOL(pci_enable_wake);
1937 EXPORT_SYMBOL(pci_prepare_to_sleep);
1938 EXPORT_SYMBOL(pci_back_from_sleep);
1939 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1940
This page took 0.09588 seconds and 6 git commands to generate.