Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161 }
162
163 /**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180 }
181
182 /**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209 {
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
229 {
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 pr_err("pin %d already registered on %s\n", number,
235 pctldev->desc->name);
236 return -EINVAL;
237 }
238
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (pindesc == NULL) {
241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 return -ENOMEM;
243 }
244
245 /* Set owner */
246 pindesc->pctldev = pctldev;
247
248 /* Copy basic pin info */
249 if (name) {
250 pindesc->name = name;
251 } else {
252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 if (pindesc->name == NULL) {
254 kfree(pindesc);
255 return -ENOMEM;
256 }
257 pindesc->dynamic_name = true;
258 }
259
260 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261 pr_debug("registered pin %d (%s) on %s\n",
262 number, pindesc->name, pctldev->desc->name);
263 return 0;
264 }
265
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 struct pinctrl_pin_desc const *pins,
268 unsigned num_descs)
269 {
270 unsigned i;
271 int ret = 0;
272
273 for (i = 0; i < num_descs; i++) {
274 ret = pinctrl_register_one_pin(pctldev,
275 pins[i].number, pins[i].name);
276 if (ret)
277 return ret;
278 }
279
280 return 0;
281 }
282
283 /**
284 * gpio_to_pin() - GPIO range GPIO number to pin number translation
285 * @range: GPIO range used for the translation
286 * @gpio: gpio pin to translate to a pin number
287 *
288 * Finds the pin number for a given GPIO using the specified GPIO range
289 * as a base for translation. The distinction between linear GPIO ranges
290 * and pin list based GPIO ranges is managed correctly by this function.
291 *
292 * This function assumes the gpio is part of the specified GPIO range, use
293 * only after making sure this is the case (e.g. by calling it on the
294 * result of successful pinctrl_get_device_gpio_range calls)!
295 */
296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297 unsigned int gpio)
298 {
299 unsigned int offset = gpio - range->base;
300 if (range->pins)
301 return range->pins[offset];
302 else
303 return range->pin_base + offset;
304 }
305
306 /**
307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308 * @pctldev: pin controller device to check
309 * @gpio: gpio pin to check taken from the global GPIO pin space
310 *
311 * Tries to match a GPIO pin number to the ranges handled by a certain pin
312 * controller, return the range or NULL
313 */
314 static struct pinctrl_gpio_range *
315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316 {
317 struct pinctrl_gpio_range *range = NULL;
318
319 mutex_lock(&pctldev->mutex);
320 /* Loop over the ranges */
321 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322 /* Check if we're in the valid range */
323 if (gpio >= range->base &&
324 gpio < range->base + range->npins) {
325 mutex_unlock(&pctldev->mutex);
326 return range;
327 }
328 }
329 mutex_unlock(&pctldev->mutex);
330 return NULL;
331 }
332
333 /**
334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335 * the same GPIO chip are in range
336 * @gpio: gpio pin to check taken from the global GPIO pin space
337 *
338 * This function is complement of pinctrl_match_gpio_range(). If the return
339 * value of pinctrl_match_gpio_range() is NULL, this function could be used
340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341 * of the same GPIO chip don't have back-end pinctrl interface.
342 * If the return value is true, it means that pinctrl device is ready & the
343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344 * is false, it means that pinctrl device may not be ready.
345 */
346 #ifdef CONFIG_GPIOLIB
347 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348 {
349 struct pinctrl_dev *pctldev;
350 struct pinctrl_gpio_range *range = NULL;
351 struct gpio_chip *chip = gpio_to_chip(gpio);
352
353 mutex_lock(&pinctrldev_list_mutex);
354
355 /* Loop over the pin controllers */
356 list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 /* Loop over the ranges */
358 mutex_lock(&pctldev->mutex);
359 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 /* Check if any gpio range overlapped with gpio chip */
361 if (range->base + range->npins - 1 < chip->base ||
362 range->base > chip->base + chip->ngpio - 1)
363 continue;
364 mutex_unlock(&pctldev->mutex);
365 mutex_unlock(&pinctrldev_list_mutex);
366 return true;
367 }
368 mutex_unlock(&pctldev->mutex);
369 }
370
371 mutex_unlock(&pinctrldev_list_mutex);
372
373 return false;
374 }
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
378
379 /**
380 * pinctrl_get_device_gpio_range() - find device for GPIO range
381 * @gpio: the pin to locate the pin controller for
382 * @outdev: the pin control device if found
383 * @outrange: the GPIO range if found
384 *
385 * Find the pin controller handling a certain GPIO pin from the pinspace of
386 * the GPIO subsystem, return the device and the matching GPIO range. Returns
387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388 * may still have not been registered.
389 */
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 struct pinctrl_dev **outdev,
392 struct pinctrl_gpio_range **outrange)
393 {
394 struct pinctrl_dev *pctldev = NULL;
395
396 mutex_lock(&pinctrldev_list_mutex);
397
398 /* Loop over the pin controllers */
399 list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 struct pinctrl_gpio_range *range;
401
402 range = pinctrl_match_gpio_range(pctldev, gpio);
403 if (range != NULL) {
404 *outdev = pctldev;
405 *outrange = range;
406 mutex_unlock(&pinctrldev_list_mutex);
407 return 0;
408 }
409 }
410
411 mutex_unlock(&pinctrldev_list_mutex);
412
413 return -EPROBE_DEFER;
414 }
415
416 /**
417 * pinctrl_add_gpio_range() - register a GPIO range for a controller
418 * @pctldev: pin controller device to add the range to
419 * @range: the GPIO range to add
420 *
421 * This adds a range of GPIOs to be handled by a certain pin controller. Call
422 * this to register handled ranges after registering your pin controller.
423 */
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 struct pinctrl_gpio_range *range)
426 {
427 mutex_lock(&pctldev->mutex);
428 list_add_tail(&range->node, &pctldev->gpio_ranges);
429 mutex_unlock(&pctldev->mutex);
430 }
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 struct pinctrl_gpio_range *ranges,
435 unsigned nranges)
436 {
437 int i;
438
439 for (i = 0; i < nranges; i++)
440 pinctrl_add_gpio_range(pctldev, &ranges[i]);
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 struct pinctrl_gpio_range *range)
446 {
447 struct pinctrl_dev *pctldev;
448
449 pctldev = get_pinctrl_dev_from_devname(devname);
450
451 /*
452 * If we can't find this device, let's assume that is because
453 * it has not probed yet, so the driver trying to register this
454 * range need to defer probing.
455 */
456 if (!pctldev) {
457 return ERR_PTR(-EPROBE_DEFER);
458 }
459 pinctrl_add_gpio_range(pctldev, range);
460
461 return pctldev;
462 }
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464
465 /**
466 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
467 * @pctldev: the pin controller device to look in
468 * @pin: a controller-local number to find the range for
469 */
470 struct pinctrl_gpio_range *
471 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
472 unsigned int pin)
473 {
474 struct pinctrl_gpio_range *range;
475
476 mutex_lock(&pctldev->mutex);
477 /* Loop over the ranges */
478 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
479 /* Check if we're in the valid range */
480 if (range->pins) {
481 int a;
482 for (a = 0; a < range->npins; a++) {
483 if (range->pins[a] == pin)
484 goto out;
485 }
486 } else if (pin >= range->pin_base &&
487 pin < range->pin_base + range->npins)
488 goto out;
489 }
490 range = NULL;
491 out:
492 mutex_unlock(&pctldev->mutex);
493 return range;
494 }
495 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
496
497 /**
498 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
499 * @pctldev: pin controller device to remove the range from
500 * @range: the GPIO range to remove
501 */
502 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
503 struct pinctrl_gpio_range *range)
504 {
505 mutex_lock(&pctldev->mutex);
506 list_del(&range->node);
507 mutex_unlock(&pctldev->mutex);
508 }
509 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
510
511 /**
512 * pinctrl_get_group_selector() - returns the group selector for a group
513 * @pctldev: the pin controller handling the group
514 * @pin_group: the pin group to look up
515 */
516 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
517 const char *pin_group)
518 {
519 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
520 unsigned ngroups = pctlops->get_groups_count(pctldev);
521 unsigned group_selector = 0;
522
523 while (group_selector < ngroups) {
524 const char *gname = pctlops->get_group_name(pctldev,
525 group_selector);
526 if (!strcmp(gname, pin_group)) {
527 dev_dbg(pctldev->dev,
528 "found group selector %u for %s\n",
529 group_selector,
530 pin_group);
531 return group_selector;
532 }
533
534 group_selector++;
535 }
536
537 dev_err(pctldev->dev, "does not have pin group %s\n",
538 pin_group);
539
540 return -EINVAL;
541 }
542
543 /**
544 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
545 * @gpio: the GPIO pin number from the GPIO subsystem number space
546 *
547 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
548 * as part of their gpio_request() semantics, platforms and individual drivers
549 * shall *NOT* request GPIO pins to be muxed in.
550 */
551 int pinctrl_request_gpio(unsigned gpio)
552 {
553 struct pinctrl_dev *pctldev;
554 struct pinctrl_gpio_range *range;
555 int ret;
556 int pin;
557
558 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
559 if (ret) {
560 if (pinctrl_ready_for_gpio_range(gpio))
561 ret = 0;
562 return ret;
563 }
564
565 mutex_lock(&pctldev->mutex);
566
567 /* Convert to the pin controllers number space */
568 pin = gpio_to_pin(range, gpio);
569
570 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
571
572 mutex_unlock(&pctldev->mutex);
573
574 return ret;
575 }
576 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
577
578 /**
579 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
580 * @gpio: the GPIO pin number from the GPIO subsystem number space
581 *
582 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
583 * as part of their gpio_free() semantics, platforms and individual drivers
584 * shall *NOT* request GPIO pins to be muxed out.
585 */
586 void pinctrl_free_gpio(unsigned gpio)
587 {
588 struct pinctrl_dev *pctldev;
589 struct pinctrl_gpio_range *range;
590 int ret;
591 int pin;
592
593 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
594 if (ret) {
595 return;
596 }
597 mutex_lock(&pctldev->mutex);
598
599 /* Convert to the pin controllers number space */
600 pin = gpio_to_pin(range, gpio);
601
602 pinmux_free_gpio(pctldev, pin, range);
603
604 mutex_unlock(&pctldev->mutex);
605 }
606 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
607
608 static int pinctrl_gpio_direction(unsigned gpio, bool input)
609 {
610 struct pinctrl_dev *pctldev;
611 struct pinctrl_gpio_range *range;
612 int ret;
613 int pin;
614
615 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
616 if (ret) {
617 return ret;
618 }
619
620 mutex_lock(&pctldev->mutex);
621
622 /* Convert to the pin controllers number space */
623 pin = gpio_to_pin(range, gpio);
624 ret = pinmux_gpio_direction(pctldev, range, pin, input);
625
626 mutex_unlock(&pctldev->mutex);
627
628 return ret;
629 }
630
631 /**
632 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
633 * @gpio: the GPIO pin number from the GPIO subsystem number space
634 *
635 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
636 * as part of their gpio_direction_input() semantics, platforms and individual
637 * drivers shall *NOT* touch pin control GPIO calls.
638 */
639 int pinctrl_gpio_direction_input(unsigned gpio)
640 {
641 return pinctrl_gpio_direction(gpio, true);
642 }
643 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
644
645 /**
646 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
647 * @gpio: the GPIO pin number from the GPIO subsystem number space
648 *
649 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
650 * as part of their gpio_direction_output() semantics, platforms and individual
651 * drivers shall *NOT* touch pin control GPIO calls.
652 */
653 int pinctrl_gpio_direction_output(unsigned gpio)
654 {
655 return pinctrl_gpio_direction(gpio, false);
656 }
657 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
658
659 static struct pinctrl_state *find_state(struct pinctrl *p,
660 const char *name)
661 {
662 struct pinctrl_state *state;
663
664 list_for_each_entry(state, &p->states, node)
665 if (!strcmp(state->name, name))
666 return state;
667
668 return NULL;
669 }
670
671 static struct pinctrl_state *create_state(struct pinctrl *p,
672 const char *name)
673 {
674 struct pinctrl_state *state;
675
676 state = kzalloc(sizeof(*state), GFP_KERNEL);
677 if (state == NULL) {
678 dev_err(p->dev,
679 "failed to alloc struct pinctrl_state\n");
680 return ERR_PTR(-ENOMEM);
681 }
682
683 state->name = name;
684 INIT_LIST_HEAD(&state->settings);
685
686 list_add_tail(&state->node, &p->states);
687
688 return state;
689 }
690
691 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
692 {
693 struct pinctrl_state *state;
694 struct pinctrl_setting *setting;
695 int ret;
696
697 state = find_state(p, map->name);
698 if (!state)
699 state = create_state(p, map->name);
700 if (IS_ERR(state))
701 return PTR_ERR(state);
702
703 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
704 return 0;
705
706 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
707 if (setting == NULL) {
708 dev_err(p->dev,
709 "failed to alloc struct pinctrl_setting\n");
710 return -ENOMEM;
711 }
712
713 setting->type = map->type;
714
715 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
716 if (setting->pctldev == NULL) {
717 kfree(setting);
718 /* Do not defer probing of hogs (circular loop) */
719 if (!strcmp(map->ctrl_dev_name, map->dev_name))
720 return -ENODEV;
721 /*
722 * OK let us guess that the driver is not there yet, and
723 * let's defer obtaining this pinctrl handle to later...
724 */
725 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
726 map->ctrl_dev_name);
727 return -EPROBE_DEFER;
728 }
729
730 setting->dev_name = map->dev_name;
731
732 switch (map->type) {
733 case PIN_MAP_TYPE_MUX_GROUP:
734 ret = pinmux_map_to_setting(map, setting);
735 break;
736 case PIN_MAP_TYPE_CONFIGS_PIN:
737 case PIN_MAP_TYPE_CONFIGS_GROUP:
738 ret = pinconf_map_to_setting(map, setting);
739 break;
740 default:
741 ret = -EINVAL;
742 break;
743 }
744 if (ret < 0) {
745 kfree(setting);
746 return ret;
747 }
748
749 list_add_tail(&setting->node, &state->settings);
750
751 return 0;
752 }
753
754 static struct pinctrl *find_pinctrl(struct device *dev)
755 {
756 struct pinctrl *p;
757
758 mutex_lock(&pinctrl_list_mutex);
759 list_for_each_entry(p, &pinctrl_list, node)
760 if (p->dev == dev) {
761 mutex_unlock(&pinctrl_list_mutex);
762 return p;
763 }
764
765 mutex_unlock(&pinctrl_list_mutex);
766 return NULL;
767 }
768
769 static void pinctrl_free(struct pinctrl *p, bool inlist);
770
771 static struct pinctrl *create_pinctrl(struct device *dev)
772 {
773 struct pinctrl *p;
774 const char *devname;
775 struct pinctrl_maps *maps_node;
776 int i;
777 struct pinctrl_map const *map;
778 int ret;
779
780 /*
781 * create the state cookie holder struct pinctrl for each
782 * mapping, this is what consumers will get when requesting
783 * a pin control handle with pinctrl_get()
784 */
785 p = kzalloc(sizeof(*p), GFP_KERNEL);
786 if (p == NULL) {
787 dev_err(dev, "failed to alloc struct pinctrl\n");
788 return ERR_PTR(-ENOMEM);
789 }
790 p->dev = dev;
791 INIT_LIST_HEAD(&p->states);
792 INIT_LIST_HEAD(&p->dt_maps);
793
794 ret = pinctrl_dt_to_map(p);
795 if (ret < 0) {
796 kfree(p);
797 return ERR_PTR(ret);
798 }
799
800 devname = dev_name(dev);
801
802 mutex_lock(&pinctrl_maps_mutex);
803 /* Iterate over the pin control maps to locate the right ones */
804 for_each_maps(maps_node, i, map) {
805 /* Map must be for this device */
806 if (strcmp(map->dev_name, devname))
807 continue;
808
809 ret = add_setting(p, map);
810 /*
811 * At this point the adding of a setting may:
812 *
813 * - Defer, if the pinctrl device is not yet available
814 * - Fail, if the pinctrl device is not yet available,
815 * AND the setting is a hog. We cannot defer that, since
816 * the hog will kick in immediately after the device
817 * is registered.
818 *
819 * If the error returned was not -EPROBE_DEFER then we
820 * accumulate the errors to see if we end up with
821 * an -EPROBE_DEFER later, as that is the worst case.
822 */
823 if (ret == -EPROBE_DEFER) {
824 pinctrl_free(p, false);
825 mutex_unlock(&pinctrl_maps_mutex);
826 return ERR_PTR(ret);
827 }
828 }
829 mutex_unlock(&pinctrl_maps_mutex);
830
831 if (ret < 0) {
832 /* If some other error than deferral occured, return here */
833 pinctrl_free(p, false);
834 return ERR_PTR(ret);
835 }
836
837 kref_init(&p->users);
838
839 /* Add the pinctrl handle to the global list */
840 list_add_tail(&p->node, &pinctrl_list);
841
842 return p;
843 }
844
845 /**
846 * pinctrl_get() - retrieves the pinctrl handle for a device
847 * @dev: the device to obtain the handle for
848 */
849 struct pinctrl *pinctrl_get(struct device *dev)
850 {
851 struct pinctrl *p;
852
853 if (WARN_ON(!dev))
854 return ERR_PTR(-EINVAL);
855
856 /*
857 * See if somebody else (such as the device core) has already
858 * obtained a handle to the pinctrl for this device. In that case,
859 * return another pointer to it.
860 */
861 p = find_pinctrl(dev);
862 if (p != NULL) {
863 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
864 kref_get(&p->users);
865 return p;
866 }
867
868 return create_pinctrl(dev);
869 }
870 EXPORT_SYMBOL_GPL(pinctrl_get);
871
872 static void pinctrl_free_setting(bool disable_setting,
873 struct pinctrl_setting *setting)
874 {
875 switch (setting->type) {
876 case PIN_MAP_TYPE_MUX_GROUP:
877 if (disable_setting)
878 pinmux_disable_setting(setting);
879 pinmux_free_setting(setting);
880 break;
881 case PIN_MAP_TYPE_CONFIGS_PIN:
882 case PIN_MAP_TYPE_CONFIGS_GROUP:
883 pinconf_free_setting(setting);
884 break;
885 default:
886 break;
887 }
888 }
889
890 static void pinctrl_free(struct pinctrl *p, bool inlist)
891 {
892 struct pinctrl_state *state, *n1;
893 struct pinctrl_setting *setting, *n2;
894
895 mutex_lock(&pinctrl_list_mutex);
896 list_for_each_entry_safe(state, n1, &p->states, node) {
897 list_for_each_entry_safe(setting, n2, &state->settings, node) {
898 pinctrl_free_setting(state == p->state, setting);
899 list_del(&setting->node);
900 kfree(setting);
901 }
902 list_del(&state->node);
903 kfree(state);
904 }
905
906 pinctrl_dt_free_maps(p);
907
908 if (inlist)
909 list_del(&p->node);
910 kfree(p);
911 mutex_unlock(&pinctrl_list_mutex);
912 }
913
914 /**
915 * pinctrl_release() - release the pinctrl handle
916 * @kref: the kref in the pinctrl being released
917 */
918 static void pinctrl_release(struct kref *kref)
919 {
920 struct pinctrl *p = container_of(kref, struct pinctrl, users);
921
922 pinctrl_free(p, true);
923 }
924
925 /**
926 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
927 * @p: the pinctrl handle to release
928 */
929 void pinctrl_put(struct pinctrl *p)
930 {
931 kref_put(&p->users, pinctrl_release);
932 }
933 EXPORT_SYMBOL_GPL(pinctrl_put);
934
935 /**
936 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
937 * @p: the pinctrl handle to retrieve the state from
938 * @name: the state name to retrieve
939 */
940 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
941 const char *name)
942 {
943 struct pinctrl_state *state;
944
945 state = find_state(p, name);
946 if (!state) {
947 if (pinctrl_dummy_state) {
948 /* create dummy state */
949 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
950 name);
951 state = create_state(p, name);
952 } else
953 state = ERR_PTR(-ENODEV);
954 }
955
956 return state;
957 }
958 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
959
960 /**
961 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
962 * @p: the pinctrl handle for the device that requests configuration
963 * @state: the state handle to select/activate/program
964 */
965 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
966 {
967 struct pinctrl_setting *setting, *setting2;
968 struct pinctrl_state *old_state = p->state;
969 int ret;
970
971 if (p->state == state)
972 return 0;
973
974 if (p->state) {
975 /*
976 * The set of groups with a mux configuration in the old state
977 * may not be identical to the set of groups with a mux setting
978 * in the new state. While this might be unusual, it's entirely
979 * possible for the "user"-supplied mapping table to be written
980 * that way. For each group that was configured in the old state
981 * but not in the new state, this code puts that group into a
982 * safe/disabled state.
983 */
984 list_for_each_entry(setting, &p->state->settings, node) {
985 bool found = false;
986 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
987 continue;
988 list_for_each_entry(setting2, &state->settings, node) {
989 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
990 continue;
991 if (setting2->data.mux.group ==
992 setting->data.mux.group) {
993 found = true;
994 break;
995 }
996 }
997 if (!found)
998 pinmux_disable_setting(setting);
999 }
1000 }
1001
1002 p->state = NULL;
1003
1004 /* Apply all the settings for the new state */
1005 list_for_each_entry(setting, &state->settings, node) {
1006 switch (setting->type) {
1007 case PIN_MAP_TYPE_MUX_GROUP:
1008 ret = pinmux_enable_setting(setting);
1009 break;
1010 case PIN_MAP_TYPE_CONFIGS_PIN:
1011 case PIN_MAP_TYPE_CONFIGS_GROUP:
1012 ret = pinconf_apply_setting(setting);
1013 break;
1014 default:
1015 ret = -EINVAL;
1016 break;
1017 }
1018
1019 if (ret < 0) {
1020 goto unapply_new_state;
1021 }
1022 }
1023
1024 p->state = state;
1025
1026 return 0;
1027
1028 unapply_new_state:
1029 dev_err(p->dev, "Error applying setting, reverse things back\n");
1030
1031 list_for_each_entry(setting2, &state->settings, node) {
1032 if (&setting2->node == &setting->node)
1033 break;
1034 /*
1035 * All we can do here is pinmux_disable_setting.
1036 * That means that some pins are muxed differently now
1037 * than they were before applying the setting (We can't
1038 * "unmux a pin"!), but it's not a big deal since the pins
1039 * are free to be muxed by another apply_setting.
1040 */
1041 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1042 pinmux_disable_setting(setting2);
1043 }
1044
1045 /* There's no infinite recursive loop here because p->state is NULL */
1046 if (old_state)
1047 pinctrl_select_state(p, old_state);
1048
1049 return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1052
1053 static void devm_pinctrl_release(struct device *dev, void *res)
1054 {
1055 pinctrl_put(*(struct pinctrl **)res);
1056 }
1057
1058 /**
1059 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1060 * @dev: the device to obtain the handle for
1061 *
1062 * If there is a need to explicitly destroy the returned struct pinctrl,
1063 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1064 */
1065 struct pinctrl *devm_pinctrl_get(struct device *dev)
1066 {
1067 struct pinctrl **ptr, *p;
1068
1069 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1070 if (!ptr)
1071 return ERR_PTR(-ENOMEM);
1072
1073 p = pinctrl_get(dev);
1074 if (!IS_ERR(p)) {
1075 *ptr = p;
1076 devres_add(dev, ptr);
1077 } else {
1078 devres_free(ptr);
1079 }
1080
1081 return p;
1082 }
1083 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1084
1085 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1086 {
1087 struct pinctrl **p = res;
1088
1089 return *p == data;
1090 }
1091
1092 /**
1093 * devm_pinctrl_put() - Resource managed pinctrl_put()
1094 * @p: the pinctrl handle to release
1095 *
1096 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1097 * this function will not need to be called and the resource management
1098 * code will ensure that the resource is freed.
1099 */
1100 void devm_pinctrl_put(struct pinctrl *p)
1101 {
1102 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1103 devm_pinctrl_match, p));
1104 }
1105 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1106
1107 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1108 bool dup, bool locked)
1109 {
1110 int i, ret;
1111 struct pinctrl_maps *maps_node;
1112
1113 pr_debug("add %d pinmux maps\n", num_maps);
1114
1115 /* First sanity check the new mapping */
1116 for (i = 0; i < num_maps; i++) {
1117 if (!maps[i].dev_name) {
1118 pr_err("failed to register map %s (%d): no device given\n",
1119 maps[i].name, i);
1120 return -EINVAL;
1121 }
1122
1123 if (!maps[i].name) {
1124 pr_err("failed to register map %d: no map name given\n",
1125 i);
1126 return -EINVAL;
1127 }
1128
1129 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1130 !maps[i].ctrl_dev_name) {
1131 pr_err("failed to register map %s (%d): no pin control device given\n",
1132 maps[i].name, i);
1133 return -EINVAL;
1134 }
1135
1136 switch (maps[i].type) {
1137 case PIN_MAP_TYPE_DUMMY_STATE:
1138 break;
1139 case PIN_MAP_TYPE_MUX_GROUP:
1140 ret = pinmux_validate_map(&maps[i], i);
1141 if (ret < 0)
1142 return ret;
1143 break;
1144 case PIN_MAP_TYPE_CONFIGS_PIN:
1145 case PIN_MAP_TYPE_CONFIGS_GROUP:
1146 ret = pinconf_validate_map(&maps[i], i);
1147 if (ret < 0)
1148 return ret;
1149 break;
1150 default:
1151 pr_err("failed to register map %s (%d): invalid type given\n",
1152 maps[i].name, i);
1153 return -EINVAL;
1154 }
1155 }
1156
1157 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1158 if (!maps_node) {
1159 pr_err("failed to alloc struct pinctrl_maps\n");
1160 return -ENOMEM;
1161 }
1162
1163 maps_node->num_maps = num_maps;
1164 if (dup) {
1165 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1166 GFP_KERNEL);
1167 if (!maps_node->maps) {
1168 pr_err("failed to duplicate mapping table\n");
1169 kfree(maps_node);
1170 return -ENOMEM;
1171 }
1172 } else {
1173 maps_node->maps = maps;
1174 }
1175
1176 if (!locked)
1177 mutex_lock(&pinctrl_maps_mutex);
1178 list_add_tail(&maps_node->node, &pinctrl_maps);
1179 if (!locked)
1180 mutex_unlock(&pinctrl_maps_mutex);
1181
1182 return 0;
1183 }
1184
1185 /**
1186 * pinctrl_register_mappings() - register a set of pin controller mappings
1187 * @maps: the pincontrol mappings table to register. This should probably be
1188 * marked with __initdata so it can be discarded after boot. This
1189 * function will perform a shallow copy for the mapping entries.
1190 * @num_maps: the number of maps in the mapping table
1191 */
1192 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1193 unsigned num_maps)
1194 {
1195 return pinctrl_register_map(maps, num_maps, true, false);
1196 }
1197
1198 void pinctrl_unregister_map(struct pinctrl_map const *map)
1199 {
1200 struct pinctrl_maps *maps_node;
1201
1202 mutex_lock(&pinctrl_maps_mutex);
1203 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1204 if (maps_node->maps == map) {
1205 list_del(&maps_node->node);
1206 kfree(maps_node);
1207 mutex_unlock(&pinctrl_maps_mutex);
1208 return;
1209 }
1210 }
1211 mutex_unlock(&pinctrl_maps_mutex);
1212 }
1213
1214 /**
1215 * pinctrl_force_sleep() - turn a given controller device into sleep state
1216 * @pctldev: pin controller device
1217 */
1218 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1219 {
1220 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1221 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1222 return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1225
1226 /**
1227 * pinctrl_force_default() - turn a given controller device into default state
1228 * @pctldev: pin controller device
1229 */
1230 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1231 {
1232 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1233 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1234 return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1237
1238 #ifdef CONFIG_PM
1239
1240 /**
1241 * pinctrl_pm_select_state() - select pinctrl state for PM
1242 * @dev: device to select default state for
1243 * @state: state to set
1244 */
1245 static int pinctrl_pm_select_state(struct device *dev,
1246 struct pinctrl_state *state)
1247 {
1248 struct dev_pin_info *pins = dev->pins;
1249 int ret;
1250
1251 if (IS_ERR(state))
1252 return 0; /* No such state */
1253 ret = pinctrl_select_state(pins->p, state);
1254 if (ret)
1255 dev_err(dev, "failed to activate pinctrl state %s\n",
1256 state->name);
1257 return ret;
1258 }
1259
1260 /**
1261 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1262 * @dev: device to select default state for
1263 */
1264 int pinctrl_pm_select_default_state(struct device *dev)
1265 {
1266 if (!dev->pins)
1267 return 0;
1268
1269 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1270 }
1271 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1272
1273 /**
1274 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1275 * @dev: device to select sleep state for
1276 */
1277 int pinctrl_pm_select_sleep_state(struct device *dev)
1278 {
1279 if (!dev->pins)
1280 return 0;
1281
1282 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1283 }
1284 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1285
1286 /**
1287 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1288 * @dev: device to select idle state for
1289 */
1290 int pinctrl_pm_select_idle_state(struct device *dev)
1291 {
1292 if (!dev->pins)
1293 return 0;
1294
1295 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1296 }
1297 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1298 #endif
1299
1300 #ifdef CONFIG_DEBUG_FS
1301
1302 static int pinctrl_pins_show(struct seq_file *s, void *what)
1303 {
1304 struct pinctrl_dev *pctldev = s->private;
1305 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1306 unsigned i, pin;
1307
1308 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1309
1310 mutex_lock(&pctldev->mutex);
1311
1312 /* The pin number can be retrived from the pin controller descriptor */
1313 for (i = 0; i < pctldev->desc->npins; i++) {
1314 struct pin_desc *desc;
1315
1316 pin = pctldev->desc->pins[i].number;
1317 desc = pin_desc_get(pctldev, pin);
1318 /* Pin space may be sparse */
1319 if (desc == NULL)
1320 continue;
1321
1322 seq_printf(s, "pin %d (%s) ", pin,
1323 desc->name ? desc->name : "unnamed");
1324
1325 /* Driver-specific info per pin */
1326 if (ops->pin_dbg_show)
1327 ops->pin_dbg_show(pctldev, s, pin);
1328
1329 seq_puts(s, "\n");
1330 }
1331
1332 mutex_unlock(&pctldev->mutex);
1333
1334 return 0;
1335 }
1336
1337 static int pinctrl_groups_show(struct seq_file *s, void *what)
1338 {
1339 struct pinctrl_dev *pctldev = s->private;
1340 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1341 unsigned ngroups, selector = 0;
1342
1343 mutex_lock(&pctldev->mutex);
1344
1345 ngroups = ops->get_groups_count(pctldev);
1346
1347 seq_puts(s, "registered pin groups:\n");
1348 while (selector < ngroups) {
1349 const unsigned *pins;
1350 unsigned num_pins;
1351 const char *gname = ops->get_group_name(pctldev, selector);
1352 const char *pname;
1353 int ret;
1354 int i;
1355
1356 ret = ops->get_group_pins(pctldev, selector,
1357 &pins, &num_pins);
1358 if (ret)
1359 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1360 gname);
1361 else {
1362 seq_printf(s, "group: %s\n", gname);
1363 for (i = 0; i < num_pins; i++) {
1364 pname = pin_get_name(pctldev, pins[i]);
1365 if (WARN_ON(!pname)) {
1366 mutex_unlock(&pctldev->mutex);
1367 return -EINVAL;
1368 }
1369 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1370 }
1371 seq_puts(s, "\n");
1372 }
1373 selector++;
1374 }
1375
1376 mutex_unlock(&pctldev->mutex);
1377
1378 return 0;
1379 }
1380
1381 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1382 {
1383 struct pinctrl_dev *pctldev = s->private;
1384 struct pinctrl_gpio_range *range = NULL;
1385
1386 seq_puts(s, "GPIO ranges handled:\n");
1387
1388 mutex_lock(&pctldev->mutex);
1389
1390 /* Loop over the ranges */
1391 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1392 if (range->pins) {
1393 int a;
1394 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1395 range->id, range->name,
1396 range->base, (range->base + range->npins - 1));
1397 for (a = 0; a < range->npins - 1; a++)
1398 seq_printf(s, "%u, ", range->pins[a]);
1399 seq_printf(s, "%u}\n", range->pins[a]);
1400 }
1401 else
1402 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1403 range->id, range->name,
1404 range->base, (range->base + range->npins - 1),
1405 range->pin_base,
1406 (range->pin_base + range->npins - 1));
1407 }
1408
1409 mutex_unlock(&pctldev->mutex);
1410
1411 return 0;
1412 }
1413
1414 static int pinctrl_devices_show(struct seq_file *s, void *what)
1415 {
1416 struct pinctrl_dev *pctldev;
1417
1418 seq_puts(s, "name [pinmux] [pinconf]\n");
1419
1420 mutex_lock(&pinctrldev_list_mutex);
1421
1422 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1423 seq_printf(s, "%s ", pctldev->desc->name);
1424 if (pctldev->desc->pmxops)
1425 seq_puts(s, "yes ");
1426 else
1427 seq_puts(s, "no ");
1428 if (pctldev->desc->confops)
1429 seq_puts(s, "yes");
1430 else
1431 seq_puts(s, "no");
1432 seq_puts(s, "\n");
1433 }
1434
1435 mutex_unlock(&pinctrldev_list_mutex);
1436
1437 return 0;
1438 }
1439
1440 static inline const char *map_type(enum pinctrl_map_type type)
1441 {
1442 static const char * const names[] = {
1443 "INVALID",
1444 "DUMMY_STATE",
1445 "MUX_GROUP",
1446 "CONFIGS_PIN",
1447 "CONFIGS_GROUP",
1448 };
1449
1450 if (type >= ARRAY_SIZE(names))
1451 return "UNKNOWN";
1452
1453 return names[type];
1454 }
1455
1456 static int pinctrl_maps_show(struct seq_file *s, void *what)
1457 {
1458 struct pinctrl_maps *maps_node;
1459 int i;
1460 struct pinctrl_map const *map;
1461
1462 seq_puts(s, "Pinctrl maps:\n");
1463
1464 mutex_lock(&pinctrl_maps_mutex);
1465 for_each_maps(maps_node, i, map) {
1466 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1467 map->dev_name, map->name, map_type(map->type),
1468 map->type);
1469
1470 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1471 seq_printf(s, "controlling device %s\n",
1472 map->ctrl_dev_name);
1473
1474 switch (map->type) {
1475 case PIN_MAP_TYPE_MUX_GROUP:
1476 pinmux_show_map(s, map);
1477 break;
1478 case PIN_MAP_TYPE_CONFIGS_PIN:
1479 case PIN_MAP_TYPE_CONFIGS_GROUP:
1480 pinconf_show_map(s, map);
1481 break;
1482 default:
1483 break;
1484 }
1485
1486 seq_printf(s, "\n");
1487 }
1488 mutex_unlock(&pinctrl_maps_mutex);
1489
1490 return 0;
1491 }
1492
1493 static int pinctrl_show(struct seq_file *s, void *what)
1494 {
1495 struct pinctrl *p;
1496 struct pinctrl_state *state;
1497 struct pinctrl_setting *setting;
1498
1499 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1500
1501 mutex_lock(&pinctrl_list_mutex);
1502
1503 list_for_each_entry(p, &pinctrl_list, node) {
1504 seq_printf(s, "device: %s current state: %s\n",
1505 dev_name(p->dev),
1506 p->state ? p->state->name : "none");
1507
1508 list_for_each_entry(state, &p->states, node) {
1509 seq_printf(s, " state: %s\n", state->name);
1510
1511 list_for_each_entry(setting, &state->settings, node) {
1512 struct pinctrl_dev *pctldev = setting->pctldev;
1513
1514 seq_printf(s, " type: %s controller %s ",
1515 map_type(setting->type),
1516 pinctrl_dev_get_name(pctldev));
1517
1518 switch (setting->type) {
1519 case PIN_MAP_TYPE_MUX_GROUP:
1520 pinmux_show_setting(s, setting);
1521 break;
1522 case PIN_MAP_TYPE_CONFIGS_PIN:
1523 case PIN_MAP_TYPE_CONFIGS_GROUP:
1524 pinconf_show_setting(s, setting);
1525 break;
1526 default:
1527 break;
1528 }
1529 }
1530 }
1531 }
1532
1533 mutex_unlock(&pinctrl_list_mutex);
1534
1535 return 0;
1536 }
1537
1538 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1539 {
1540 return single_open(file, pinctrl_pins_show, inode->i_private);
1541 }
1542
1543 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1544 {
1545 return single_open(file, pinctrl_groups_show, inode->i_private);
1546 }
1547
1548 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1549 {
1550 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1551 }
1552
1553 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1554 {
1555 return single_open(file, pinctrl_devices_show, NULL);
1556 }
1557
1558 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1559 {
1560 return single_open(file, pinctrl_maps_show, NULL);
1561 }
1562
1563 static int pinctrl_open(struct inode *inode, struct file *file)
1564 {
1565 return single_open(file, pinctrl_show, NULL);
1566 }
1567
1568 static const struct file_operations pinctrl_pins_ops = {
1569 .open = pinctrl_pins_open,
1570 .read = seq_read,
1571 .llseek = seq_lseek,
1572 .release = single_release,
1573 };
1574
1575 static const struct file_operations pinctrl_groups_ops = {
1576 .open = pinctrl_groups_open,
1577 .read = seq_read,
1578 .llseek = seq_lseek,
1579 .release = single_release,
1580 };
1581
1582 static const struct file_operations pinctrl_gpioranges_ops = {
1583 .open = pinctrl_gpioranges_open,
1584 .read = seq_read,
1585 .llseek = seq_lseek,
1586 .release = single_release,
1587 };
1588
1589 static const struct file_operations pinctrl_devices_ops = {
1590 .open = pinctrl_devices_open,
1591 .read = seq_read,
1592 .llseek = seq_lseek,
1593 .release = single_release,
1594 };
1595
1596 static const struct file_operations pinctrl_maps_ops = {
1597 .open = pinctrl_maps_open,
1598 .read = seq_read,
1599 .llseek = seq_lseek,
1600 .release = single_release,
1601 };
1602
1603 static const struct file_operations pinctrl_ops = {
1604 .open = pinctrl_open,
1605 .read = seq_read,
1606 .llseek = seq_lseek,
1607 .release = single_release,
1608 };
1609
1610 static struct dentry *debugfs_root;
1611
1612 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1613 {
1614 struct dentry *device_root;
1615
1616 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1617 debugfs_root);
1618 pctldev->device_root = device_root;
1619
1620 if (IS_ERR(device_root) || !device_root) {
1621 pr_warn("failed to create debugfs directory for %s\n",
1622 dev_name(pctldev->dev));
1623 return;
1624 }
1625 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1626 device_root, pctldev, &pinctrl_pins_ops);
1627 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1628 device_root, pctldev, &pinctrl_groups_ops);
1629 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1630 device_root, pctldev, &pinctrl_gpioranges_ops);
1631 pinmux_init_device_debugfs(device_root, pctldev);
1632 pinconf_init_device_debugfs(device_root, pctldev);
1633 }
1634
1635 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1636 {
1637 debugfs_remove_recursive(pctldev->device_root);
1638 }
1639
1640 static void pinctrl_init_debugfs(void)
1641 {
1642 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1643 if (IS_ERR(debugfs_root) || !debugfs_root) {
1644 pr_warn("failed to create debugfs directory\n");
1645 debugfs_root = NULL;
1646 return;
1647 }
1648
1649 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1650 debugfs_root, NULL, &pinctrl_devices_ops);
1651 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1652 debugfs_root, NULL, &pinctrl_maps_ops);
1653 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1654 debugfs_root, NULL, &pinctrl_ops);
1655 }
1656
1657 #else /* CONFIG_DEBUG_FS */
1658
1659 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1660 {
1661 }
1662
1663 static void pinctrl_init_debugfs(void)
1664 {
1665 }
1666
1667 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1668 {
1669 }
1670
1671 #endif
1672
1673 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1674 {
1675 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1676
1677 if (!ops ||
1678 !ops->get_groups_count ||
1679 !ops->get_group_name ||
1680 !ops->get_group_pins)
1681 return -EINVAL;
1682
1683 if (ops->dt_node_to_map && !ops->dt_free_map)
1684 return -EINVAL;
1685
1686 return 0;
1687 }
1688
1689 /**
1690 * pinctrl_register() - register a pin controller device
1691 * @pctldesc: descriptor for this pin controller
1692 * @dev: parent device for this pin controller
1693 * @driver_data: private pin controller data for this pin controller
1694 */
1695 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1696 struct device *dev, void *driver_data)
1697 {
1698 struct pinctrl_dev *pctldev;
1699 int ret;
1700
1701 if (!pctldesc)
1702 return NULL;
1703 if (!pctldesc->name)
1704 return NULL;
1705
1706 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1707 if (pctldev == NULL) {
1708 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1709 return NULL;
1710 }
1711
1712 /* Initialize pin control device struct */
1713 pctldev->owner = pctldesc->owner;
1714 pctldev->desc = pctldesc;
1715 pctldev->driver_data = driver_data;
1716 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1717 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1718 pctldev->dev = dev;
1719 mutex_init(&pctldev->mutex);
1720
1721 /* check core ops for sanity */
1722 if (pinctrl_check_ops(pctldev)) {
1723 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1724 goto out_err;
1725 }
1726
1727 /* If we're implementing pinmuxing, check the ops for sanity */
1728 if (pctldesc->pmxops) {
1729 if (pinmux_check_ops(pctldev))
1730 goto out_err;
1731 }
1732
1733 /* If we're implementing pinconfig, check the ops for sanity */
1734 if (pctldesc->confops) {
1735 if (pinconf_check_ops(pctldev))
1736 goto out_err;
1737 }
1738
1739 /* Register all the pins */
1740 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1741 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1742 if (ret) {
1743 dev_err(dev, "error during pin registration\n");
1744 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1745 pctldesc->npins);
1746 goto out_err;
1747 }
1748
1749 mutex_lock(&pinctrldev_list_mutex);
1750 list_add_tail(&pctldev->node, &pinctrldev_list);
1751 mutex_unlock(&pinctrldev_list_mutex);
1752
1753 pctldev->p = pinctrl_get(pctldev->dev);
1754
1755 if (!IS_ERR(pctldev->p)) {
1756 pctldev->hog_default =
1757 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1758 if (IS_ERR(pctldev->hog_default)) {
1759 dev_dbg(dev, "failed to lookup the default state\n");
1760 } else {
1761 if (pinctrl_select_state(pctldev->p,
1762 pctldev->hog_default))
1763 dev_err(dev,
1764 "failed to select default state\n");
1765 }
1766
1767 pctldev->hog_sleep =
1768 pinctrl_lookup_state(pctldev->p,
1769 PINCTRL_STATE_SLEEP);
1770 if (IS_ERR(pctldev->hog_sleep))
1771 dev_dbg(dev, "failed to lookup the sleep state\n");
1772 }
1773
1774 pinctrl_init_device_debugfs(pctldev);
1775
1776 return pctldev;
1777
1778 out_err:
1779 mutex_destroy(&pctldev->mutex);
1780 kfree(pctldev);
1781 return NULL;
1782 }
1783 EXPORT_SYMBOL_GPL(pinctrl_register);
1784
1785 /**
1786 * pinctrl_unregister() - unregister pinmux
1787 * @pctldev: pin controller to unregister
1788 *
1789 * Called by pinmux drivers to unregister a pinmux.
1790 */
1791 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1792 {
1793 struct pinctrl_gpio_range *range, *n;
1794 if (pctldev == NULL)
1795 return;
1796
1797 mutex_lock(&pinctrldev_list_mutex);
1798 mutex_lock(&pctldev->mutex);
1799
1800 pinctrl_remove_device_debugfs(pctldev);
1801
1802 if (!IS_ERR(pctldev->p))
1803 pinctrl_put(pctldev->p);
1804
1805 /* TODO: check that no pinmuxes are still active? */
1806 list_del(&pctldev->node);
1807 /* Destroy descriptor tree */
1808 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1809 pctldev->desc->npins);
1810 /* remove gpio ranges map */
1811 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1812 list_del(&range->node);
1813
1814 mutex_unlock(&pctldev->mutex);
1815 mutex_destroy(&pctldev->mutex);
1816 kfree(pctldev);
1817 mutex_unlock(&pinctrldev_list_mutex);
1818 }
1819 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1820
1821 static int __init pinctrl_init(void)
1822 {
1823 pr_info("initialized pinctrl subsystem\n");
1824 pinctrl_init_debugfs();
1825 return 0;
1826 }
1827
1828 /* init early since many drivers really need to initialized pinmux early */
1829 core_initcall(pinctrl_init);
This page took 0.069293 seconds and 5 git commands to generate.