Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27
28 const char *pci_power_names[] = {
29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38
39 unsigned int pci_pm_d3_delay;
40
41 static void pci_pme_list_scan(struct work_struct *work);
42
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46
47 struct pci_pme_device {
48 struct list_head list;
49 struct pci_dev *dev;
50 };
51
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53
54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 unsigned int delay = dev->d3_delay;
57
58 if (delay < pci_pm_d3_delay)
59 delay = pci_pm_d3_delay;
60
61 msleep(delay);
62 }
63
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67
68 #define DEFAULT_CARDBUS_IO_SIZE (256)
69 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73
74 #define DEFAULT_HOTPLUG_IO_SIZE (256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79
80 /*
81 * The default CLS is used if arch didn't set CLS explicitly and not
82 * all pci devices agree on the same value. Arch can override either
83 * the dfl or actual value as it sees fit. Don't forget this is
84 * measured in 32-bit words, not bytes.
85 */
86 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
87 u8 pci_cache_line_size;
88
89 /**
90 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
91 * @bus: pointer to PCI bus structure to search
92 *
93 * Given a PCI bus, returns the highest PCI bus number present in the set
94 * including the given PCI bus and its list of child PCI buses.
95 */
96 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
97 {
98 struct list_head *tmp;
99 unsigned char max, n;
100
101 max = bus->subordinate;
102 list_for_each(tmp, &bus->children) {
103 n = pci_bus_max_busnr(pci_bus_b(tmp));
104 if(n > max)
105 max = n;
106 }
107 return max;
108 }
109 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
110
111 #ifdef CONFIG_HAS_IOMEM
112 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
113 {
114 /*
115 * Make sure the BAR is actually a memory resource, not an IO resource
116 */
117 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
118 WARN_ON(1);
119 return NULL;
120 }
121 return ioremap_nocache(pci_resource_start(pdev, bar),
122 pci_resource_len(pdev, bar));
123 }
124 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
125 #endif
126
127 #if 0
128 /**
129 * pci_max_busnr - returns maximum PCI bus number
130 *
131 * Returns the highest PCI bus number present in the system global list of
132 * PCI buses.
133 */
134 unsigned char __devinit
135 pci_max_busnr(void)
136 {
137 struct pci_bus *bus = NULL;
138 unsigned char max, n;
139
140 max = 0;
141 while ((bus = pci_find_next_bus(bus)) != NULL) {
142 n = pci_bus_max_busnr(bus);
143 if(n > max)
144 max = n;
145 }
146 return max;
147 }
148
149 #endif /* 0 */
150
151 #define PCI_FIND_CAP_TTL 48
152
153 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
154 u8 pos, int cap, int *ttl)
155 {
156 u8 id;
157
158 while ((*ttl)--) {
159 pci_bus_read_config_byte(bus, devfn, pos, &pos);
160 if (pos < 0x40)
161 break;
162 pos &= ~3;
163 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
164 &id);
165 if (id == 0xff)
166 break;
167 if (id == cap)
168 return pos;
169 pos += PCI_CAP_LIST_NEXT;
170 }
171 return 0;
172 }
173
174 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
175 u8 pos, int cap)
176 {
177 int ttl = PCI_FIND_CAP_TTL;
178
179 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
180 }
181
182 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
183 {
184 return __pci_find_next_cap(dev->bus, dev->devfn,
185 pos + PCI_CAP_LIST_NEXT, cap);
186 }
187 EXPORT_SYMBOL_GPL(pci_find_next_capability);
188
189 static int __pci_bus_find_cap_start(struct pci_bus *bus,
190 unsigned int devfn, u8 hdr_type)
191 {
192 u16 status;
193
194 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
195 if (!(status & PCI_STATUS_CAP_LIST))
196 return 0;
197
198 switch (hdr_type) {
199 case PCI_HEADER_TYPE_NORMAL:
200 case PCI_HEADER_TYPE_BRIDGE:
201 return PCI_CAPABILITY_LIST;
202 case PCI_HEADER_TYPE_CARDBUS:
203 return PCI_CB_CAPABILITY_LIST;
204 default:
205 return 0;
206 }
207
208 return 0;
209 }
210
211 /**
212 * pci_find_capability - query for devices' capabilities
213 * @dev: PCI device to query
214 * @cap: capability code
215 *
216 * Tell if a device supports a given PCI capability.
217 * Returns the address of the requested capability structure within the
218 * device's PCI configuration space or 0 in case the device does not
219 * support it. Possible values for @cap:
220 *
221 * %PCI_CAP_ID_PM Power Management
222 * %PCI_CAP_ID_AGP Accelerated Graphics Port
223 * %PCI_CAP_ID_VPD Vital Product Data
224 * %PCI_CAP_ID_SLOTID Slot Identification
225 * %PCI_CAP_ID_MSI Message Signalled Interrupts
226 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
227 * %PCI_CAP_ID_PCIX PCI-X
228 * %PCI_CAP_ID_EXP PCI Express
229 */
230 int pci_find_capability(struct pci_dev *dev, int cap)
231 {
232 int pos;
233
234 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
235 if (pos)
236 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
237
238 return pos;
239 }
240
241 /**
242 * pci_bus_find_capability - query for devices' capabilities
243 * @bus: the PCI bus to query
244 * @devfn: PCI device to query
245 * @cap: capability code
246 *
247 * Like pci_find_capability() but works for pci devices that do not have a
248 * pci_dev structure set up yet.
249 *
250 * Returns the address of the requested capability structure within the
251 * device's PCI configuration space or 0 in case the device does not
252 * support it.
253 */
254 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
255 {
256 int pos;
257 u8 hdr_type;
258
259 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
260
261 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
262 if (pos)
263 pos = __pci_find_next_cap(bus, devfn, pos, cap);
264
265 return pos;
266 }
267
268 /**
269 * pci_find_ext_capability - Find an extended capability
270 * @dev: PCI device to query
271 * @cap: capability code
272 *
273 * Returns the address of the requested extended capability structure
274 * within the device's PCI configuration space or 0 if the device does
275 * not support it. Possible values for @cap:
276 *
277 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
278 * %PCI_EXT_CAP_ID_VC Virtual Channel
279 * %PCI_EXT_CAP_ID_DSN Device Serial Number
280 * %PCI_EXT_CAP_ID_PWR Power Budgeting
281 */
282 int pci_find_ext_capability(struct pci_dev *dev, int cap)
283 {
284 u32 header;
285 int ttl;
286 int pos = PCI_CFG_SPACE_SIZE;
287
288 /* minimum 8 bytes per capability */
289 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
290
291 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
292 return 0;
293
294 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
295 return 0;
296
297 /*
298 * If we have no capabilities, this is indicated by cap ID,
299 * cap version and next pointer all being 0.
300 */
301 if (header == 0)
302 return 0;
303
304 while (ttl-- > 0) {
305 if (PCI_EXT_CAP_ID(header) == cap)
306 return pos;
307
308 pos = PCI_EXT_CAP_NEXT(header);
309 if (pos < PCI_CFG_SPACE_SIZE)
310 break;
311
312 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
313 break;
314 }
315
316 return 0;
317 }
318 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
319
320 /**
321 * pci_bus_find_ext_capability - find an extended capability
322 * @bus: the PCI bus to query
323 * @devfn: PCI device to query
324 * @cap: capability code
325 *
326 * Like pci_find_ext_capability() but works for pci devices that do not have a
327 * pci_dev structure set up yet.
328 *
329 * Returns the address of the requested capability structure within the
330 * device's PCI configuration space or 0 in case the device does not
331 * support it.
332 */
333 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
334 int cap)
335 {
336 u32 header;
337 int ttl;
338 int pos = PCI_CFG_SPACE_SIZE;
339
340 /* minimum 8 bytes per capability */
341 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
342
343 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
344 return 0;
345 if (header == 0xffffffff || header == 0)
346 return 0;
347
348 while (ttl-- > 0) {
349 if (PCI_EXT_CAP_ID(header) == cap)
350 return pos;
351
352 pos = PCI_EXT_CAP_NEXT(header);
353 if (pos < PCI_CFG_SPACE_SIZE)
354 break;
355
356 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
357 break;
358 }
359
360 return 0;
361 }
362
363 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
364 {
365 int rc, ttl = PCI_FIND_CAP_TTL;
366 u8 cap, mask;
367
368 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
369 mask = HT_3BIT_CAP_MASK;
370 else
371 mask = HT_5BIT_CAP_MASK;
372
373 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
374 PCI_CAP_ID_HT, &ttl);
375 while (pos) {
376 rc = pci_read_config_byte(dev, pos + 3, &cap);
377 if (rc != PCIBIOS_SUCCESSFUL)
378 return 0;
379
380 if ((cap & mask) == ht_cap)
381 return pos;
382
383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
384 pos + PCI_CAP_LIST_NEXT,
385 PCI_CAP_ID_HT, &ttl);
386 }
387
388 return 0;
389 }
390 /**
391 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
392 * @dev: PCI device to query
393 * @pos: Position from which to continue searching
394 * @ht_cap: Hypertransport capability code
395 *
396 * To be used in conjunction with pci_find_ht_capability() to search for
397 * all capabilities matching @ht_cap. @pos should always be a value returned
398 * from pci_find_ht_capability().
399 *
400 * NB. To be 100% safe against broken PCI devices, the caller should take
401 * steps to avoid an infinite loop.
402 */
403 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
404 {
405 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
406 }
407 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
408
409 /**
410 * pci_find_ht_capability - query a device's Hypertransport capabilities
411 * @dev: PCI device to query
412 * @ht_cap: Hypertransport capability code
413 *
414 * Tell if a device supports a given Hypertransport capability.
415 * Returns an address within the device's PCI configuration space
416 * or 0 in case the device does not support the request capability.
417 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
418 * which has a Hypertransport capability matching @ht_cap.
419 */
420 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
421 {
422 int pos;
423
424 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
425 if (pos)
426 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
427
428 return pos;
429 }
430 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
431
432 /**
433 * pci_find_parent_resource - return resource region of parent bus of given region
434 * @dev: PCI device structure contains resources to be searched
435 * @res: child resource record for which parent is sought
436 *
437 * For given resource region of given device, return the resource
438 * region of parent bus the given region is contained in or where
439 * it should be allocated from.
440 */
441 struct resource *
442 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
443 {
444 const struct pci_bus *bus = dev->bus;
445 int i;
446 struct resource *best = NULL, *r;
447
448 pci_bus_for_each_resource(bus, r, i) {
449 if (!r)
450 continue;
451 if (res->start && !(res->start >= r->start && res->end <= r->end))
452 continue; /* Not contained */
453 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
454 continue; /* Wrong type */
455 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
456 return r; /* Exact match */
457 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
458 if (r->flags & IORESOURCE_PREFETCH)
459 continue;
460 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
461 if (!best)
462 best = r;
463 }
464 return best;
465 }
466
467 /**
468 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
469 * @dev: PCI device to have its BARs restored
470 *
471 * Restore the BAR values for a given device, so as to make it
472 * accessible by its driver.
473 */
474 static void
475 pci_restore_bars(struct pci_dev *dev)
476 {
477 int i;
478
479 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
480 pci_update_resource(dev, i);
481 }
482
483 static struct pci_platform_pm_ops *pci_platform_pm;
484
485 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
486 {
487 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
488 || !ops->sleep_wake || !ops->can_wakeup)
489 return -EINVAL;
490 pci_platform_pm = ops;
491 return 0;
492 }
493
494 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
495 {
496 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
497 }
498
499 static inline int platform_pci_set_power_state(struct pci_dev *dev,
500 pci_power_t t)
501 {
502 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
503 }
504
505 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
506 {
507 return pci_platform_pm ?
508 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
509 }
510
511 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
512 {
513 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
514 }
515
516 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
517 {
518 return pci_platform_pm ?
519 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
520 }
521
522 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
523 {
524 return pci_platform_pm ?
525 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
526 }
527
528 /**
529 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
530 * given PCI device
531 * @dev: PCI device to handle.
532 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
533 *
534 * RETURN VALUE:
535 * -EINVAL if the requested state is invalid.
536 * -EIO if device does not support PCI PM or its PM capabilities register has a
537 * wrong version, or device doesn't support the requested state.
538 * 0 if device already is in the requested state.
539 * 0 if device's power state has been successfully changed.
540 */
541 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
542 {
543 u16 pmcsr;
544 bool need_restore = false;
545
546 /* Check if we're already there */
547 if (dev->current_state == state)
548 return 0;
549
550 if (!dev->pm_cap)
551 return -EIO;
552
553 if (state < PCI_D0 || state > PCI_D3hot)
554 return -EINVAL;
555
556 /* Validate current state:
557 * Can enter D0 from any state, but if we can only go deeper
558 * to sleep if we're already in a low power state
559 */
560 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
561 && dev->current_state > state) {
562 dev_err(&dev->dev, "invalid power transition "
563 "(from state %d to %d)\n", dev->current_state, state);
564 return -EINVAL;
565 }
566
567 /* check if this device supports the desired state */
568 if ((state == PCI_D1 && !dev->d1_support)
569 || (state == PCI_D2 && !dev->d2_support))
570 return -EIO;
571
572 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
573
574 /* If we're (effectively) in D3, force entire word to 0.
575 * This doesn't affect PME_Status, disables PME_En, and
576 * sets PowerState to 0.
577 */
578 switch (dev->current_state) {
579 case PCI_D0:
580 case PCI_D1:
581 case PCI_D2:
582 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
583 pmcsr |= state;
584 break;
585 case PCI_D3hot:
586 case PCI_D3cold:
587 case PCI_UNKNOWN: /* Boot-up */
588 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
589 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
590 need_restore = true;
591 /* Fall-through: force to D0 */
592 default:
593 pmcsr = 0;
594 break;
595 }
596
597 /* enter specified state */
598 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
599
600 /* Mandatory power management transition delays */
601 /* see PCI PM 1.1 5.6.1 table 18 */
602 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
603 pci_dev_d3_sleep(dev);
604 else if (state == PCI_D2 || dev->current_state == PCI_D2)
605 udelay(PCI_PM_D2_DELAY);
606
607 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
608 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
609 if (dev->current_state != state && printk_ratelimit())
610 dev_info(&dev->dev, "Refused to change power state, "
611 "currently in D%d\n", dev->current_state);
612
613 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
614 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
615 * from D3hot to D0 _may_ perform an internal reset, thereby
616 * going to "D0 Uninitialized" rather than "D0 Initialized".
617 * For example, at least some versions of the 3c905B and the
618 * 3c556B exhibit this behaviour.
619 *
620 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
621 * devices in a D3hot state at boot. Consequently, we need to
622 * restore at least the BARs so that the device will be
623 * accessible to its driver.
624 */
625 if (need_restore)
626 pci_restore_bars(dev);
627
628 if (dev->bus->self)
629 pcie_aspm_pm_state_change(dev->bus->self);
630
631 return 0;
632 }
633
634 /**
635 * pci_update_current_state - Read PCI power state of given device from its
636 * PCI PM registers and cache it
637 * @dev: PCI device to handle.
638 * @state: State to cache in case the device doesn't have the PM capability
639 */
640 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
641 {
642 if (dev->pm_cap) {
643 u16 pmcsr;
644
645 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
646 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
647 } else {
648 dev->current_state = state;
649 }
650 }
651
652 /**
653 * pci_platform_power_transition - Use platform to change device power state
654 * @dev: PCI device to handle.
655 * @state: State to put the device into.
656 */
657 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
658 {
659 int error;
660
661 if (platform_pci_power_manageable(dev)) {
662 error = platform_pci_set_power_state(dev, state);
663 if (!error)
664 pci_update_current_state(dev, state);
665 } else {
666 error = -ENODEV;
667 /* Fall back to PCI_D0 if native PM is not supported */
668 if (!dev->pm_cap)
669 dev->current_state = PCI_D0;
670 }
671
672 return error;
673 }
674
675 /**
676 * __pci_start_power_transition - Start power transition of a PCI device
677 * @dev: PCI device to handle.
678 * @state: State to put the device into.
679 */
680 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
681 {
682 if (state == PCI_D0)
683 pci_platform_power_transition(dev, PCI_D0);
684 }
685
686 /**
687 * __pci_complete_power_transition - Complete power transition of a PCI device
688 * @dev: PCI device to handle.
689 * @state: State to put the device into.
690 *
691 * This function should not be called directly by device drivers.
692 */
693 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
694 {
695 return state >= PCI_D0 ?
696 pci_platform_power_transition(dev, state) : -EINVAL;
697 }
698 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
699
700 /**
701 * pci_set_power_state - Set the power state of a PCI device
702 * @dev: PCI device to handle.
703 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
704 *
705 * Transition a device to a new power state, using the platform firmware and/or
706 * the device's PCI PM registers.
707 *
708 * RETURN VALUE:
709 * -EINVAL if the requested state is invalid.
710 * -EIO if device does not support PCI PM or its PM capabilities register has a
711 * wrong version, or device doesn't support the requested state.
712 * 0 if device already is in the requested state.
713 * 0 if device's power state has been successfully changed.
714 */
715 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
716 {
717 int error;
718
719 /* bound the state we're entering */
720 if (state > PCI_D3hot)
721 state = PCI_D3hot;
722 else if (state < PCI_D0)
723 state = PCI_D0;
724 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
725 /*
726 * If the device or the parent bridge do not support PCI PM,
727 * ignore the request if we're doing anything other than putting
728 * it into D0 (which would only happen on boot).
729 */
730 return 0;
731
732 __pci_start_power_transition(dev, state);
733
734 /* This device is quirked not to be put into D3, so
735 don't put it in D3 */
736 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
737 return 0;
738
739 error = pci_raw_set_power_state(dev, state);
740
741 if (!__pci_complete_power_transition(dev, state))
742 error = 0;
743
744 return error;
745 }
746
747 /**
748 * pci_choose_state - Choose the power state of a PCI device
749 * @dev: PCI device to be suspended
750 * @state: target sleep state for the whole system. This is the value
751 * that is passed to suspend() function.
752 *
753 * Returns PCI power state suitable for given device and given system
754 * message.
755 */
756
757 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
758 {
759 pci_power_t ret;
760
761 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
762 return PCI_D0;
763
764 ret = platform_pci_choose_state(dev);
765 if (ret != PCI_POWER_ERROR)
766 return ret;
767
768 switch (state.event) {
769 case PM_EVENT_ON:
770 return PCI_D0;
771 case PM_EVENT_FREEZE:
772 case PM_EVENT_PRETHAW:
773 /* REVISIT both freeze and pre-thaw "should" use D0 */
774 case PM_EVENT_SUSPEND:
775 case PM_EVENT_HIBERNATE:
776 return PCI_D3hot;
777 default:
778 dev_info(&dev->dev, "unrecognized suspend event %d\n",
779 state.event);
780 BUG();
781 }
782 return PCI_D0;
783 }
784
785 EXPORT_SYMBOL(pci_choose_state);
786
787 #define PCI_EXP_SAVE_REGS 7
788
789 #define pcie_cap_has_devctl(type, flags) 1
790 #define pcie_cap_has_lnkctl(type, flags) \
791 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
792 (type == PCI_EXP_TYPE_ROOT_PORT || \
793 type == PCI_EXP_TYPE_ENDPOINT || \
794 type == PCI_EXP_TYPE_LEG_END))
795 #define pcie_cap_has_sltctl(type, flags) \
796 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
797 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
798 (type == PCI_EXP_TYPE_DOWNSTREAM && \
799 (flags & PCI_EXP_FLAGS_SLOT))))
800 #define pcie_cap_has_rtctl(type, flags) \
801 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
802 (type == PCI_EXP_TYPE_ROOT_PORT || \
803 type == PCI_EXP_TYPE_RC_EC))
804 #define pcie_cap_has_devctl2(type, flags) \
805 ((flags & PCI_EXP_FLAGS_VERS) > 1)
806 #define pcie_cap_has_lnkctl2(type, flags) \
807 ((flags & PCI_EXP_FLAGS_VERS) > 1)
808 #define pcie_cap_has_sltctl2(type, flags) \
809 ((flags & PCI_EXP_FLAGS_VERS) > 1)
810
811 static int pci_save_pcie_state(struct pci_dev *dev)
812 {
813 int pos, i = 0;
814 struct pci_cap_saved_state *save_state;
815 u16 *cap;
816 u16 flags;
817
818 pos = pci_pcie_cap(dev);
819 if (!pos)
820 return 0;
821
822 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
823 if (!save_state) {
824 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
825 return -ENOMEM;
826 }
827 cap = (u16 *)&save_state->data[0];
828
829 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
830
831 if (pcie_cap_has_devctl(dev->pcie_type, flags))
832 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
833 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
834 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
835 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
836 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
837 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
838 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
839 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
840 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
841 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
842 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
843 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
844 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
845
846 return 0;
847 }
848
849 static void pci_restore_pcie_state(struct pci_dev *dev)
850 {
851 int i = 0, pos;
852 struct pci_cap_saved_state *save_state;
853 u16 *cap;
854 u16 flags;
855
856 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
857 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
858 if (!save_state || pos <= 0)
859 return;
860 cap = (u16 *)&save_state->data[0];
861
862 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
863
864 if (pcie_cap_has_devctl(dev->pcie_type, flags))
865 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
866 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
867 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
868 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
869 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
870 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
871 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
872 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
873 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
874 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
875 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
876 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
877 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
878 }
879
880
881 static int pci_save_pcix_state(struct pci_dev *dev)
882 {
883 int pos;
884 struct pci_cap_saved_state *save_state;
885
886 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
887 if (pos <= 0)
888 return 0;
889
890 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
891 if (!save_state) {
892 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
893 return -ENOMEM;
894 }
895
896 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
897
898 return 0;
899 }
900
901 static void pci_restore_pcix_state(struct pci_dev *dev)
902 {
903 int i = 0, pos;
904 struct pci_cap_saved_state *save_state;
905 u16 *cap;
906
907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
909 if (!save_state || pos <= 0)
910 return;
911 cap = (u16 *)&save_state->data[0];
912
913 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
914 }
915
916
917 /**
918 * pci_save_state - save the PCI configuration space of a device before suspending
919 * @dev: - PCI device that we're dealing with
920 */
921 int
922 pci_save_state(struct pci_dev *dev)
923 {
924 int i;
925 /* XXX: 100% dword access ok here? */
926 for (i = 0; i < 16; i++)
927 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
928 dev->state_saved = true;
929 if ((i = pci_save_pcie_state(dev)) != 0)
930 return i;
931 if ((i = pci_save_pcix_state(dev)) != 0)
932 return i;
933 return 0;
934 }
935
936 /**
937 * pci_restore_state - Restore the saved state of a PCI device
938 * @dev: - PCI device that we're dealing with
939 */
940 int
941 pci_restore_state(struct pci_dev *dev)
942 {
943 int i;
944 u32 val;
945
946 if (!dev->state_saved)
947 return 0;
948
949 /* PCI Express register must be restored first */
950 pci_restore_pcie_state(dev);
951
952 /*
953 * The Base Address register should be programmed before the command
954 * register(s)
955 */
956 for (i = 15; i >= 0; i--) {
957 pci_read_config_dword(dev, i * 4, &val);
958 if (val != dev->saved_config_space[i]) {
959 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
960 "space at offset %#x (was %#x, writing %#x)\n",
961 i, val, (int)dev->saved_config_space[i]);
962 pci_write_config_dword(dev,i * 4,
963 dev->saved_config_space[i]);
964 }
965 }
966 pci_restore_pcix_state(dev);
967 pci_restore_msi_state(dev);
968 pci_restore_iov_state(dev);
969
970 dev->state_saved = false;
971
972 return 0;
973 }
974
975 static int do_pci_enable_device(struct pci_dev *dev, int bars)
976 {
977 int err;
978
979 err = pci_set_power_state(dev, PCI_D0);
980 if (err < 0 && err != -EIO)
981 return err;
982 err = pcibios_enable_device(dev, bars);
983 if (err < 0)
984 return err;
985 pci_fixup_device(pci_fixup_enable, dev);
986
987 return 0;
988 }
989
990 /**
991 * pci_reenable_device - Resume abandoned device
992 * @dev: PCI device to be resumed
993 *
994 * Note this function is a backend of pci_default_resume and is not supposed
995 * to be called by normal code, write proper resume handler and use it instead.
996 */
997 int pci_reenable_device(struct pci_dev *dev)
998 {
999 if (pci_is_enabled(dev))
1000 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1001 return 0;
1002 }
1003
1004 static int __pci_enable_device_flags(struct pci_dev *dev,
1005 resource_size_t flags)
1006 {
1007 int err;
1008 int i, bars = 0;
1009
1010 /*
1011 * Power state could be unknown at this point, either due to a fresh
1012 * boot or a device removal call. So get the current power state
1013 * so that things like MSI message writing will behave as expected
1014 * (e.g. if the device really is in D0 at enable time).
1015 */
1016 if (dev->pm_cap) {
1017 u16 pmcsr;
1018 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1019 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1020 }
1021
1022 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1023 return 0; /* already enabled */
1024
1025 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1026 if (dev->resource[i].flags & flags)
1027 bars |= (1 << i);
1028
1029 err = do_pci_enable_device(dev, bars);
1030 if (err < 0)
1031 atomic_dec(&dev->enable_cnt);
1032 return err;
1033 }
1034
1035 /**
1036 * pci_enable_device_io - Initialize a device for use with IO space
1037 * @dev: PCI device to be initialized
1038 *
1039 * Initialize device before it's used by a driver. Ask low-level code
1040 * to enable I/O resources. Wake up the device if it was suspended.
1041 * Beware, this function can fail.
1042 */
1043 int pci_enable_device_io(struct pci_dev *dev)
1044 {
1045 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1046 }
1047
1048 /**
1049 * pci_enable_device_mem - Initialize a device for use with Memory space
1050 * @dev: PCI device to be initialized
1051 *
1052 * Initialize device before it's used by a driver. Ask low-level code
1053 * to enable Memory resources. Wake up the device if it was suspended.
1054 * Beware, this function can fail.
1055 */
1056 int pci_enable_device_mem(struct pci_dev *dev)
1057 {
1058 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1059 }
1060
1061 /**
1062 * pci_enable_device - Initialize device before it's used by a driver.
1063 * @dev: PCI device to be initialized
1064 *
1065 * Initialize device before it's used by a driver. Ask low-level code
1066 * to enable I/O and memory. Wake up the device if it was suspended.
1067 * Beware, this function can fail.
1068 *
1069 * Note we don't actually enable the device many times if we call
1070 * this function repeatedly (we just increment the count).
1071 */
1072 int pci_enable_device(struct pci_dev *dev)
1073 {
1074 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1075 }
1076
1077 /*
1078 * Managed PCI resources. This manages device on/off, intx/msi/msix
1079 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1080 * there's no need to track it separately. pci_devres is initialized
1081 * when a device is enabled using managed PCI device enable interface.
1082 */
1083 struct pci_devres {
1084 unsigned int enabled:1;
1085 unsigned int pinned:1;
1086 unsigned int orig_intx:1;
1087 unsigned int restore_intx:1;
1088 u32 region_mask;
1089 };
1090
1091 static void pcim_release(struct device *gendev, void *res)
1092 {
1093 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1094 struct pci_devres *this = res;
1095 int i;
1096
1097 if (dev->msi_enabled)
1098 pci_disable_msi(dev);
1099 if (dev->msix_enabled)
1100 pci_disable_msix(dev);
1101
1102 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1103 if (this->region_mask & (1 << i))
1104 pci_release_region(dev, i);
1105
1106 if (this->restore_intx)
1107 pci_intx(dev, this->orig_intx);
1108
1109 if (this->enabled && !this->pinned)
1110 pci_disable_device(dev);
1111 }
1112
1113 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1114 {
1115 struct pci_devres *dr, *new_dr;
1116
1117 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1118 if (dr)
1119 return dr;
1120
1121 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1122 if (!new_dr)
1123 return NULL;
1124 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1125 }
1126
1127 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1128 {
1129 if (pci_is_managed(pdev))
1130 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1131 return NULL;
1132 }
1133
1134 /**
1135 * pcim_enable_device - Managed pci_enable_device()
1136 * @pdev: PCI device to be initialized
1137 *
1138 * Managed pci_enable_device().
1139 */
1140 int pcim_enable_device(struct pci_dev *pdev)
1141 {
1142 struct pci_devres *dr;
1143 int rc;
1144
1145 dr = get_pci_dr(pdev);
1146 if (unlikely(!dr))
1147 return -ENOMEM;
1148 if (dr->enabled)
1149 return 0;
1150
1151 rc = pci_enable_device(pdev);
1152 if (!rc) {
1153 pdev->is_managed = 1;
1154 dr->enabled = 1;
1155 }
1156 return rc;
1157 }
1158
1159 /**
1160 * pcim_pin_device - Pin managed PCI device
1161 * @pdev: PCI device to pin
1162 *
1163 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1164 * driver detach. @pdev must have been enabled with
1165 * pcim_enable_device().
1166 */
1167 void pcim_pin_device(struct pci_dev *pdev)
1168 {
1169 struct pci_devres *dr;
1170
1171 dr = find_pci_dr(pdev);
1172 WARN_ON(!dr || !dr->enabled);
1173 if (dr)
1174 dr->pinned = 1;
1175 }
1176
1177 /**
1178 * pcibios_disable_device - disable arch specific PCI resources for device dev
1179 * @dev: the PCI device to disable
1180 *
1181 * Disables architecture specific PCI resources for the device. This
1182 * is the default implementation. Architecture implementations can
1183 * override this.
1184 */
1185 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1186
1187 static void do_pci_disable_device(struct pci_dev *dev)
1188 {
1189 u16 pci_command;
1190
1191 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1192 if (pci_command & PCI_COMMAND_MASTER) {
1193 pci_command &= ~PCI_COMMAND_MASTER;
1194 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1195 }
1196
1197 pcibios_disable_device(dev);
1198 }
1199
1200 /**
1201 * pci_disable_enabled_device - Disable device without updating enable_cnt
1202 * @dev: PCI device to disable
1203 *
1204 * NOTE: This function is a backend of PCI power management routines and is
1205 * not supposed to be called drivers.
1206 */
1207 void pci_disable_enabled_device(struct pci_dev *dev)
1208 {
1209 if (pci_is_enabled(dev))
1210 do_pci_disable_device(dev);
1211 }
1212
1213 /**
1214 * pci_disable_device - Disable PCI device after use
1215 * @dev: PCI device to be disabled
1216 *
1217 * Signal to the system that the PCI device is not in use by the system
1218 * anymore. This only involves disabling PCI bus-mastering, if active.
1219 *
1220 * Note we don't actually disable the device until all callers of
1221 * pci_enable_device() have called pci_disable_device().
1222 */
1223 void
1224 pci_disable_device(struct pci_dev *dev)
1225 {
1226 struct pci_devres *dr;
1227
1228 dr = find_pci_dr(dev);
1229 if (dr)
1230 dr->enabled = 0;
1231
1232 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1233 return;
1234
1235 do_pci_disable_device(dev);
1236
1237 dev->is_busmaster = 0;
1238 }
1239
1240 /**
1241 * pcibios_set_pcie_reset_state - set reset state for device dev
1242 * @dev: the PCIe device reset
1243 * @state: Reset state to enter into
1244 *
1245 *
1246 * Sets the PCIe reset state for the device. This is the default
1247 * implementation. Architecture implementations can override this.
1248 */
1249 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1250 enum pcie_reset_state state)
1251 {
1252 return -EINVAL;
1253 }
1254
1255 /**
1256 * pci_set_pcie_reset_state - set reset state for device dev
1257 * @dev: the PCIe device reset
1258 * @state: Reset state to enter into
1259 *
1260 *
1261 * Sets the PCI reset state for the device.
1262 */
1263 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1264 {
1265 return pcibios_set_pcie_reset_state(dev, state);
1266 }
1267
1268 /**
1269 * pci_check_pme_status - Check if given device has generated PME.
1270 * @dev: Device to check.
1271 *
1272 * Check the PME status of the device and if set, clear it and clear PME enable
1273 * (if set). Return 'true' if PME status and PME enable were both set or
1274 * 'false' otherwise.
1275 */
1276 bool pci_check_pme_status(struct pci_dev *dev)
1277 {
1278 int pmcsr_pos;
1279 u16 pmcsr;
1280 bool ret = false;
1281
1282 if (!dev->pm_cap)
1283 return false;
1284
1285 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1286 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1287 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1288 return false;
1289
1290 /* Clear PME status. */
1291 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1292 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1293 /* Disable PME to avoid interrupt flood. */
1294 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1295 ret = true;
1296 }
1297
1298 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1299
1300 return ret;
1301 }
1302
1303 /*
1304 * Time to wait before the system can be put into a sleep state after reporting
1305 * a wakeup event signaled by a PCI device.
1306 */
1307 #define PCI_WAKEUP_COOLDOWN 100
1308
1309 /**
1310 * pci_wakeup_event - Report a wakeup event related to a given PCI device.
1311 * @dev: Device to report the wakeup event for.
1312 */
1313 void pci_wakeup_event(struct pci_dev *dev)
1314 {
1315 if (device_may_wakeup(&dev->dev))
1316 pm_wakeup_event(&dev->dev, PCI_WAKEUP_COOLDOWN);
1317 }
1318
1319 /**
1320 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1321 * @dev: Device to handle.
1322 * @ign: Ignored.
1323 *
1324 * Check if @dev has generated PME and queue a resume request for it in that
1325 * case.
1326 */
1327 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1328 {
1329 if (pci_check_pme_status(dev)) {
1330 pm_request_resume(&dev->dev);
1331 pci_wakeup_event(dev);
1332 }
1333 return 0;
1334 }
1335
1336 /**
1337 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1338 * @bus: Top bus of the subtree to walk.
1339 */
1340 void pci_pme_wakeup_bus(struct pci_bus *bus)
1341 {
1342 if (bus)
1343 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1344 }
1345
1346 /**
1347 * pci_pme_capable - check the capability of PCI device to generate PME#
1348 * @dev: PCI device to handle.
1349 * @state: PCI state from which device will issue PME#.
1350 */
1351 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1352 {
1353 if (!dev->pm_cap)
1354 return false;
1355
1356 return !!(dev->pme_support & (1 << state));
1357 }
1358
1359 static void pci_pme_list_scan(struct work_struct *work)
1360 {
1361 struct pci_pme_device *pme_dev;
1362
1363 mutex_lock(&pci_pme_list_mutex);
1364 if (!list_empty(&pci_pme_list)) {
1365 list_for_each_entry(pme_dev, &pci_pme_list, list)
1366 pci_pme_wakeup(pme_dev->dev, NULL);
1367 schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1368 }
1369 mutex_unlock(&pci_pme_list_mutex);
1370 }
1371
1372 /**
1373 * pci_external_pme - is a device an external PCI PME source?
1374 * @dev: PCI device to check
1375 *
1376 */
1377
1378 static bool pci_external_pme(struct pci_dev *dev)
1379 {
1380 if (pci_is_pcie(dev) || dev->bus->number == 0)
1381 return false;
1382 return true;
1383 }
1384
1385 /**
1386 * pci_pme_active - enable or disable PCI device's PME# function
1387 * @dev: PCI device to handle.
1388 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1389 *
1390 * The caller must verify that the device is capable of generating PME# before
1391 * calling this function with @enable equal to 'true'.
1392 */
1393 void pci_pme_active(struct pci_dev *dev, bool enable)
1394 {
1395 u16 pmcsr;
1396
1397 if (!dev->pm_cap)
1398 return;
1399
1400 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1401 /* Clear PME_Status by writing 1 to it and enable PME# */
1402 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1403 if (!enable)
1404 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1405
1406 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1407
1408 /* PCI (as opposed to PCIe) PME requires that the device have
1409 its PME# line hooked up correctly. Not all hardware vendors
1410 do this, so the PME never gets delivered and the device
1411 remains asleep. The easiest way around this is to
1412 periodically walk the list of suspended devices and check
1413 whether any have their PME flag set. The assumption is that
1414 we'll wake up often enough anyway that this won't be a huge
1415 hit, and the power savings from the devices will still be a
1416 win. */
1417
1418 if (pci_external_pme(dev)) {
1419 struct pci_pme_device *pme_dev;
1420 if (enable) {
1421 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1422 GFP_KERNEL);
1423 if (!pme_dev)
1424 goto out;
1425 pme_dev->dev = dev;
1426 mutex_lock(&pci_pme_list_mutex);
1427 list_add(&pme_dev->list, &pci_pme_list);
1428 if (list_is_singular(&pci_pme_list))
1429 schedule_delayed_work(&pci_pme_work,
1430 msecs_to_jiffies(PME_TIMEOUT));
1431 mutex_unlock(&pci_pme_list_mutex);
1432 } else {
1433 mutex_lock(&pci_pme_list_mutex);
1434 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1435 if (pme_dev->dev == dev) {
1436 list_del(&pme_dev->list);
1437 kfree(pme_dev);
1438 break;
1439 }
1440 }
1441 mutex_unlock(&pci_pme_list_mutex);
1442 }
1443 }
1444
1445 out:
1446 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1447 enable ? "enabled" : "disabled");
1448 }
1449
1450 /**
1451 * __pci_enable_wake - enable PCI device as wakeup event source
1452 * @dev: PCI device affected
1453 * @state: PCI state from which device will issue wakeup events
1454 * @runtime: True if the events are to be generated at run time
1455 * @enable: True to enable event generation; false to disable
1456 *
1457 * This enables the device as a wakeup event source, or disables it.
1458 * When such events involves platform-specific hooks, those hooks are
1459 * called automatically by this routine.
1460 *
1461 * Devices with legacy power management (no standard PCI PM capabilities)
1462 * always require such platform hooks.
1463 *
1464 * RETURN VALUE:
1465 * 0 is returned on success
1466 * -EINVAL is returned if device is not supposed to wake up the system
1467 * Error code depending on the platform is returned if both the platform and
1468 * the native mechanism fail to enable the generation of wake-up events
1469 */
1470 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1471 bool runtime, bool enable)
1472 {
1473 int ret = 0;
1474
1475 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1476 return -EINVAL;
1477
1478 /* Don't do the same thing twice in a row for one device. */
1479 if (!!enable == !!dev->wakeup_prepared)
1480 return 0;
1481
1482 /*
1483 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1484 * Anderson we should be doing PME# wake enable followed by ACPI wake
1485 * enable. To disable wake-up we call the platform first, for symmetry.
1486 */
1487
1488 if (enable) {
1489 int error;
1490
1491 if (pci_pme_capable(dev, state))
1492 pci_pme_active(dev, true);
1493 else
1494 ret = 1;
1495 error = runtime ? platform_pci_run_wake(dev, true) :
1496 platform_pci_sleep_wake(dev, true);
1497 if (ret)
1498 ret = error;
1499 if (!ret)
1500 dev->wakeup_prepared = true;
1501 } else {
1502 if (runtime)
1503 platform_pci_run_wake(dev, false);
1504 else
1505 platform_pci_sleep_wake(dev, false);
1506 pci_pme_active(dev, false);
1507 dev->wakeup_prepared = false;
1508 }
1509
1510 return ret;
1511 }
1512 EXPORT_SYMBOL(__pci_enable_wake);
1513
1514 /**
1515 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1516 * @dev: PCI device to prepare
1517 * @enable: True to enable wake-up event generation; false to disable
1518 *
1519 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1520 * and this function allows them to set that up cleanly - pci_enable_wake()
1521 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1522 * ordering constraints.
1523 *
1524 * This function only returns error code if the device is not capable of
1525 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1526 * enable wake-up power for it.
1527 */
1528 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1529 {
1530 return pci_pme_capable(dev, PCI_D3cold) ?
1531 pci_enable_wake(dev, PCI_D3cold, enable) :
1532 pci_enable_wake(dev, PCI_D3hot, enable);
1533 }
1534
1535 /**
1536 * pci_target_state - find an appropriate low power state for a given PCI dev
1537 * @dev: PCI device
1538 *
1539 * Use underlying platform code to find a supported low power state for @dev.
1540 * If the platform can't manage @dev, return the deepest state from which it
1541 * can generate wake events, based on any available PME info.
1542 */
1543 pci_power_t pci_target_state(struct pci_dev *dev)
1544 {
1545 pci_power_t target_state = PCI_D3hot;
1546
1547 if (platform_pci_power_manageable(dev)) {
1548 /*
1549 * Call the platform to choose the target state of the device
1550 * and enable wake-up from this state if supported.
1551 */
1552 pci_power_t state = platform_pci_choose_state(dev);
1553
1554 switch (state) {
1555 case PCI_POWER_ERROR:
1556 case PCI_UNKNOWN:
1557 break;
1558 case PCI_D1:
1559 case PCI_D2:
1560 if (pci_no_d1d2(dev))
1561 break;
1562 default:
1563 target_state = state;
1564 }
1565 } else if (!dev->pm_cap) {
1566 target_state = PCI_D0;
1567 } else if (device_may_wakeup(&dev->dev)) {
1568 /*
1569 * Find the deepest state from which the device can generate
1570 * wake-up events, make it the target state and enable device
1571 * to generate PME#.
1572 */
1573 if (dev->pme_support) {
1574 while (target_state
1575 && !(dev->pme_support & (1 << target_state)))
1576 target_state--;
1577 }
1578 }
1579
1580 return target_state;
1581 }
1582
1583 /**
1584 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1585 * @dev: Device to handle.
1586 *
1587 * Choose the power state appropriate for the device depending on whether
1588 * it can wake up the system and/or is power manageable by the platform
1589 * (PCI_D3hot is the default) and put the device into that state.
1590 */
1591 int pci_prepare_to_sleep(struct pci_dev *dev)
1592 {
1593 pci_power_t target_state = pci_target_state(dev);
1594 int error;
1595
1596 if (target_state == PCI_POWER_ERROR)
1597 return -EIO;
1598
1599 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1600
1601 error = pci_set_power_state(dev, target_state);
1602
1603 if (error)
1604 pci_enable_wake(dev, target_state, false);
1605
1606 return error;
1607 }
1608
1609 /**
1610 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1611 * @dev: Device to handle.
1612 *
1613 * Disable device's system wake-up capability and put it into D0.
1614 */
1615 int pci_back_from_sleep(struct pci_dev *dev)
1616 {
1617 pci_enable_wake(dev, PCI_D0, false);
1618 return pci_set_power_state(dev, PCI_D0);
1619 }
1620
1621 /**
1622 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1623 * @dev: PCI device being suspended.
1624 *
1625 * Prepare @dev to generate wake-up events at run time and put it into a low
1626 * power state.
1627 */
1628 int pci_finish_runtime_suspend(struct pci_dev *dev)
1629 {
1630 pci_power_t target_state = pci_target_state(dev);
1631 int error;
1632
1633 if (target_state == PCI_POWER_ERROR)
1634 return -EIO;
1635
1636 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1637
1638 error = pci_set_power_state(dev, target_state);
1639
1640 if (error)
1641 __pci_enable_wake(dev, target_state, true, false);
1642
1643 return error;
1644 }
1645
1646 /**
1647 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1648 * @dev: Device to check.
1649 *
1650 * Return true if the device itself is cabable of generating wake-up events
1651 * (through the platform or using the native PCIe PME) or if the device supports
1652 * PME and one of its upstream bridges can generate wake-up events.
1653 */
1654 bool pci_dev_run_wake(struct pci_dev *dev)
1655 {
1656 struct pci_bus *bus = dev->bus;
1657
1658 if (device_run_wake(&dev->dev))
1659 return true;
1660
1661 if (!dev->pme_support)
1662 return false;
1663
1664 while (bus->parent) {
1665 struct pci_dev *bridge = bus->self;
1666
1667 if (device_run_wake(&bridge->dev))
1668 return true;
1669
1670 bus = bus->parent;
1671 }
1672
1673 /* We have reached the root bus. */
1674 if (bus->bridge)
1675 return device_run_wake(bus->bridge);
1676
1677 return false;
1678 }
1679 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1680
1681 /**
1682 * pci_pm_init - Initialize PM functions of given PCI device
1683 * @dev: PCI device to handle.
1684 */
1685 void pci_pm_init(struct pci_dev *dev)
1686 {
1687 int pm;
1688 u16 pmc;
1689
1690 pm_runtime_forbid(&dev->dev);
1691 device_enable_async_suspend(&dev->dev);
1692 dev->wakeup_prepared = false;
1693
1694 dev->pm_cap = 0;
1695
1696 /* find PCI PM capability in list */
1697 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1698 if (!pm)
1699 return;
1700 /* Check device's ability to generate PME# */
1701 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1702
1703 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1704 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1705 pmc & PCI_PM_CAP_VER_MASK);
1706 return;
1707 }
1708
1709 dev->pm_cap = pm;
1710 dev->d3_delay = PCI_PM_D3_WAIT;
1711
1712 dev->d1_support = false;
1713 dev->d2_support = false;
1714 if (!pci_no_d1d2(dev)) {
1715 if (pmc & PCI_PM_CAP_D1)
1716 dev->d1_support = true;
1717 if (pmc & PCI_PM_CAP_D2)
1718 dev->d2_support = true;
1719
1720 if (dev->d1_support || dev->d2_support)
1721 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1722 dev->d1_support ? " D1" : "",
1723 dev->d2_support ? " D2" : "");
1724 }
1725
1726 pmc &= PCI_PM_CAP_PME_MASK;
1727 if (pmc) {
1728 dev_printk(KERN_DEBUG, &dev->dev,
1729 "PME# supported from%s%s%s%s%s\n",
1730 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1731 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1732 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1733 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1734 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1735 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1736 /*
1737 * Make device's PM flags reflect the wake-up capability, but
1738 * let the user space enable it to wake up the system as needed.
1739 */
1740 device_set_wakeup_capable(&dev->dev, true);
1741 /* Disable the PME# generation functionality */
1742 pci_pme_active(dev, false);
1743 } else {
1744 dev->pme_support = 0;
1745 }
1746 }
1747
1748 /**
1749 * platform_pci_wakeup_init - init platform wakeup if present
1750 * @dev: PCI device
1751 *
1752 * Some devices don't have PCI PM caps but can still generate wakeup
1753 * events through platform methods (like ACPI events). If @dev supports
1754 * platform wakeup events, set the device flag to indicate as much. This
1755 * may be redundant if the device also supports PCI PM caps, but double
1756 * initialization should be safe in that case.
1757 */
1758 void platform_pci_wakeup_init(struct pci_dev *dev)
1759 {
1760 if (!platform_pci_can_wakeup(dev))
1761 return;
1762
1763 device_set_wakeup_capable(&dev->dev, true);
1764 platform_pci_sleep_wake(dev, false);
1765 }
1766
1767 /**
1768 * pci_add_save_buffer - allocate buffer for saving given capability registers
1769 * @dev: the PCI device
1770 * @cap: the capability to allocate the buffer for
1771 * @size: requested size of the buffer
1772 */
1773 static int pci_add_cap_save_buffer(
1774 struct pci_dev *dev, char cap, unsigned int size)
1775 {
1776 int pos;
1777 struct pci_cap_saved_state *save_state;
1778
1779 pos = pci_find_capability(dev, cap);
1780 if (pos <= 0)
1781 return 0;
1782
1783 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1784 if (!save_state)
1785 return -ENOMEM;
1786
1787 save_state->cap_nr = cap;
1788 pci_add_saved_cap(dev, save_state);
1789
1790 return 0;
1791 }
1792
1793 /**
1794 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1795 * @dev: the PCI device
1796 */
1797 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1798 {
1799 int error;
1800
1801 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1802 PCI_EXP_SAVE_REGS * sizeof(u16));
1803 if (error)
1804 dev_err(&dev->dev,
1805 "unable to preallocate PCI Express save buffer\n");
1806
1807 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1808 if (error)
1809 dev_err(&dev->dev,
1810 "unable to preallocate PCI-X save buffer\n");
1811 }
1812
1813 /**
1814 * pci_enable_ari - enable ARI forwarding if hardware support it
1815 * @dev: the PCI device
1816 */
1817 void pci_enable_ari(struct pci_dev *dev)
1818 {
1819 int pos;
1820 u32 cap;
1821 u16 ctrl;
1822 struct pci_dev *bridge;
1823
1824 if (!pci_is_pcie(dev) || dev->devfn)
1825 return;
1826
1827 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1828 if (!pos)
1829 return;
1830
1831 bridge = dev->bus->self;
1832 if (!bridge || !pci_is_pcie(bridge))
1833 return;
1834
1835 pos = pci_pcie_cap(bridge);
1836 if (!pos)
1837 return;
1838
1839 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1840 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1841 return;
1842
1843 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1844 ctrl |= PCI_EXP_DEVCTL2_ARI;
1845 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1846
1847 bridge->ari_enabled = 1;
1848 }
1849
1850 static int pci_acs_enable;
1851
1852 /**
1853 * pci_request_acs - ask for ACS to be enabled if supported
1854 */
1855 void pci_request_acs(void)
1856 {
1857 pci_acs_enable = 1;
1858 }
1859
1860 /**
1861 * pci_enable_acs - enable ACS if hardware support it
1862 * @dev: the PCI device
1863 */
1864 void pci_enable_acs(struct pci_dev *dev)
1865 {
1866 int pos;
1867 u16 cap;
1868 u16 ctrl;
1869
1870 if (!pci_acs_enable)
1871 return;
1872
1873 if (!pci_is_pcie(dev))
1874 return;
1875
1876 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1877 if (!pos)
1878 return;
1879
1880 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1881 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1882
1883 /* Source Validation */
1884 ctrl |= (cap & PCI_ACS_SV);
1885
1886 /* P2P Request Redirect */
1887 ctrl |= (cap & PCI_ACS_RR);
1888
1889 /* P2P Completion Redirect */
1890 ctrl |= (cap & PCI_ACS_CR);
1891
1892 /* Upstream Forwarding */
1893 ctrl |= (cap & PCI_ACS_UF);
1894
1895 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1896 }
1897
1898 /**
1899 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1900 * @dev: the PCI device
1901 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1902 *
1903 * Perform INTx swizzling for a device behind one level of bridge. This is
1904 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1905 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1906 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1907 * the PCI Express Base Specification, Revision 2.1)
1908 */
1909 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1910 {
1911 int slot;
1912
1913 if (pci_ari_enabled(dev->bus))
1914 slot = 0;
1915 else
1916 slot = PCI_SLOT(dev->devfn);
1917
1918 return (((pin - 1) + slot) % 4) + 1;
1919 }
1920
1921 int
1922 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1923 {
1924 u8 pin;
1925
1926 pin = dev->pin;
1927 if (!pin)
1928 return -1;
1929
1930 while (!pci_is_root_bus(dev->bus)) {
1931 pin = pci_swizzle_interrupt_pin(dev, pin);
1932 dev = dev->bus->self;
1933 }
1934 *bridge = dev;
1935 return pin;
1936 }
1937
1938 /**
1939 * pci_common_swizzle - swizzle INTx all the way to root bridge
1940 * @dev: the PCI device
1941 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1942 *
1943 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1944 * bridges all the way up to a PCI root bus.
1945 */
1946 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1947 {
1948 u8 pin = *pinp;
1949
1950 while (!pci_is_root_bus(dev->bus)) {
1951 pin = pci_swizzle_interrupt_pin(dev, pin);
1952 dev = dev->bus->self;
1953 }
1954 *pinp = pin;
1955 return PCI_SLOT(dev->devfn);
1956 }
1957
1958 /**
1959 * pci_release_region - Release a PCI bar
1960 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1961 * @bar: BAR to release
1962 *
1963 * Releases the PCI I/O and memory resources previously reserved by a
1964 * successful call to pci_request_region. Call this function only
1965 * after all use of the PCI regions has ceased.
1966 */
1967 void pci_release_region(struct pci_dev *pdev, int bar)
1968 {
1969 struct pci_devres *dr;
1970
1971 if (pci_resource_len(pdev, bar) == 0)
1972 return;
1973 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1974 release_region(pci_resource_start(pdev, bar),
1975 pci_resource_len(pdev, bar));
1976 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1977 release_mem_region(pci_resource_start(pdev, bar),
1978 pci_resource_len(pdev, bar));
1979
1980 dr = find_pci_dr(pdev);
1981 if (dr)
1982 dr->region_mask &= ~(1 << bar);
1983 }
1984
1985 /**
1986 * __pci_request_region - Reserved PCI I/O and memory resource
1987 * @pdev: PCI device whose resources are to be reserved
1988 * @bar: BAR to be reserved
1989 * @res_name: Name to be associated with resource.
1990 * @exclusive: whether the region access is exclusive or not
1991 *
1992 * Mark the PCI region associated with PCI device @pdev BR @bar as
1993 * being reserved by owner @res_name. Do not access any
1994 * address inside the PCI regions unless this call returns
1995 * successfully.
1996 *
1997 * If @exclusive is set, then the region is marked so that userspace
1998 * is explicitly not allowed to map the resource via /dev/mem or
1999 * sysfs MMIO access.
2000 *
2001 * Returns 0 on success, or %EBUSY on error. A warning
2002 * message is also printed on failure.
2003 */
2004 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2005 int exclusive)
2006 {
2007 struct pci_devres *dr;
2008
2009 if (pci_resource_len(pdev, bar) == 0)
2010 return 0;
2011
2012 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2013 if (!request_region(pci_resource_start(pdev, bar),
2014 pci_resource_len(pdev, bar), res_name))
2015 goto err_out;
2016 }
2017 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2018 if (!__request_mem_region(pci_resource_start(pdev, bar),
2019 pci_resource_len(pdev, bar), res_name,
2020 exclusive))
2021 goto err_out;
2022 }
2023
2024 dr = find_pci_dr(pdev);
2025 if (dr)
2026 dr->region_mask |= 1 << bar;
2027
2028 return 0;
2029
2030 err_out:
2031 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2032 &pdev->resource[bar]);
2033 return -EBUSY;
2034 }
2035
2036 /**
2037 * pci_request_region - Reserve PCI I/O and memory resource
2038 * @pdev: PCI device whose resources are to be reserved
2039 * @bar: BAR to be reserved
2040 * @res_name: Name to be associated with resource
2041 *
2042 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2043 * being reserved by owner @res_name. Do not access any
2044 * address inside the PCI regions unless this call returns
2045 * successfully.
2046 *
2047 * Returns 0 on success, or %EBUSY on error. A warning
2048 * message is also printed on failure.
2049 */
2050 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2051 {
2052 return __pci_request_region(pdev, bar, res_name, 0);
2053 }
2054
2055 /**
2056 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2057 * @pdev: PCI device whose resources are to be reserved
2058 * @bar: BAR to be reserved
2059 * @res_name: Name to be associated with resource.
2060 *
2061 * Mark the PCI region associated with PCI device @pdev BR @bar as
2062 * being reserved by owner @res_name. Do not access any
2063 * address inside the PCI regions unless this call returns
2064 * successfully.
2065 *
2066 * Returns 0 on success, or %EBUSY on error. A warning
2067 * message is also printed on failure.
2068 *
2069 * The key difference that _exclusive makes it that userspace is
2070 * explicitly not allowed to map the resource via /dev/mem or
2071 * sysfs.
2072 */
2073 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2074 {
2075 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2076 }
2077 /**
2078 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2079 * @pdev: PCI device whose resources were previously reserved
2080 * @bars: Bitmask of BARs to be released
2081 *
2082 * Release selected PCI I/O and memory resources previously reserved.
2083 * Call this function only after all use of the PCI regions has ceased.
2084 */
2085 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2086 {
2087 int i;
2088
2089 for (i = 0; i < 6; i++)
2090 if (bars & (1 << i))
2091 pci_release_region(pdev, i);
2092 }
2093
2094 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2095 const char *res_name, int excl)
2096 {
2097 int i;
2098
2099 for (i = 0; i < 6; i++)
2100 if (bars & (1 << i))
2101 if (__pci_request_region(pdev, i, res_name, excl))
2102 goto err_out;
2103 return 0;
2104
2105 err_out:
2106 while(--i >= 0)
2107 if (bars & (1 << i))
2108 pci_release_region(pdev, i);
2109
2110 return -EBUSY;
2111 }
2112
2113
2114 /**
2115 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2116 * @pdev: PCI device whose resources are to be reserved
2117 * @bars: Bitmask of BARs to be requested
2118 * @res_name: Name to be associated with resource
2119 */
2120 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2121 const char *res_name)
2122 {
2123 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2124 }
2125
2126 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2127 int bars, const char *res_name)
2128 {
2129 return __pci_request_selected_regions(pdev, bars, res_name,
2130 IORESOURCE_EXCLUSIVE);
2131 }
2132
2133 /**
2134 * pci_release_regions - Release reserved PCI I/O and memory resources
2135 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2136 *
2137 * Releases all PCI I/O and memory resources previously reserved by a
2138 * successful call to pci_request_regions. Call this function only
2139 * after all use of the PCI regions has ceased.
2140 */
2141
2142 void pci_release_regions(struct pci_dev *pdev)
2143 {
2144 pci_release_selected_regions(pdev, (1 << 6) - 1);
2145 }
2146
2147 /**
2148 * pci_request_regions - Reserved PCI I/O and memory resources
2149 * @pdev: PCI device whose resources are to be reserved
2150 * @res_name: Name to be associated with resource.
2151 *
2152 * Mark all PCI regions associated with PCI device @pdev as
2153 * being reserved by owner @res_name. Do not access any
2154 * address inside the PCI regions unless this call returns
2155 * successfully.
2156 *
2157 * Returns 0 on success, or %EBUSY on error. A warning
2158 * message is also printed on failure.
2159 */
2160 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2161 {
2162 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2163 }
2164
2165 /**
2166 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2167 * @pdev: PCI device whose resources are to be reserved
2168 * @res_name: Name to be associated with resource.
2169 *
2170 * Mark all PCI regions associated with PCI device @pdev as
2171 * being reserved by owner @res_name. Do not access any
2172 * address inside the PCI regions unless this call returns
2173 * successfully.
2174 *
2175 * pci_request_regions_exclusive() will mark the region so that
2176 * /dev/mem and the sysfs MMIO access will not be allowed.
2177 *
2178 * Returns 0 on success, or %EBUSY on error. A warning
2179 * message is also printed on failure.
2180 */
2181 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2182 {
2183 return pci_request_selected_regions_exclusive(pdev,
2184 ((1 << 6) - 1), res_name);
2185 }
2186
2187 static void __pci_set_master(struct pci_dev *dev, bool enable)
2188 {
2189 u16 old_cmd, cmd;
2190
2191 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2192 if (enable)
2193 cmd = old_cmd | PCI_COMMAND_MASTER;
2194 else
2195 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2196 if (cmd != old_cmd) {
2197 dev_dbg(&dev->dev, "%s bus mastering\n",
2198 enable ? "enabling" : "disabling");
2199 pci_write_config_word(dev, PCI_COMMAND, cmd);
2200 }
2201 dev->is_busmaster = enable;
2202 }
2203
2204 /**
2205 * pci_set_master - enables bus-mastering for device dev
2206 * @dev: the PCI device to enable
2207 *
2208 * Enables bus-mastering on the device and calls pcibios_set_master()
2209 * to do the needed arch specific settings.
2210 */
2211 void pci_set_master(struct pci_dev *dev)
2212 {
2213 __pci_set_master(dev, true);
2214 pcibios_set_master(dev);
2215 }
2216
2217 /**
2218 * pci_clear_master - disables bus-mastering for device dev
2219 * @dev: the PCI device to disable
2220 */
2221 void pci_clear_master(struct pci_dev *dev)
2222 {
2223 __pci_set_master(dev, false);
2224 }
2225
2226 /**
2227 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2228 * @dev: the PCI device for which MWI is to be enabled
2229 *
2230 * Helper function for pci_set_mwi.
2231 * Originally copied from drivers/net/acenic.c.
2232 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2233 *
2234 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2235 */
2236 int pci_set_cacheline_size(struct pci_dev *dev)
2237 {
2238 u8 cacheline_size;
2239
2240 if (!pci_cache_line_size)
2241 return -EINVAL;
2242
2243 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2244 equal to or multiple of the right value. */
2245 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2246 if (cacheline_size >= pci_cache_line_size &&
2247 (cacheline_size % pci_cache_line_size) == 0)
2248 return 0;
2249
2250 /* Write the correct value. */
2251 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2252 /* Read it back. */
2253 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2254 if (cacheline_size == pci_cache_line_size)
2255 return 0;
2256
2257 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2258 "supported\n", pci_cache_line_size << 2);
2259
2260 return -EINVAL;
2261 }
2262 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2263
2264 #ifdef PCI_DISABLE_MWI
2265 int pci_set_mwi(struct pci_dev *dev)
2266 {
2267 return 0;
2268 }
2269
2270 int pci_try_set_mwi(struct pci_dev *dev)
2271 {
2272 return 0;
2273 }
2274
2275 void pci_clear_mwi(struct pci_dev *dev)
2276 {
2277 }
2278
2279 #else
2280
2281 /**
2282 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2283 * @dev: the PCI device for which MWI is enabled
2284 *
2285 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2286 *
2287 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2288 */
2289 int
2290 pci_set_mwi(struct pci_dev *dev)
2291 {
2292 int rc;
2293 u16 cmd;
2294
2295 rc = pci_set_cacheline_size(dev);
2296 if (rc)
2297 return rc;
2298
2299 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2300 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2301 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2302 cmd |= PCI_COMMAND_INVALIDATE;
2303 pci_write_config_word(dev, PCI_COMMAND, cmd);
2304 }
2305
2306 return 0;
2307 }
2308
2309 /**
2310 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2311 * @dev: the PCI device for which MWI is enabled
2312 *
2313 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2314 * Callers are not required to check the return value.
2315 *
2316 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2317 */
2318 int pci_try_set_mwi(struct pci_dev *dev)
2319 {
2320 int rc = pci_set_mwi(dev);
2321 return rc;
2322 }
2323
2324 /**
2325 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2326 * @dev: the PCI device to disable
2327 *
2328 * Disables PCI Memory-Write-Invalidate transaction on the device
2329 */
2330 void
2331 pci_clear_mwi(struct pci_dev *dev)
2332 {
2333 u16 cmd;
2334
2335 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2336 if (cmd & PCI_COMMAND_INVALIDATE) {
2337 cmd &= ~PCI_COMMAND_INVALIDATE;
2338 pci_write_config_word(dev, PCI_COMMAND, cmd);
2339 }
2340 }
2341 #endif /* ! PCI_DISABLE_MWI */
2342
2343 /**
2344 * pci_intx - enables/disables PCI INTx for device dev
2345 * @pdev: the PCI device to operate on
2346 * @enable: boolean: whether to enable or disable PCI INTx
2347 *
2348 * Enables/disables PCI INTx for device dev
2349 */
2350 void
2351 pci_intx(struct pci_dev *pdev, int enable)
2352 {
2353 u16 pci_command, new;
2354
2355 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2356
2357 if (enable) {
2358 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2359 } else {
2360 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2361 }
2362
2363 if (new != pci_command) {
2364 struct pci_devres *dr;
2365
2366 pci_write_config_word(pdev, PCI_COMMAND, new);
2367
2368 dr = find_pci_dr(pdev);
2369 if (dr && !dr->restore_intx) {
2370 dr->restore_intx = 1;
2371 dr->orig_intx = !enable;
2372 }
2373 }
2374 }
2375
2376 /**
2377 * pci_msi_off - disables any msi or msix capabilities
2378 * @dev: the PCI device to operate on
2379 *
2380 * If you want to use msi see pci_enable_msi and friends.
2381 * This is a lower level primitive that allows us to disable
2382 * msi operation at the device level.
2383 */
2384 void pci_msi_off(struct pci_dev *dev)
2385 {
2386 int pos;
2387 u16 control;
2388
2389 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2390 if (pos) {
2391 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2392 control &= ~PCI_MSI_FLAGS_ENABLE;
2393 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2394 }
2395 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2396 if (pos) {
2397 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2398 control &= ~PCI_MSIX_FLAGS_ENABLE;
2399 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2400 }
2401 }
2402 EXPORT_SYMBOL_GPL(pci_msi_off);
2403
2404 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2405 {
2406 return dma_set_max_seg_size(&dev->dev, size);
2407 }
2408 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2409
2410 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2411 {
2412 return dma_set_seg_boundary(&dev->dev, mask);
2413 }
2414 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2415
2416 static int pcie_flr(struct pci_dev *dev, int probe)
2417 {
2418 int i;
2419 int pos;
2420 u32 cap;
2421 u16 status, control;
2422
2423 pos = pci_pcie_cap(dev);
2424 if (!pos)
2425 return -ENOTTY;
2426
2427 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2428 if (!(cap & PCI_EXP_DEVCAP_FLR))
2429 return -ENOTTY;
2430
2431 if (probe)
2432 return 0;
2433
2434 /* Wait for Transaction Pending bit clean */
2435 for (i = 0; i < 4; i++) {
2436 if (i)
2437 msleep((1 << (i - 1)) * 100);
2438
2439 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2440 if (!(status & PCI_EXP_DEVSTA_TRPND))
2441 goto clear;
2442 }
2443
2444 dev_err(&dev->dev, "transaction is not cleared; "
2445 "proceeding with reset anyway\n");
2446
2447 clear:
2448 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2449 control |= PCI_EXP_DEVCTL_BCR_FLR;
2450 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2451
2452 msleep(100);
2453
2454 return 0;
2455 }
2456
2457 static int pci_af_flr(struct pci_dev *dev, int probe)
2458 {
2459 int i;
2460 int pos;
2461 u8 cap;
2462 u8 status;
2463
2464 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2465 if (!pos)
2466 return -ENOTTY;
2467
2468 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2469 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2470 return -ENOTTY;
2471
2472 if (probe)
2473 return 0;
2474
2475 /* Wait for Transaction Pending bit clean */
2476 for (i = 0; i < 4; i++) {
2477 if (i)
2478 msleep((1 << (i - 1)) * 100);
2479
2480 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2481 if (!(status & PCI_AF_STATUS_TP))
2482 goto clear;
2483 }
2484
2485 dev_err(&dev->dev, "transaction is not cleared; "
2486 "proceeding with reset anyway\n");
2487
2488 clear:
2489 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2490 msleep(100);
2491
2492 return 0;
2493 }
2494
2495 static int pci_pm_reset(struct pci_dev *dev, int probe)
2496 {
2497 u16 csr;
2498
2499 if (!dev->pm_cap)
2500 return -ENOTTY;
2501
2502 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2503 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2504 return -ENOTTY;
2505
2506 if (probe)
2507 return 0;
2508
2509 if (dev->current_state != PCI_D0)
2510 return -EINVAL;
2511
2512 csr &= ~PCI_PM_CTRL_STATE_MASK;
2513 csr |= PCI_D3hot;
2514 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2515 pci_dev_d3_sleep(dev);
2516
2517 csr &= ~PCI_PM_CTRL_STATE_MASK;
2518 csr |= PCI_D0;
2519 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2520 pci_dev_d3_sleep(dev);
2521
2522 return 0;
2523 }
2524
2525 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2526 {
2527 u16 ctrl;
2528 struct pci_dev *pdev;
2529
2530 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2531 return -ENOTTY;
2532
2533 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2534 if (pdev != dev)
2535 return -ENOTTY;
2536
2537 if (probe)
2538 return 0;
2539
2540 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2541 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2542 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2543 msleep(100);
2544
2545 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2546 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2547 msleep(100);
2548
2549 return 0;
2550 }
2551
2552 static int pci_dev_reset(struct pci_dev *dev, int probe)
2553 {
2554 int rc;
2555
2556 might_sleep();
2557
2558 if (!probe) {
2559 pci_block_user_cfg_access(dev);
2560 /* block PM suspend, driver probe, etc. */
2561 device_lock(&dev->dev);
2562 }
2563
2564 rc = pci_dev_specific_reset(dev, probe);
2565 if (rc != -ENOTTY)
2566 goto done;
2567
2568 rc = pcie_flr(dev, probe);
2569 if (rc != -ENOTTY)
2570 goto done;
2571
2572 rc = pci_af_flr(dev, probe);
2573 if (rc != -ENOTTY)
2574 goto done;
2575
2576 rc = pci_pm_reset(dev, probe);
2577 if (rc != -ENOTTY)
2578 goto done;
2579
2580 rc = pci_parent_bus_reset(dev, probe);
2581 done:
2582 if (!probe) {
2583 device_unlock(&dev->dev);
2584 pci_unblock_user_cfg_access(dev);
2585 }
2586
2587 return rc;
2588 }
2589
2590 /**
2591 * __pci_reset_function - reset a PCI device function
2592 * @dev: PCI device to reset
2593 *
2594 * Some devices allow an individual function to be reset without affecting
2595 * other functions in the same device. The PCI device must be responsive
2596 * to PCI config space in order to use this function.
2597 *
2598 * The device function is presumed to be unused when this function is called.
2599 * Resetting the device will make the contents of PCI configuration space
2600 * random, so any caller of this must be prepared to reinitialise the
2601 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2602 * etc.
2603 *
2604 * Returns 0 if the device function was successfully reset or negative if the
2605 * device doesn't support resetting a single function.
2606 */
2607 int __pci_reset_function(struct pci_dev *dev)
2608 {
2609 return pci_dev_reset(dev, 0);
2610 }
2611 EXPORT_SYMBOL_GPL(__pci_reset_function);
2612
2613 /**
2614 * pci_probe_reset_function - check whether the device can be safely reset
2615 * @dev: PCI device to reset
2616 *
2617 * Some devices allow an individual function to be reset without affecting
2618 * other functions in the same device. The PCI device must be responsive
2619 * to PCI config space in order to use this function.
2620 *
2621 * Returns 0 if the device function can be reset or negative if the
2622 * device doesn't support resetting a single function.
2623 */
2624 int pci_probe_reset_function(struct pci_dev *dev)
2625 {
2626 return pci_dev_reset(dev, 1);
2627 }
2628
2629 /**
2630 * pci_reset_function - quiesce and reset a PCI device function
2631 * @dev: PCI device to reset
2632 *
2633 * Some devices allow an individual function to be reset without affecting
2634 * other functions in the same device. The PCI device must be responsive
2635 * to PCI config space in order to use this function.
2636 *
2637 * This function does not just reset the PCI portion of a device, but
2638 * clears all the state associated with the device. This function differs
2639 * from __pci_reset_function in that it saves and restores device state
2640 * over the reset.
2641 *
2642 * Returns 0 if the device function was successfully reset or negative if the
2643 * device doesn't support resetting a single function.
2644 */
2645 int pci_reset_function(struct pci_dev *dev)
2646 {
2647 int rc;
2648
2649 rc = pci_dev_reset(dev, 1);
2650 if (rc)
2651 return rc;
2652
2653 pci_save_state(dev);
2654
2655 /*
2656 * both INTx and MSI are disabled after the Interrupt Disable bit
2657 * is set and the Bus Master bit is cleared.
2658 */
2659 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2660
2661 rc = pci_dev_reset(dev, 0);
2662
2663 pci_restore_state(dev);
2664
2665 return rc;
2666 }
2667 EXPORT_SYMBOL_GPL(pci_reset_function);
2668
2669 /**
2670 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2671 * @dev: PCI device to query
2672 *
2673 * Returns mmrbc: maximum designed memory read count in bytes
2674 * or appropriate error value.
2675 */
2676 int pcix_get_max_mmrbc(struct pci_dev *dev)
2677 {
2678 int cap;
2679 u32 stat;
2680
2681 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2682 if (!cap)
2683 return -EINVAL;
2684
2685 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2686 return -EINVAL;
2687
2688 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
2689 }
2690 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2691
2692 /**
2693 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2694 * @dev: PCI device to query
2695 *
2696 * Returns mmrbc: maximum memory read count in bytes
2697 * or appropriate error value.
2698 */
2699 int pcix_get_mmrbc(struct pci_dev *dev)
2700 {
2701 int cap;
2702 u16 cmd;
2703
2704 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2705 if (!cap)
2706 return -EINVAL;
2707
2708 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2709 return -EINVAL;
2710
2711 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2712 }
2713 EXPORT_SYMBOL(pcix_get_mmrbc);
2714
2715 /**
2716 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2717 * @dev: PCI device to query
2718 * @mmrbc: maximum memory read count in bytes
2719 * valid values are 512, 1024, 2048, 4096
2720 *
2721 * If possible sets maximum memory read byte count, some bridges have erratas
2722 * that prevent this.
2723 */
2724 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2725 {
2726 int cap;
2727 u32 stat, v, o;
2728 u16 cmd;
2729
2730 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2731 return -EINVAL;
2732
2733 v = ffs(mmrbc) - 10;
2734
2735 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2736 if (!cap)
2737 return -EINVAL;
2738
2739 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2740 return -EINVAL;
2741
2742 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2743 return -E2BIG;
2744
2745 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2746 return -EINVAL;
2747
2748 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2749 if (o != v) {
2750 if (v > o && dev->bus &&
2751 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2752 return -EIO;
2753
2754 cmd &= ~PCI_X_CMD_MAX_READ;
2755 cmd |= v << 2;
2756 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
2757 return -EIO;
2758 }
2759 return 0;
2760 }
2761 EXPORT_SYMBOL(pcix_set_mmrbc);
2762
2763 /**
2764 * pcie_get_readrq - get PCI Express read request size
2765 * @dev: PCI device to query
2766 *
2767 * Returns maximum memory read request in bytes
2768 * or appropriate error value.
2769 */
2770 int pcie_get_readrq(struct pci_dev *dev)
2771 {
2772 int ret, cap;
2773 u16 ctl;
2774
2775 cap = pci_pcie_cap(dev);
2776 if (!cap)
2777 return -EINVAL;
2778
2779 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2780 if (!ret)
2781 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2782
2783 return ret;
2784 }
2785 EXPORT_SYMBOL(pcie_get_readrq);
2786
2787 /**
2788 * pcie_set_readrq - set PCI Express maximum memory read request
2789 * @dev: PCI device to query
2790 * @rq: maximum memory read count in bytes
2791 * valid values are 128, 256, 512, 1024, 2048, 4096
2792 *
2793 * If possible sets maximum read byte count
2794 */
2795 int pcie_set_readrq(struct pci_dev *dev, int rq)
2796 {
2797 int cap, err = -EINVAL;
2798 u16 ctl, v;
2799
2800 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2801 goto out;
2802
2803 v = (ffs(rq) - 8) << 12;
2804
2805 cap = pci_pcie_cap(dev);
2806 if (!cap)
2807 goto out;
2808
2809 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2810 if (err)
2811 goto out;
2812
2813 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2814 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2815 ctl |= v;
2816 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2817 }
2818
2819 out:
2820 return err;
2821 }
2822 EXPORT_SYMBOL(pcie_set_readrq);
2823
2824 /**
2825 * pci_select_bars - Make BAR mask from the type of resource
2826 * @dev: the PCI device for which BAR mask is made
2827 * @flags: resource type mask to be selected
2828 *
2829 * This helper routine makes bar mask from the type of resource.
2830 */
2831 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2832 {
2833 int i, bars = 0;
2834 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2835 if (pci_resource_flags(dev, i) & flags)
2836 bars |= (1 << i);
2837 return bars;
2838 }
2839
2840 /**
2841 * pci_resource_bar - get position of the BAR associated with a resource
2842 * @dev: the PCI device
2843 * @resno: the resource number
2844 * @type: the BAR type to be filled in
2845 *
2846 * Returns BAR position in config space, or 0 if the BAR is invalid.
2847 */
2848 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2849 {
2850 int reg;
2851
2852 if (resno < PCI_ROM_RESOURCE) {
2853 *type = pci_bar_unknown;
2854 return PCI_BASE_ADDRESS_0 + 4 * resno;
2855 } else if (resno == PCI_ROM_RESOURCE) {
2856 *type = pci_bar_mem32;
2857 return dev->rom_base_reg;
2858 } else if (resno < PCI_BRIDGE_RESOURCES) {
2859 /* device specific resource */
2860 reg = pci_iov_resource_bar(dev, resno, type);
2861 if (reg)
2862 return reg;
2863 }
2864
2865 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2866 return 0;
2867 }
2868
2869 /* Some architectures require additional programming to enable VGA */
2870 static arch_set_vga_state_t arch_set_vga_state;
2871
2872 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2873 {
2874 arch_set_vga_state = func; /* NULL disables */
2875 }
2876
2877 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2878 unsigned int command_bits, bool change_bridge)
2879 {
2880 if (arch_set_vga_state)
2881 return arch_set_vga_state(dev, decode, command_bits,
2882 change_bridge);
2883 return 0;
2884 }
2885
2886 /**
2887 * pci_set_vga_state - set VGA decode state on device and parents if requested
2888 * @dev: the PCI device
2889 * @decode: true = enable decoding, false = disable decoding
2890 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2891 * @change_bridge: traverse ancestors and change bridges
2892 */
2893 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2894 unsigned int command_bits, bool change_bridge)
2895 {
2896 struct pci_bus *bus;
2897 struct pci_dev *bridge;
2898 u16 cmd;
2899 int rc;
2900
2901 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2902
2903 /* ARCH specific VGA enables */
2904 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2905 if (rc)
2906 return rc;
2907
2908 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2909 if (decode == true)
2910 cmd |= command_bits;
2911 else
2912 cmd &= ~command_bits;
2913 pci_write_config_word(dev, PCI_COMMAND, cmd);
2914
2915 if (change_bridge == false)
2916 return 0;
2917
2918 bus = dev->bus;
2919 while (bus) {
2920 bridge = bus->self;
2921 if (bridge) {
2922 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2923 &cmd);
2924 if (decode == true)
2925 cmd |= PCI_BRIDGE_CTL_VGA;
2926 else
2927 cmd &= ~PCI_BRIDGE_CTL_VGA;
2928 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2929 cmd);
2930 }
2931 bus = bus->parent;
2932 }
2933 return 0;
2934 }
2935
2936 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2937 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2938 static DEFINE_SPINLOCK(resource_alignment_lock);
2939
2940 /**
2941 * pci_specified_resource_alignment - get resource alignment specified by user.
2942 * @dev: the PCI device to get
2943 *
2944 * RETURNS: Resource alignment if it is specified.
2945 * Zero if it is not specified.
2946 */
2947 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2948 {
2949 int seg, bus, slot, func, align_order, count;
2950 resource_size_t align = 0;
2951 char *p;
2952
2953 spin_lock(&resource_alignment_lock);
2954 p = resource_alignment_param;
2955 while (*p) {
2956 count = 0;
2957 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2958 p[count] == '@') {
2959 p += count + 1;
2960 } else {
2961 align_order = -1;
2962 }
2963 if (sscanf(p, "%x:%x:%x.%x%n",
2964 &seg, &bus, &slot, &func, &count) != 4) {
2965 seg = 0;
2966 if (sscanf(p, "%x:%x.%x%n",
2967 &bus, &slot, &func, &count) != 3) {
2968 /* Invalid format */
2969 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2970 p);
2971 break;
2972 }
2973 }
2974 p += count;
2975 if (seg == pci_domain_nr(dev->bus) &&
2976 bus == dev->bus->number &&
2977 slot == PCI_SLOT(dev->devfn) &&
2978 func == PCI_FUNC(dev->devfn)) {
2979 if (align_order == -1) {
2980 align = PAGE_SIZE;
2981 } else {
2982 align = 1 << align_order;
2983 }
2984 /* Found */
2985 break;
2986 }
2987 if (*p != ';' && *p != ',') {
2988 /* End of param or invalid format */
2989 break;
2990 }
2991 p++;
2992 }
2993 spin_unlock(&resource_alignment_lock);
2994 return align;
2995 }
2996
2997 /**
2998 * pci_is_reassigndev - check if specified PCI is target device to reassign
2999 * @dev: the PCI device to check
3000 *
3001 * RETURNS: non-zero for PCI device is a target device to reassign,
3002 * or zero is not.
3003 */
3004 int pci_is_reassigndev(struct pci_dev *dev)
3005 {
3006 return (pci_specified_resource_alignment(dev) != 0);
3007 }
3008
3009 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3010 {
3011 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3012 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3013 spin_lock(&resource_alignment_lock);
3014 strncpy(resource_alignment_param, buf, count);
3015 resource_alignment_param[count] = '\0';
3016 spin_unlock(&resource_alignment_lock);
3017 return count;
3018 }
3019
3020 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3021 {
3022 size_t count;
3023 spin_lock(&resource_alignment_lock);
3024 count = snprintf(buf, size, "%s", resource_alignment_param);
3025 spin_unlock(&resource_alignment_lock);
3026 return count;
3027 }
3028
3029 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3030 {
3031 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3032 }
3033
3034 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3035 const char *buf, size_t count)
3036 {
3037 return pci_set_resource_alignment_param(buf, count);
3038 }
3039
3040 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3041 pci_resource_alignment_store);
3042
3043 static int __init pci_resource_alignment_sysfs_init(void)
3044 {
3045 return bus_create_file(&pci_bus_type,
3046 &bus_attr_resource_alignment);
3047 }
3048
3049 late_initcall(pci_resource_alignment_sysfs_init);
3050
3051 static void __devinit pci_no_domains(void)
3052 {
3053 #ifdef CONFIG_PCI_DOMAINS
3054 pci_domains_supported = 0;
3055 #endif
3056 }
3057
3058 /**
3059 * pci_ext_cfg_enabled - can we access extended PCI config space?
3060 * @dev: The PCI device of the root bridge.
3061 *
3062 * Returns 1 if we can access PCI extended config space (offsets
3063 * greater than 0xff). This is the default implementation. Architecture
3064 * implementations can override this.
3065 */
3066 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3067 {
3068 return 1;
3069 }
3070
3071 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3072 {
3073 }
3074 EXPORT_SYMBOL(pci_fixup_cardbus);
3075
3076 static int __init pci_setup(char *str)
3077 {
3078 while (str) {
3079 char *k = strchr(str, ',');
3080 if (k)
3081 *k++ = 0;
3082 if (*str && (str = pcibios_setup(str)) && *str) {
3083 if (!strcmp(str, "nomsi")) {
3084 pci_no_msi();
3085 } else if (!strcmp(str, "noaer")) {
3086 pci_no_aer();
3087 } else if (!strcmp(str, "nodomains")) {
3088 pci_no_domains();
3089 } else if (!strncmp(str, "cbiosize=", 9)) {
3090 pci_cardbus_io_size = memparse(str + 9, &str);
3091 } else if (!strncmp(str, "cbmemsize=", 10)) {
3092 pci_cardbus_mem_size = memparse(str + 10, &str);
3093 } else if (!strncmp(str, "resource_alignment=", 19)) {
3094 pci_set_resource_alignment_param(str + 19,
3095 strlen(str + 19));
3096 } else if (!strncmp(str, "ecrc=", 5)) {
3097 pcie_ecrc_get_policy(str + 5);
3098 } else if (!strncmp(str, "hpiosize=", 9)) {
3099 pci_hotplug_io_size = memparse(str + 9, &str);
3100 } else if (!strncmp(str, "hpmemsize=", 10)) {
3101 pci_hotplug_mem_size = memparse(str + 10, &str);
3102 } else {
3103 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3104 str);
3105 }
3106 }
3107 str = k;
3108 }
3109 return 0;
3110 }
3111 early_param("pci", pci_setup);
3112
3113 EXPORT_SYMBOL(pci_reenable_device);
3114 EXPORT_SYMBOL(pci_enable_device_io);
3115 EXPORT_SYMBOL(pci_enable_device_mem);
3116 EXPORT_SYMBOL(pci_enable_device);
3117 EXPORT_SYMBOL(pcim_enable_device);
3118 EXPORT_SYMBOL(pcim_pin_device);
3119 EXPORT_SYMBOL(pci_disable_device);
3120 EXPORT_SYMBOL(pci_find_capability);
3121 EXPORT_SYMBOL(pci_bus_find_capability);
3122 EXPORT_SYMBOL(pci_release_regions);
3123 EXPORT_SYMBOL(pci_request_regions);
3124 EXPORT_SYMBOL(pci_request_regions_exclusive);
3125 EXPORT_SYMBOL(pci_release_region);
3126 EXPORT_SYMBOL(pci_request_region);
3127 EXPORT_SYMBOL(pci_request_region_exclusive);
3128 EXPORT_SYMBOL(pci_release_selected_regions);
3129 EXPORT_SYMBOL(pci_request_selected_regions);
3130 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3131 EXPORT_SYMBOL(pci_set_master);
3132 EXPORT_SYMBOL(pci_clear_master);
3133 EXPORT_SYMBOL(pci_set_mwi);
3134 EXPORT_SYMBOL(pci_try_set_mwi);
3135 EXPORT_SYMBOL(pci_clear_mwi);
3136 EXPORT_SYMBOL_GPL(pci_intx);
3137 EXPORT_SYMBOL(pci_assign_resource);
3138 EXPORT_SYMBOL(pci_find_parent_resource);
3139 EXPORT_SYMBOL(pci_select_bars);
3140
3141 EXPORT_SYMBOL(pci_set_power_state);
3142 EXPORT_SYMBOL(pci_save_state);
3143 EXPORT_SYMBOL(pci_restore_state);
3144 EXPORT_SYMBOL(pci_pme_capable);
3145 EXPORT_SYMBOL(pci_pme_active);
3146 EXPORT_SYMBOL(pci_wake_from_d3);
3147 EXPORT_SYMBOL(pci_target_state);
3148 EXPORT_SYMBOL(pci_prepare_to_sleep);
3149 EXPORT_SYMBOL(pci_back_from_sleep);
3150 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.092279 seconds and 6 git commands to generate.