Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc == NULL)
157 continue;
158 if (desc->name && !strcmp(name, desc->name))
159 return pin;
160 }
161
162 return -EINVAL;
163 }
164
165 /**
166 * pin_get_name_from_id() - look up a pin name from a pin id
167 * @pctldev: the pin control device to lookup the pin on
168 * @name: the name of the pin to look up
169 */
170 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
171 {
172 const struct pin_desc *desc;
173
174 desc = pin_desc_get(pctldev, pin);
175 if (desc == NULL) {
176 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
177 pin);
178 return NULL;
179 }
180
181 return desc->name;
182 }
183
184 /**
185 * pin_is_valid() - check if pin exists on controller
186 * @pctldev: the pin control device to check the pin on
187 * @pin: pin to check, use the local pin controller index number
188 *
189 * This tells us whether a certain pin exist on a certain pin controller or
190 * not. Pin lists may be sparse, so some pins may not exist.
191 */
192 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
193 {
194 struct pin_desc *pindesc;
195
196 if (pin < 0)
197 return false;
198
199 mutex_lock(&pctldev->mutex);
200 pindesc = pin_desc_get(pctldev, pin);
201 mutex_unlock(&pctldev->mutex);
202
203 return pindesc != NULL;
204 }
205 EXPORT_SYMBOL_GPL(pin_is_valid);
206
207 /* Deletes a range of pin descriptors */
208 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
209 const struct pinctrl_pin_desc *pins,
210 unsigned num_pins)
211 {
212 int i;
213
214 for (i = 0; i < num_pins; i++) {
215 struct pin_desc *pindesc;
216
217 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
218 pins[i].number);
219 if (pindesc != NULL) {
220 radix_tree_delete(&pctldev->pin_desc_tree,
221 pins[i].number);
222 if (pindesc->dynamic_name)
223 kfree(pindesc->name);
224 }
225 kfree(pindesc);
226 }
227 }
228
229 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
230 unsigned number, const char *name)
231 {
232 struct pin_desc *pindesc;
233
234 pindesc = pin_desc_get(pctldev, number);
235 if (pindesc != NULL) {
236 pr_err("pin %d already registered on %s\n", number,
237 pctldev->desc->name);
238 return -EINVAL;
239 }
240
241 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
242 if (pindesc == NULL) {
243 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
244 return -ENOMEM;
245 }
246
247 /* Set owner */
248 pindesc->pctldev = pctldev;
249
250 /* Copy basic pin info */
251 if (name) {
252 pindesc->name = name;
253 } else {
254 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
255 if (pindesc->name == NULL) {
256 kfree(pindesc);
257 return -ENOMEM;
258 }
259 pindesc->dynamic_name = true;
260 }
261
262 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
263 pr_debug("registered pin %d (%s) on %s\n",
264 number, pindesc->name, pctldev->desc->name);
265 return 0;
266 }
267
268 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
269 struct pinctrl_pin_desc const *pins,
270 unsigned num_descs)
271 {
272 unsigned i;
273 int ret = 0;
274
275 for (i = 0; i < num_descs; i++) {
276 ret = pinctrl_register_one_pin(pctldev,
277 pins[i].number, pins[i].name);
278 if (ret)
279 return ret;
280 }
281
282 return 0;
283 }
284
285 /**
286 * gpio_to_pin() - GPIO range GPIO number to pin number translation
287 * @range: GPIO range used for the translation
288 * @gpio: gpio pin to translate to a pin number
289 *
290 * Finds the pin number for a given GPIO using the specified GPIO range
291 * as a base for translation. The distinction between linear GPIO ranges
292 * and pin list based GPIO ranges is managed correctly by this function.
293 *
294 * This function assumes the gpio is part of the specified GPIO range, use
295 * only after making sure this is the case (e.g. by calling it on the
296 * result of successful pinctrl_get_device_gpio_range calls)!
297 */
298 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
299 unsigned int gpio)
300 {
301 unsigned int offset = gpio - range->base;
302 if (range->pins)
303 return range->pins[offset];
304 else
305 return range->pin_base + offset;
306 }
307
308 /**
309 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
310 * @pctldev: pin controller device to check
311 * @gpio: gpio pin to check taken from the global GPIO pin space
312 *
313 * Tries to match a GPIO pin number to the ranges handled by a certain pin
314 * controller, return the range or NULL
315 */
316 static struct pinctrl_gpio_range *
317 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
318 {
319 struct pinctrl_gpio_range *range = NULL;
320
321 mutex_lock(&pctldev->mutex);
322 /* Loop over the ranges */
323 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
324 /* Check if we're in the valid range */
325 if (gpio >= range->base &&
326 gpio < range->base + range->npins) {
327 mutex_unlock(&pctldev->mutex);
328 return range;
329 }
330 }
331 mutex_unlock(&pctldev->mutex);
332 return NULL;
333 }
334
335 /**
336 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
337 * the same GPIO chip are in range
338 * @gpio: gpio pin to check taken from the global GPIO pin space
339 *
340 * This function is complement of pinctrl_match_gpio_range(). If the return
341 * value of pinctrl_match_gpio_range() is NULL, this function could be used
342 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
343 * of the same GPIO chip don't have back-end pinctrl interface.
344 * If the return value is true, it means that pinctrl device is ready & the
345 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
346 * is false, it means that pinctrl device may not be ready.
347 */
348 #ifdef CONFIG_GPIOLIB
349 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
350 {
351 struct pinctrl_dev *pctldev;
352 struct pinctrl_gpio_range *range = NULL;
353 struct gpio_chip *chip = gpio_to_chip(gpio);
354
355 mutex_lock(&pinctrldev_list_mutex);
356
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
361 /* Check if any gpio range overlapped with gpio chip */
362 if (range->base + range->npins - 1 < chip->base ||
363 range->base > chip->base + chip->ngpio - 1)
364 continue;
365 mutex_unlock(&pinctrldev_list_mutex);
366 return true;
367 }
368 }
369
370 mutex_unlock(&pinctrldev_list_mutex);
371
372 return false;
373 }
374 #else
375 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
376 #endif
377
378 /**
379 * pinctrl_get_device_gpio_range() - find device for GPIO range
380 * @gpio: the pin to locate the pin controller for
381 * @outdev: the pin control device if found
382 * @outrange: the GPIO range if found
383 *
384 * Find the pin controller handling a certain GPIO pin from the pinspace of
385 * the GPIO subsystem, return the device and the matching GPIO range. Returns
386 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
387 * may still have not been registered.
388 */
389 static int pinctrl_get_device_gpio_range(unsigned gpio,
390 struct pinctrl_dev **outdev,
391 struct pinctrl_gpio_range **outrange)
392 {
393 struct pinctrl_dev *pctldev = NULL;
394
395 /* Loop over the pin controllers */
396 list_for_each_entry(pctldev, &pinctrldev_list, node) {
397 struct pinctrl_gpio_range *range;
398
399 range = pinctrl_match_gpio_range(pctldev, gpio);
400 if (range != NULL) {
401 *outdev = pctldev;
402 *outrange = range;
403 return 0;
404 }
405 }
406
407 return -EPROBE_DEFER;
408 }
409
410 /**
411 * pinctrl_add_gpio_range() - register a GPIO range for a controller
412 * @pctldev: pin controller device to add the range to
413 * @range: the GPIO range to add
414 *
415 * This adds a range of GPIOs to be handled by a certain pin controller. Call
416 * this to register handled ranges after registering your pin controller.
417 */
418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
419 struct pinctrl_gpio_range *range)
420 {
421 mutex_lock(&pctldev->mutex);
422 list_add_tail(&range->node, &pctldev->gpio_ranges);
423 mutex_unlock(&pctldev->mutex);
424 }
425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426
427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
428 struct pinctrl_gpio_range *ranges,
429 unsigned nranges)
430 {
431 int i;
432
433 for (i = 0; i < nranges; i++)
434 pinctrl_add_gpio_range(pctldev, &ranges[i]);
435 }
436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
437
438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 struct pinctrl_gpio_range *range)
440 {
441 struct pinctrl_dev *pctldev;
442
443 pctldev = get_pinctrl_dev_from_devname(devname);
444
445 /*
446 * If we can't find this device, let's assume that is because
447 * it has not probed yet, so the driver trying to register this
448 * range need to defer probing.
449 */
450 if (!pctldev) {
451 return ERR_PTR(-EPROBE_DEFER);
452 }
453 pinctrl_add_gpio_range(pctldev, range);
454
455 return pctldev;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458
459 /**
460 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
461 * @pctldev: the pin controller device to look in
462 * @pin: a controller-local number to find the range for
463 */
464 struct pinctrl_gpio_range *
465 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
466 unsigned int pin)
467 {
468 struct pinctrl_gpio_range *range;
469
470 mutex_lock(&pctldev->mutex);
471 /* Loop over the ranges */
472 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
473 /* Check if we're in the valid range */
474 if (range->pins) {
475 int a;
476 for (a = 0; a < range->npins; a++) {
477 if (range->pins[a] == pin)
478 goto out;
479 }
480 } else if (pin >= range->pin_base &&
481 pin < range->pin_base + range->npins)
482 goto out;
483 }
484 range = NULL;
485 out:
486 mutex_unlock(&pctldev->mutex);
487 return range;
488 }
489 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
490
491 /**
492 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
493 * @pctldev: pin controller device to remove the range from
494 * @range: the GPIO range to remove
495 */
496 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
497 struct pinctrl_gpio_range *range)
498 {
499 mutex_lock(&pctldev->mutex);
500 list_del(&range->node);
501 mutex_unlock(&pctldev->mutex);
502 }
503 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
504
505 /**
506 * pinctrl_get_group_selector() - returns the group selector for a group
507 * @pctldev: the pin controller handling the group
508 * @pin_group: the pin group to look up
509 */
510 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
511 const char *pin_group)
512 {
513 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
514 unsigned ngroups = pctlops->get_groups_count(pctldev);
515 unsigned group_selector = 0;
516
517 while (group_selector < ngroups) {
518 const char *gname = pctlops->get_group_name(pctldev,
519 group_selector);
520 if (!strcmp(gname, pin_group)) {
521 dev_dbg(pctldev->dev,
522 "found group selector %u for %s\n",
523 group_selector,
524 pin_group);
525 return group_selector;
526 }
527
528 group_selector++;
529 }
530
531 dev_err(pctldev->dev, "does not have pin group %s\n",
532 pin_group);
533
534 return -EINVAL;
535 }
536
537 /**
538 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
539 * @gpio: the GPIO pin number from the GPIO subsystem number space
540 *
541 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
542 * as part of their gpio_request() semantics, platforms and individual drivers
543 * shall *NOT* request GPIO pins to be muxed in.
544 */
545 int pinctrl_request_gpio(unsigned gpio)
546 {
547 struct pinctrl_dev *pctldev;
548 struct pinctrl_gpio_range *range;
549 int ret;
550 int pin;
551
552 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
553 if (ret) {
554 if (pinctrl_ready_for_gpio_range(gpio))
555 ret = 0;
556 return ret;
557 }
558
559 /* Convert to the pin controllers number space */
560 pin = gpio_to_pin(range, gpio);
561
562 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
563
564 return ret;
565 }
566 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
567
568 /**
569 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
570 * @gpio: the GPIO pin number from the GPIO subsystem number space
571 *
572 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
573 * as part of their gpio_free() semantics, platforms and individual drivers
574 * shall *NOT* request GPIO pins to be muxed out.
575 */
576 void pinctrl_free_gpio(unsigned gpio)
577 {
578 struct pinctrl_dev *pctldev;
579 struct pinctrl_gpio_range *range;
580 int ret;
581 int pin;
582
583 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
584 if (ret) {
585 return;
586 }
587 mutex_lock(&pctldev->mutex);
588
589 /* Convert to the pin controllers number space */
590 pin = gpio_to_pin(range, gpio);
591
592 pinmux_free_gpio(pctldev, pin, range);
593
594 mutex_unlock(&pctldev->mutex);
595 }
596 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
597
598 static int pinctrl_gpio_direction(unsigned gpio, bool input)
599 {
600 struct pinctrl_dev *pctldev;
601 struct pinctrl_gpio_range *range;
602 int ret;
603 int pin;
604
605 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
606 if (ret) {
607 return ret;
608 }
609
610 mutex_lock(&pctldev->mutex);
611
612 /* Convert to the pin controllers number space */
613 pin = gpio_to_pin(range, gpio);
614 ret = pinmux_gpio_direction(pctldev, range, pin, input);
615
616 mutex_unlock(&pctldev->mutex);
617
618 return ret;
619 }
620
621 /**
622 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
623 * @gpio: the GPIO pin number from the GPIO subsystem number space
624 *
625 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
626 * as part of their gpio_direction_input() semantics, platforms and individual
627 * drivers shall *NOT* touch pin control GPIO calls.
628 */
629 int pinctrl_gpio_direction_input(unsigned gpio)
630 {
631 return pinctrl_gpio_direction(gpio, true);
632 }
633 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
634
635 /**
636 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
637 * @gpio: the GPIO pin number from the GPIO subsystem number space
638 *
639 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
640 * as part of their gpio_direction_output() semantics, platforms and individual
641 * drivers shall *NOT* touch pin control GPIO calls.
642 */
643 int pinctrl_gpio_direction_output(unsigned gpio)
644 {
645 return pinctrl_gpio_direction(gpio, false);
646 }
647 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
648
649 static struct pinctrl_state *find_state(struct pinctrl *p,
650 const char *name)
651 {
652 struct pinctrl_state *state;
653
654 list_for_each_entry(state, &p->states, node)
655 if (!strcmp(state->name, name))
656 return state;
657
658 return NULL;
659 }
660
661 static struct pinctrl_state *create_state(struct pinctrl *p,
662 const char *name)
663 {
664 struct pinctrl_state *state;
665
666 state = kzalloc(sizeof(*state), GFP_KERNEL);
667 if (state == NULL) {
668 dev_err(p->dev,
669 "failed to alloc struct pinctrl_state\n");
670 return ERR_PTR(-ENOMEM);
671 }
672
673 state->name = name;
674 INIT_LIST_HEAD(&state->settings);
675
676 list_add_tail(&state->node, &p->states);
677
678 return state;
679 }
680
681 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
682 {
683 struct pinctrl_state *state;
684 struct pinctrl_setting *setting;
685 int ret;
686
687 state = find_state(p, map->name);
688 if (!state)
689 state = create_state(p, map->name);
690 if (IS_ERR(state))
691 return PTR_ERR(state);
692
693 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
694 return 0;
695
696 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
697 if (setting == NULL) {
698 dev_err(p->dev,
699 "failed to alloc struct pinctrl_setting\n");
700 return -ENOMEM;
701 }
702
703 setting->type = map->type;
704
705 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
706 if (setting->pctldev == NULL) {
707 kfree(setting);
708 /* Do not defer probing of hogs (circular loop) */
709 if (!strcmp(map->ctrl_dev_name, map->dev_name))
710 return -ENODEV;
711 /*
712 * OK let us guess that the driver is not there yet, and
713 * let's defer obtaining this pinctrl handle to later...
714 */
715 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
716 map->ctrl_dev_name);
717 return -EPROBE_DEFER;
718 }
719
720 setting->dev_name = map->dev_name;
721
722 switch (map->type) {
723 case PIN_MAP_TYPE_MUX_GROUP:
724 ret = pinmux_map_to_setting(map, setting);
725 break;
726 case PIN_MAP_TYPE_CONFIGS_PIN:
727 case PIN_MAP_TYPE_CONFIGS_GROUP:
728 ret = pinconf_map_to_setting(map, setting);
729 break;
730 default:
731 ret = -EINVAL;
732 break;
733 }
734 if (ret < 0) {
735 kfree(setting);
736 return ret;
737 }
738
739 list_add_tail(&setting->node, &state->settings);
740
741 return 0;
742 }
743
744 static struct pinctrl *find_pinctrl(struct device *dev)
745 {
746 struct pinctrl *p;
747
748 mutex_lock(&pinctrl_list_mutex);
749 list_for_each_entry(p, &pinctrl_list, node)
750 if (p->dev == dev) {
751 mutex_unlock(&pinctrl_list_mutex);
752 return p;
753 }
754
755 mutex_unlock(&pinctrl_list_mutex);
756 return NULL;
757 }
758
759 static void pinctrl_free(struct pinctrl *p, bool inlist);
760
761 static struct pinctrl *create_pinctrl(struct device *dev)
762 {
763 struct pinctrl *p;
764 const char *devname;
765 struct pinctrl_maps *maps_node;
766 int i;
767 struct pinctrl_map const *map;
768 int ret;
769
770 /*
771 * create the state cookie holder struct pinctrl for each
772 * mapping, this is what consumers will get when requesting
773 * a pin control handle with pinctrl_get()
774 */
775 p = kzalloc(sizeof(*p), GFP_KERNEL);
776 if (p == NULL) {
777 dev_err(dev, "failed to alloc struct pinctrl\n");
778 return ERR_PTR(-ENOMEM);
779 }
780 p->dev = dev;
781 INIT_LIST_HEAD(&p->states);
782 INIT_LIST_HEAD(&p->dt_maps);
783
784 ret = pinctrl_dt_to_map(p);
785 if (ret < 0) {
786 kfree(p);
787 return ERR_PTR(ret);
788 }
789
790 devname = dev_name(dev);
791
792 mutex_lock(&pinctrl_maps_mutex);
793 /* Iterate over the pin control maps to locate the right ones */
794 for_each_maps(maps_node, i, map) {
795 /* Map must be for this device */
796 if (strcmp(map->dev_name, devname))
797 continue;
798
799 ret = add_setting(p, map);
800 /*
801 * At this point the adding of a setting may:
802 *
803 * - Defer, if the pinctrl device is not yet available
804 * - Fail, if the pinctrl device is not yet available,
805 * AND the setting is a hog. We cannot defer that, since
806 * the hog will kick in immediately after the device
807 * is registered.
808 *
809 * If the error returned was not -EPROBE_DEFER then we
810 * accumulate the errors to see if we end up with
811 * an -EPROBE_DEFER later, as that is the worst case.
812 */
813 if (ret == -EPROBE_DEFER) {
814 pinctrl_free(p, false);
815 mutex_unlock(&pinctrl_maps_mutex);
816 return ERR_PTR(ret);
817 }
818 }
819 mutex_unlock(&pinctrl_maps_mutex);
820
821 if (ret < 0) {
822 /* If some other error than deferral occured, return here */
823 pinctrl_free(p, false);
824 return ERR_PTR(ret);
825 }
826
827 kref_init(&p->users);
828
829 /* Add the pinctrl handle to the global list */
830 list_add_tail(&p->node, &pinctrl_list);
831
832 return p;
833 }
834
835 /**
836 * pinctrl_get() - retrieves the pinctrl handle for a device
837 * @dev: the device to obtain the handle for
838 */
839 struct pinctrl *pinctrl_get(struct device *dev)
840 {
841 struct pinctrl *p;
842
843 if (WARN_ON(!dev))
844 return ERR_PTR(-EINVAL);
845
846 /*
847 * See if somebody else (such as the device core) has already
848 * obtained a handle to the pinctrl for this device. In that case,
849 * return another pointer to it.
850 */
851 p = find_pinctrl(dev);
852 if (p != NULL) {
853 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
854 kref_get(&p->users);
855 return p;
856 }
857
858 return create_pinctrl(dev);
859 }
860 EXPORT_SYMBOL_GPL(pinctrl_get);
861
862 static void pinctrl_free_setting(bool disable_setting,
863 struct pinctrl_setting *setting)
864 {
865 switch (setting->type) {
866 case PIN_MAP_TYPE_MUX_GROUP:
867 if (disable_setting)
868 pinmux_disable_setting(setting);
869 pinmux_free_setting(setting);
870 break;
871 case PIN_MAP_TYPE_CONFIGS_PIN:
872 case PIN_MAP_TYPE_CONFIGS_GROUP:
873 pinconf_free_setting(setting);
874 break;
875 default:
876 break;
877 }
878 }
879
880 static void pinctrl_free(struct pinctrl *p, bool inlist)
881 {
882 struct pinctrl_state *state, *n1;
883 struct pinctrl_setting *setting, *n2;
884
885 mutex_lock(&pinctrl_list_mutex);
886 list_for_each_entry_safe(state, n1, &p->states, node) {
887 list_for_each_entry_safe(setting, n2, &state->settings, node) {
888 pinctrl_free_setting(state == p->state, setting);
889 list_del(&setting->node);
890 kfree(setting);
891 }
892 list_del(&state->node);
893 kfree(state);
894 }
895
896 pinctrl_dt_free_maps(p);
897
898 if (inlist)
899 list_del(&p->node);
900 kfree(p);
901 mutex_unlock(&pinctrl_list_mutex);
902 }
903
904 /**
905 * pinctrl_release() - release the pinctrl handle
906 * @kref: the kref in the pinctrl being released
907 */
908 static void pinctrl_release(struct kref *kref)
909 {
910 struct pinctrl *p = container_of(kref, struct pinctrl, users);
911
912 pinctrl_free(p, true);
913 }
914
915 /**
916 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
917 * @p: the pinctrl handle to release
918 */
919 void pinctrl_put(struct pinctrl *p)
920 {
921 kref_put(&p->users, pinctrl_release);
922 }
923 EXPORT_SYMBOL_GPL(pinctrl_put);
924
925 /**
926 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
927 * @p: the pinctrl handle to retrieve the state from
928 * @name: the state name to retrieve
929 */
930 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
931 const char *name)
932 {
933 struct pinctrl_state *state;
934
935 state = find_state(p, name);
936 if (!state) {
937 if (pinctrl_dummy_state) {
938 /* create dummy state */
939 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
940 name);
941 state = create_state(p, name);
942 } else
943 state = ERR_PTR(-ENODEV);
944 }
945
946 return state;
947 }
948 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
949
950 /**
951 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
952 * @p: the pinctrl handle for the device that requests configuration
953 * @state: the state handle to select/activate/program
954 */
955 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
956 {
957 struct pinctrl_setting *setting, *setting2;
958 struct pinctrl_state *old_state = p->state;
959 int ret;
960
961 if (p->state == state)
962 return 0;
963
964 if (p->state) {
965 /*
966 * The set of groups with a mux configuration in the old state
967 * may not be identical to the set of groups with a mux setting
968 * in the new state. While this might be unusual, it's entirely
969 * possible for the "user"-supplied mapping table to be written
970 * that way. For each group that was configured in the old state
971 * but not in the new state, this code puts that group into a
972 * safe/disabled state.
973 */
974 list_for_each_entry(setting, &p->state->settings, node) {
975 bool found = false;
976 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
977 continue;
978 list_for_each_entry(setting2, &state->settings, node) {
979 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
980 continue;
981 if (setting2->data.mux.group ==
982 setting->data.mux.group) {
983 found = true;
984 break;
985 }
986 }
987 if (!found)
988 pinmux_disable_setting(setting);
989 }
990 }
991
992 p->state = NULL;
993
994 /* Apply all the settings for the new state */
995 list_for_each_entry(setting, &state->settings, node) {
996 switch (setting->type) {
997 case PIN_MAP_TYPE_MUX_GROUP:
998 ret = pinmux_enable_setting(setting);
999 break;
1000 case PIN_MAP_TYPE_CONFIGS_PIN:
1001 case PIN_MAP_TYPE_CONFIGS_GROUP:
1002 ret = pinconf_apply_setting(setting);
1003 break;
1004 default:
1005 ret = -EINVAL;
1006 break;
1007 }
1008
1009 if (ret < 0) {
1010 goto unapply_new_state;
1011 }
1012 }
1013
1014 p->state = state;
1015
1016 return 0;
1017
1018 unapply_new_state:
1019 dev_err(p->dev, "Error applying setting, reverse things back\n");
1020
1021 list_for_each_entry(setting2, &state->settings, node) {
1022 if (&setting2->node == &setting->node)
1023 break;
1024 /*
1025 * All we can do here is pinmux_disable_setting.
1026 * That means that some pins are muxed differently now
1027 * than they were before applying the setting (We can't
1028 * "unmux a pin"!), but it's not a big deal since the pins
1029 * are free to be muxed by another apply_setting.
1030 */
1031 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1032 pinmux_disable_setting(setting2);
1033 }
1034
1035 /* There's no infinite recursive loop here because p->state is NULL */
1036 if (old_state)
1037 pinctrl_select_state(p, old_state);
1038
1039 return ret;
1040 }
1041 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1042
1043 static void devm_pinctrl_release(struct device *dev, void *res)
1044 {
1045 pinctrl_put(*(struct pinctrl **)res);
1046 }
1047
1048 /**
1049 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1050 * @dev: the device to obtain the handle for
1051 *
1052 * If there is a need to explicitly destroy the returned struct pinctrl,
1053 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1054 */
1055 struct pinctrl *devm_pinctrl_get(struct device *dev)
1056 {
1057 struct pinctrl **ptr, *p;
1058
1059 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1060 if (!ptr)
1061 return ERR_PTR(-ENOMEM);
1062
1063 p = pinctrl_get(dev);
1064 if (!IS_ERR(p)) {
1065 *ptr = p;
1066 devres_add(dev, ptr);
1067 } else {
1068 devres_free(ptr);
1069 }
1070
1071 return p;
1072 }
1073 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1074
1075 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1076 {
1077 struct pinctrl **p = res;
1078
1079 return *p == data;
1080 }
1081
1082 /**
1083 * devm_pinctrl_put() - Resource managed pinctrl_put()
1084 * @p: the pinctrl handle to release
1085 *
1086 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1087 * this function will not need to be called and the resource management
1088 * code will ensure that the resource is freed.
1089 */
1090 void devm_pinctrl_put(struct pinctrl *p)
1091 {
1092 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1093 devm_pinctrl_match, p));
1094 }
1095 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1096
1097 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1098 bool dup, bool locked)
1099 {
1100 int i, ret;
1101 struct pinctrl_maps *maps_node;
1102
1103 pr_debug("add %d pinmux maps\n", num_maps);
1104
1105 /* First sanity check the new mapping */
1106 for (i = 0; i < num_maps; i++) {
1107 if (!maps[i].dev_name) {
1108 pr_err("failed to register map %s (%d): no device given\n",
1109 maps[i].name, i);
1110 return -EINVAL;
1111 }
1112
1113 if (!maps[i].name) {
1114 pr_err("failed to register map %d: no map name given\n",
1115 i);
1116 return -EINVAL;
1117 }
1118
1119 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1120 !maps[i].ctrl_dev_name) {
1121 pr_err("failed to register map %s (%d): no pin control device given\n",
1122 maps[i].name, i);
1123 return -EINVAL;
1124 }
1125
1126 switch (maps[i].type) {
1127 case PIN_MAP_TYPE_DUMMY_STATE:
1128 break;
1129 case PIN_MAP_TYPE_MUX_GROUP:
1130 ret = pinmux_validate_map(&maps[i], i);
1131 if (ret < 0)
1132 return ret;
1133 break;
1134 case PIN_MAP_TYPE_CONFIGS_PIN:
1135 case PIN_MAP_TYPE_CONFIGS_GROUP:
1136 ret = pinconf_validate_map(&maps[i], i);
1137 if (ret < 0)
1138 return ret;
1139 break;
1140 default:
1141 pr_err("failed to register map %s (%d): invalid type given\n",
1142 maps[i].name, i);
1143 return -EINVAL;
1144 }
1145 }
1146
1147 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1148 if (!maps_node) {
1149 pr_err("failed to alloc struct pinctrl_maps\n");
1150 return -ENOMEM;
1151 }
1152
1153 maps_node->num_maps = num_maps;
1154 if (dup) {
1155 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1156 GFP_KERNEL);
1157 if (!maps_node->maps) {
1158 pr_err("failed to duplicate mapping table\n");
1159 kfree(maps_node);
1160 return -ENOMEM;
1161 }
1162 } else {
1163 maps_node->maps = maps;
1164 }
1165
1166 if (!locked)
1167 mutex_lock(&pinctrl_maps_mutex);
1168 list_add_tail(&maps_node->node, &pinctrl_maps);
1169 if (!locked)
1170 mutex_unlock(&pinctrl_maps_mutex);
1171
1172 return 0;
1173 }
1174
1175 /**
1176 * pinctrl_register_mappings() - register a set of pin controller mappings
1177 * @maps: the pincontrol mappings table to register. This should probably be
1178 * marked with __initdata so it can be discarded after boot. This
1179 * function will perform a shallow copy for the mapping entries.
1180 * @num_maps: the number of maps in the mapping table
1181 */
1182 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1183 unsigned num_maps)
1184 {
1185 return pinctrl_register_map(maps, num_maps, true, false);
1186 }
1187
1188 void pinctrl_unregister_map(struct pinctrl_map const *map)
1189 {
1190 struct pinctrl_maps *maps_node;
1191
1192 mutex_lock(&pinctrl_maps_mutex);
1193 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1194 if (maps_node->maps == map) {
1195 list_del(&maps_node->node);
1196 kfree(maps_node);
1197 mutex_unlock(&pinctrl_maps_mutex);
1198 return;
1199 }
1200 }
1201 mutex_unlock(&pinctrl_maps_mutex);
1202 }
1203
1204 /**
1205 * pinctrl_force_sleep() - turn a given controller device into sleep state
1206 * @pctldev: pin controller device
1207 */
1208 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1209 {
1210 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1211 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1212 return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1215
1216 /**
1217 * pinctrl_force_default() - turn a given controller device into default state
1218 * @pctldev: pin controller device
1219 */
1220 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1221 {
1222 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1223 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1224 return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1227
1228 #ifdef CONFIG_PM
1229
1230 /**
1231 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1232 * @dev: device to select default state for
1233 */
1234 int pinctrl_pm_select_default_state(struct device *dev)
1235 {
1236 struct dev_pin_info *pins = dev->pins;
1237 int ret;
1238
1239 if (!pins)
1240 return 0;
1241 if (IS_ERR(pins->default_state))
1242 return 0; /* No default state */
1243 ret = pinctrl_select_state(pins->p, pins->default_state);
1244 if (ret)
1245 dev_err(dev, "failed to activate default pinctrl state\n");
1246 return ret;
1247 }
1248 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1249
1250 /**
1251 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1252 * @dev: device to select sleep state for
1253 */
1254 int pinctrl_pm_select_sleep_state(struct device *dev)
1255 {
1256 struct dev_pin_info *pins = dev->pins;
1257 int ret;
1258
1259 if (!pins)
1260 return 0;
1261 if (IS_ERR(pins->sleep_state))
1262 return 0; /* No sleep state */
1263 ret = pinctrl_select_state(pins->p, pins->sleep_state);
1264 if (ret)
1265 dev_err(dev, "failed to activate pinctrl sleep state\n");
1266 return ret;
1267 }
1268 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1269
1270 /**
1271 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1272 * @dev: device to select idle state for
1273 */
1274 int pinctrl_pm_select_idle_state(struct device *dev)
1275 {
1276 struct dev_pin_info *pins = dev->pins;
1277 int ret;
1278
1279 if (!pins)
1280 return 0;
1281 if (IS_ERR(pins->idle_state))
1282 return 0; /* No idle state */
1283 ret = pinctrl_select_state(pins->p, pins->idle_state);
1284 if (ret)
1285 dev_err(dev, "failed to activate pinctrl idle state\n");
1286 return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1289 #endif
1290
1291 #ifdef CONFIG_DEBUG_FS
1292
1293 static int pinctrl_pins_show(struct seq_file *s, void *what)
1294 {
1295 struct pinctrl_dev *pctldev = s->private;
1296 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1297 unsigned i, pin;
1298
1299 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1300
1301 mutex_lock(&pctldev->mutex);
1302
1303 /* The pin number can be retrived from the pin controller descriptor */
1304 for (i = 0; i < pctldev->desc->npins; i++) {
1305 struct pin_desc *desc;
1306
1307 pin = pctldev->desc->pins[i].number;
1308 desc = pin_desc_get(pctldev, pin);
1309 /* Pin space may be sparse */
1310 if (desc == NULL)
1311 continue;
1312
1313 seq_printf(s, "pin %d (%s) ", pin,
1314 desc->name ? desc->name : "unnamed");
1315
1316 /* Driver-specific info per pin */
1317 if (ops->pin_dbg_show)
1318 ops->pin_dbg_show(pctldev, s, pin);
1319
1320 seq_puts(s, "\n");
1321 }
1322
1323 mutex_unlock(&pctldev->mutex);
1324
1325 return 0;
1326 }
1327
1328 static int pinctrl_groups_show(struct seq_file *s, void *what)
1329 {
1330 struct pinctrl_dev *pctldev = s->private;
1331 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1332 unsigned ngroups, selector = 0;
1333
1334 mutex_lock(&pctldev->mutex);
1335
1336 ngroups = ops->get_groups_count(pctldev);
1337
1338 seq_puts(s, "registered pin groups:\n");
1339 while (selector < ngroups) {
1340 const unsigned *pins;
1341 unsigned num_pins;
1342 const char *gname = ops->get_group_name(pctldev, selector);
1343 const char *pname;
1344 int ret;
1345 int i;
1346
1347 ret = ops->get_group_pins(pctldev, selector,
1348 &pins, &num_pins);
1349 if (ret)
1350 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1351 gname);
1352 else {
1353 seq_printf(s, "group: %s\n", gname);
1354 for (i = 0; i < num_pins; i++) {
1355 pname = pin_get_name(pctldev, pins[i]);
1356 if (WARN_ON(!pname)) {
1357 mutex_unlock(&pctldev->mutex);
1358 return -EINVAL;
1359 }
1360 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1361 }
1362 seq_puts(s, "\n");
1363 }
1364 selector++;
1365 }
1366
1367 mutex_unlock(&pctldev->mutex);
1368
1369 return 0;
1370 }
1371
1372 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1373 {
1374 struct pinctrl_dev *pctldev = s->private;
1375 struct pinctrl_gpio_range *range = NULL;
1376
1377 seq_puts(s, "GPIO ranges handled:\n");
1378
1379 mutex_lock(&pctldev->mutex);
1380
1381 /* Loop over the ranges */
1382 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1383 if (range->pins) {
1384 int a;
1385 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1386 range->id, range->name,
1387 range->base, (range->base + range->npins - 1));
1388 for (a = 0; a < range->npins - 1; a++)
1389 seq_printf(s, "%u, ", range->pins[a]);
1390 seq_printf(s, "%u}\n", range->pins[a]);
1391 }
1392 else
1393 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1394 range->id, range->name,
1395 range->base, (range->base + range->npins - 1),
1396 range->pin_base,
1397 (range->pin_base + range->npins - 1));
1398 }
1399
1400 mutex_unlock(&pctldev->mutex);
1401
1402 return 0;
1403 }
1404
1405 static int pinctrl_devices_show(struct seq_file *s, void *what)
1406 {
1407 struct pinctrl_dev *pctldev;
1408
1409 seq_puts(s, "name [pinmux] [pinconf]\n");
1410
1411 mutex_lock(&pinctrldev_list_mutex);
1412
1413 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1414 seq_printf(s, "%s ", pctldev->desc->name);
1415 if (pctldev->desc->pmxops)
1416 seq_puts(s, "yes ");
1417 else
1418 seq_puts(s, "no ");
1419 if (pctldev->desc->confops)
1420 seq_puts(s, "yes");
1421 else
1422 seq_puts(s, "no");
1423 seq_puts(s, "\n");
1424 }
1425
1426 mutex_unlock(&pinctrldev_list_mutex);
1427
1428 return 0;
1429 }
1430
1431 static inline const char *map_type(enum pinctrl_map_type type)
1432 {
1433 static const char * const names[] = {
1434 "INVALID",
1435 "DUMMY_STATE",
1436 "MUX_GROUP",
1437 "CONFIGS_PIN",
1438 "CONFIGS_GROUP",
1439 };
1440
1441 if (type >= ARRAY_SIZE(names))
1442 return "UNKNOWN";
1443
1444 return names[type];
1445 }
1446
1447 static int pinctrl_maps_show(struct seq_file *s, void *what)
1448 {
1449 struct pinctrl_maps *maps_node;
1450 int i;
1451 struct pinctrl_map const *map;
1452
1453 seq_puts(s, "Pinctrl maps:\n");
1454
1455 mutex_lock(&pinctrl_maps_mutex);
1456 for_each_maps(maps_node, i, map) {
1457 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1458 map->dev_name, map->name, map_type(map->type),
1459 map->type);
1460
1461 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1462 seq_printf(s, "controlling device %s\n",
1463 map->ctrl_dev_name);
1464
1465 switch (map->type) {
1466 case PIN_MAP_TYPE_MUX_GROUP:
1467 pinmux_show_map(s, map);
1468 break;
1469 case PIN_MAP_TYPE_CONFIGS_PIN:
1470 case PIN_MAP_TYPE_CONFIGS_GROUP:
1471 pinconf_show_map(s, map);
1472 break;
1473 default:
1474 break;
1475 }
1476
1477 seq_printf(s, "\n");
1478 }
1479 mutex_unlock(&pinctrl_maps_mutex);
1480
1481 return 0;
1482 }
1483
1484 static int pinctrl_show(struct seq_file *s, void *what)
1485 {
1486 struct pinctrl *p;
1487 struct pinctrl_state *state;
1488 struct pinctrl_setting *setting;
1489
1490 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1491
1492 mutex_lock(&pinctrl_list_mutex);
1493
1494 list_for_each_entry(p, &pinctrl_list, node) {
1495 seq_printf(s, "device: %s current state: %s\n",
1496 dev_name(p->dev),
1497 p->state ? p->state->name : "none");
1498
1499 list_for_each_entry(state, &p->states, node) {
1500 seq_printf(s, " state: %s\n", state->name);
1501
1502 list_for_each_entry(setting, &state->settings, node) {
1503 struct pinctrl_dev *pctldev = setting->pctldev;
1504
1505 seq_printf(s, " type: %s controller %s ",
1506 map_type(setting->type),
1507 pinctrl_dev_get_name(pctldev));
1508
1509 switch (setting->type) {
1510 case PIN_MAP_TYPE_MUX_GROUP:
1511 pinmux_show_setting(s, setting);
1512 break;
1513 case PIN_MAP_TYPE_CONFIGS_PIN:
1514 case PIN_MAP_TYPE_CONFIGS_GROUP:
1515 pinconf_show_setting(s, setting);
1516 break;
1517 default:
1518 break;
1519 }
1520 }
1521 }
1522 }
1523
1524 mutex_unlock(&pinctrl_list_mutex);
1525
1526 return 0;
1527 }
1528
1529 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1530 {
1531 return single_open(file, pinctrl_pins_show, inode->i_private);
1532 }
1533
1534 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1535 {
1536 return single_open(file, pinctrl_groups_show, inode->i_private);
1537 }
1538
1539 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1540 {
1541 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1542 }
1543
1544 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1545 {
1546 return single_open(file, pinctrl_devices_show, NULL);
1547 }
1548
1549 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1550 {
1551 return single_open(file, pinctrl_maps_show, NULL);
1552 }
1553
1554 static int pinctrl_open(struct inode *inode, struct file *file)
1555 {
1556 return single_open(file, pinctrl_show, NULL);
1557 }
1558
1559 static const struct file_operations pinctrl_pins_ops = {
1560 .open = pinctrl_pins_open,
1561 .read = seq_read,
1562 .llseek = seq_lseek,
1563 .release = single_release,
1564 };
1565
1566 static const struct file_operations pinctrl_groups_ops = {
1567 .open = pinctrl_groups_open,
1568 .read = seq_read,
1569 .llseek = seq_lseek,
1570 .release = single_release,
1571 };
1572
1573 static const struct file_operations pinctrl_gpioranges_ops = {
1574 .open = pinctrl_gpioranges_open,
1575 .read = seq_read,
1576 .llseek = seq_lseek,
1577 .release = single_release,
1578 };
1579
1580 static const struct file_operations pinctrl_devices_ops = {
1581 .open = pinctrl_devices_open,
1582 .read = seq_read,
1583 .llseek = seq_lseek,
1584 .release = single_release,
1585 };
1586
1587 static const struct file_operations pinctrl_maps_ops = {
1588 .open = pinctrl_maps_open,
1589 .read = seq_read,
1590 .llseek = seq_lseek,
1591 .release = single_release,
1592 };
1593
1594 static const struct file_operations pinctrl_ops = {
1595 .open = pinctrl_open,
1596 .read = seq_read,
1597 .llseek = seq_lseek,
1598 .release = single_release,
1599 };
1600
1601 static struct dentry *debugfs_root;
1602
1603 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1604 {
1605 struct dentry *device_root;
1606
1607 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1608 debugfs_root);
1609 pctldev->device_root = device_root;
1610
1611 if (IS_ERR(device_root) || !device_root) {
1612 pr_warn("failed to create debugfs directory for %s\n",
1613 dev_name(pctldev->dev));
1614 return;
1615 }
1616 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1617 device_root, pctldev, &pinctrl_pins_ops);
1618 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1619 device_root, pctldev, &pinctrl_groups_ops);
1620 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1621 device_root, pctldev, &pinctrl_gpioranges_ops);
1622 pinmux_init_device_debugfs(device_root, pctldev);
1623 pinconf_init_device_debugfs(device_root, pctldev);
1624 }
1625
1626 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1627 {
1628 debugfs_remove_recursive(pctldev->device_root);
1629 }
1630
1631 static void pinctrl_init_debugfs(void)
1632 {
1633 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1634 if (IS_ERR(debugfs_root) || !debugfs_root) {
1635 pr_warn("failed to create debugfs directory\n");
1636 debugfs_root = NULL;
1637 return;
1638 }
1639
1640 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1641 debugfs_root, NULL, &pinctrl_devices_ops);
1642 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1643 debugfs_root, NULL, &pinctrl_maps_ops);
1644 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1645 debugfs_root, NULL, &pinctrl_ops);
1646 }
1647
1648 #else /* CONFIG_DEBUG_FS */
1649
1650 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1651 {
1652 }
1653
1654 static void pinctrl_init_debugfs(void)
1655 {
1656 }
1657
1658 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1659 {
1660 }
1661
1662 #endif
1663
1664 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1665 {
1666 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1667
1668 if (!ops ||
1669 !ops->get_groups_count ||
1670 !ops->get_group_name ||
1671 !ops->get_group_pins)
1672 return -EINVAL;
1673
1674 if (ops->dt_node_to_map && !ops->dt_free_map)
1675 return -EINVAL;
1676
1677 return 0;
1678 }
1679
1680 /**
1681 * pinctrl_register() - register a pin controller device
1682 * @pctldesc: descriptor for this pin controller
1683 * @dev: parent device for this pin controller
1684 * @driver_data: private pin controller data for this pin controller
1685 */
1686 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1687 struct device *dev, void *driver_data)
1688 {
1689 struct pinctrl_dev *pctldev;
1690 int ret;
1691
1692 if (!pctldesc)
1693 return NULL;
1694 if (!pctldesc->name)
1695 return NULL;
1696
1697 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1698 if (pctldev == NULL) {
1699 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1700 return NULL;
1701 }
1702
1703 /* Initialize pin control device struct */
1704 pctldev->owner = pctldesc->owner;
1705 pctldev->desc = pctldesc;
1706 pctldev->driver_data = driver_data;
1707 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1708 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1709 pctldev->dev = dev;
1710 mutex_init(&pctldev->mutex);
1711
1712 /* check core ops for sanity */
1713 if (pinctrl_check_ops(pctldev)) {
1714 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1715 goto out_err;
1716 }
1717
1718 /* If we're implementing pinmuxing, check the ops for sanity */
1719 if (pctldesc->pmxops) {
1720 if (pinmux_check_ops(pctldev))
1721 goto out_err;
1722 }
1723
1724 /* If we're implementing pinconfig, check the ops for sanity */
1725 if (pctldesc->confops) {
1726 if (pinconf_check_ops(pctldev))
1727 goto out_err;
1728 }
1729
1730 /* Register all the pins */
1731 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1732 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1733 if (ret) {
1734 dev_err(dev, "error during pin registration\n");
1735 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1736 pctldesc->npins);
1737 goto out_err;
1738 }
1739
1740 mutex_lock(&pinctrldev_list_mutex);
1741 list_add_tail(&pctldev->node, &pinctrldev_list);
1742 mutex_unlock(&pinctrldev_list_mutex);
1743
1744 pctldev->p = pinctrl_get(pctldev->dev);
1745
1746 if (!IS_ERR(pctldev->p)) {
1747 pctldev->hog_default =
1748 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1749 if (IS_ERR(pctldev->hog_default)) {
1750 dev_dbg(dev, "failed to lookup the default state\n");
1751 } else {
1752 if (pinctrl_select_state(pctldev->p,
1753 pctldev->hog_default))
1754 dev_err(dev,
1755 "failed to select default state\n");
1756 }
1757
1758 pctldev->hog_sleep =
1759 pinctrl_lookup_state(pctldev->p,
1760 PINCTRL_STATE_SLEEP);
1761 if (IS_ERR(pctldev->hog_sleep))
1762 dev_dbg(dev, "failed to lookup the sleep state\n");
1763 }
1764
1765 pinctrl_init_device_debugfs(pctldev);
1766
1767 return pctldev;
1768
1769 out_err:
1770 mutex_destroy(&pctldev->mutex);
1771 kfree(pctldev);
1772 return NULL;
1773 }
1774 EXPORT_SYMBOL_GPL(pinctrl_register);
1775
1776 /**
1777 * pinctrl_unregister() - unregister pinmux
1778 * @pctldev: pin controller to unregister
1779 *
1780 * Called by pinmux drivers to unregister a pinmux.
1781 */
1782 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1783 {
1784 struct pinctrl_gpio_range *range, *n;
1785 if (pctldev == NULL)
1786 return;
1787
1788 mutex_lock(&pinctrldev_list_mutex);
1789 mutex_lock(&pctldev->mutex);
1790
1791 pinctrl_remove_device_debugfs(pctldev);
1792
1793 if (!IS_ERR(pctldev->p))
1794 pinctrl_put(pctldev->p);
1795
1796 /* TODO: check that no pinmuxes are still active? */
1797 list_del(&pctldev->node);
1798 /* Destroy descriptor tree */
1799 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1800 pctldev->desc->npins);
1801 /* remove gpio ranges map */
1802 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1803 list_del(&range->node);
1804
1805 mutex_unlock(&pctldev->mutex);
1806 mutex_destroy(&pctldev->mutex);
1807 kfree(pctldev);
1808 mutex_unlock(&pinctrldev_list_mutex);
1809 }
1810 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1811
1812 static int __init pinctrl_init(void)
1813 {
1814 pr_info("initialized pinctrl subsystem\n");
1815 pinctrl_init_debugfs();
1816 return 0;
1817 }
1818
1819 /* init early since many drivers really need to initialized pinmux early */
1820 core_initcall(pinctrl_init);
This page took 0.109332 seconds and 6 git commands to generate.