Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide-next-2.6
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <linux/device.h>
23 #include <linux/pm_runtime.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 int isa_dma_bridge_buggy;
33 EXPORT_SYMBOL(isa_dma_bridge_buggy);
34
35 int pci_pci_problems;
36 EXPORT_SYMBOL(pci_pci_problems);
37
38 unsigned int pci_pm_d3_delay;
39
40 static void pci_dev_d3_sleep(struct pci_dev *dev)
41 {
42 unsigned int delay = dev->d3_delay;
43
44 if (delay < pci_pm_d3_delay)
45 delay = pci_pm_d3_delay;
46
47 msleep(delay);
48 }
49
50 #ifdef CONFIG_PCI_DOMAINS
51 int pci_domains_supported = 1;
52 #endif
53
54 #define DEFAULT_CARDBUS_IO_SIZE (256)
55 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
56 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
57 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
58 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
59
60 #define DEFAULT_HOTPLUG_IO_SIZE (256)
61 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
62 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
63 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
64 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
65
66 /*
67 * The default CLS is used if arch didn't set CLS explicitly and not
68 * all pci devices agree on the same value. Arch can override either
69 * the dfl or actual value as it sees fit. Don't forget this is
70 * measured in 32-bit words, not bytes.
71 */
72 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
73 u8 pci_cache_line_size;
74
75 /**
76 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
77 * @bus: pointer to PCI bus structure to search
78 *
79 * Given a PCI bus, returns the highest PCI bus number present in the set
80 * including the given PCI bus and its list of child PCI buses.
81 */
82 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
83 {
84 struct list_head *tmp;
85 unsigned char max, n;
86
87 max = bus->subordinate;
88 list_for_each(tmp, &bus->children) {
89 n = pci_bus_max_busnr(pci_bus_b(tmp));
90 if(n > max)
91 max = n;
92 }
93 return max;
94 }
95 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
96
97 #ifdef CONFIG_HAS_IOMEM
98 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
99 {
100 /*
101 * Make sure the BAR is actually a memory resource, not an IO resource
102 */
103 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
104 WARN_ON(1);
105 return NULL;
106 }
107 return ioremap_nocache(pci_resource_start(pdev, bar),
108 pci_resource_len(pdev, bar));
109 }
110 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
111 #endif
112
113 #if 0
114 /**
115 * pci_max_busnr - returns maximum PCI bus number
116 *
117 * Returns the highest PCI bus number present in the system global list of
118 * PCI buses.
119 */
120 unsigned char __devinit
121 pci_max_busnr(void)
122 {
123 struct pci_bus *bus = NULL;
124 unsigned char max, n;
125
126 max = 0;
127 while ((bus = pci_find_next_bus(bus)) != NULL) {
128 n = pci_bus_max_busnr(bus);
129 if(n > max)
130 max = n;
131 }
132 return max;
133 }
134
135 #endif /* 0 */
136
137 #define PCI_FIND_CAP_TTL 48
138
139 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
140 u8 pos, int cap, int *ttl)
141 {
142 u8 id;
143
144 while ((*ttl)--) {
145 pci_bus_read_config_byte(bus, devfn, pos, &pos);
146 if (pos < 0x40)
147 break;
148 pos &= ~3;
149 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
150 &id);
151 if (id == 0xff)
152 break;
153 if (id == cap)
154 return pos;
155 pos += PCI_CAP_LIST_NEXT;
156 }
157 return 0;
158 }
159
160 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
161 u8 pos, int cap)
162 {
163 int ttl = PCI_FIND_CAP_TTL;
164
165 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
166 }
167
168 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
169 {
170 return __pci_find_next_cap(dev->bus, dev->devfn,
171 pos + PCI_CAP_LIST_NEXT, cap);
172 }
173 EXPORT_SYMBOL_GPL(pci_find_next_capability);
174
175 static int __pci_bus_find_cap_start(struct pci_bus *bus,
176 unsigned int devfn, u8 hdr_type)
177 {
178 u16 status;
179
180 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
181 if (!(status & PCI_STATUS_CAP_LIST))
182 return 0;
183
184 switch (hdr_type) {
185 case PCI_HEADER_TYPE_NORMAL:
186 case PCI_HEADER_TYPE_BRIDGE:
187 return PCI_CAPABILITY_LIST;
188 case PCI_HEADER_TYPE_CARDBUS:
189 return PCI_CB_CAPABILITY_LIST;
190 default:
191 return 0;
192 }
193
194 return 0;
195 }
196
197 /**
198 * pci_find_capability - query for devices' capabilities
199 * @dev: PCI device to query
200 * @cap: capability code
201 *
202 * Tell if a device supports a given PCI capability.
203 * Returns the address of the requested capability structure within the
204 * device's PCI configuration space or 0 in case the device does not
205 * support it. Possible values for @cap:
206 *
207 * %PCI_CAP_ID_PM Power Management
208 * %PCI_CAP_ID_AGP Accelerated Graphics Port
209 * %PCI_CAP_ID_VPD Vital Product Data
210 * %PCI_CAP_ID_SLOTID Slot Identification
211 * %PCI_CAP_ID_MSI Message Signalled Interrupts
212 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
213 * %PCI_CAP_ID_PCIX PCI-X
214 * %PCI_CAP_ID_EXP PCI Express
215 */
216 int pci_find_capability(struct pci_dev *dev, int cap)
217 {
218 int pos;
219
220 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
221 if (pos)
222 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
223
224 return pos;
225 }
226
227 /**
228 * pci_bus_find_capability - query for devices' capabilities
229 * @bus: the PCI bus to query
230 * @devfn: PCI device to query
231 * @cap: capability code
232 *
233 * Like pci_find_capability() but works for pci devices that do not have a
234 * pci_dev structure set up yet.
235 *
236 * Returns the address of the requested capability structure within the
237 * device's PCI configuration space or 0 in case the device does not
238 * support it.
239 */
240 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
241 {
242 int pos;
243 u8 hdr_type;
244
245 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
246
247 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
248 if (pos)
249 pos = __pci_find_next_cap(bus, devfn, pos, cap);
250
251 return pos;
252 }
253
254 /**
255 * pci_find_ext_capability - Find an extended capability
256 * @dev: PCI device to query
257 * @cap: capability code
258 *
259 * Returns the address of the requested extended capability structure
260 * within the device's PCI configuration space or 0 if the device does
261 * not support it. Possible values for @cap:
262 *
263 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
264 * %PCI_EXT_CAP_ID_VC Virtual Channel
265 * %PCI_EXT_CAP_ID_DSN Device Serial Number
266 * %PCI_EXT_CAP_ID_PWR Power Budgeting
267 */
268 int pci_find_ext_capability(struct pci_dev *dev, int cap)
269 {
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
281 return 0;
282
283 /*
284 * If we have no capabilities, this is indicated by cap ID,
285 * cap version and next pointer all being 0.
286 */
287 if (header == 0)
288 return 0;
289
290 while (ttl-- > 0) {
291 if (PCI_EXT_CAP_ID(header) == cap)
292 return pos;
293
294 pos = PCI_EXT_CAP_NEXT(header);
295 if (pos < PCI_CFG_SPACE_SIZE)
296 break;
297
298 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
299 break;
300 }
301
302 return 0;
303 }
304 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
305
306 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
307 {
308 int rc, ttl = PCI_FIND_CAP_TTL;
309 u8 cap, mask;
310
311 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
312 mask = HT_3BIT_CAP_MASK;
313 else
314 mask = HT_5BIT_CAP_MASK;
315
316 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
317 PCI_CAP_ID_HT, &ttl);
318 while (pos) {
319 rc = pci_read_config_byte(dev, pos + 3, &cap);
320 if (rc != PCIBIOS_SUCCESSFUL)
321 return 0;
322
323 if ((cap & mask) == ht_cap)
324 return pos;
325
326 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
327 pos + PCI_CAP_LIST_NEXT,
328 PCI_CAP_ID_HT, &ttl);
329 }
330
331 return 0;
332 }
333 /**
334 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
335 * @dev: PCI device to query
336 * @pos: Position from which to continue searching
337 * @ht_cap: Hypertransport capability code
338 *
339 * To be used in conjunction with pci_find_ht_capability() to search for
340 * all capabilities matching @ht_cap. @pos should always be a value returned
341 * from pci_find_ht_capability().
342 *
343 * NB. To be 100% safe against broken PCI devices, the caller should take
344 * steps to avoid an infinite loop.
345 */
346 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
347 {
348 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
349 }
350 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
351
352 /**
353 * pci_find_ht_capability - query a device's Hypertransport capabilities
354 * @dev: PCI device to query
355 * @ht_cap: Hypertransport capability code
356 *
357 * Tell if a device supports a given Hypertransport capability.
358 * Returns an address within the device's PCI configuration space
359 * or 0 in case the device does not support the request capability.
360 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
361 * which has a Hypertransport capability matching @ht_cap.
362 */
363 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
364 {
365 int pos;
366
367 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
368 if (pos)
369 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
370
371 return pos;
372 }
373 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
374
375 /**
376 * pci_find_parent_resource - return resource region of parent bus of given region
377 * @dev: PCI device structure contains resources to be searched
378 * @res: child resource record for which parent is sought
379 *
380 * For given resource region of given device, return the resource
381 * region of parent bus the given region is contained in or where
382 * it should be allocated from.
383 */
384 struct resource *
385 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
386 {
387 const struct pci_bus *bus = dev->bus;
388 int i;
389 struct resource *best = NULL, *r;
390
391 pci_bus_for_each_resource(bus, r, i) {
392 if (!r)
393 continue;
394 if (res->start && !(res->start >= r->start && res->end <= r->end))
395 continue; /* Not contained */
396 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
397 continue; /* Wrong type */
398 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
399 return r; /* Exact match */
400 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
401 if (r->flags & IORESOURCE_PREFETCH)
402 continue;
403 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
404 if (!best)
405 best = r;
406 }
407 return best;
408 }
409
410 /**
411 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
412 * @dev: PCI device to have its BARs restored
413 *
414 * Restore the BAR values for a given device, so as to make it
415 * accessible by its driver.
416 */
417 static void
418 pci_restore_bars(struct pci_dev *dev)
419 {
420 int i;
421
422 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
423 pci_update_resource(dev, i);
424 }
425
426 static struct pci_platform_pm_ops *pci_platform_pm;
427
428 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
429 {
430 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
431 || !ops->sleep_wake || !ops->can_wakeup)
432 return -EINVAL;
433 pci_platform_pm = ops;
434 return 0;
435 }
436
437 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
438 {
439 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
440 }
441
442 static inline int platform_pci_set_power_state(struct pci_dev *dev,
443 pci_power_t t)
444 {
445 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
446 }
447
448 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
449 {
450 return pci_platform_pm ?
451 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
452 }
453
454 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
455 {
456 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
457 }
458
459 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
460 {
461 return pci_platform_pm ?
462 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
463 }
464
465 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
466 {
467 return pci_platform_pm ?
468 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
469 }
470
471 /**
472 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
473 * given PCI device
474 * @dev: PCI device to handle.
475 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
476 *
477 * RETURN VALUE:
478 * -EINVAL if the requested state is invalid.
479 * -EIO if device does not support PCI PM or its PM capabilities register has a
480 * wrong version, or device doesn't support the requested state.
481 * 0 if device already is in the requested state.
482 * 0 if device's power state has been successfully changed.
483 */
484 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
485 {
486 u16 pmcsr;
487 bool need_restore = false;
488
489 /* Check if we're already there */
490 if (dev->current_state == state)
491 return 0;
492
493 if (!dev->pm_cap)
494 return -EIO;
495
496 if (state < PCI_D0 || state > PCI_D3hot)
497 return -EINVAL;
498
499 /* Validate current state:
500 * Can enter D0 from any state, but if we can only go deeper
501 * to sleep if we're already in a low power state
502 */
503 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
504 && dev->current_state > state) {
505 dev_err(&dev->dev, "invalid power transition "
506 "(from state %d to %d)\n", dev->current_state, state);
507 return -EINVAL;
508 }
509
510 /* check if this device supports the desired state */
511 if ((state == PCI_D1 && !dev->d1_support)
512 || (state == PCI_D2 && !dev->d2_support))
513 return -EIO;
514
515 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
516
517 /* If we're (effectively) in D3, force entire word to 0.
518 * This doesn't affect PME_Status, disables PME_En, and
519 * sets PowerState to 0.
520 */
521 switch (dev->current_state) {
522 case PCI_D0:
523 case PCI_D1:
524 case PCI_D2:
525 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
526 pmcsr |= state;
527 break;
528 case PCI_D3hot:
529 case PCI_D3cold:
530 case PCI_UNKNOWN: /* Boot-up */
531 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
532 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
533 need_restore = true;
534 /* Fall-through: force to D0 */
535 default:
536 pmcsr = 0;
537 break;
538 }
539
540 /* enter specified state */
541 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
542
543 /* Mandatory power management transition delays */
544 /* see PCI PM 1.1 5.6.1 table 18 */
545 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
546 pci_dev_d3_sleep(dev);
547 else if (state == PCI_D2 || dev->current_state == PCI_D2)
548 udelay(PCI_PM_D2_DELAY);
549
550 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
551 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
552 if (dev->current_state != state && printk_ratelimit())
553 dev_info(&dev->dev, "Refused to change power state, "
554 "currently in D%d\n", dev->current_state);
555
556 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
557 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
558 * from D3hot to D0 _may_ perform an internal reset, thereby
559 * going to "D0 Uninitialized" rather than "D0 Initialized".
560 * For example, at least some versions of the 3c905B and the
561 * 3c556B exhibit this behaviour.
562 *
563 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
564 * devices in a D3hot state at boot. Consequently, we need to
565 * restore at least the BARs so that the device will be
566 * accessible to its driver.
567 */
568 if (need_restore)
569 pci_restore_bars(dev);
570
571 if (dev->bus->self)
572 pcie_aspm_pm_state_change(dev->bus->self);
573
574 return 0;
575 }
576
577 /**
578 * pci_update_current_state - Read PCI power state of given device from its
579 * PCI PM registers and cache it
580 * @dev: PCI device to handle.
581 * @state: State to cache in case the device doesn't have the PM capability
582 */
583 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
584 {
585 if (dev->pm_cap) {
586 u16 pmcsr;
587
588 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
589 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
590 } else {
591 dev->current_state = state;
592 }
593 }
594
595 /**
596 * pci_platform_power_transition - Use platform to change device power state
597 * @dev: PCI device to handle.
598 * @state: State to put the device into.
599 */
600 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
601 {
602 int error;
603
604 if (platform_pci_power_manageable(dev)) {
605 error = platform_pci_set_power_state(dev, state);
606 if (!error)
607 pci_update_current_state(dev, state);
608 } else {
609 error = -ENODEV;
610 /* Fall back to PCI_D0 if native PM is not supported */
611 if (!dev->pm_cap)
612 dev->current_state = PCI_D0;
613 }
614
615 return error;
616 }
617
618 /**
619 * __pci_start_power_transition - Start power transition of a PCI device
620 * @dev: PCI device to handle.
621 * @state: State to put the device into.
622 */
623 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
624 {
625 if (state == PCI_D0)
626 pci_platform_power_transition(dev, PCI_D0);
627 }
628
629 /**
630 * __pci_complete_power_transition - Complete power transition of a PCI device
631 * @dev: PCI device to handle.
632 * @state: State to put the device into.
633 *
634 * This function should not be called directly by device drivers.
635 */
636 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
637 {
638 return state > PCI_D0 ?
639 pci_platform_power_transition(dev, state) : -EINVAL;
640 }
641 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
642
643 /**
644 * pci_set_power_state - Set the power state of a PCI device
645 * @dev: PCI device to handle.
646 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
647 *
648 * Transition a device to a new power state, using the platform firmware and/or
649 * the device's PCI PM registers.
650 *
651 * RETURN VALUE:
652 * -EINVAL if the requested state is invalid.
653 * -EIO if device does not support PCI PM or its PM capabilities register has a
654 * wrong version, or device doesn't support the requested state.
655 * 0 if device already is in the requested state.
656 * 0 if device's power state has been successfully changed.
657 */
658 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
659 {
660 int error;
661
662 /* bound the state we're entering */
663 if (state > PCI_D3hot)
664 state = PCI_D3hot;
665 else if (state < PCI_D0)
666 state = PCI_D0;
667 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
668 /*
669 * If the device or the parent bridge do not support PCI PM,
670 * ignore the request if we're doing anything other than putting
671 * it into D0 (which would only happen on boot).
672 */
673 return 0;
674
675 /* Check if we're already there */
676 if (dev->current_state == state)
677 return 0;
678
679 __pci_start_power_transition(dev, state);
680
681 /* This device is quirked not to be put into D3, so
682 don't put it in D3 */
683 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
684 return 0;
685
686 error = pci_raw_set_power_state(dev, state);
687
688 if (!__pci_complete_power_transition(dev, state))
689 error = 0;
690
691 return error;
692 }
693
694 /**
695 * pci_choose_state - Choose the power state of a PCI device
696 * @dev: PCI device to be suspended
697 * @state: target sleep state for the whole system. This is the value
698 * that is passed to suspend() function.
699 *
700 * Returns PCI power state suitable for given device and given system
701 * message.
702 */
703
704 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
705 {
706 pci_power_t ret;
707
708 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
709 return PCI_D0;
710
711 ret = platform_pci_choose_state(dev);
712 if (ret != PCI_POWER_ERROR)
713 return ret;
714
715 switch (state.event) {
716 case PM_EVENT_ON:
717 return PCI_D0;
718 case PM_EVENT_FREEZE:
719 case PM_EVENT_PRETHAW:
720 /* REVISIT both freeze and pre-thaw "should" use D0 */
721 case PM_EVENT_SUSPEND:
722 case PM_EVENT_HIBERNATE:
723 return PCI_D3hot;
724 default:
725 dev_info(&dev->dev, "unrecognized suspend event %d\n",
726 state.event);
727 BUG();
728 }
729 return PCI_D0;
730 }
731
732 EXPORT_SYMBOL(pci_choose_state);
733
734 #define PCI_EXP_SAVE_REGS 7
735
736 #define pcie_cap_has_devctl(type, flags) 1
737 #define pcie_cap_has_lnkctl(type, flags) \
738 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
739 (type == PCI_EXP_TYPE_ROOT_PORT || \
740 type == PCI_EXP_TYPE_ENDPOINT || \
741 type == PCI_EXP_TYPE_LEG_END))
742 #define pcie_cap_has_sltctl(type, flags) \
743 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
744 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
745 (type == PCI_EXP_TYPE_DOWNSTREAM && \
746 (flags & PCI_EXP_FLAGS_SLOT))))
747 #define pcie_cap_has_rtctl(type, flags) \
748 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
749 (type == PCI_EXP_TYPE_ROOT_PORT || \
750 type == PCI_EXP_TYPE_RC_EC))
751 #define pcie_cap_has_devctl2(type, flags) \
752 ((flags & PCI_EXP_FLAGS_VERS) > 1)
753 #define pcie_cap_has_lnkctl2(type, flags) \
754 ((flags & PCI_EXP_FLAGS_VERS) > 1)
755 #define pcie_cap_has_sltctl2(type, flags) \
756 ((flags & PCI_EXP_FLAGS_VERS) > 1)
757
758 static int pci_save_pcie_state(struct pci_dev *dev)
759 {
760 int pos, i = 0;
761 struct pci_cap_saved_state *save_state;
762 u16 *cap;
763 u16 flags;
764
765 pos = pci_pcie_cap(dev);
766 if (!pos)
767 return 0;
768
769 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
770 if (!save_state) {
771 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
772 return -ENOMEM;
773 }
774 cap = (u16 *)&save_state->data[0];
775
776 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
777
778 if (pcie_cap_has_devctl(dev->pcie_type, flags))
779 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
780 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
781 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
782 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
783 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
784 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
785 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
786 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
787 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
788 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
789 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
790 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
791 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
792
793 return 0;
794 }
795
796 static void pci_restore_pcie_state(struct pci_dev *dev)
797 {
798 int i = 0, pos;
799 struct pci_cap_saved_state *save_state;
800 u16 *cap;
801 u16 flags;
802
803 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
804 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
805 if (!save_state || pos <= 0)
806 return;
807 cap = (u16 *)&save_state->data[0];
808
809 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
810
811 if (pcie_cap_has_devctl(dev->pcie_type, flags))
812 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
813 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
814 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
815 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
816 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
817 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
818 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
819 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
820 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
821 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
822 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
823 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
824 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
825 }
826
827
828 static int pci_save_pcix_state(struct pci_dev *dev)
829 {
830 int pos;
831 struct pci_cap_saved_state *save_state;
832
833 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
834 if (pos <= 0)
835 return 0;
836
837 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
838 if (!save_state) {
839 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
840 return -ENOMEM;
841 }
842
843 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
844
845 return 0;
846 }
847
848 static void pci_restore_pcix_state(struct pci_dev *dev)
849 {
850 int i = 0, pos;
851 struct pci_cap_saved_state *save_state;
852 u16 *cap;
853
854 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
855 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
856 if (!save_state || pos <= 0)
857 return;
858 cap = (u16 *)&save_state->data[0];
859
860 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
861 }
862
863
864 /**
865 * pci_save_state - save the PCI configuration space of a device before suspending
866 * @dev: - PCI device that we're dealing with
867 */
868 int
869 pci_save_state(struct pci_dev *dev)
870 {
871 int i;
872 /* XXX: 100% dword access ok here? */
873 for (i = 0; i < 16; i++)
874 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
875 dev->state_saved = true;
876 if ((i = pci_save_pcie_state(dev)) != 0)
877 return i;
878 if ((i = pci_save_pcix_state(dev)) != 0)
879 return i;
880 return 0;
881 }
882
883 /**
884 * pci_restore_state - Restore the saved state of a PCI device
885 * @dev: - PCI device that we're dealing with
886 */
887 int
888 pci_restore_state(struct pci_dev *dev)
889 {
890 int i;
891 u32 val;
892
893 if (!dev->state_saved)
894 return 0;
895
896 /* PCI Express register must be restored first */
897 pci_restore_pcie_state(dev);
898
899 /*
900 * The Base Address register should be programmed before the command
901 * register(s)
902 */
903 for (i = 15; i >= 0; i--) {
904 pci_read_config_dword(dev, i * 4, &val);
905 if (val != dev->saved_config_space[i]) {
906 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
907 "space at offset %#x (was %#x, writing %#x)\n",
908 i, val, (int)dev->saved_config_space[i]);
909 pci_write_config_dword(dev,i * 4,
910 dev->saved_config_space[i]);
911 }
912 }
913 pci_restore_pcix_state(dev);
914 pci_restore_msi_state(dev);
915 pci_restore_iov_state(dev);
916
917 dev->state_saved = false;
918
919 return 0;
920 }
921
922 static int do_pci_enable_device(struct pci_dev *dev, int bars)
923 {
924 int err;
925
926 err = pci_set_power_state(dev, PCI_D0);
927 if (err < 0 && err != -EIO)
928 return err;
929 err = pcibios_enable_device(dev, bars);
930 if (err < 0)
931 return err;
932 pci_fixup_device(pci_fixup_enable, dev);
933
934 return 0;
935 }
936
937 /**
938 * pci_reenable_device - Resume abandoned device
939 * @dev: PCI device to be resumed
940 *
941 * Note this function is a backend of pci_default_resume and is not supposed
942 * to be called by normal code, write proper resume handler and use it instead.
943 */
944 int pci_reenable_device(struct pci_dev *dev)
945 {
946 if (pci_is_enabled(dev))
947 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
948 return 0;
949 }
950
951 static int __pci_enable_device_flags(struct pci_dev *dev,
952 resource_size_t flags)
953 {
954 int err;
955 int i, bars = 0;
956
957 if (atomic_add_return(1, &dev->enable_cnt) > 1)
958 return 0; /* already enabled */
959
960 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
961 if (dev->resource[i].flags & flags)
962 bars |= (1 << i);
963
964 err = do_pci_enable_device(dev, bars);
965 if (err < 0)
966 atomic_dec(&dev->enable_cnt);
967 return err;
968 }
969
970 /**
971 * pci_enable_device_io - Initialize a device for use with IO space
972 * @dev: PCI device to be initialized
973 *
974 * Initialize device before it's used by a driver. Ask low-level code
975 * to enable I/O resources. Wake up the device if it was suspended.
976 * Beware, this function can fail.
977 */
978 int pci_enable_device_io(struct pci_dev *dev)
979 {
980 return __pci_enable_device_flags(dev, IORESOURCE_IO);
981 }
982
983 /**
984 * pci_enable_device_mem - Initialize a device for use with Memory space
985 * @dev: PCI device to be initialized
986 *
987 * Initialize device before it's used by a driver. Ask low-level code
988 * to enable Memory resources. Wake up the device if it was suspended.
989 * Beware, this function can fail.
990 */
991 int pci_enable_device_mem(struct pci_dev *dev)
992 {
993 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
994 }
995
996 /**
997 * pci_enable_device - Initialize device before it's used by a driver.
998 * @dev: PCI device to be initialized
999 *
1000 * Initialize device before it's used by a driver. Ask low-level code
1001 * to enable I/O and memory. Wake up the device if it was suspended.
1002 * Beware, this function can fail.
1003 *
1004 * Note we don't actually enable the device many times if we call
1005 * this function repeatedly (we just increment the count).
1006 */
1007 int pci_enable_device(struct pci_dev *dev)
1008 {
1009 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1010 }
1011
1012 /*
1013 * Managed PCI resources. This manages device on/off, intx/msi/msix
1014 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1015 * there's no need to track it separately. pci_devres is initialized
1016 * when a device is enabled using managed PCI device enable interface.
1017 */
1018 struct pci_devres {
1019 unsigned int enabled:1;
1020 unsigned int pinned:1;
1021 unsigned int orig_intx:1;
1022 unsigned int restore_intx:1;
1023 u32 region_mask;
1024 };
1025
1026 static void pcim_release(struct device *gendev, void *res)
1027 {
1028 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1029 struct pci_devres *this = res;
1030 int i;
1031
1032 if (dev->msi_enabled)
1033 pci_disable_msi(dev);
1034 if (dev->msix_enabled)
1035 pci_disable_msix(dev);
1036
1037 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1038 if (this->region_mask & (1 << i))
1039 pci_release_region(dev, i);
1040
1041 if (this->restore_intx)
1042 pci_intx(dev, this->orig_intx);
1043
1044 if (this->enabled && !this->pinned)
1045 pci_disable_device(dev);
1046 }
1047
1048 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1049 {
1050 struct pci_devres *dr, *new_dr;
1051
1052 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1053 if (dr)
1054 return dr;
1055
1056 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1057 if (!new_dr)
1058 return NULL;
1059 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1060 }
1061
1062 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1063 {
1064 if (pci_is_managed(pdev))
1065 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1066 return NULL;
1067 }
1068
1069 /**
1070 * pcim_enable_device - Managed pci_enable_device()
1071 * @pdev: PCI device to be initialized
1072 *
1073 * Managed pci_enable_device().
1074 */
1075 int pcim_enable_device(struct pci_dev *pdev)
1076 {
1077 struct pci_devres *dr;
1078 int rc;
1079
1080 dr = get_pci_dr(pdev);
1081 if (unlikely(!dr))
1082 return -ENOMEM;
1083 if (dr->enabled)
1084 return 0;
1085
1086 rc = pci_enable_device(pdev);
1087 if (!rc) {
1088 pdev->is_managed = 1;
1089 dr->enabled = 1;
1090 }
1091 return rc;
1092 }
1093
1094 /**
1095 * pcim_pin_device - Pin managed PCI device
1096 * @pdev: PCI device to pin
1097 *
1098 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1099 * driver detach. @pdev must have been enabled with
1100 * pcim_enable_device().
1101 */
1102 void pcim_pin_device(struct pci_dev *pdev)
1103 {
1104 struct pci_devres *dr;
1105
1106 dr = find_pci_dr(pdev);
1107 WARN_ON(!dr || !dr->enabled);
1108 if (dr)
1109 dr->pinned = 1;
1110 }
1111
1112 /**
1113 * pcibios_disable_device - disable arch specific PCI resources for device dev
1114 * @dev: the PCI device to disable
1115 *
1116 * Disables architecture specific PCI resources for the device. This
1117 * is the default implementation. Architecture implementations can
1118 * override this.
1119 */
1120 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1121
1122 static void do_pci_disable_device(struct pci_dev *dev)
1123 {
1124 u16 pci_command;
1125
1126 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1127 if (pci_command & PCI_COMMAND_MASTER) {
1128 pci_command &= ~PCI_COMMAND_MASTER;
1129 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1130 }
1131
1132 pcibios_disable_device(dev);
1133 }
1134
1135 /**
1136 * pci_disable_enabled_device - Disable device without updating enable_cnt
1137 * @dev: PCI device to disable
1138 *
1139 * NOTE: This function is a backend of PCI power management routines and is
1140 * not supposed to be called drivers.
1141 */
1142 void pci_disable_enabled_device(struct pci_dev *dev)
1143 {
1144 if (pci_is_enabled(dev))
1145 do_pci_disable_device(dev);
1146 }
1147
1148 /**
1149 * pci_disable_device - Disable PCI device after use
1150 * @dev: PCI device to be disabled
1151 *
1152 * Signal to the system that the PCI device is not in use by the system
1153 * anymore. This only involves disabling PCI bus-mastering, if active.
1154 *
1155 * Note we don't actually disable the device until all callers of
1156 * pci_device_enable() have called pci_device_disable().
1157 */
1158 void
1159 pci_disable_device(struct pci_dev *dev)
1160 {
1161 struct pci_devres *dr;
1162
1163 dr = find_pci_dr(dev);
1164 if (dr)
1165 dr->enabled = 0;
1166
1167 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1168 return;
1169
1170 do_pci_disable_device(dev);
1171
1172 dev->is_busmaster = 0;
1173 }
1174
1175 /**
1176 * pcibios_set_pcie_reset_state - set reset state for device dev
1177 * @dev: the PCIe device reset
1178 * @state: Reset state to enter into
1179 *
1180 *
1181 * Sets the PCIe reset state for the device. This is the default
1182 * implementation. Architecture implementations can override this.
1183 */
1184 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1185 enum pcie_reset_state state)
1186 {
1187 return -EINVAL;
1188 }
1189
1190 /**
1191 * pci_set_pcie_reset_state - set reset state for device dev
1192 * @dev: the PCIe device reset
1193 * @state: Reset state to enter into
1194 *
1195 *
1196 * Sets the PCI reset state for the device.
1197 */
1198 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1199 {
1200 return pcibios_set_pcie_reset_state(dev, state);
1201 }
1202
1203 /**
1204 * pci_check_pme_status - Check if given device has generated PME.
1205 * @dev: Device to check.
1206 *
1207 * Check the PME status of the device and if set, clear it and clear PME enable
1208 * (if set). Return 'true' if PME status and PME enable were both set or
1209 * 'false' otherwise.
1210 */
1211 bool pci_check_pme_status(struct pci_dev *dev)
1212 {
1213 int pmcsr_pos;
1214 u16 pmcsr;
1215 bool ret = false;
1216
1217 if (!dev->pm_cap)
1218 return false;
1219
1220 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1221 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1222 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1223 return false;
1224
1225 /* Clear PME status. */
1226 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1227 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1228 /* Disable PME to avoid interrupt flood. */
1229 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1230 ret = true;
1231 }
1232
1233 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1234
1235 return ret;
1236 }
1237
1238 /**
1239 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1240 * @dev: Device to handle.
1241 * @ign: Ignored.
1242 *
1243 * Check if @dev has generated PME and queue a resume request for it in that
1244 * case.
1245 */
1246 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1247 {
1248 if (pci_check_pme_status(dev))
1249 pm_request_resume(&dev->dev);
1250 return 0;
1251 }
1252
1253 /**
1254 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1255 * @bus: Top bus of the subtree to walk.
1256 */
1257 void pci_pme_wakeup_bus(struct pci_bus *bus)
1258 {
1259 if (bus)
1260 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1261 }
1262
1263 /**
1264 * pci_pme_capable - check the capability of PCI device to generate PME#
1265 * @dev: PCI device to handle.
1266 * @state: PCI state from which device will issue PME#.
1267 */
1268 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1269 {
1270 if (!dev->pm_cap)
1271 return false;
1272
1273 return !!(dev->pme_support & (1 << state));
1274 }
1275
1276 /**
1277 * pci_pme_active - enable or disable PCI device's PME# function
1278 * @dev: PCI device to handle.
1279 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1280 *
1281 * The caller must verify that the device is capable of generating PME# before
1282 * calling this function with @enable equal to 'true'.
1283 */
1284 void pci_pme_active(struct pci_dev *dev, bool enable)
1285 {
1286 u16 pmcsr;
1287
1288 if (!dev->pm_cap)
1289 return;
1290
1291 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1292 /* Clear PME_Status by writing 1 to it and enable PME# */
1293 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1294 if (!enable)
1295 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1296
1297 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1298
1299 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1300 enable ? "enabled" : "disabled");
1301 }
1302
1303 /**
1304 * __pci_enable_wake - enable PCI device as wakeup event source
1305 * @dev: PCI device affected
1306 * @state: PCI state from which device will issue wakeup events
1307 * @runtime: True if the events are to be generated at run time
1308 * @enable: True to enable event generation; false to disable
1309 *
1310 * This enables the device as a wakeup event source, or disables it.
1311 * When such events involves platform-specific hooks, those hooks are
1312 * called automatically by this routine.
1313 *
1314 * Devices with legacy power management (no standard PCI PM capabilities)
1315 * always require such platform hooks.
1316 *
1317 * RETURN VALUE:
1318 * 0 is returned on success
1319 * -EINVAL is returned if device is not supposed to wake up the system
1320 * Error code depending on the platform is returned if both the platform and
1321 * the native mechanism fail to enable the generation of wake-up events
1322 */
1323 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1324 bool runtime, bool enable)
1325 {
1326 int ret = 0;
1327
1328 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1329 return -EINVAL;
1330
1331 /* Don't do the same thing twice in a row for one device. */
1332 if (!!enable == !!dev->wakeup_prepared)
1333 return 0;
1334
1335 /*
1336 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1337 * Anderson we should be doing PME# wake enable followed by ACPI wake
1338 * enable. To disable wake-up we call the platform first, for symmetry.
1339 */
1340
1341 if (enable) {
1342 int error;
1343
1344 if (pci_pme_capable(dev, state))
1345 pci_pme_active(dev, true);
1346 else
1347 ret = 1;
1348 error = runtime ? platform_pci_run_wake(dev, true) :
1349 platform_pci_sleep_wake(dev, true);
1350 if (ret)
1351 ret = error;
1352 if (!ret)
1353 dev->wakeup_prepared = true;
1354 } else {
1355 if (runtime)
1356 platform_pci_run_wake(dev, false);
1357 else
1358 platform_pci_sleep_wake(dev, false);
1359 pci_pme_active(dev, false);
1360 dev->wakeup_prepared = false;
1361 }
1362
1363 return ret;
1364 }
1365 EXPORT_SYMBOL(__pci_enable_wake);
1366
1367 /**
1368 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1369 * @dev: PCI device to prepare
1370 * @enable: True to enable wake-up event generation; false to disable
1371 *
1372 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1373 * and this function allows them to set that up cleanly - pci_enable_wake()
1374 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1375 * ordering constraints.
1376 *
1377 * This function only returns error code if the device is not capable of
1378 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1379 * enable wake-up power for it.
1380 */
1381 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1382 {
1383 return pci_pme_capable(dev, PCI_D3cold) ?
1384 pci_enable_wake(dev, PCI_D3cold, enable) :
1385 pci_enable_wake(dev, PCI_D3hot, enable);
1386 }
1387
1388 /**
1389 * pci_target_state - find an appropriate low power state for a given PCI dev
1390 * @dev: PCI device
1391 *
1392 * Use underlying platform code to find a supported low power state for @dev.
1393 * If the platform can't manage @dev, return the deepest state from which it
1394 * can generate wake events, based on any available PME info.
1395 */
1396 pci_power_t pci_target_state(struct pci_dev *dev)
1397 {
1398 pci_power_t target_state = PCI_D3hot;
1399
1400 if (platform_pci_power_manageable(dev)) {
1401 /*
1402 * Call the platform to choose the target state of the device
1403 * and enable wake-up from this state if supported.
1404 */
1405 pci_power_t state = platform_pci_choose_state(dev);
1406
1407 switch (state) {
1408 case PCI_POWER_ERROR:
1409 case PCI_UNKNOWN:
1410 break;
1411 case PCI_D1:
1412 case PCI_D2:
1413 if (pci_no_d1d2(dev))
1414 break;
1415 default:
1416 target_state = state;
1417 }
1418 } else if (!dev->pm_cap) {
1419 target_state = PCI_D0;
1420 } else if (device_may_wakeup(&dev->dev)) {
1421 /*
1422 * Find the deepest state from which the device can generate
1423 * wake-up events, make it the target state and enable device
1424 * to generate PME#.
1425 */
1426 if (dev->pme_support) {
1427 while (target_state
1428 && !(dev->pme_support & (1 << target_state)))
1429 target_state--;
1430 }
1431 }
1432
1433 return target_state;
1434 }
1435
1436 /**
1437 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1438 * @dev: Device to handle.
1439 *
1440 * Choose the power state appropriate for the device depending on whether
1441 * it can wake up the system and/or is power manageable by the platform
1442 * (PCI_D3hot is the default) and put the device into that state.
1443 */
1444 int pci_prepare_to_sleep(struct pci_dev *dev)
1445 {
1446 pci_power_t target_state = pci_target_state(dev);
1447 int error;
1448
1449 if (target_state == PCI_POWER_ERROR)
1450 return -EIO;
1451
1452 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1453
1454 error = pci_set_power_state(dev, target_state);
1455
1456 if (error)
1457 pci_enable_wake(dev, target_state, false);
1458
1459 return error;
1460 }
1461
1462 /**
1463 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1464 * @dev: Device to handle.
1465 *
1466 * Disable device's sytem wake-up capability and put it into D0.
1467 */
1468 int pci_back_from_sleep(struct pci_dev *dev)
1469 {
1470 pci_enable_wake(dev, PCI_D0, false);
1471 return pci_set_power_state(dev, PCI_D0);
1472 }
1473
1474 /**
1475 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1476 * @dev: PCI device being suspended.
1477 *
1478 * Prepare @dev to generate wake-up events at run time and put it into a low
1479 * power state.
1480 */
1481 int pci_finish_runtime_suspend(struct pci_dev *dev)
1482 {
1483 pci_power_t target_state = pci_target_state(dev);
1484 int error;
1485
1486 if (target_state == PCI_POWER_ERROR)
1487 return -EIO;
1488
1489 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1490
1491 error = pci_set_power_state(dev, target_state);
1492
1493 if (error)
1494 __pci_enable_wake(dev, target_state, true, false);
1495
1496 return error;
1497 }
1498
1499 /**
1500 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1501 * @dev: Device to check.
1502 *
1503 * Return true if the device itself is cabable of generating wake-up events
1504 * (through the platform or using the native PCIe PME) or if the device supports
1505 * PME and one of its upstream bridges can generate wake-up events.
1506 */
1507 bool pci_dev_run_wake(struct pci_dev *dev)
1508 {
1509 struct pci_bus *bus = dev->bus;
1510
1511 if (device_run_wake(&dev->dev))
1512 return true;
1513
1514 if (!dev->pme_support)
1515 return false;
1516
1517 while (bus->parent) {
1518 struct pci_dev *bridge = bus->self;
1519
1520 if (device_run_wake(&bridge->dev))
1521 return true;
1522
1523 bus = bus->parent;
1524 }
1525
1526 /* We have reached the root bus. */
1527 if (bus->bridge)
1528 return device_run_wake(bus->bridge);
1529
1530 return false;
1531 }
1532 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1533
1534 /**
1535 * pci_pm_init - Initialize PM functions of given PCI device
1536 * @dev: PCI device to handle.
1537 */
1538 void pci_pm_init(struct pci_dev *dev)
1539 {
1540 int pm;
1541 u16 pmc;
1542
1543 device_enable_async_suspend(&dev->dev);
1544 dev->wakeup_prepared = false;
1545 dev->pm_cap = 0;
1546
1547 /* find PCI PM capability in list */
1548 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1549 if (!pm)
1550 return;
1551 /* Check device's ability to generate PME# */
1552 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1553
1554 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1555 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1556 pmc & PCI_PM_CAP_VER_MASK);
1557 return;
1558 }
1559
1560 dev->pm_cap = pm;
1561 dev->d3_delay = PCI_PM_D3_WAIT;
1562
1563 dev->d1_support = false;
1564 dev->d2_support = false;
1565 if (!pci_no_d1d2(dev)) {
1566 if (pmc & PCI_PM_CAP_D1)
1567 dev->d1_support = true;
1568 if (pmc & PCI_PM_CAP_D2)
1569 dev->d2_support = true;
1570
1571 if (dev->d1_support || dev->d2_support)
1572 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1573 dev->d1_support ? " D1" : "",
1574 dev->d2_support ? " D2" : "");
1575 }
1576
1577 pmc &= PCI_PM_CAP_PME_MASK;
1578 if (pmc) {
1579 dev_printk(KERN_DEBUG, &dev->dev,
1580 "PME# supported from%s%s%s%s%s\n",
1581 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1582 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1583 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1584 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1585 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1586 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1587 /*
1588 * Make device's PM flags reflect the wake-up capability, but
1589 * let the user space enable it to wake up the system as needed.
1590 */
1591 device_set_wakeup_capable(&dev->dev, true);
1592 device_set_wakeup_enable(&dev->dev, false);
1593 /* Disable the PME# generation functionality */
1594 pci_pme_active(dev, false);
1595 } else {
1596 dev->pme_support = 0;
1597 }
1598 }
1599
1600 /**
1601 * platform_pci_wakeup_init - init platform wakeup if present
1602 * @dev: PCI device
1603 *
1604 * Some devices don't have PCI PM caps but can still generate wakeup
1605 * events through platform methods (like ACPI events). If @dev supports
1606 * platform wakeup events, set the device flag to indicate as much. This
1607 * may be redundant if the device also supports PCI PM caps, but double
1608 * initialization should be safe in that case.
1609 */
1610 void platform_pci_wakeup_init(struct pci_dev *dev)
1611 {
1612 if (!platform_pci_can_wakeup(dev))
1613 return;
1614
1615 device_set_wakeup_capable(&dev->dev, true);
1616 device_set_wakeup_enable(&dev->dev, false);
1617 platform_pci_sleep_wake(dev, false);
1618 }
1619
1620 /**
1621 * pci_add_save_buffer - allocate buffer for saving given capability registers
1622 * @dev: the PCI device
1623 * @cap: the capability to allocate the buffer for
1624 * @size: requested size of the buffer
1625 */
1626 static int pci_add_cap_save_buffer(
1627 struct pci_dev *dev, char cap, unsigned int size)
1628 {
1629 int pos;
1630 struct pci_cap_saved_state *save_state;
1631
1632 pos = pci_find_capability(dev, cap);
1633 if (pos <= 0)
1634 return 0;
1635
1636 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1637 if (!save_state)
1638 return -ENOMEM;
1639
1640 save_state->cap_nr = cap;
1641 pci_add_saved_cap(dev, save_state);
1642
1643 return 0;
1644 }
1645
1646 /**
1647 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1648 * @dev: the PCI device
1649 */
1650 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1651 {
1652 int error;
1653
1654 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1655 PCI_EXP_SAVE_REGS * sizeof(u16));
1656 if (error)
1657 dev_err(&dev->dev,
1658 "unable to preallocate PCI Express save buffer\n");
1659
1660 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1661 if (error)
1662 dev_err(&dev->dev,
1663 "unable to preallocate PCI-X save buffer\n");
1664 }
1665
1666 /**
1667 * pci_enable_ari - enable ARI forwarding if hardware support it
1668 * @dev: the PCI device
1669 */
1670 void pci_enable_ari(struct pci_dev *dev)
1671 {
1672 int pos;
1673 u32 cap;
1674 u16 ctrl;
1675 struct pci_dev *bridge;
1676
1677 if (!pci_is_pcie(dev) || dev->devfn)
1678 return;
1679
1680 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1681 if (!pos)
1682 return;
1683
1684 bridge = dev->bus->self;
1685 if (!bridge || !pci_is_pcie(bridge))
1686 return;
1687
1688 pos = pci_pcie_cap(bridge);
1689 if (!pos)
1690 return;
1691
1692 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1693 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1694 return;
1695
1696 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1697 ctrl |= PCI_EXP_DEVCTL2_ARI;
1698 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1699
1700 bridge->ari_enabled = 1;
1701 }
1702
1703 static int pci_acs_enable;
1704
1705 /**
1706 * pci_request_acs - ask for ACS to be enabled if supported
1707 */
1708 void pci_request_acs(void)
1709 {
1710 pci_acs_enable = 1;
1711 }
1712
1713 /**
1714 * pci_enable_acs - enable ACS if hardware support it
1715 * @dev: the PCI device
1716 */
1717 void pci_enable_acs(struct pci_dev *dev)
1718 {
1719 int pos;
1720 u16 cap;
1721 u16 ctrl;
1722
1723 if (!pci_acs_enable)
1724 return;
1725
1726 if (!pci_is_pcie(dev))
1727 return;
1728
1729 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1730 if (!pos)
1731 return;
1732
1733 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1734 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1735
1736 /* Source Validation */
1737 ctrl |= (cap & PCI_ACS_SV);
1738
1739 /* P2P Request Redirect */
1740 ctrl |= (cap & PCI_ACS_RR);
1741
1742 /* P2P Completion Redirect */
1743 ctrl |= (cap & PCI_ACS_CR);
1744
1745 /* Upstream Forwarding */
1746 ctrl |= (cap & PCI_ACS_UF);
1747
1748 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1749 }
1750
1751 /**
1752 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1753 * @dev: the PCI device
1754 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1755 *
1756 * Perform INTx swizzling for a device behind one level of bridge. This is
1757 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1758 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1759 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1760 * the PCI Express Base Specification, Revision 2.1)
1761 */
1762 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1763 {
1764 int slot;
1765
1766 if (pci_ari_enabled(dev->bus))
1767 slot = 0;
1768 else
1769 slot = PCI_SLOT(dev->devfn);
1770
1771 return (((pin - 1) + slot) % 4) + 1;
1772 }
1773
1774 int
1775 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1776 {
1777 u8 pin;
1778
1779 pin = dev->pin;
1780 if (!pin)
1781 return -1;
1782
1783 while (!pci_is_root_bus(dev->bus)) {
1784 pin = pci_swizzle_interrupt_pin(dev, pin);
1785 dev = dev->bus->self;
1786 }
1787 *bridge = dev;
1788 return pin;
1789 }
1790
1791 /**
1792 * pci_common_swizzle - swizzle INTx all the way to root bridge
1793 * @dev: the PCI device
1794 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1795 *
1796 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1797 * bridges all the way up to a PCI root bus.
1798 */
1799 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1800 {
1801 u8 pin = *pinp;
1802
1803 while (!pci_is_root_bus(dev->bus)) {
1804 pin = pci_swizzle_interrupt_pin(dev, pin);
1805 dev = dev->bus->self;
1806 }
1807 *pinp = pin;
1808 return PCI_SLOT(dev->devfn);
1809 }
1810
1811 /**
1812 * pci_release_region - Release a PCI bar
1813 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1814 * @bar: BAR to release
1815 *
1816 * Releases the PCI I/O and memory resources previously reserved by a
1817 * successful call to pci_request_region. Call this function only
1818 * after all use of the PCI regions has ceased.
1819 */
1820 void pci_release_region(struct pci_dev *pdev, int bar)
1821 {
1822 struct pci_devres *dr;
1823
1824 if (pci_resource_len(pdev, bar) == 0)
1825 return;
1826 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1827 release_region(pci_resource_start(pdev, bar),
1828 pci_resource_len(pdev, bar));
1829 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1830 release_mem_region(pci_resource_start(pdev, bar),
1831 pci_resource_len(pdev, bar));
1832
1833 dr = find_pci_dr(pdev);
1834 if (dr)
1835 dr->region_mask &= ~(1 << bar);
1836 }
1837
1838 /**
1839 * __pci_request_region - Reserved PCI I/O and memory resource
1840 * @pdev: PCI device whose resources are to be reserved
1841 * @bar: BAR to be reserved
1842 * @res_name: Name to be associated with resource.
1843 * @exclusive: whether the region access is exclusive or not
1844 *
1845 * Mark the PCI region associated with PCI device @pdev BR @bar as
1846 * being reserved by owner @res_name. Do not access any
1847 * address inside the PCI regions unless this call returns
1848 * successfully.
1849 *
1850 * If @exclusive is set, then the region is marked so that userspace
1851 * is explicitly not allowed to map the resource via /dev/mem or
1852 * sysfs MMIO access.
1853 *
1854 * Returns 0 on success, or %EBUSY on error. A warning
1855 * message is also printed on failure.
1856 */
1857 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1858 int exclusive)
1859 {
1860 struct pci_devres *dr;
1861
1862 if (pci_resource_len(pdev, bar) == 0)
1863 return 0;
1864
1865 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1866 if (!request_region(pci_resource_start(pdev, bar),
1867 pci_resource_len(pdev, bar), res_name))
1868 goto err_out;
1869 }
1870 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1871 if (!__request_mem_region(pci_resource_start(pdev, bar),
1872 pci_resource_len(pdev, bar), res_name,
1873 exclusive))
1874 goto err_out;
1875 }
1876
1877 dr = find_pci_dr(pdev);
1878 if (dr)
1879 dr->region_mask |= 1 << bar;
1880
1881 return 0;
1882
1883 err_out:
1884 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
1885 &pdev->resource[bar]);
1886 return -EBUSY;
1887 }
1888
1889 /**
1890 * pci_request_region - Reserve PCI I/O and memory resource
1891 * @pdev: PCI device whose resources are to be reserved
1892 * @bar: BAR to be reserved
1893 * @res_name: Name to be associated with resource
1894 *
1895 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1896 * being reserved by owner @res_name. Do not access any
1897 * address inside the PCI regions unless this call returns
1898 * successfully.
1899 *
1900 * Returns 0 on success, or %EBUSY on error. A warning
1901 * message is also printed on failure.
1902 */
1903 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1904 {
1905 return __pci_request_region(pdev, bar, res_name, 0);
1906 }
1907
1908 /**
1909 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1910 * @pdev: PCI device whose resources are to be reserved
1911 * @bar: BAR to be reserved
1912 * @res_name: Name to be associated with resource.
1913 *
1914 * Mark the PCI region associated with PCI device @pdev BR @bar as
1915 * being reserved by owner @res_name. Do not access any
1916 * address inside the PCI regions unless this call returns
1917 * successfully.
1918 *
1919 * Returns 0 on success, or %EBUSY on error. A warning
1920 * message is also printed on failure.
1921 *
1922 * The key difference that _exclusive makes it that userspace is
1923 * explicitly not allowed to map the resource via /dev/mem or
1924 * sysfs.
1925 */
1926 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1927 {
1928 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1929 }
1930 /**
1931 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1932 * @pdev: PCI device whose resources were previously reserved
1933 * @bars: Bitmask of BARs to be released
1934 *
1935 * Release selected PCI I/O and memory resources previously reserved.
1936 * Call this function only after all use of the PCI regions has ceased.
1937 */
1938 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1939 {
1940 int i;
1941
1942 for (i = 0; i < 6; i++)
1943 if (bars & (1 << i))
1944 pci_release_region(pdev, i);
1945 }
1946
1947 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1948 const char *res_name, int excl)
1949 {
1950 int i;
1951
1952 for (i = 0; i < 6; i++)
1953 if (bars & (1 << i))
1954 if (__pci_request_region(pdev, i, res_name, excl))
1955 goto err_out;
1956 return 0;
1957
1958 err_out:
1959 while(--i >= 0)
1960 if (bars & (1 << i))
1961 pci_release_region(pdev, i);
1962
1963 return -EBUSY;
1964 }
1965
1966
1967 /**
1968 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1969 * @pdev: PCI device whose resources are to be reserved
1970 * @bars: Bitmask of BARs to be requested
1971 * @res_name: Name to be associated with resource
1972 */
1973 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1974 const char *res_name)
1975 {
1976 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1977 }
1978
1979 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1980 int bars, const char *res_name)
1981 {
1982 return __pci_request_selected_regions(pdev, bars, res_name,
1983 IORESOURCE_EXCLUSIVE);
1984 }
1985
1986 /**
1987 * pci_release_regions - Release reserved PCI I/O and memory resources
1988 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1989 *
1990 * Releases all PCI I/O and memory resources previously reserved by a
1991 * successful call to pci_request_regions. Call this function only
1992 * after all use of the PCI regions has ceased.
1993 */
1994
1995 void pci_release_regions(struct pci_dev *pdev)
1996 {
1997 pci_release_selected_regions(pdev, (1 << 6) - 1);
1998 }
1999
2000 /**
2001 * pci_request_regions - Reserved PCI I/O and memory resources
2002 * @pdev: PCI device whose resources are to be reserved
2003 * @res_name: Name to be associated with resource.
2004 *
2005 * Mark all PCI regions associated with PCI device @pdev as
2006 * being reserved by owner @res_name. Do not access any
2007 * address inside the PCI regions unless this call returns
2008 * successfully.
2009 *
2010 * Returns 0 on success, or %EBUSY on error. A warning
2011 * message is also printed on failure.
2012 */
2013 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2014 {
2015 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2016 }
2017
2018 /**
2019 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2020 * @pdev: PCI device whose resources are to be reserved
2021 * @res_name: Name to be associated with resource.
2022 *
2023 * Mark all PCI regions associated with PCI device @pdev as
2024 * being reserved by owner @res_name. Do not access any
2025 * address inside the PCI regions unless this call returns
2026 * successfully.
2027 *
2028 * pci_request_regions_exclusive() will mark the region so that
2029 * /dev/mem and the sysfs MMIO access will not be allowed.
2030 *
2031 * Returns 0 on success, or %EBUSY on error. A warning
2032 * message is also printed on failure.
2033 */
2034 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2035 {
2036 return pci_request_selected_regions_exclusive(pdev,
2037 ((1 << 6) - 1), res_name);
2038 }
2039
2040 static void __pci_set_master(struct pci_dev *dev, bool enable)
2041 {
2042 u16 old_cmd, cmd;
2043
2044 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2045 if (enable)
2046 cmd = old_cmd | PCI_COMMAND_MASTER;
2047 else
2048 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2049 if (cmd != old_cmd) {
2050 dev_dbg(&dev->dev, "%s bus mastering\n",
2051 enable ? "enabling" : "disabling");
2052 pci_write_config_word(dev, PCI_COMMAND, cmd);
2053 }
2054 dev->is_busmaster = enable;
2055 }
2056
2057 /**
2058 * pci_set_master - enables bus-mastering for device dev
2059 * @dev: the PCI device to enable
2060 *
2061 * Enables bus-mastering on the device and calls pcibios_set_master()
2062 * to do the needed arch specific settings.
2063 */
2064 void pci_set_master(struct pci_dev *dev)
2065 {
2066 __pci_set_master(dev, true);
2067 pcibios_set_master(dev);
2068 }
2069
2070 /**
2071 * pci_clear_master - disables bus-mastering for device dev
2072 * @dev: the PCI device to disable
2073 */
2074 void pci_clear_master(struct pci_dev *dev)
2075 {
2076 __pci_set_master(dev, false);
2077 }
2078
2079 /**
2080 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2081 * @dev: the PCI device for which MWI is to be enabled
2082 *
2083 * Helper function for pci_set_mwi.
2084 * Originally copied from drivers/net/acenic.c.
2085 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2086 *
2087 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2088 */
2089 int pci_set_cacheline_size(struct pci_dev *dev)
2090 {
2091 u8 cacheline_size;
2092
2093 if (!pci_cache_line_size)
2094 return -EINVAL;
2095
2096 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2097 equal to or multiple of the right value. */
2098 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2099 if (cacheline_size >= pci_cache_line_size &&
2100 (cacheline_size % pci_cache_line_size) == 0)
2101 return 0;
2102
2103 /* Write the correct value. */
2104 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2105 /* Read it back. */
2106 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2107 if (cacheline_size == pci_cache_line_size)
2108 return 0;
2109
2110 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2111 "supported\n", pci_cache_line_size << 2);
2112
2113 return -EINVAL;
2114 }
2115 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2116
2117 #ifdef PCI_DISABLE_MWI
2118 int pci_set_mwi(struct pci_dev *dev)
2119 {
2120 return 0;
2121 }
2122
2123 int pci_try_set_mwi(struct pci_dev *dev)
2124 {
2125 return 0;
2126 }
2127
2128 void pci_clear_mwi(struct pci_dev *dev)
2129 {
2130 }
2131
2132 #else
2133
2134 /**
2135 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2136 * @dev: the PCI device for which MWI is enabled
2137 *
2138 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2139 *
2140 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2141 */
2142 int
2143 pci_set_mwi(struct pci_dev *dev)
2144 {
2145 int rc;
2146 u16 cmd;
2147
2148 rc = pci_set_cacheline_size(dev);
2149 if (rc)
2150 return rc;
2151
2152 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2153 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2154 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2155 cmd |= PCI_COMMAND_INVALIDATE;
2156 pci_write_config_word(dev, PCI_COMMAND, cmd);
2157 }
2158
2159 return 0;
2160 }
2161
2162 /**
2163 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2164 * @dev: the PCI device for which MWI is enabled
2165 *
2166 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2167 * Callers are not required to check the return value.
2168 *
2169 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2170 */
2171 int pci_try_set_mwi(struct pci_dev *dev)
2172 {
2173 int rc = pci_set_mwi(dev);
2174 return rc;
2175 }
2176
2177 /**
2178 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2179 * @dev: the PCI device to disable
2180 *
2181 * Disables PCI Memory-Write-Invalidate transaction on the device
2182 */
2183 void
2184 pci_clear_mwi(struct pci_dev *dev)
2185 {
2186 u16 cmd;
2187
2188 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2189 if (cmd & PCI_COMMAND_INVALIDATE) {
2190 cmd &= ~PCI_COMMAND_INVALIDATE;
2191 pci_write_config_word(dev, PCI_COMMAND, cmd);
2192 }
2193 }
2194 #endif /* ! PCI_DISABLE_MWI */
2195
2196 /**
2197 * pci_intx - enables/disables PCI INTx for device dev
2198 * @pdev: the PCI device to operate on
2199 * @enable: boolean: whether to enable or disable PCI INTx
2200 *
2201 * Enables/disables PCI INTx for device dev
2202 */
2203 void
2204 pci_intx(struct pci_dev *pdev, int enable)
2205 {
2206 u16 pci_command, new;
2207
2208 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2209
2210 if (enable) {
2211 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2212 } else {
2213 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2214 }
2215
2216 if (new != pci_command) {
2217 struct pci_devres *dr;
2218
2219 pci_write_config_word(pdev, PCI_COMMAND, new);
2220
2221 dr = find_pci_dr(pdev);
2222 if (dr && !dr->restore_intx) {
2223 dr->restore_intx = 1;
2224 dr->orig_intx = !enable;
2225 }
2226 }
2227 }
2228
2229 /**
2230 * pci_msi_off - disables any msi or msix capabilities
2231 * @dev: the PCI device to operate on
2232 *
2233 * If you want to use msi see pci_enable_msi and friends.
2234 * This is a lower level primitive that allows us to disable
2235 * msi operation at the device level.
2236 */
2237 void pci_msi_off(struct pci_dev *dev)
2238 {
2239 int pos;
2240 u16 control;
2241
2242 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2243 if (pos) {
2244 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2245 control &= ~PCI_MSI_FLAGS_ENABLE;
2246 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2247 }
2248 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2249 if (pos) {
2250 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2251 control &= ~PCI_MSIX_FLAGS_ENABLE;
2252 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2253 }
2254 }
2255
2256 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2257 /*
2258 * These can be overridden by arch-specific implementations
2259 */
2260 int
2261 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2262 {
2263 if (!pci_dma_supported(dev, mask))
2264 return -EIO;
2265
2266 dev->dma_mask = mask;
2267 dev_dbg(&dev->dev, "using %dbit DMA mask\n", fls64(mask));
2268
2269 return 0;
2270 }
2271
2272 int
2273 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2274 {
2275 if (!pci_dma_supported(dev, mask))
2276 return -EIO;
2277
2278 dev->dev.coherent_dma_mask = mask;
2279 dev_dbg(&dev->dev, "using %dbit consistent DMA mask\n", fls64(mask));
2280
2281 return 0;
2282 }
2283 #endif
2284
2285 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2286 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2287 {
2288 return dma_set_max_seg_size(&dev->dev, size);
2289 }
2290 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2291 #endif
2292
2293 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2294 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2295 {
2296 return dma_set_seg_boundary(&dev->dev, mask);
2297 }
2298 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2299 #endif
2300
2301 static int pcie_flr(struct pci_dev *dev, int probe)
2302 {
2303 int i;
2304 int pos;
2305 u32 cap;
2306 u16 status, control;
2307
2308 pos = pci_pcie_cap(dev);
2309 if (!pos)
2310 return -ENOTTY;
2311
2312 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2313 if (!(cap & PCI_EXP_DEVCAP_FLR))
2314 return -ENOTTY;
2315
2316 if (probe)
2317 return 0;
2318
2319 /* Wait for Transaction Pending bit clean */
2320 for (i = 0; i < 4; i++) {
2321 if (i)
2322 msleep((1 << (i - 1)) * 100);
2323
2324 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2325 if (!(status & PCI_EXP_DEVSTA_TRPND))
2326 goto clear;
2327 }
2328
2329 dev_err(&dev->dev, "transaction is not cleared; "
2330 "proceeding with reset anyway\n");
2331
2332 clear:
2333 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2334 control |= PCI_EXP_DEVCTL_BCR_FLR;
2335 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2336
2337 msleep(100);
2338
2339 return 0;
2340 }
2341
2342 static int pci_af_flr(struct pci_dev *dev, int probe)
2343 {
2344 int i;
2345 int pos;
2346 u8 cap;
2347 u8 status;
2348
2349 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2350 if (!pos)
2351 return -ENOTTY;
2352
2353 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2354 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2355 return -ENOTTY;
2356
2357 if (probe)
2358 return 0;
2359
2360 /* Wait for Transaction Pending bit clean */
2361 for (i = 0; i < 4; i++) {
2362 if (i)
2363 msleep((1 << (i - 1)) * 100);
2364
2365 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2366 if (!(status & PCI_AF_STATUS_TP))
2367 goto clear;
2368 }
2369
2370 dev_err(&dev->dev, "transaction is not cleared; "
2371 "proceeding with reset anyway\n");
2372
2373 clear:
2374 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2375 msleep(100);
2376
2377 return 0;
2378 }
2379
2380 static int pci_pm_reset(struct pci_dev *dev, int probe)
2381 {
2382 u16 csr;
2383
2384 if (!dev->pm_cap)
2385 return -ENOTTY;
2386
2387 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2388 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2389 return -ENOTTY;
2390
2391 if (probe)
2392 return 0;
2393
2394 if (dev->current_state != PCI_D0)
2395 return -EINVAL;
2396
2397 csr &= ~PCI_PM_CTRL_STATE_MASK;
2398 csr |= PCI_D3hot;
2399 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2400 pci_dev_d3_sleep(dev);
2401
2402 csr &= ~PCI_PM_CTRL_STATE_MASK;
2403 csr |= PCI_D0;
2404 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2405 pci_dev_d3_sleep(dev);
2406
2407 return 0;
2408 }
2409
2410 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2411 {
2412 u16 ctrl;
2413 struct pci_dev *pdev;
2414
2415 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2416 return -ENOTTY;
2417
2418 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2419 if (pdev != dev)
2420 return -ENOTTY;
2421
2422 if (probe)
2423 return 0;
2424
2425 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2426 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2427 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2428 msleep(100);
2429
2430 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2431 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2432 msleep(100);
2433
2434 return 0;
2435 }
2436
2437 static int pci_dev_reset(struct pci_dev *dev, int probe)
2438 {
2439 int rc;
2440
2441 might_sleep();
2442
2443 if (!probe) {
2444 pci_block_user_cfg_access(dev);
2445 /* block PM suspend, driver probe, etc. */
2446 down(&dev->dev.sem);
2447 }
2448
2449 rc = pci_dev_specific_reset(dev, probe);
2450 if (rc != -ENOTTY)
2451 goto done;
2452
2453 rc = pcie_flr(dev, probe);
2454 if (rc != -ENOTTY)
2455 goto done;
2456
2457 rc = pci_af_flr(dev, probe);
2458 if (rc != -ENOTTY)
2459 goto done;
2460
2461 rc = pci_pm_reset(dev, probe);
2462 if (rc != -ENOTTY)
2463 goto done;
2464
2465 rc = pci_parent_bus_reset(dev, probe);
2466 done:
2467 if (!probe) {
2468 up(&dev->dev.sem);
2469 pci_unblock_user_cfg_access(dev);
2470 }
2471
2472 return rc;
2473 }
2474
2475 /**
2476 * __pci_reset_function - reset a PCI device function
2477 * @dev: PCI device to reset
2478 *
2479 * Some devices allow an individual function to be reset without affecting
2480 * other functions in the same device. The PCI device must be responsive
2481 * to PCI config space in order to use this function.
2482 *
2483 * The device function is presumed to be unused when this function is called.
2484 * Resetting the device will make the contents of PCI configuration space
2485 * random, so any caller of this must be prepared to reinitialise the
2486 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2487 * etc.
2488 *
2489 * Returns 0 if the device function was successfully reset or negative if the
2490 * device doesn't support resetting a single function.
2491 */
2492 int __pci_reset_function(struct pci_dev *dev)
2493 {
2494 return pci_dev_reset(dev, 0);
2495 }
2496 EXPORT_SYMBOL_GPL(__pci_reset_function);
2497
2498 /**
2499 * pci_probe_reset_function - check whether the device can be safely reset
2500 * @dev: PCI device to reset
2501 *
2502 * Some devices allow an individual function to be reset without affecting
2503 * other functions in the same device. The PCI device must be responsive
2504 * to PCI config space in order to use this function.
2505 *
2506 * Returns 0 if the device function can be reset or negative if the
2507 * device doesn't support resetting a single function.
2508 */
2509 int pci_probe_reset_function(struct pci_dev *dev)
2510 {
2511 return pci_dev_reset(dev, 1);
2512 }
2513
2514 /**
2515 * pci_reset_function - quiesce and reset a PCI device function
2516 * @dev: PCI device to reset
2517 *
2518 * Some devices allow an individual function to be reset without affecting
2519 * other functions in the same device. The PCI device must be responsive
2520 * to PCI config space in order to use this function.
2521 *
2522 * This function does not just reset the PCI portion of a device, but
2523 * clears all the state associated with the device. This function differs
2524 * from __pci_reset_function in that it saves and restores device state
2525 * over the reset.
2526 *
2527 * Returns 0 if the device function was successfully reset or negative if the
2528 * device doesn't support resetting a single function.
2529 */
2530 int pci_reset_function(struct pci_dev *dev)
2531 {
2532 int rc;
2533
2534 rc = pci_dev_reset(dev, 1);
2535 if (rc)
2536 return rc;
2537
2538 pci_save_state(dev);
2539
2540 /*
2541 * both INTx and MSI are disabled after the Interrupt Disable bit
2542 * is set and the Bus Master bit is cleared.
2543 */
2544 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2545
2546 rc = pci_dev_reset(dev, 0);
2547
2548 pci_restore_state(dev);
2549
2550 return rc;
2551 }
2552 EXPORT_SYMBOL_GPL(pci_reset_function);
2553
2554 /**
2555 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2556 * @dev: PCI device to query
2557 *
2558 * Returns mmrbc: maximum designed memory read count in bytes
2559 * or appropriate error value.
2560 */
2561 int pcix_get_max_mmrbc(struct pci_dev *dev)
2562 {
2563 int err, cap;
2564 u32 stat;
2565
2566 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2567 if (!cap)
2568 return -EINVAL;
2569
2570 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2571 if (err)
2572 return -EINVAL;
2573
2574 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2575 }
2576 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2577
2578 /**
2579 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2580 * @dev: PCI device to query
2581 *
2582 * Returns mmrbc: maximum memory read count in bytes
2583 * or appropriate error value.
2584 */
2585 int pcix_get_mmrbc(struct pci_dev *dev)
2586 {
2587 int ret, cap;
2588 u32 cmd;
2589
2590 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2591 if (!cap)
2592 return -EINVAL;
2593
2594 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2595 if (!ret)
2596 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2597
2598 return ret;
2599 }
2600 EXPORT_SYMBOL(pcix_get_mmrbc);
2601
2602 /**
2603 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2604 * @dev: PCI device to query
2605 * @mmrbc: maximum memory read count in bytes
2606 * valid values are 512, 1024, 2048, 4096
2607 *
2608 * If possible sets maximum memory read byte count, some bridges have erratas
2609 * that prevent this.
2610 */
2611 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2612 {
2613 int cap, err = -EINVAL;
2614 u32 stat, cmd, v, o;
2615
2616 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2617 goto out;
2618
2619 v = ffs(mmrbc) - 10;
2620
2621 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2622 if (!cap)
2623 goto out;
2624
2625 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2626 if (err)
2627 goto out;
2628
2629 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2630 return -E2BIG;
2631
2632 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2633 if (err)
2634 goto out;
2635
2636 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2637 if (o != v) {
2638 if (v > o && dev->bus &&
2639 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2640 return -EIO;
2641
2642 cmd &= ~PCI_X_CMD_MAX_READ;
2643 cmd |= v << 2;
2644 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2645 }
2646 out:
2647 return err;
2648 }
2649 EXPORT_SYMBOL(pcix_set_mmrbc);
2650
2651 /**
2652 * pcie_get_readrq - get PCI Express read request size
2653 * @dev: PCI device to query
2654 *
2655 * Returns maximum memory read request in bytes
2656 * or appropriate error value.
2657 */
2658 int pcie_get_readrq(struct pci_dev *dev)
2659 {
2660 int ret, cap;
2661 u16 ctl;
2662
2663 cap = pci_pcie_cap(dev);
2664 if (!cap)
2665 return -EINVAL;
2666
2667 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2668 if (!ret)
2669 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2670
2671 return ret;
2672 }
2673 EXPORT_SYMBOL(pcie_get_readrq);
2674
2675 /**
2676 * pcie_set_readrq - set PCI Express maximum memory read request
2677 * @dev: PCI device to query
2678 * @rq: maximum memory read count in bytes
2679 * valid values are 128, 256, 512, 1024, 2048, 4096
2680 *
2681 * If possible sets maximum read byte count
2682 */
2683 int pcie_set_readrq(struct pci_dev *dev, int rq)
2684 {
2685 int cap, err = -EINVAL;
2686 u16 ctl, v;
2687
2688 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2689 goto out;
2690
2691 v = (ffs(rq) - 8) << 12;
2692
2693 cap = pci_pcie_cap(dev);
2694 if (!cap)
2695 goto out;
2696
2697 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2698 if (err)
2699 goto out;
2700
2701 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2702 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2703 ctl |= v;
2704 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2705 }
2706
2707 out:
2708 return err;
2709 }
2710 EXPORT_SYMBOL(pcie_set_readrq);
2711
2712 /**
2713 * pci_select_bars - Make BAR mask from the type of resource
2714 * @dev: the PCI device for which BAR mask is made
2715 * @flags: resource type mask to be selected
2716 *
2717 * This helper routine makes bar mask from the type of resource.
2718 */
2719 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2720 {
2721 int i, bars = 0;
2722 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2723 if (pci_resource_flags(dev, i) & flags)
2724 bars |= (1 << i);
2725 return bars;
2726 }
2727
2728 /**
2729 * pci_resource_bar - get position of the BAR associated with a resource
2730 * @dev: the PCI device
2731 * @resno: the resource number
2732 * @type: the BAR type to be filled in
2733 *
2734 * Returns BAR position in config space, or 0 if the BAR is invalid.
2735 */
2736 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2737 {
2738 int reg;
2739
2740 if (resno < PCI_ROM_RESOURCE) {
2741 *type = pci_bar_unknown;
2742 return PCI_BASE_ADDRESS_0 + 4 * resno;
2743 } else if (resno == PCI_ROM_RESOURCE) {
2744 *type = pci_bar_mem32;
2745 return dev->rom_base_reg;
2746 } else if (resno < PCI_BRIDGE_RESOURCES) {
2747 /* device specific resource */
2748 reg = pci_iov_resource_bar(dev, resno, type);
2749 if (reg)
2750 return reg;
2751 }
2752
2753 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2754 return 0;
2755 }
2756
2757 /* Some architectures require additional programming to enable VGA */
2758 static arch_set_vga_state_t arch_set_vga_state;
2759
2760 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2761 {
2762 arch_set_vga_state = func; /* NULL disables */
2763 }
2764
2765 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2766 unsigned int command_bits, bool change_bridge)
2767 {
2768 if (arch_set_vga_state)
2769 return arch_set_vga_state(dev, decode, command_bits,
2770 change_bridge);
2771 return 0;
2772 }
2773
2774 /**
2775 * pci_set_vga_state - set VGA decode state on device and parents if requested
2776 * @dev: the PCI device
2777 * @decode: true = enable decoding, false = disable decoding
2778 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2779 * @change_bridge: traverse ancestors and change bridges
2780 */
2781 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2782 unsigned int command_bits, bool change_bridge)
2783 {
2784 struct pci_bus *bus;
2785 struct pci_dev *bridge;
2786 u16 cmd;
2787 int rc;
2788
2789 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2790
2791 /* ARCH specific VGA enables */
2792 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2793 if (rc)
2794 return rc;
2795
2796 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2797 if (decode == true)
2798 cmd |= command_bits;
2799 else
2800 cmd &= ~command_bits;
2801 pci_write_config_word(dev, PCI_COMMAND, cmd);
2802
2803 if (change_bridge == false)
2804 return 0;
2805
2806 bus = dev->bus;
2807 while (bus) {
2808 bridge = bus->self;
2809 if (bridge) {
2810 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2811 &cmd);
2812 if (decode == true)
2813 cmd |= PCI_BRIDGE_CTL_VGA;
2814 else
2815 cmd &= ~PCI_BRIDGE_CTL_VGA;
2816 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2817 cmd);
2818 }
2819 bus = bus->parent;
2820 }
2821 return 0;
2822 }
2823
2824 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2825 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2826 static DEFINE_SPINLOCK(resource_alignment_lock);
2827
2828 /**
2829 * pci_specified_resource_alignment - get resource alignment specified by user.
2830 * @dev: the PCI device to get
2831 *
2832 * RETURNS: Resource alignment if it is specified.
2833 * Zero if it is not specified.
2834 */
2835 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2836 {
2837 int seg, bus, slot, func, align_order, count;
2838 resource_size_t align = 0;
2839 char *p;
2840
2841 spin_lock(&resource_alignment_lock);
2842 p = resource_alignment_param;
2843 while (*p) {
2844 count = 0;
2845 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2846 p[count] == '@') {
2847 p += count + 1;
2848 } else {
2849 align_order = -1;
2850 }
2851 if (sscanf(p, "%x:%x:%x.%x%n",
2852 &seg, &bus, &slot, &func, &count) != 4) {
2853 seg = 0;
2854 if (sscanf(p, "%x:%x.%x%n",
2855 &bus, &slot, &func, &count) != 3) {
2856 /* Invalid format */
2857 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2858 p);
2859 break;
2860 }
2861 }
2862 p += count;
2863 if (seg == pci_domain_nr(dev->bus) &&
2864 bus == dev->bus->number &&
2865 slot == PCI_SLOT(dev->devfn) &&
2866 func == PCI_FUNC(dev->devfn)) {
2867 if (align_order == -1) {
2868 align = PAGE_SIZE;
2869 } else {
2870 align = 1 << align_order;
2871 }
2872 /* Found */
2873 break;
2874 }
2875 if (*p != ';' && *p != ',') {
2876 /* End of param or invalid format */
2877 break;
2878 }
2879 p++;
2880 }
2881 spin_unlock(&resource_alignment_lock);
2882 return align;
2883 }
2884
2885 /**
2886 * pci_is_reassigndev - check if specified PCI is target device to reassign
2887 * @dev: the PCI device to check
2888 *
2889 * RETURNS: non-zero for PCI device is a target device to reassign,
2890 * or zero is not.
2891 */
2892 int pci_is_reassigndev(struct pci_dev *dev)
2893 {
2894 return (pci_specified_resource_alignment(dev) != 0);
2895 }
2896
2897 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2898 {
2899 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2900 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2901 spin_lock(&resource_alignment_lock);
2902 strncpy(resource_alignment_param, buf, count);
2903 resource_alignment_param[count] = '\0';
2904 spin_unlock(&resource_alignment_lock);
2905 return count;
2906 }
2907
2908 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2909 {
2910 size_t count;
2911 spin_lock(&resource_alignment_lock);
2912 count = snprintf(buf, size, "%s", resource_alignment_param);
2913 spin_unlock(&resource_alignment_lock);
2914 return count;
2915 }
2916
2917 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2918 {
2919 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2920 }
2921
2922 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2923 const char *buf, size_t count)
2924 {
2925 return pci_set_resource_alignment_param(buf, count);
2926 }
2927
2928 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2929 pci_resource_alignment_store);
2930
2931 static int __init pci_resource_alignment_sysfs_init(void)
2932 {
2933 return bus_create_file(&pci_bus_type,
2934 &bus_attr_resource_alignment);
2935 }
2936
2937 late_initcall(pci_resource_alignment_sysfs_init);
2938
2939 static void __devinit pci_no_domains(void)
2940 {
2941 #ifdef CONFIG_PCI_DOMAINS
2942 pci_domains_supported = 0;
2943 #endif
2944 }
2945
2946 /**
2947 * pci_ext_cfg_enabled - can we access extended PCI config space?
2948 * @dev: The PCI device of the root bridge.
2949 *
2950 * Returns 1 if we can access PCI extended config space (offsets
2951 * greater than 0xff). This is the default implementation. Architecture
2952 * implementations can override this.
2953 */
2954 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2955 {
2956 return 1;
2957 }
2958
2959 void __weak pci_fixup_cardbus(struct pci_bus *bus)
2960 {
2961 }
2962 EXPORT_SYMBOL(pci_fixup_cardbus);
2963
2964 static int __init pci_setup(char *str)
2965 {
2966 while (str) {
2967 char *k = strchr(str, ',');
2968 if (k)
2969 *k++ = 0;
2970 if (*str && (str = pcibios_setup(str)) && *str) {
2971 if (!strcmp(str, "nomsi")) {
2972 pci_no_msi();
2973 } else if (!strcmp(str, "noaer")) {
2974 pci_no_aer();
2975 } else if (!strcmp(str, "nodomains")) {
2976 pci_no_domains();
2977 } else if (!strncmp(str, "cbiosize=", 9)) {
2978 pci_cardbus_io_size = memparse(str + 9, &str);
2979 } else if (!strncmp(str, "cbmemsize=", 10)) {
2980 pci_cardbus_mem_size = memparse(str + 10, &str);
2981 } else if (!strncmp(str, "resource_alignment=", 19)) {
2982 pci_set_resource_alignment_param(str + 19,
2983 strlen(str + 19));
2984 } else if (!strncmp(str, "ecrc=", 5)) {
2985 pcie_ecrc_get_policy(str + 5);
2986 } else if (!strncmp(str, "hpiosize=", 9)) {
2987 pci_hotplug_io_size = memparse(str + 9, &str);
2988 } else if (!strncmp(str, "hpmemsize=", 10)) {
2989 pci_hotplug_mem_size = memparse(str + 10, &str);
2990 } else {
2991 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2992 str);
2993 }
2994 }
2995 str = k;
2996 }
2997 return 0;
2998 }
2999 early_param("pci", pci_setup);
3000
3001 EXPORT_SYMBOL(pci_reenable_device);
3002 EXPORT_SYMBOL(pci_enable_device_io);
3003 EXPORT_SYMBOL(pci_enable_device_mem);
3004 EXPORT_SYMBOL(pci_enable_device);
3005 EXPORT_SYMBOL(pcim_enable_device);
3006 EXPORT_SYMBOL(pcim_pin_device);
3007 EXPORT_SYMBOL(pci_disable_device);
3008 EXPORT_SYMBOL(pci_find_capability);
3009 EXPORT_SYMBOL(pci_bus_find_capability);
3010 EXPORT_SYMBOL(pci_register_set_vga_state);
3011 EXPORT_SYMBOL(pci_release_regions);
3012 EXPORT_SYMBOL(pci_request_regions);
3013 EXPORT_SYMBOL(pci_request_regions_exclusive);
3014 EXPORT_SYMBOL(pci_release_region);
3015 EXPORT_SYMBOL(pci_request_region);
3016 EXPORT_SYMBOL(pci_request_region_exclusive);
3017 EXPORT_SYMBOL(pci_release_selected_regions);
3018 EXPORT_SYMBOL(pci_request_selected_regions);
3019 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3020 EXPORT_SYMBOL(pci_set_master);
3021 EXPORT_SYMBOL(pci_clear_master);
3022 EXPORT_SYMBOL(pci_set_mwi);
3023 EXPORT_SYMBOL(pci_try_set_mwi);
3024 EXPORT_SYMBOL(pci_clear_mwi);
3025 EXPORT_SYMBOL_GPL(pci_intx);
3026 EXPORT_SYMBOL(pci_set_dma_mask);
3027 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
3028 EXPORT_SYMBOL(pci_assign_resource);
3029 EXPORT_SYMBOL(pci_find_parent_resource);
3030 EXPORT_SYMBOL(pci_select_bars);
3031
3032 EXPORT_SYMBOL(pci_set_power_state);
3033 EXPORT_SYMBOL(pci_save_state);
3034 EXPORT_SYMBOL(pci_restore_state);
3035 EXPORT_SYMBOL(pci_pme_capable);
3036 EXPORT_SYMBOL(pci_pme_active);
3037 EXPORT_SYMBOL(pci_wake_from_d3);
3038 EXPORT_SYMBOL(pci_target_state);
3039 EXPORT_SYMBOL(pci_prepare_to_sleep);
3040 EXPORT_SYMBOL(pci_back_from_sleep);
3041 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.091046 seconds and 6 git commands to generate.