Merge branch 'pm-tools'
[deliverable/linux.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161 }
162
163 /**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180 }
181
182 /**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209 {
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
229 {
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 pr_err("pin %d already registered on %s\n", number,
235 pctldev->desc->name);
236 return -EINVAL;
237 }
238
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (pindesc == NULL) {
241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 return -ENOMEM;
243 }
244
245 /* Set owner */
246 pindesc->pctldev = pctldev;
247
248 /* Copy basic pin info */
249 if (name) {
250 pindesc->name = name;
251 } else {
252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 if (pindesc->name == NULL) {
254 kfree(pindesc);
255 return -ENOMEM;
256 }
257 pindesc->dynamic_name = true;
258 }
259
260 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261 pr_debug("registered pin %d (%s) on %s\n",
262 number, pindesc->name, pctldev->desc->name);
263 return 0;
264 }
265
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 struct pinctrl_pin_desc const *pins,
268 unsigned num_descs)
269 {
270 unsigned i;
271 int ret = 0;
272
273 for (i = 0; i < num_descs; i++) {
274 ret = pinctrl_register_one_pin(pctldev,
275 pins[i].number, pins[i].name);
276 if (ret)
277 return ret;
278 }
279
280 return 0;
281 }
282
283 /**
284 * gpio_to_pin() - GPIO range GPIO number to pin number translation
285 * @range: GPIO range used for the translation
286 * @gpio: gpio pin to translate to a pin number
287 *
288 * Finds the pin number for a given GPIO using the specified GPIO range
289 * as a base for translation. The distinction between linear GPIO ranges
290 * and pin list based GPIO ranges is managed correctly by this function.
291 *
292 * This function assumes the gpio is part of the specified GPIO range, use
293 * only after making sure this is the case (e.g. by calling it on the
294 * result of successful pinctrl_get_device_gpio_range calls)!
295 */
296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297 unsigned int gpio)
298 {
299 unsigned int offset = gpio - range->base;
300 if (range->pins)
301 return range->pins[offset];
302 else
303 return range->pin_base + offset;
304 }
305
306 /**
307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308 * @pctldev: pin controller device to check
309 * @gpio: gpio pin to check taken from the global GPIO pin space
310 *
311 * Tries to match a GPIO pin number to the ranges handled by a certain pin
312 * controller, return the range or NULL
313 */
314 static struct pinctrl_gpio_range *
315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316 {
317 struct pinctrl_gpio_range *range = NULL;
318
319 mutex_lock(&pctldev->mutex);
320 /* Loop over the ranges */
321 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322 /* Check if we're in the valid range */
323 if (gpio >= range->base &&
324 gpio < range->base + range->npins) {
325 mutex_unlock(&pctldev->mutex);
326 return range;
327 }
328 }
329 mutex_unlock(&pctldev->mutex);
330 return NULL;
331 }
332
333 /**
334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335 * the same GPIO chip are in range
336 * @gpio: gpio pin to check taken from the global GPIO pin space
337 *
338 * This function is complement of pinctrl_match_gpio_range(). If the return
339 * value of pinctrl_match_gpio_range() is NULL, this function could be used
340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341 * of the same GPIO chip don't have back-end pinctrl interface.
342 * If the return value is true, it means that pinctrl device is ready & the
343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344 * is false, it means that pinctrl device may not be ready.
345 */
346 #ifdef CONFIG_GPIOLIB
347 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348 {
349 struct pinctrl_dev *pctldev;
350 struct pinctrl_gpio_range *range = NULL;
351 struct gpio_chip *chip = gpio_to_chip(gpio);
352
353 mutex_lock(&pinctrldev_list_mutex);
354
355 /* Loop over the pin controllers */
356 list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 /* Loop over the ranges */
358 mutex_lock(&pctldev->mutex);
359 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 /* Check if any gpio range overlapped with gpio chip */
361 if (range->base + range->npins - 1 < chip->base ||
362 range->base > chip->base + chip->ngpio - 1)
363 continue;
364 mutex_unlock(&pctldev->mutex);
365 mutex_unlock(&pinctrldev_list_mutex);
366 return true;
367 }
368 mutex_unlock(&pctldev->mutex);
369 }
370
371 mutex_unlock(&pinctrldev_list_mutex);
372
373 return false;
374 }
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
378
379 /**
380 * pinctrl_get_device_gpio_range() - find device for GPIO range
381 * @gpio: the pin to locate the pin controller for
382 * @outdev: the pin control device if found
383 * @outrange: the GPIO range if found
384 *
385 * Find the pin controller handling a certain GPIO pin from the pinspace of
386 * the GPIO subsystem, return the device and the matching GPIO range. Returns
387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388 * may still have not been registered.
389 */
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 struct pinctrl_dev **outdev,
392 struct pinctrl_gpio_range **outrange)
393 {
394 struct pinctrl_dev *pctldev = NULL;
395
396 mutex_lock(&pinctrldev_list_mutex);
397
398 /* Loop over the pin controllers */
399 list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 struct pinctrl_gpio_range *range;
401
402 range = pinctrl_match_gpio_range(pctldev, gpio);
403 if (range != NULL) {
404 *outdev = pctldev;
405 *outrange = range;
406 mutex_unlock(&pinctrldev_list_mutex);
407 return 0;
408 }
409 }
410
411 mutex_unlock(&pinctrldev_list_mutex);
412
413 return -EPROBE_DEFER;
414 }
415
416 /**
417 * pinctrl_add_gpio_range() - register a GPIO range for a controller
418 * @pctldev: pin controller device to add the range to
419 * @range: the GPIO range to add
420 *
421 * This adds a range of GPIOs to be handled by a certain pin controller. Call
422 * this to register handled ranges after registering your pin controller.
423 */
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 struct pinctrl_gpio_range *range)
426 {
427 mutex_lock(&pctldev->mutex);
428 list_add_tail(&range->node, &pctldev->gpio_ranges);
429 mutex_unlock(&pctldev->mutex);
430 }
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 struct pinctrl_gpio_range *ranges,
435 unsigned nranges)
436 {
437 int i;
438
439 for (i = 0; i < nranges; i++)
440 pinctrl_add_gpio_range(pctldev, &ranges[i]);
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 struct pinctrl_gpio_range *range)
446 {
447 struct pinctrl_dev *pctldev;
448
449 pctldev = get_pinctrl_dev_from_devname(devname);
450
451 /*
452 * If we can't find this device, let's assume that is because
453 * it has not probed yet, so the driver trying to register this
454 * range need to defer probing.
455 */
456 if (!pctldev) {
457 return ERR_PTR(-EPROBE_DEFER);
458 }
459 pinctrl_add_gpio_range(pctldev, range);
460
461 return pctldev;
462 }
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464
465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466 const unsigned **pins, unsigned *num_pins)
467 {
468 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469 int gs;
470
471 if (!pctlops->get_group_pins)
472 return -EINVAL;
473
474 gs = pinctrl_get_group_selector(pctldev, pin_group);
475 if (gs < 0)
476 return gs;
477
478 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
479 }
480 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
481
482 /**
483 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
484 * @pctldev: the pin controller device to look in
485 * @pin: a controller-local number to find the range for
486 */
487 struct pinctrl_gpio_range *
488 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
489 unsigned int pin)
490 {
491 struct pinctrl_gpio_range *range;
492
493 mutex_lock(&pctldev->mutex);
494 /* Loop over the ranges */
495 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
496 /* Check if we're in the valid range */
497 if (range->pins) {
498 int a;
499 for (a = 0; a < range->npins; a++) {
500 if (range->pins[a] == pin)
501 goto out;
502 }
503 } else if (pin >= range->pin_base &&
504 pin < range->pin_base + range->npins)
505 goto out;
506 }
507 range = NULL;
508 out:
509 mutex_unlock(&pctldev->mutex);
510 return range;
511 }
512 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
513
514 /**
515 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
516 * @pctldev: pin controller device to remove the range from
517 * @range: the GPIO range to remove
518 */
519 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
520 struct pinctrl_gpio_range *range)
521 {
522 mutex_lock(&pctldev->mutex);
523 list_del(&range->node);
524 mutex_unlock(&pctldev->mutex);
525 }
526 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
527
528 /**
529 * pinctrl_get_group_selector() - returns the group selector for a group
530 * @pctldev: the pin controller handling the group
531 * @pin_group: the pin group to look up
532 */
533 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
534 const char *pin_group)
535 {
536 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
537 unsigned ngroups = pctlops->get_groups_count(pctldev);
538 unsigned group_selector = 0;
539
540 while (group_selector < ngroups) {
541 const char *gname = pctlops->get_group_name(pctldev,
542 group_selector);
543 if (!strcmp(gname, pin_group)) {
544 dev_dbg(pctldev->dev,
545 "found group selector %u for %s\n",
546 group_selector,
547 pin_group);
548 return group_selector;
549 }
550
551 group_selector++;
552 }
553
554 dev_err(pctldev->dev, "does not have pin group %s\n",
555 pin_group);
556
557 return -EINVAL;
558 }
559
560 /**
561 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
562 * @gpio: the GPIO pin number from the GPIO subsystem number space
563 *
564 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
565 * as part of their gpio_request() semantics, platforms and individual drivers
566 * shall *NOT* request GPIO pins to be muxed in.
567 */
568 int pinctrl_request_gpio(unsigned gpio)
569 {
570 struct pinctrl_dev *pctldev;
571 struct pinctrl_gpio_range *range;
572 int ret;
573 int pin;
574
575 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
576 if (ret) {
577 if (pinctrl_ready_for_gpio_range(gpio))
578 ret = 0;
579 return ret;
580 }
581
582 mutex_lock(&pctldev->mutex);
583
584 /* Convert to the pin controllers number space */
585 pin = gpio_to_pin(range, gpio);
586
587 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
588
589 mutex_unlock(&pctldev->mutex);
590
591 return ret;
592 }
593 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
594
595 /**
596 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
597 * @gpio: the GPIO pin number from the GPIO subsystem number space
598 *
599 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
600 * as part of their gpio_free() semantics, platforms and individual drivers
601 * shall *NOT* request GPIO pins to be muxed out.
602 */
603 void pinctrl_free_gpio(unsigned gpio)
604 {
605 struct pinctrl_dev *pctldev;
606 struct pinctrl_gpio_range *range;
607 int ret;
608 int pin;
609
610 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
611 if (ret) {
612 return;
613 }
614 mutex_lock(&pctldev->mutex);
615
616 /* Convert to the pin controllers number space */
617 pin = gpio_to_pin(range, gpio);
618
619 pinmux_free_gpio(pctldev, pin, range);
620
621 mutex_unlock(&pctldev->mutex);
622 }
623 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
624
625 static int pinctrl_gpio_direction(unsigned gpio, bool input)
626 {
627 struct pinctrl_dev *pctldev;
628 struct pinctrl_gpio_range *range;
629 int ret;
630 int pin;
631
632 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
633 if (ret) {
634 return ret;
635 }
636
637 mutex_lock(&pctldev->mutex);
638
639 /* Convert to the pin controllers number space */
640 pin = gpio_to_pin(range, gpio);
641 ret = pinmux_gpio_direction(pctldev, range, pin, input);
642
643 mutex_unlock(&pctldev->mutex);
644
645 return ret;
646 }
647
648 /**
649 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
650 * @gpio: the GPIO pin number from the GPIO subsystem number space
651 *
652 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
653 * as part of their gpio_direction_input() semantics, platforms and individual
654 * drivers shall *NOT* touch pin control GPIO calls.
655 */
656 int pinctrl_gpio_direction_input(unsigned gpio)
657 {
658 return pinctrl_gpio_direction(gpio, true);
659 }
660 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
661
662 /**
663 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
664 * @gpio: the GPIO pin number from the GPIO subsystem number space
665 *
666 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
667 * as part of their gpio_direction_output() semantics, platforms and individual
668 * drivers shall *NOT* touch pin control GPIO calls.
669 */
670 int pinctrl_gpio_direction_output(unsigned gpio)
671 {
672 return pinctrl_gpio_direction(gpio, false);
673 }
674 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
675
676 static struct pinctrl_state *find_state(struct pinctrl *p,
677 const char *name)
678 {
679 struct pinctrl_state *state;
680
681 list_for_each_entry(state, &p->states, node)
682 if (!strcmp(state->name, name))
683 return state;
684
685 return NULL;
686 }
687
688 static struct pinctrl_state *create_state(struct pinctrl *p,
689 const char *name)
690 {
691 struct pinctrl_state *state;
692
693 state = kzalloc(sizeof(*state), GFP_KERNEL);
694 if (state == NULL) {
695 dev_err(p->dev,
696 "failed to alloc struct pinctrl_state\n");
697 return ERR_PTR(-ENOMEM);
698 }
699
700 state->name = name;
701 INIT_LIST_HEAD(&state->settings);
702
703 list_add_tail(&state->node, &p->states);
704
705 return state;
706 }
707
708 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
709 {
710 struct pinctrl_state *state;
711 struct pinctrl_setting *setting;
712 int ret;
713
714 state = find_state(p, map->name);
715 if (!state)
716 state = create_state(p, map->name);
717 if (IS_ERR(state))
718 return PTR_ERR(state);
719
720 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
721 return 0;
722
723 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
724 if (setting == NULL) {
725 dev_err(p->dev,
726 "failed to alloc struct pinctrl_setting\n");
727 return -ENOMEM;
728 }
729
730 setting->type = map->type;
731
732 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
733 if (setting->pctldev == NULL) {
734 kfree(setting);
735 /* Do not defer probing of hogs (circular loop) */
736 if (!strcmp(map->ctrl_dev_name, map->dev_name))
737 return -ENODEV;
738 /*
739 * OK let us guess that the driver is not there yet, and
740 * let's defer obtaining this pinctrl handle to later...
741 */
742 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
743 map->ctrl_dev_name);
744 return -EPROBE_DEFER;
745 }
746
747 setting->dev_name = map->dev_name;
748
749 switch (map->type) {
750 case PIN_MAP_TYPE_MUX_GROUP:
751 ret = pinmux_map_to_setting(map, setting);
752 break;
753 case PIN_MAP_TYPE_CONFIGS_PIN:
754 case PIN_MAP_TYPE_CONFIGS_GROUP:
755 ret = pinconf_map_to_setting(map, setting);
756 break;
757 default:
758 ret = -EINVAL;
759 break;
760 }
761 if (ret < 0) {
762 kfree(setting);
763 return ret;
764 }
765
766 list_add_tail(&setting->node, &state->settings);
767
768 return 0;
769 }
770
771 static struct pinctrl *find_pinctrl(struct device *dev)
772 {
773 struct pinctrl *p;
774
775 mutex_lock(&pinctrl_list_mutex);
776 list_for_each_entry(p, &pinctrl_list, node)
777 if (p->dev == dev) {
778 mutex_unlock(&pinctrl_list_mutex);
779 return p;
780 }
781
782 mutex_unlock(&pinctrl_list_mutex);
783 return NULL;
784 }
785
786 static void pinctrl_free(struct pinctrl *p, bool inlist);
787
788 static struct pinctrl *create_pinctrl(struct device *dev)
789 {
790 struct pinctrl *p;
791 const char *devname;
792 struct pinctrl_maps *maps_node;
793 int i;
794 struct pinctrl_map const *map;
795 int ret;
796
797 /*
798 * create the state cookie holder struct pinctrl for each
799 * mapping, this is what consumers will get when requesting
800 * a pin control handle with pinctrl_get()
801 */
802 p = kzalloc(sizeof(*p), GFP_KERNEL);
803 if (p == NULL) {
804 dev_err(dev, "failed to alloc struct pinctrl\n");
805 return ERR_PTR(-ENOMEM);
806 }
807 p->dev = dev;
808 INIT_LIST_HEAD(&p->states);
809 INIT_LIST_HEAD(&p->dt_maps);
810
811 ret = pinctrl_dt_to_map(p);
812 if (ret < 0) {
813 kfree(p);
814 return ERR_PTR(ret);
815 }
816
817 devname = dev_name(dev);
818
819 mutex_lock(&pinctrl_maps_mutex);
820 /* Iterate over the pin control maps to locate the right ones */
821 for_each_maps(maps_node, i, map) {
822 /* Map must be for this device */
823 if (strcmp(map->dev_name, devname))
824 continue;
825
826 ret = add_setting(p, map);
827 /*
828 * At this point the adding of a setting may:
829 *
830 * - Defer, if the pinctrl device is not yet available
831 * - Fail, if the pinctrl device is not yet available,
832 * AND the setting is a hog. We cannot defer that, since
833 * the hog will kick in immediately after the device
834 * is registered.
835 *
836 * If the error returned was not -EPROBE_DEFER then we
837 * accumulate the errors to see if we end up with
838 * an -EPROBE_DEFER later, as that is the worst case.
839 */
840 if (ret == -EPROBE_DEFER) {
841 pinctrl_free(p, false);
842 mutex_unlock(&pinctrl_maps_mutex);
843 return ERR_PTR(ret);
844 }
845 }
846 mutex_unlock(&pinctrl_maps_mutex);
847
848 if (ret < 0) {
849 /* If some other error than deferral occured, return here */
850 pinctrl_free(p, false);
851 return ERR_PTR(ret);
852 }
853
854 kref_init(&p->users);
855
856 /* Add the pinctrl handle to the global list */
857 mutex_lock(&pinctrl_list_mutex);
858 list_add_tail(&p->node, &pinctrl_list);
859 mutex_unlock(&pinctrl_list_mutex);
860
861 return p;
862 }
863
864 /**
865 * pinctrl_get() - retrieves the pinctrl handle for a device
866 * @dev: the device to obtain the handle for
867 */
868 struct pinctrl *pinctrl_get(struct device *dev)
869 {
870 struct pinctrl *p;
871
872 if (WARN_ON(!dev))
873 return ERR_PTR(-EINVAL);
874
875 /*
876 * See if somebody else (such as the device core) has already
877 * obtained a handle to the pinctrl for this device. In that case,
878 * return another pointer to it.
879 */
880 p = find_pinctrl(dev);
881 if (p != NULL) {
882 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
883 kref_get(&p->users);
884 return p;
885 }
886
887 return create_pinctrl(dev);
888 }
889 EXPORT_SYMBOL_GPL(pinctrl_get);
890
891 static void pinctrl_free_setting(bool disable_setting,
892 struct pinctrl_setting *setting)
893 {
894 switch (setting->type) {
895 case PIN_MAP_TYPE_MUX_GROUP:
896 if (disable_setting)
897 pinmux_disable_setting(setting);
898 pinmux_free_setting(setting);
899 break;
900 case PIN_MAP_TYPE_CONFIGS_PIN:
901 case PIN_MAP_TYPE_CONFIGS_GROUP:
902 pinconf_free_setting(setting);
903 break;
904 default:
905 break;
906 }
907 }
908
909 static void pinctrl_free(struct pinctrl *p, bool inlist)
910 {
911 struct pinctrl_state *state, *n1;
912 struct pinctrl_setting *setting, *n2;
913
914 mutex_lock(&pinctrl_list_mutex);
915 list_for_each_entry_safe(state, n1, &p->states, node) {
916 list_for_each_entry_safe(setting, n2, &state->settings, node) {
917 pinctrl_free_setting(state == p->state, setting);
918 list_del(&setting->node);
919 kfree(setting);
920 }
921 list_del(&state->node);
922 kfree(state);
923 }
924
925 pinctrl_dt_free_maps(p);
926
927 if (inlist)
928 list_del(&p->node);
929 kfree(p);
930 mutex_unlock(&pinctrl_list_mutex);
931 }
932
933 /**
934 * pinctrl_release() - release the pinctrl handle
935 * @kref: the kref in the pinctrl being released
936 */
937 static void pinctrl_release(struct kref *kref)
938 {
939 struct pinctrl *p = container_of(kref, struct pinctrl, users);
940
941 pinctrl_free(p, true);
942 }
943
944 /**
945 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
946 * @p: the pinctrl handle to release
947 */
948 void pinctrl_put(struct pinctrl *p)
949 {
950 kref_put(&p->users, pinctrl_release);
951 }
952 EXPORT_SYMBOL_GPL(pinctrl_put);
953
954 /**
955 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
956 * @p: the pinctrl handle to retrieve the state from
957 * @name: the state name to retrieve
958 */
959 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
960 const char *name)
961 {
962 struct pinctrl_state *state;
963
964 state = find_state(p, name);
965 if (!state) {
966 if (pinctrl_dummy_state) {
967 /* create dummy state */
968 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
969 name);
970 state = create_state(p, name);
971 } else
972 state = ERR_PTR(-ENODEV);
973 }
974
975 return state;
976 }
977 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
978
979 /**
980 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
981 * @p: the pinctrl handle for the device that requests configuration
982 * @state: the state handle to select/activate/program
983 */
984 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
985 {
986 struct pinctrl_setting *setting, *setting2;
987 struct pinctrl_state *old_state = p->state;
988 int ret;
989
990 if (p->state == state)
991 return 0;
992
993 if (p->state) {
994 /*
995 * The set of groups with a mux configuration in the old state
996 * may not be identical to the set of groups with a mux setting
997 * in the new state. While this might be unusual, it's entirely
998 * possible for the "user"-supplied mapping table to be written
999 * that way. For each group that was configured in the old state
1000 * but not in the new state, this code puts that group into a
1001 * safe/disabled state.
1002 */
1003 list_for_each_entry(setting, &p->state->settings, node) {
1004 bool found = false;
1005 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1006 continue;
1007 list_for_each_entry(setting2, &state->settings, node) {
1008 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
1009 continue;
1010 if (setting2->data.mux.group ==
1011 setting->data.mux.group) {
1012 found = true;
1013 break;
1014 }
1015 }
1016 if (!found)
1017 pinmux_disable_setting(setting);
1018 }
1019 }
1020
1021 p->state = NULL;
1022
1023 /* Apply all the settings for the new state */
1024 list_for_each_entry(setting, &state->settings, node) {
1025 switch (setting->type) {
1026 case PIN_MAP_TYPE_MUX_GROUP:
1027 ret = pinmux_enable_setting(setting);
1028 break;
1029 case PIN_MAP_TYPE_CONFIGS_PIN:
1030 case PIN_MAP_TYPE_CONFIGS_GROUP:
1031 ret = pinconf_apply_setting(setting);
1032 break;
1033 default:
1034 ret = -EINVAL;
1035 break;
1036 }
1037
1038 if (ret < 0) {
1039 goto unapply_new_state;
1040 }
1041 }
1042
1043 p->state = state;
1044
1045 return 0;
1046
1047 unapply_new_state:
1048 dev_err(p->dev, "Error applying setting, reverse things back\n");
1049
1050 list_for_each_entry(setting2, &state->settings, node) {
1051 if (&setting2->node == &setting->node)
1052 break;
1053 /*
1054 * All we can do here is pinmux_disable_setting.
1055 * That means that some pins are muxed differently now
1056 * than they were before applying the setting (We can't
1057 * "unmux a pin"!), but it's not a big deal since the pins
1058 * are free to be muxed by another apply_setting.
1059 */
1060 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1061 pinmux_disable_setting(setting2);
1062 }
1063
1064 /* There's no infinite recursive loop here because p->state is NULL */
1065 if (old_state)
1066 pinctrl_select_state(p, old_state);
1067
1068 return ret;
1069 }
1070 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1071
1072 static void devm_pinctrl_release(struct device *dev, void *res)
1073 {
1074 pinctrl_put(*(struct pinctrl **)res);
1075 }
1076
1077 /**
1078 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1079 * @dev: the device to obtain the handle for
1080 *
1081 * If there is a need to explicitly destroy the returned struct pinctrl,
1082 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1083 */
1084 struct pinctrl *devm_pinctrl_get(struct device *dev)
1085 {
1086 struct pinctrl **ptr, *p;
1087
1088 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1089 if (!ptr)
1090 return ERR_PTR(-ENOMEM);
1091
1092 p = pinctrl_get(dev);
1093 if (!IS_ERR(p)) {
1094 *ptr = p;
1095 devres_add(dev, ptr);
1096 } else {
1097 devres_free(ptr);
1098 }
1099
1100 return p;
1101 }
1102 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1103
1104 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1105 {
1106 struct pinctrl **p = res;
1107
1108 return *p == data;
1109 }
1110
1111 /**
1112 * devm_pinctrl_put() - Resource managed pinctrl_put()
1113 * @p: the pinctrl handle to release
1114 *
1115 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1116 * this function will not need to be called and the resource management
1117 * code will ensure that the resource is freed.
1118 */
1119 void devm_pinctrl_put(struct pinctrl *p)
1120 {
1121 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1122 devm_pinctrl_match, p));
1123 }
1124 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1125
1126 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1127 bool dup, bool locked)
1128 {
1129 int i, ret;
1130 struct pinctrl_maps *maps_node;
1131
1132 pr_debug("add %d pinmux maps\n", num_maps);
1133
1134 /* First sanity check the new mapping */
1135 for (i = 0; i < num_maps; i++) {
1136 if (!maps[i].dev_name) {
1137 pr_err("failed to register map %s (%d): no device given\n",
1138 maps[i].name, i);
1139 return -EINVAL;
1140 }
1141
1142 if (!maps[i].name) {
1143 pr_err("failed to register map %d: no map name given\n",
1144 i);
1145 return -EINVAL;
1146 }
1147
1148 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1149 !maps[i].ctrl_dev_name) {
1150 pr_err("failed to register map %s (%d): no pin control device given\n",
1151 maps[i].name, i);
1152 return -EINVAL;
1153 }
1154
1155 switch (maps[i].type) {
1156 case PIN_MAP_TYPE_DUMMY_STATE:
1157 break;
1158 case PIN_MAP_TYPE_MUX_GROUP:
1159 ret = pinmux_validate_map(&maps[i], i);
1160 if (ret < 0)
1161 return ret;
1162 break;
1163 case PIN_MAP_TYPE_CONFIGS_PIN:
1164 case PIN_MAP_TYPE_CONFIGS_GROUP:
1165 ret = pinconf_validate_map(&maps[i], i);
1166 if (ret < 0)
1167 return ret;
1168 break;
1169 default:
1170 pr_err("failed to register map %s (%d): invalid type given\n",
1171 maps[i].name, i);
1172 return -EINVAL;
1173 }
1174 }
1175
1176 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1177 if (!maps_node) {
1178 pr_err("failed to alloc struct pinctrl_maps\n");
1179 return -ENOMEM;
1180 }
1181
1182 maps_node->num_maps = num_maps;
1183 if (dup) {
1184 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1185 GFP_KERNEL);
1186 if (!maps_node->maps) {
1187 pr_err("failed to duplicate mapping table\n");
1188 kfree(maps_node);
1189 return -ENOMEM;
1190 }
1191 } else {
1192 maps_node->maps = maps;
1193 }
1194
1195 if (!locked)
1196 mutex_lock(&pinctrl_maps_mutex);
1197 list_add_tail(&maps_node->node, &pinctrl_maps);
1198 if (!locked)
1199 mutex_unlock(&pinctrl_maps_mutex);
1200
1201 return 0;
1202 }
1203
1204 /**
1205 * pinctrl_register_mappings() - register a set of pin controller mappings
1206 * @maps: the pincontrol mappings table to register. This should probably be
1207 * marked with __initdata so it can be discarded after boot. This
1208 * function will perform a shallow copy for the mapping entries.
1209 * @num_maps: the number of maps in the mapping table
1210 */
1211 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1212 unsigned num_maps)
1213 {
1214 return pinctrl_register_map(maps, num_maps, true, false);
1215 }
1216
1217 void pinctrl_unregister_map(struct pinctrl_map const *map)
1218 {
1219 struct pinctrl_maps *maps_node;
1220
1221 mutex_lock(&pinctrl_maps_mutex);
1222 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1223 if (maps_node->maps == map) {
1224 list_del(&maps_node->node);
1225 kfree(maps_node);
1226 mutex_unlock(&pinctrl_maps_mutex);
1227 return;
1228 }
1229 }
1230 mutex_unlock(&pinctrl_maps_mutex);
1231 }
1232
1233 /**
1234 * pinctrl_force_sleep() - turn a given controller device into sleep state
1235 * @pctldev: pin controller device
1236 */
1237 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1238 {
1239 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1240 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1241 return 0;
1242 }
1243 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1244
1245 /**
1246 * pinctrl_force_default() - turn a given controller device into default state
1247 * @pctldev: pin controller device
1248 */
1249 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1250 {
1251 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1252 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1253 return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1256
1257 #ifdef CONFIG_PM
1258
1259 /**
1260 * pinctrl_pm_select_state() - select pinctrl state for PM
1261 * @dev: device to select default state for
1262 * @state: state to set
1263 */
1264 static int pinctrl_pm_select_state(struct device *dev,
1265 struct pinctrl_state *state)
1266 {
1267 struct dev_pin_info *pins = dev->pins;
1268 int ret;
1269
1270 if (IS_ERR(state))
1271 return 0; /* No such state */
1272 ret = pinctrl_select_state(pins->p, state);
1273 if (ret)
1274 dev_err(dev, "failed to activate pinctrl state %s\n",
1275 state->name);
1276 return ret;
1277 }
1278
1279 /**
1280 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1281 * @dev: device to select default state for
1282 */
1283 int pinctrl_pm_select_default_state(struct device *dev)
1284 {
1285 if (!dev->pins)
1286 return 0;
1287
1288 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1289 }
1290 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1291
1292 /**
1293 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1294 * @dev: device to select sleep state for
1295 */
1296 int pinctrl_pm_select_sleep_state(struct device *dev)
1297 {
1298 if (!dev->pins)
1299 return 0;
1300
1301 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1302 }
1303 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1304
1305 /**
1306 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1307 * @dev: device to select idle state for
1308 */
1309 int pinctrl_pm_select_idle_state(struct device *dev)
1310 {
1311 if (!dev->pins)
1312 return 0;
1313
1314 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1315 }
1316 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1317 #endif
1318
1319 #ifdef CONFIG_DEBUG_FS
1320
1321 static int pinctrl_pins_show(struct seq_file *s, void *what)
1322 {
1323 struct pinctrl_dev *pctldev = s->private;
1324 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1325 unsigned i, pin;
1326
1327 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1328
1329 mutex_lock(&pctldev->mutex);
1330
1331 /* The pin number can be retrived from the pin controller descriptor */
1332 for (i = 0; i < pctldev->desc->npins; i++) {
1333 struct pin_desc *desc;
1334
1335 pin = pctldev->desc->pins[i].number;
1336 desc = pin_desc_get(pctldev, pin);
1337 /* Pin space may be sparse */
1338 if (desc == NULL)
1339 continue;
1340
1341 seq_printf(s, "pin %d (%s) ", pin,
1342 desc->name ? desc->name : "unnamed");
1343
1344 /* Driver-specific info per pin */
1345 if (ops->pin_dbg_show)
1346 ops->pin_dbg_show(pctldev, s, pin);
1347
1348 seq_puts(s, "\n");
1349 }
1350
1351 mutex_unlock(&pctldev->mutex);
1352
1353 return 0;
1354 }
1355
1356 static int pinctrl_groups_show(struct seq_file *s, void *what)
1357 {
1358 struct pinctrl_dev *pctldev = s->private;
1359 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1360 unsigned ngroups, selector = 0;
1361
1362 mutex_lock(&pctldev->mutex);
1363
1364 ngroups = ops->get_groups_count(pctldev);
1365
1366 seq_puts(s, "registered pin groups:\n");
1367 while (selector < ngroups) {
1368 const unsigned *pins = NULL;
1369 unsigned num_pins = 0;
1370 const char *gname = ops->get_group_name(pctldev, selector);
1371 const char *pname;
1372 int ret = 0;
1373 int i;
1374
1375 if (ops->get_group_pins)
1376 ret = ops->get_group_pins(pctldev, selector,
1377 &pins, &num_pins);
1378 if (ret)
1379 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1380 gname);
1381 else {
1382 seq_printf(s, "group: %s\n", gname);
1383 for (i = 0; i < num_pins; i++) {
1384 pname = pin_get_name(pctldev, pins[i]);
1385 if (WARN_ON(!pname)) {
1386 mutex_unlock(&pctldev->mutex);
1387 return -EINVAL;
1388 }
1389 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1390 }
1391 seq_puts(s, "\n");
1392 }
1393 selector++;
1394 }
1395
1396 mutex_unlock(&pctldev->mutex);
1397
1398 return 0;
1399 }
1400
1401 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1402 {
1403 struct pinctrl_dev *pctldev = s->private;
1404 struct pinctrl_gpio_range *range = NULL;
1405
1406 seq_puts(s, "GPIO ranges handled:\n");
1407
1408 mutex_lock(&pctldev->mutex);
1409
1410 /* Loop over the ranges */
1411 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1412 if (range->pins) {
1413 int a;
1414 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1415 range->id, range->name,
1416 range->base, (range->base + range->npins - 1));
1417 for (a = 0; a < range->npins - 1; a++)
1418 seq_printf(s, "%u, ", range->pins[a]);
1419 seq_printf(s, "%u}\n", range->pins[a]);
1420 }
1421 else
1422 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1423 range->id, range->name,
1424 range->base, (range->base + range->npins - 1),
1425 range->pin_base,
1426 (range->pin_base + range->npins - 1));
1427 }
1428
1429 mutex_unlock(&pctldev->mutex);
1430
1431 return 0;
1432 }
1433
1434 static int pinctrl_devices_show(struct seq_file *s, void *what)
1435 {
1436 struct pinctrl_dev *pctldev;
1437
1438 seq_puts(s, "name [pinmux] [pinconf]\n");
1439
1440 mutex_lock(&pinctrldev_list_mutex);
1441
1442 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1443 seq_printf(s, "%s ", pctldev->desc->name);
1444 if (pctldev->desc->pmxops)
1445 seq_puts(s, "yes ");
1446 else
1447 seq_puts(s, "no ");
1448 if (pctldev->desc->confops)
1449 seq_puts(s, "yes");
1450 else
1451 seq_puts(s, "no");
1452 seq_puts(s, "\n");
1453 }
1454
1455 mutex_unlock(&pinctrldev_list_mutex);
1456
1457 return 0;
1458 }
1459
1460 static inline const char *map_type(enum pinctrl_map_type type)
1461 {
1462 static const char * const names[] = {
1463 "INVALID",
1464 "DUMMY_STATE",
1465 "MUX_GROUP",
1466 "CONFIGS_PIN",
1467 "CONFIGS_GROUP",
1468 };
1469
1470 if (type >= ARRAY_SIZE(names))
1471 return "UNKNOWN";
1472
1473 return names[type];
1474 }
1475
1476 static int pinctrl_maps_show(struct seq_file *s, void *what)
1477 {
1478 struct pinctrl_maps *maps_node;
1479 int i;
1480 struct pinctrl_map const *map;
1481
1482 seq_puts(s, "Pinctrl maps:\n");
1483
1484 mutex_lock(&pinctrl_maps_mutex);
1485 for_each_maps(maps_node, i, map) {
1486 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1487 map->dev_name, map->name, map_type(map->type),
1488 map->type);
1489
1490 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1491 seq_printf(s, "controlling device %s\n",
1492 map->ctrl_dev_name);
1493
1494 switch (map->type) {
1495 case PIN_MAP_TYPE_MUX_GROUP:
1496 pinmux_show_map(s, map);
1497 break;
1498 case PIN_MAP_TYPE_CONFIGS_PIN:
1499 case PIN_MAP_TYPE_CONFIGS_GROUP:
1500 pinconf_show_map(s, map);
1501 break;
1502 default:
1503 break;
1504 }
1505
1506 seq_printf(s, "\n");
1507 }
1508 mutex_unlock(&pinctrl_maps_mutex);
1509
1510 return 0;
1511 }
1512
1513 static int pinctrl_show(struct seq_file *s, void *what)
1514 {
1515 struct pinctrl *p;
1516 struct pinctrl_state *state;
1517 struct pinctrl_setting *setting;
1518
1519 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1520
1521 mutex_lock(&pinctrl_list_mutex);
1522
1523 list_for_each_entry(p, &pinctrl_list, node) {
1524 seq_printf(s, "device: %s current state: %s\n",
1525 dev_name(p->dev),
1526 p->state ? p->state->name : "none");
1527
1528 list_for_each_entry(state, &p->states, node) {
1529 seq_printf(s, " state: %s\n", state->name);
1530
1531 list_for_each_entry(setting, &state->settings, node) {
1532 struct pinctrl_dev *pctldev = setting->pctldev;
1533
1534 seq_printf(s, " type: %s controller %s ",
1535 map_type(setting->type),
1536 pinctrl_dev_get_name(pctldev));
1537
1538 switch (setting->type) {
1539 case PIN_MAP_TYPE_MUX_GROUP:
1540 pinmux_show_setting(s, setting);
1541 break;
1542 case PIN_MAP_TYPE_CONFIGS_PIN:
1543 case PIN_MAP_TYPE_CONFIGS_GROUP:
1544 pinconf_show_setting(s, setting);
1545 break;
1546 default:
1547 break;
1548 }
1549 }
1550 }
1551 }
1552
1553 mutex_unlock(&pinctrl_list_mutex);
1554
1555 return 0;
1556 }
1557
1558 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1559 {
1560 return single_open(file, pinctrl_pins_show, inode->i_private);
1561 }
1562
1563 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1564 {
1565 return single_open(file, pinctrl_groups_show, inode->i_private);
1566 }
1567
1568 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1569 {
1570 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1571 }
1572
1573 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1574 {
1575 return single_open(file, pinctrl_devices_show, NULL);
1576 }
1577
1578 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1579 {
1580 return single_open(file, pinctrl_maps_show, NULL);
1581 }
1582
1583 static int pinctrl_open(struct inode *inode, struct file *file)
1584 {
1585 return single_open(file, pinctrl_show, NULL);
1586 }
1587
1588 static const struct file_operations pinctrl_pins_ops = {
1589 .open = pinctrl_pins_open,
1590 .read = seq_read,
1591 .llseek = seq_lseek,
1592 .release = single_release,
1593 };
1594
1595 static const struct file_operations pinctrl_groups_ops = {
1596 .open = pinctrl_groups_open,
1597 .read = seq_read,
1598 .llseek = seq_lseek,
1599 .release = single_release,
1600 };
1601
1602 static const struct file_operations pinctrl_gpioranges_ops = {
1603 .open = pinctrl_gpioranges_open,
1604 .read = seq_read,
1605 .llseek = seq_lseek,
1606 .release = single_release,
1607 };
1608
1609 static const struct file_operations pinctrl_devices_ops = {
1610 .open = pinctrl_devices_open,
1611 .read = seq_read,
1612 .llseek = seq_lseek,
1613 .release = single_release,
1614 };
1615
1616 static const struct file_operations pinctrl_maps_ops = {
1617 .open = pinctrl_maps_open,
1618 .read = seq_read,
1619 .llseek = seq_lseek,
1620 .release = single_release,
1621 };
1622
1623 static const struct file_operations pinctrl_ops = {
1624 .open = pinctrl_open,
1625 .read = seq_read,
1626 .llseek = seq_lseek,
1627 .release = single_release,
1628 };
1629
1630 static struct dentry *debugfs_root;
1631
1632 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1633 {
1634 struct dentry *device_root;
1635
1636 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1637 debugfs_root);
1638 pctldev->device_root = device_root;
1639
1640 if (IS_ERR(device_root) || !device_root) {
1641 pr_warn("failed to create debugfs directory for %s\n",
1642 dev_name(pctldev->dev));
1643 return;
1644 }
1645 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1646 device_root, pctldev, &pinctrl_pins_ops);
1647 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1648 device_root, pctldev, &pinctrl_groups_ops);
1649 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1650 device_root, pctldev, &pinctrl_gpioranges_ops);
1651 if (pctldev->desc->pmxops)
1652 pinmux_init_device_debugfs(device_root, pctldev);
1653 if (pctldev->desc->confops)
1654 pinconf_init_device_debugfs(device_root, pctldev);
1655 }
1656
1657 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1658 {
1659 debugfs_remove_recursive(pctldev->device_root);
1660 }
1661
1662 static void pinctrl_init_debugfs(void)
1663 {
1664 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1665 if (IS_ERR(debugfs_root) || !debugfs_root) {
1666 pr_warn("failed to create debugfs directory\n");
1667 debugfs_root = NULL;
1668 return;
1669 }
1670
1671 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1672 debugfs_root, NULL, &pinctrl_devices_ops);
1673 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1674 debugfs_root, NULL, &pinctrl_maps_ops);
1675 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1676 debugfs_root, NULL, &pinctrl_ops);
1677 }
1678
1679 #else /* CONFIG_DEBUG_FS */
1680
1681 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1682 {
1683 }
1684
1685 static void pinctrl_init_debugfs(void)
1686 {
1687 }
1688
1689 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1690 {
1691 }
1692
1693 #endif
1694
1695 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1696 {
1697 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1698
1699 if (!ops ||
1700 !ops->get_groups_count ||
1701 !ops->get_group_name)
1702 return -EINVAL;
1703
1704 if (ops->dt_node_to_map && !ops->dt_free_map)
1705 return -EINVAL;
1706
1707 return 0;
1708 }
1709
1710 /**
1711 * pinctrl_register() - register a pin controller device
1712 * @pctldesc: descriptor for this pin controller
1713 * @dev: parent device for this pin controller
1714 * @driver_data: private pin controller data for this pin controller
1715 */
1716 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1717 struct device *dev, void *driver_data)
1718 {
1719 struct pinctrl_dev *pctldev;
1720 int ret;
1721
1722 if (!pctldesc)
1723 return NULL;
1724 if (!pctldesc->name)
1725 return NULL;
1726
1727 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1728 if (pctldev == NULL) {
1729 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1730 return NULL;
1731 }
1732
1733 /* Initialize pin control device struct */
1734 pctldev->owner = pctldesc->owner;
1735 pctldev->desc = pctldesc;
1736 pctldev->driver_data = driver_data;
1737 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1738 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1739 pctldev->dev = dev;
1740 mutex_init(&pctldev->mutex);
1741
1742 /* check core ops for sanity */
1743 if (pinctrl_check_ops(pctldev)) {
1744 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1745 goto out_err;
1746 }
1747
1748 /* If we're implementing pinmuxing, check the ops for sanity */
1749 if (pctldesc->pmxops) {
1750 if (pinmux_check_ops(pctldev))
1751 goto out_err;
1752 }
1753
1754 /* If we're implementing pinconfig, check the ops for sanity */
1755 if (pctldesc->confops) {
1756 if (pinconf_check_ops(pctldev))
1757 goto out_err;
1758 }
1759
1760 /* Register all the pins */
1761 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1762 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1763 if (ret) {
1764 dev_err(dev, "error during pin registration\n");
1765 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1766 pctldesc->npins);
1767 goto out_err;
1768 }
1769
1770 mutex_lock(&pinctrldev_list_mutex);
1771 list_add_tail(&pctldev->node, &pinctrldev_list);
1772 mutex_unlock(&pinctrldev_list_mutex);
1773
1774 pctldev->p = pinctrl_get(pctldev->dev);
1775
1776 if (!IS_ERR(pctldev->p)) {
1777 pctldev->hog_default =
1778 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1779 if (IS_ERR(pctldev->hog_default)) {
1780 dev_dbg(dev, "failed to lookup the default state\n");
1781 } else {
1782 if (pinctrl_select_state(pctldev->p,
1783 pctldev->hog_default))
1784 dev_err(dev,
1785 "failed to select default state\n");
1786 }
1787
1788 pctldev->hog_sleep =
1789 pinctrl_lookup_state(pctldev->p,
1790 PINCTRL_STATE_SLEEP);
1791 if (IS_ERR(pctldev->hog_sleep))
1792 dev_dbg(dev, "failed to lookup the sleep state\n");
1793 }
1794
1795 pinctrl_init_device_debugfs(pctldev);
1796
1797 return pctldev;
1798
1799 out_err:
1800 mutex_destroy(&pctldev->mutex);
1801 kfree(pctldev);
1802 return NULL;
1803 }
1804 EXPORT_SYMBOL_GPL(pinctrl_register);
1805
1806 /**
1807 * pinctrl_unregister() - unregister pinmux
1808 * @pctldev: pin controller to unregister
1809 *
1810 * Called by pinmux drivers to unregister a pinmux.
1811 */
1812 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1813 {
1814 struct pinctrl_gpio_range *range, *n;
1815 if (pctldev == NULL)
1816 return;
1817
1818 mutex_lock(&pinctrldev_list_mutex);
1819 mutex_lock(&pctldev->mutex);
1820
1821 pinctrl_remove_device_debugfs(pctldev);
1822
1823 if (!IS_ERR(pctldev->p))
1824 pinctrl_put(pctldev->p);
1825
1826 /* TODO: check that no pinmuxes are still active? */
1827 list_del(&pctldev->node);
1828 /* Destroy descriptor tree */
1829 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1830 pctldev->desc->npins);
1831 /* remove gpio ranges map */
1832 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1833 list_del(&range->node);
1834
1835 mutex_unlock(&pctldev->mutex);
1836 mutex_destroy(&pctldev->mutex);
1837 kfree(pctldev);
1838 mutex_unlock(&pinctrldev_list_mutex);
1839 }
1840 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1841
1842 static int __init pinctrl_init(void)
1843 {
1844 pr_info("initialized pinctrl subsystem\n");
1845 pinctrl_init_debugfs();
1846 return 0;
1847 }
1848
1849 /* init early since many drivers really need to initialized pinmux early */
1850 core_initcall(pinctrl_init);
This page took 0.11433 seconds and 5 git commands to generate.