Merge tag 'mmc-merge-for-3.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / platform / x86 / intel_ips.c
1 /*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Authors:
21 * Jesse Barnes <jbarnes@virtuousgeek.org>
22 */
23
24 /*
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point). This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware. It also provides a few tunables to control behavior. Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
35 *
36 * The basic algorithm is driven by a 5s moving average of tempurature. If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp. Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
42 *
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware. The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
47 *
48 * UNSUPPORTED:
49 * - dual MCP configs
50 *
51 * TODO:
52 * - handle CPU hotplug
53 * - provide turbo enable/disable api
54 *
55 * Related documents:
56 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57 * - CDI 401376 - Ibex Peak EDS
58 * - ref 26037, 26641 - IPS BIOS spec
59 * - ref 26489 - Nehalem BIOS writer's guide
60 * - ref 26921 - Ibex Peak BIOS Specification
61 */
62
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
79
80 #include <asm-generic/io-64-nonatomic-lo-hi.h>
81
82 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
83
84 /*
85 * Package level MSRs for monitor/control
86 */
87 #define PLATFORM_INFO 0xce
88 #define PLATFORM_TDP (1<<29)
89 #define PLATFORM_RATIO (1<<28)
90
91 #define IA32_MISC_ENABLE 0x1a0
92 #define IA32_MISC_TURBO_EN (1ULL<<38)
93
94 #define TURBO_POWER_CURRENT_LIMIT 0x1ac
95 #define TURBO_TDC_OVR_EN (1UL<<31)
96 #define TURBO_TDC_MASK (0x000000007fff0000UL)
97 #define TURBO_TDC_SHIFT (16)
98 #define TURBO_TDP_OVR_EN (1UL<<15)
99 #define TURBO_TDP_MASK (0x0000000000003fffUL)
100
101 /*
102 * Core/thread MSRs for monitoring
103 */
104 #define IA32_PERF_CTL 0x199
105 #define IA32_PERF_TURBO_DIS (1ULL<<32)
106
107 /*
108 * Thermal PCI device regs
109 */
110 #define THM_CFG_TBAR 0x10
111 #define THM_CFG_TBAR_HI 0x14
112
113 #define THM_TSIU 0x00
114 #define THM_TSE 0x01
115 #define TSE_EN 0xb8
116 #define THM_TSS 0x02
117 #define THM_TSTR 0x03
118 #define THM_TSTTP 0x04
119 #define THM_TSCO 0x08
120 #define THM_TSES 0x0c
121 #define THM_TSGPEN 0x0d
122 #define TSGPEN_HOT_LOHI (1<<1)
123 #define TSGPEN_CRIT_LOHI (1<<2)
124 #define THM_TSPC 0x0e
125 #define THM_PPEC 0x10
126 #define THM_CTA 0x12
127 #define THM_PTA 0x14
128 #define PTA_SLOPE_MASK (0xff00)
129 #define PTA_SLOPE_SHIFT 8
130 #define PTA_OFFSET_MASK (0x00ff)
131 #define THM_MGTA 0x16
132 #define MGTA_SLOPE_MASK (0xff00)
133 #define MGTA_SLOPE_SHIFT 8
134 #define MGTA_OFFSET_MASK (0x00ff)
135 #define THM_TRC 0x1a
136 #define TRC_CORE2_EN (1<<15)
137 #define TRC_THM_EN (1<<12)
138 #define TRC_C6_WAR (1<<8)
139 #define TRC_CORE1_EN (1<<7)
140 #define TRC_CORE_PWR (1<<6)
141 #define TRC_PCH_EN (1<<5)
142 #define TRC_MCH_EN (1<<4)
143 #define TRC_DIMM4 (1<<3)
144 #define TRC_DIMM3 (1<<2)
145 #define TRC_DIMM2 (1<<1)
146 #define TRC_DIMM1 (1<<0)
147 #define THM_TES 0x20
148 #define THM_TEN 0x21
149 #define TEN_UPDATE_EN 1
150 #define THM_PSC 0x24
151 #define PSC_NTG (1<<0) /* No GFX turbo support */
152 #define PSC_NTPC (1<<1) /* No CPU turbo support */
153 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
154 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
155 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
156 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
157 #define PSP_PBRT (1<<4) /* BIOS run time support */
158 #define THM_CTV1 0x30
159 #define CTV_TEMP_ERROR (1<<15)
160 #define CTV_TEMP_MASK 0x3f
161 #define CTV_
162 #define THM_CTV2 0x32
163 #define THM_CEC 0x34 /* undocumented power accumulator in joules */
164 #define THM_AE 0x3f
165 #define THM_HTS 0x50 /* 32 bits */
166 #define HTS_PCPL_MASK (0x7fe00000)
167 #define HTS_PCPL_SHIFT 21
168 #define HTS_GPL_MASK (0x001ff000)
169 #define HTS_GPL_SHIFT 12
170 #define HTS_PP_MASK (0x00000c00)
171 #define HTS_PP_SHIFT 10
172 #define HTS_PP_DEF 0
173 #define HTS_PP_PROC 1
174 #define HTS_PP_BAL 2
175 #define HTS_PP_GFX 3
176 #define HTS_PCTD_DIS (1<<9)
177 #define HTS_GTD_DIS (1<<8)
178 #define HTS_PTL_MASK (0x000000fe)
179 #define HTS_PTL_SHIFT 1
180 #define HTS_NVV (1<<0)
181 #define THM_HTSHI 0x54 /* 16 bits */
182 #define HTS2_PPL_MASK (0x03ff)
183 #define HTS2_PRST_MASK (0x3c00)
184 #define HTS2_PRST_SHIFT 10
185 #define HTS2_PRST_UNLOADED 0
186 #define HTS2_PRST_RUNNING 1
187 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
188 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
189 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
190 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
191 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
192 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
193 #define THM_PTL 0x56
194 #define THM_MGTV 0x58
195 #define TV_MASK 0x000000000000ff00
196 #define TV_SHIFT 8
197 #define THM_PTV 0x60
198 #define PTV_MASK 0x00ff
199 #define THM_MMGPC 0x64
200 #define THM_MPPC 0x66
201 #define THM_MPCPC 0x68
202 #define THM_TSPIEN 0x82
203 #define TSPIEN_AUX_LOHI (1<<0)
204 #define TSPIEN_HOT_LOHI (1<<1)
205 #define TSPIEN_CRIT_LOHI (1<<2)
206 #define TSPIEN_AUX2_LOHI (1<<3)
207 #define THM_TSLOCK 0x83
208 #define THM_ATR 0x84
209 #define THM_TOF 0x87
210 #define THM_STS 0x98
211 #define STS_PCPL_MASK (0x7fe00000)
212 #define STS_PCPL_SHIFT 21
213 #define STS_GPL_MASK (0x001ff000)
214 #define STS_GPL_SHIFT 12
215 #define STS_PP_MASK (0x00000c00)
216 #define STS_PP_SHIFT 10
217 #define STS_PP_DEF 0
218 #define STS_PP_PROC 1
219 #define STS_PP_BAL 2
220 #define STS_PP_GFX 3
221 #define STS_PCTD_DIS (1<<9)
222 #define STS_GTD_DIS (1<<8)
223 #define STS_PTL_MASK (0x000000fe)
224 #define STS_PTL_SHIFT 1
225 #define STS_NVV (1<<0)
226 #define THM_SEC 0x9c
227 #define SEC_ACK (1<<0)
228 #define THM_TC3 0xa4
229 #define THM_TC1 0xa8
230 #define STS_PPL_MASK (0x0003ff00)
231 #define STS_PPL_SHIFT 16
232 #define THM_TC2 0xac
233 #define THM_DTV 0xb0
234 #define THM_ITV 0xd8
235 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
236 #define ITV_ME_SEQNO_SHIFT (16)
237 #define ITV_MCH_TEMP_MASK 0x0000ff00
238 #define ITV_MCH_TEMP_SHIFT (8)
239 #define ITV_PCH_TEMP_MASK 0x000000ff
240
241 #define thm_readb(off) readb(ips->regmap + (off))
242 #define thm_readw(off) readw(ips->regmap + (off))
243 #define thm_readl(off) readl(ips->regmap + (off))
244 #define thm_readq(off) readq(ips->regmap + (off))
245
246 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
247 #define thm_writew(off, val) writew((val), ips->regmap + (off))
248 #define thm_writel(off, val) writel((val), ips->regmap + (off))
249
250 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
251 static bool late_i915_load = false;
252
253 /* For initial average collection */
254 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
255 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
256 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
257
258 /* Per-SKU limits */
259 struct ips_mcp_limits {
260 int cpu_family;
261 int cpu_model; /* includes extended model... */
262 int mcp_power_limit; /* mW units */
263 int core_power_limit;
264 int mch_power_limit;
265 int core_temp_limit; /* degrees C */
266 int mch_temp_limit;
267 };
268
269 /* Max temps are -10 degrees C to avoid PROCHOT# */
270
271 struct ips_mcp_limits ips_sv_limits = {
272 .mcp_power_limit = 35000,
273 .core_power_limit = 29000,
274 .mch_power_limit = 20000,
275 .core_temp_limit = 95,
276 .mch_temp_limit = 90
277 };
278
279 struct ips_mcp_limits ips_lv_limits = {
280 .mcp_power_limit = 25000,
281 .core_power_limit = 21000,
282 .mch_power_limit = 13000,
283 .core_temp_limit = 95,
284 .mch_temp_limit = 90
285 };
286
287 struct ips_mcp_limits ips_ulv_limits = {
288 .mcp_power_limit = 18000,
289 .core_power_limit = 14000,
290 .mch_power_limit = 11000,
291 .core_temp_limit = 95,
292 .mch_temp_limit = 90
293 };
294
295 struct ips_driver {
296 struct pci_dev *dev;
297 void *regmap;
298 struct task_struct *monitor;
299 struct task_struct *adjust;
300 struct dentry *debug_root;
301
302 /* Average CPU core temps (all averages in .01 degrees C for precision) */
303 u16 ctv1_avg_temp;
304 u16 ctv2_avg_temp;
305 /* GMCH average */
306 u16 mch_avg_temp;
307 /* Average for the CPU (both cores?) */
308 u16 mcp_avg_temp;
309 /* Average power consumption (in mW) */
310 u32 cpu_avg_power;
311 u32 mch_avg_power;
312
313 /* Offset values */
314 u16 cta_val;
315 u16 pta_val;
316 u16 mgta_val;
317
318 /* Maximums & prefs, protected by turbo status lock */
319 spinlock_t turbo_status_lock;
320 u16 mcp_temp_limit;
321 u16 mcp_power_limit;
322 u16 core_power_limit;
323 u16 mch_power_limit;
324 bool cpu_turbo_enabled;
325 bool __cpu_turbo_on;
326 bool gpu_turbo_enabled;
327 bool __gpu_turbo_on;
328 bool gpu_preferred;
329 bool poll_turbo_status;
330 bool second_cpu;
331 bool turbo_toggle_allowed;
332 struct ips_mcp_limits *limits;
333
334 /* Optional MCH interfaces for if i915 is in use */
335 unsigned long (*read_mch_val)(void);
336 bool (*gpu_raise)(void);
337 bool (*gpu_lower)(void);
338 bool (*gpu_busy)(void);
339 bool (*gpu_turbo_disable)(void);
340
341 /* For restoration at unload */
342 u64 orig_turbo_limit;
343 u64 orig_turbo_ratios;
344 };
345
346 static bool
347 ips_gpu_turbo_enabled(struct ips_driver *ips);
348
349 /**
350 * ips_cpu_busy - is CPU busy?
351 * @ips: IPS driver struct
352 *
353 * Check CPU for load to see whether we should increase its thermal budget.
354 *
355 * RETURNS:
356 * True if the CPU could use more power, false otherwise.
357 */
358 static bool ips_cpu_busy(struct ips_driver *ips)
359 {
360 if ((avenrun[0] >> FSHIFT) > 1)
361 return true;
362
363 return false;
364 }
365
366 /**
367 * ips_cpu_raise - raise CPU power clamp
368 * @ips: IPS driver struct
369 *
370 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
371 * this platform.
372 *
373 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
374 * long as we haven't hit the TDP limit for the SKU).
375 */
376 static void ips_cpu_raise(struct ips_driver *ips)
377 {
378 u64 turbo_override;
379 u16 cur_tdp_limit, new_tdp_limit;
380
381 if (!ips->cpu_turbo_enabled)
382 return;
383
384 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
385
386 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
387 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
388
389 /* Clamp to SKU TDP limit */
390 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
391 new_tdp_limit = cur_tdp_limit;
392
393 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
394
395 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
396 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
397
398 turbo_override &= ~TURBO_TDP_MASK;
399 turbo_override |= new_tdp_limit;
400
401 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
402 }
403
404 /**
405 * ips_cpu_lower - lower CPU power clamp
406 * @ips: IPS driver struct
407 *
408 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
409 *
410 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
411 * as low as the platform limits will allow (though we could go lower there
412 * wouldn't be much point).
413 */
414 static void ips_cpu_lower(struct ips_driver *ips)
415 {
416 u64 turbo_override;
417 u16 cur_limit, new_limit;
418
419 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
420
421 cur_limit = turbo_override & TURBO_TDP_MASK;
422 new_limit = cur_limit - 8; /* 1W decrease */
423
424 /* Clamp to SKU TDP limit */
425 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
426 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
427
428 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
429
430 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
431 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
432
433 turbo_override &= ~TURBO_TDP_MASK;
434 turbo_override |= new_limit;
435
436 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
437 }
438
439 /**
440 * do_enable_cpu_turbo - internal turbo enable function
441 * @data: unused
442 *
443 * Internal function for actually updating MSRs. When we enable/disable
444 * turbo, we need to do it on each CPU; this function is the one called
445 * by on_each_cpu() when needed.
446 */
447 static void do_enable_cpu_turbo(void *data)
448 {
449 u64 perf_ctl;
450
451 rdmsrl(IA32_PERF_CTL, perf_ctl);
452 if (perf_ctl & IA32_PERF_TURBO_DIS) {
453 perf_ctl &= ~IA32_PERF_TURBO_DIS;
454 wrmsrl(IA32_PERF_CTL, perf_ctl);
455 }
456 }
457
458 /**
459 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
460 * @ips: IPS driver struct
461 *
462 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
463 * all logical threads.
464 */
465 static void ips_enable_cpu_turbo(struct ips_driver *ips)
466 {
467 /* Already on, no need to mess with MSRs */
468 if (ips->__cpu_turbo_on)
469 return;
470
471 if (ips->turbo_toggle_allowed)
472 on_each_cpu(do_enable_cpu_turbo, ips, 1);
473
474 ips->__cpu_turbo_on = true;
475 }
476
477 /**
478 * do_disable_cpu_turbo - internal turbo disable function
479 * @data: unused
480 *
481 * Internal function for actually updating MSRs. When we enable/disable
482 * turbo, we need to do it on each CPU; this function is the one called
483 * by on_each_cpu() when needed.
484 */
485 static void do_disable_cpu_turbo(void *data)
486 {
487 u64 perf_ctl;
488
489 rdmsrl(IA32_PERF_CTL, perf_ctl);
490 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
491 perf_ctl |= IA32_PERF_TURBO_DIS;
492 wrmsrl(IA32_PERF_CTL, perf_ctl);
493 }
494 }
495
496 /**
497 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
498 * @ips: IPS driver struct
499 *
500 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
501 * all logical threads.
502 */
503 static void ips_disable_cpu_turbo(struct ips_driver *ips)
504 {
505 /* Already off, leave it */
506 if (!ips->__cpu_turbo_on)
507 return;
508
509 if (ips->turbo_toggle_allowed)
510 on_each_cpu(do_disable_cpu_turbo, ips, 1);
511
512 ips->__cpu_turbo_on = false;
513 }
514
515 /**
516 * ips_gpu_busy - is GPU busy?
517 * @ips: IPS driver struct
518 *
519 * Check GPU for load to see whether we should increase its thermal budget.
520 * We need to call into the i915 driver in this case.
521 *
522 * RETURNS:
523 * True if the GPU could use more power, false otherwise.
524 */
525 static bool ips_gpu_busy(struct ips_driver *ips)
526 {
527 if (!ips_gpu_turbo_enabled(ips))
528 return false;
529
530 return ips->gpu_busy();
531 }
532
533 /**
534 * ips_gpu_raise - raise GPU power clamp
535 * @ips: IPS driver struct
536 *
537 * Raise the GPU frequency/power if possible. We need to call into the
538 * i915 driver in this case.
539 */
540 static void ips_gpu_raise(struct ips_driver *ips)
541 {
542 if (!ips_gpu_turbo_enabled(ips))
543 return;
544
545 if (!ips->gpu_raise())
546 ips->gpu_turbo_enabled = false;
547
548 return;
549 }
550
551 /**
552 * ips_gpu_lower - lower GPU power clamp
553 * @ips: IPS driver struct
554 *
555 * Lower GPU frequency/power if possible. Need to call i915.
556 */
557 static void ips_gpu_lower(struct ips_driver *ips)
558 {
559 if (!ips_gpu_turbo_enabled(ips))
560 return;
561
562 if (!ips->gpu_lower())
563 ips->gpu_turbo_enabled = false;
564
565 return;
566 }
567
568 /**
569 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
570 * @ips: IPS driver struct
571 *
572 * Call into the graphics driver indicating that it can safely use
573 * turbo mode.
574 */
575 static void ips_enable_gpu_turbo(struct ips_driver *ips)
576 {
577 if (ips->__gpu_turbo_on)
578 return;
579 ips->__gpu_turbo_on = true;
580 }
581
582 /**
583 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
584 * @ips: IPS driver struct
585 *
586 * Request that the graphics driver disable turbo mode.
587 */
588 static void ips_disable_gpu_turbo(struct ips_driver *ips)
589 {
590 /* Avoid calling i915 if turbo is already disabled */
591 if (!ips->__gpu_turbo_on)
592 return;
593
594 if (!ips->gpu_turbo_disable())
595 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
596 else
597 ips->__gpu_turbo_on = false;
598 }
599
600 /**
601 * mcp_exceeded - check whether we're outside our thermal & power limits
602 * @ips: IPS driver struct
603 *
604 * Check whether the MCP is over its thermal or power budget.
605 */
606 static bool mcp_exceeded(struct ips_driver *ips)
607 {
608 unsigned long flags;
609 bool ret = false;
610 u32 temp_limit;
611 u32 avg_power;
612
613 spin_lock_irqsave(&ips->turbo_status_lock, flags);
614
615 temp_limit = ips->mcp_temp_limit * 100;
616 if (ips->mcp_avg_temp > temp_limit)
617 ret = true;
618
619 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
620 if (avg_power > ips->mcp_power_limit)
621 ret = true;
622
623 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
624
625 return ret;
626 }
627
628 /**
629 * cpu_exceeded - check whether a CPU core is outside its limits
630 * @ips: IPS driver struct
631 * @cpu: CPU number to check
632 *
633 * Check a given CPU's average temp or power is over its limit.
634 */
635 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
636 {
637 unsigned long flags;
638 int avg;
639 bool ret = false;
640
641 spin_lock_irqsave(&ips->turbo_status_lock, flags);
642 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
643 if (avg > (ips->limits->core_temp_limit * 100))
644 ret = true;
645 if (ips->cpu_avg_power > ips->core_power_limit * 100)
646 ret = true;
647 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
648
649 if (ret)
650 dev_info(&ips->dev->dev,
651 "CPU power or thermal limit exceeded\n");
652
653 return ret;
654 }
655
656 /**
657 * mch_exceeded - check whether the GPU is over budget
658 * @ips: IPS driver struct
659 *
660 * Check the MCH temp & power against their maximums.
661 */
662 static bool mch_exceeded(struct ips_driver *ips)
663 {
664 unsigned long flags;
665 bool ret = false;
666
667 spin_lock_irqsave(&ips->turbo_status_lock, flags);
668 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
669 ret = true;
670 if (ips->mch_avg_power > ips->mch_power_limit)
671 ret = true;
672 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
673
674 return ret;
675 }
676
677 /**
678 * verify_limits - verify BIOS provided limits
679 * @ips: IPS structure
680 *
681 * BIOS can optionally provide non-default limits for power and temp. Check
682 * them here and use the defaults if the BIOS values are not provided or
683 * are otherwise unusable.
684 */
685 static void verify_limits(struct ips_driver *ips)
686 {
687 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
688 ips->mcp_power_limit > 35000)
689 ips->mcp_power_limit = ips->limits->mcp_power_limit;
690
691 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
692 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
693 ips->mcp_temp_limit > 150)
694 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
695 ips->limits->mch_temp_limit);
696 }
697
698 /**
699 * update_turbo_limits - get various limits & settings from regs
700 * @ips: IPS driver struct
701 *
702 * Update the IPS power & temp limits, along with turbo enable flags,
703 * based on latest register contents.
704 *
705 * Used at init time and for runtime BIOS support, which requires polling
706 * the regs for updates (as a result of AC->DC transition for example).
707 *
708 * LOCKING:
709 * Caller must hold turbo_status_lock (outside of init)
710 */
711 static void update_turbo_limits(struct ips_driver *ips)
712 {
713 u32 hts = thm_readl(THM_HTS);
714
715 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
716 /*
717 * Disable turbo for now, until we can figure out why the power figures
718 * are wrong
719 */
720 ips->cpu_turbo_enabled = false;
721
722 if (ips->gpu_busy)
723 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
724
725 ips->core_power_limit = thm_readw(THM_MPCPC);
726 ips->mch_power_limit = thm_readw(THM_MMGPC);
727 ips->mcp_temp_limit = thm_readw(THM_PTL);
728 ips->mcp_power_limit = thm_readw(THM_MPPC);
729
730 verify_limits(ips);
731 /* Ignore BIOS CPU vs GPU pref */
732 }
733
734 /**
735 * ips_adjust - adjust power clamp based on thermal state
736 * @data: ips driver structure
737 *
738 * Wake up every 5s or so and check whether we should adjust the power clamp.
739 * Check CPU and GPU load to determine which needs adjustment. There are
740 * several things to consider here:
741 * - do we need to adjust up or down?
742 * - is CPU busy?
743 * - is GPU busy?
744 * - is CPU in turbo?
745 * - is GPU in turbo?
746 * - is CPU or GPU preferred? (CPU is default)
747 *
748 * So, given the above, we do the following:
749 * - up (TDP available)
750 * - CPU not busy, GPU not busy - nothing
751 * - CPU busy, GPU not busy - adjust CPU up
752 * - CPU not busy, GPU busy - adjust GPU up
753 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
754 * non-preferred unit if necessary
755 * - down (at TDP limit)
756 * - adjust both CPU and GPU down if possible
757 *
758 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
759 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing
760 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
761 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
762 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
763 *
764 */
765 static int ips_adjust(void *data)
766 {
767 struct ips_driver *ips = data;
768 unsigned long flags;
769
770 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
771
772 /*
773 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
774 * often isn't recommended due to ME interaction.
775 */
776 do {
777 bool cpu_busy = ips_cpu_busy(ips);
778 bool gpu_busy = ips_gpu_busy(ips);
779
780 spin_lock_irqsave(&ips->turbo_status_lock, flags);
781 if (ips->poll_turbo_status)
782 update_turbo_limits(ips);
783 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
784
785 /* Update turbo status if necessary */
786 if (ips->cpu_turbo_enabled)
787 ips_enable_cpu_turbo(ips);
788 else
789 ips_disable_cpu_turbo(ips);
790
791 if (ips->gpu_turbo_enabled)
792 ips_enable_gpu_turbo(ips);
793 else
794 ips_disable_gpu_turbo(ips);
795
796 /* We're outside our comfort zone, crank them down */
797 if (mcp_exceeded(ips)) {
798 ips_cpu_lower(ips);
799 ips_gpu_lower(ips);
800 goto sleep;
801 }
802
803 if (!cpu_exceeded(ips, 0) && cpu_busy)
804 ips_cpu_raise(ips);
805 else
806 ips_cpu_lower(ips);
807
808 if (!mch_exceeded(ips) && gpu_busy)
809 ips_gpu_raise(ips);
810 else
811 ips_gpu_lower(ips);
812
813 sleep:
814 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
815 } while (!kthread_should_stop());
816
817 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
818
819 return 0;
820 }
821
822 /*
823 * Helpers for reading out temp/power values and calculating their
824 * averages for the decision making and monitoring functions.
825 */
826
827 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
828 {
829 u64 total = 0;
830 int i;
831 u16 avg;
832
833 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
834 total += (u64)(array[i] * 100);
835
836 do_div(total, IPS_SAMPLE_COUNT);
837
838 avg = (u16)total;
839
840 return avg;
841 }
842
843 static u16 read_mgtv(struct ips_driver *ips)
844 {
845 u16 ret;
846 u64 slope, offset;
847 u64 val;
848
849 val = thm_readq(THM_MGTV);
850 val = (val & TV_MASK) >> TV_SHIFT;
851
852 slope = offset = thm_readw(THM_MGTA);
853 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
854 offset = offset & MGTA_OFFSET_MASK;
855
856 ret = ((val * slope + 0x40) >> 7) + offset;
857
858 return 0; /* MCH temp reporting buggy */
859 }
860
861 static u16 read_ptv(struct ips_driver *ips)
862 {
863 u16 val, slope, offset;
864
865 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
866 offset = ips->pta_val & PTA_OFFSET_MASK;
867
868 val = thm_readw(THM_PTV) & PTV_MASK;
869
870 return val;
871 }
872
873 static u16 read_ctv(struct ips_driver *ips, int cpu)
874 {
875 int reg = cpu ? THM_CTV2 : THM_CTV1;
876 u16 val;
877
878 val = thm_readw(reg);
879 if (!(val & CTV_TEMP_ERROR))
880 val = (val) >> 6; /* discard fractional component */
881 else
882 val = 0;
883
884 return val;
885 }
886
887 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
888 {
889 u32 val;
890 u32 ret;
891
892 /*
893 * CEC is in joules/65535. Take difference over time to
894 * get watts.
895 */
896 val = thm_readl(THM_CEC);
897
898 /* period is in ms and we want mW */
899 ret = (((val - *last) * 1000) / period);
900 ret = (ret * 1000) / 65535;
901 *last = val;
902
903 return 0;
904 }
905
906 static const u16 temp_decay_factor = 2;
907 static u16 update_average_temp(u16 avg, u16 val)
908 {
909 u16 ret;
910
911 /* Multiply by 100 for extra precision */
912 ret = (val * 100 / temp_decay_factor) +
913 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
914 return ret;
915 }
916
917 static const u16 power_decay_factor = 2;
918 static u16 update_average_power(u32 avg, u32 val)
919 {
920 u32 ret;
921
922 ret = (val / power_decay_factor) +
923 (((power_decay_factor - 1) * avg) / power_decay_factor);
924
925 return ret;
926 }
927
928 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
929 {
930 u64 total = 0;
931 u32 avg;
932 int i;
933
934 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
935 total += array[i];
936
937 do_div(total, IPS_SAMPLE_COUNT);
938 avg = (u32)total;
939
940 return avg;
941 }
942
943 static void monitor_timeout(unsigned long arg)
944 {
945 wake_up_process((struct task_struct *)arg);
946 }
947
948 /**
949 * ips_monitor - temp/power monitoring thread
950 * @data: ips driver structure
951 *
952 * This is the main function for the IPS driver. It monitors power and
953 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
954 *
955 * We keep a 5s moving average of power consumption and tempurature. Using
956 * that data, along with CPU vs GPU preference, we adjust the power clamps
957 * up or down.
958 */
959 static int ips_monitor(void *data)
960 {
961 struct ips_driver *ips = data;
962 struct timer_list timer;
963 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
964 int i;
965 u32 *cpu_samples, *mchp_samples, old_cpu_power;
966 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
967 u8 cur_seqno, last_seqno;
968
969 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
970 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
976 !cpu_samples || !mchp_samples) {
977 dev_err(&ips->dev->dev,
978 "failed to allocate sample array, ips disabled\n");
979 kfree(mcp_samples);
980 kfree(ctv1_samples);
981 kfree(ctv2_samples);
982 kfree(mch_samples);
983 kfree(cpu_samples);
984 kfree(mchp_samples);
985 return -ENOMEM;
986 }
987
988 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
989 ITV_ME_SEQNO_SHIFT;
990 seqno_timestamp = get_jiffies_64();
991
992 old_cpu_power = thm_readl(THM_CEC);
993 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
994
995 /* Collect an initial average */
996 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
997 u32 mchp, cpu_power;
998 u16 val;
999
1000 mcp_samples[i] = read_ptv(ips);
1001
1002 val = read_ctv(ips, 0);
1003 ctv1_samples[i] = val;
1004
1005 val = read_ctv(ips, 1);
1006 ctv2_samples[i] = val;
1007
1008 val = read_mgtv(ips);
1009 mch_samples[i] = val;
1010
1011 cpu_power = get_cpu_power(ips, &old_cpu_power,
1012 IPS_SAMPLE_PERIOD);
1013 cpu_samples[i] = cpu_power;
1014
1015 if (ips->read_mch_val) {
1016 mchp = ips->read_mch_val();
1017 mchp_samples[i] = mchp;
1018 }
1019
1020 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1021 if (kthread_should_stop())
1022 break;
1023 }
1024
1025 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1026 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1027 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1028 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1029 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1030 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1031 kfree(mcp_samples);
1032 kfree(ctv1_samples);
1033 kfree(ctv2_samples);
1034 kfree(mch_samples);
1035 kfree(cpu_samples);
1036 kfree(mchp_samples);
1037
1038 /* Start the adjustment thread now that we have data */
1039 wake_up_process(ips->adjust);
1040
1041 /*
1042 * Ok, now we have an initial avg. From here on out, we track the
1043 * running avg using a decaying average calculation. This allows
1044 * us to reduce the sample frequency if the CPU and GPU are idle.
1045 */
1046 old_cpu_power = thm_readl(THM_CEC);
1047 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1048 last_sample_period = IPS_SAMPLE_PERIOD;
1049
1050 setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1051 (unsigned long)current);
1052 do {
1053 u32 cpu_val, mch_val;
1054 u16 val;
1055
1056 /* MCP itself */
1057 val = read_ptv(ips);
1058 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1059
1060 /* Processor 0 */
1061 val = read_ctv(ips, 0);
1062 ips->ctv1_avg_temp =
1063 update_average_temp(ips->ctv1_avg_temp, val);
1064 /* Power */
1065 cpu_val = get_cpu_power(ips, &old_cpu_power,
1066 last_sample_period);
1067 ips->cpu_avg_power =
1068 update_average_power(ips->cpu_avg_power, cpu_val);
1069
1070 if (ips->second_cpu) {
1071 /* Processor 1 */
1072 val = read_ctv(ips, 1);
1073 ips->ctv2_avg_temp =
1074 update_average_temp(ips->ctv2_avg_temp, val);
1075 }
1076
1077 /* MCH */
1078 val = read_mgtv(ips);
1079 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1080 /* Power */
1081 if (ips->read_mch_val) {
1082 mch_val = ips->read_mch_val();
1083 ips->mch_avg_power =
1084 update_average_power(ips->mch_avg_power,
1085 mch_val);
1086 }
1087
1088 /*
1089 * Make sure ME is updating thermal regs.
1090 * Note:
1091 * If it's been more than a second since the last update,
1092 * the ME is probably hung.
1093 */
1094 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1095 ITV_ME_SEQNO_SHIFT;
1096 if (cur_seqno == last_seqno &&
1097 time_after(jiffies, seqno_timestamp + HZ)) {
1098 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1099 } else {
1100 seqno_timestamp = get_jiffies_64();
1101 last_seqno = cur_seqno;
1102 }
1103
1104 last_msecs = jiffies_to_msecs(jiffies);
1105 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1106
1107 __set_current_state(TASK_INTERRUPTIBLE);
1108 mod_timer(&timer, expire);
1109 schedule();
1110
1111 /* Calculate actual sample period for power averaging */
1112 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1113 if (!last_sample_period)
1114 last_sample_period = 1;
1115 } while (!kthread_should_stop());
1116
1117 del_timer_sync(&timer);
1118 destroy_timer_on_stack(&timer);
1119
1120 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1121
1122 return 0;
1123 }
1124
1125 #if 0
1126 #define THM_DUMPW(reg) \
1127 { \
1128 u16 val = thm_readw(reg); \
1129 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1130 }
1131 #define THM_DUMPL(reg) \
1132 { \
1133 u32 val = thm_readl(reg); \
1134 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1135 }
1136 #define THM_DUMPQ(reg) \
1137 { \
1138 u64 val = thm_readq(reg); \
1139 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1140 }
1141
1142 static void dump_thermal_info(struct ips_driver *ips)
1143 {
1144 u16 ptl;
1145
1146 ptl = thm_readw(THM_PTL);
1147 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1148
1149 THM_DUMPW(THM_CTA);
1150 THM_DUMPW(THM_TRC);
1151 THM_DUMPW(THM_CTV1);
1152 THM_DUMPL(THM_STS);
1153 THM_DUMPW(THM_PTV);
1154 THM_DUMPQ(THM_MGTV);
1155 }
1156 #endif
1157
1158 /**
1159 * ips_irq_handler - handle temperature triggers and other IPS events
1160 * @irq: irq number
1161 * @arg: unused
1162 *
1163 * Handle temperature limit trigger events, generally by lowering the clamps.
1164 * If we're at a critical limit, we clamp back to the lowest possible value
1165 * to prevent emergency shutdown.
1166 */
1167 static irqreturn_t ips_irq_handler(int irq, void *arg)
1168 {
1169 struct ips_driver *ips = arg;
1170 u8 tses = thm_readb(THM_TSES);
1171 u8 tes = thm_readb(THM_TES);
1172
1173 if (!tses && !tes)
1174 return IRQ_NONE;
1175
1176 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1177 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1178
1179 /* STS update from EC? */
1180 if (tes & 1) {
1181 u32 sts, tc1;
1182
1183 sts = thm_readl(THM_STS);
1184 tc1 = thm_readl(THM_TC1);
1185
1186 if (sts & STS_NVV) {
1187 spin_lock(&ips->turbo_status_lock);
1188 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1189 STS_PCPL_SHIFT;
1190 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1191 STS_GPL_SHIFT;
1192 /* ignore EC CPU vs GPU pref */
1193 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1194 /*
1195 * Disable turbo for now, until we can figure
1196 * out why the power figures are wrong
1197 */
1198 ips->cpu_turbo_enabled = false;
1199 if (ips->gpu_busy)
1200 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1201 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1202 STS_PTL_SHIFT;
1203 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1204 STS_PPL_SHIFT;
1205 verify_limits(ips);
1206 spin_unlock(&ips->turbo_status_lock);
1207
1208 thm_writeb(THM_SEC, SEC_ACK);
1209 }
1210 thm_writeb(THM_TES, tes);
1211 }
1212
1213 /* Thermal trip */
1214 if (tses) {
1215 dev_warn(&ips->dev->dev,
1216 "thermal trip occurred, tses: 0x%04x\n", tses);
1217 thm_writeb(THM_TSES, tses);
1218 }
1219
1220 return IRQ_HANDLED;
1221 }
1222
1223 #ifndef CONFIG_DEBUG_FS
1224 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1225 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1226 #else
1227
1228 /* Expose current state and limits in debugfs if possible */
1229
1230 struct ips_debugfs_node {
1231 struct ips_driver *ips;
1232 char *name;
1233 int (*show)(struct seq_file *m, void *data);
1234 };
1235
1236 static int show_cpu_temp(struct seq_file *m, void *data)
1237 {
1238 struct ips_driver *ips = m->private;
1239
1240 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1241 ips->ctv1_avg_temp % 100);
1242
1243 return 0;
1244 }
1245
1246 static int show_cpu_power(struct seq_file *m, void *data)
1247 {
1248 struct ips_driver *ips = m->private;
1249
1250 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1251
1252 return 0;
1253 }
1254
1255 static int show_cpu_clamp(struct seq_file *m, void *data)
1256 {
1257 u64 turbo_override;
1258 int tdp, tdc;
1259
1260 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1261
1262 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1263 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1264
1265 /* Convert to .1W/A units */
1266 tdp = tdp * 10 / 8;
1267 tdc = tdc * 10 / 8;
1268
1269 /* Watts Amperes */
1270 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1271 tdc / 10, tdc % 10);
1272
1273 return 0;
1274 }
1275
1276 static int show_mch_temp(struct seq_file *m, void *data)
1277 {
1278 struct ips_driver *ips = m->private;
1279
1280 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1281 ips->mch_avg_temp % 100);
1282
1283 return 0;
1284 }
1285
1286 static int show_mch_power(struct seq_file *m, void *data)
1287 {
1288 struct ips_driver *ips = m->private;
1289
1290 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1291
1292 return 0;
1293 }
1294
1295 static struct ips_debugfs_node ips_debug_files[] = {
1296 { NULL, "cpu_temp", show_cpu_temp },
1297 { NULL, "cpu_power", show_cpu_power },
1298 { NULL, "cpu_clamp", show_cpu_clamp },
1299 { NULL, "mch_temp", show_mch_temp },
1300 { NULL, "mch_power", show_mch_power },
1301 };
1302
1303 static int ips_debugfs_open(struct inode *inode, struct file *file)
1304 {
1305 struct ips_debugfs_node *node = inode->i_private;
1306
1307 return single_open(file, node->show, node->ips);
1308 }
1309
1310 static const struct file_operations ips_debugfs_ops = {
1311 .owner = THIS_MODULE,
1312 .open = ips_debugfs_open,
1313 .read = seq_read,
1314 .llseek = seq_lseek,
1315 .release = single_release,
1316 };
1317
1318 static void ips_debugfs_cleanup(struct ips_driver *ips)
1319 {
1320 if (ips->debug_root)
1321 debugfs_remove_recursive(ips->debug_root);
1322 return;
1323 }
1324
1325 static void ips_debugfs_init(struct ips_driver *ips)
1326 {
1327 int i;
1328
1329 ips->debug_root = debugfs_create_dir("ips", NULL);
1330 if (!ips->debug_root) {
1331 dev_err(&ips->dev->dev,
1332 "failed to create debugfs entries: %ld\n",
1333 PTR_ERR(ips->debug_root));
1334 return;
1335 }
1336
1337 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1338 struct dentry *ent;
1339 struct ips_debugfs_node *node = &ips_debug_files[i];
1340
1341 node->ips = ips;
1342 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1343 ips->debug_root, node,
1344 &ips_debugfs_ops);
1345 if (!ent) {
1346 dev_err(&ips->dev->dev,
1347 "failed to create debug file: %ld\n",
1348 PTR_ERR(ent));
1349 goto err_cleanup;
1350 }
1351 }
1352
1353 return;
1354
1355 err_cleanup:
1356 ips_debugfs_cleanup(ips);
1357 return;
1358 }
1359 #endif /* CONFIG_DEBUG_FS */
1360
1361 /**
1362 * ips_detect_cpu - detect whether CPU supports IPS
1363 *
1364 * Walk our list and see if we're on a supported CPU. If we find one,
1365 * return the limits for it.
1366 */
1367 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1368 {
1369 u64 turbo_power, misc_en;
1370 struct ips_mcp_limits *limits = NULL;
1371 u16 tdp;
1372
1373 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1374 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1375 goto out;
1376 }
1377
1378 rdmsrl(IA32_MISC_ENABLE, misc_en);
1379 /*
1380 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1381 * turbo manually or we'll get an illegal MSR access, even though
1382 * turbo will still be available.
1383 */
1384 if (misc_en & IA32_MISC_TURBO_EN)
1385 ips->turbo_toggle_allowed = true;
1386 else
1387 ips->turbo_toggle_allowed = false;
1388
1389 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1390 limits = &ips_sv_limits;
1391 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1392 limits = &ips_lv_limits;
1393 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1394 limits = &ips_ulv_limits;
1395 else {
1396 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1397 goto out;
1398 }
1399
1400 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1401 tdp = turbo_power & TURBO_TDP_MASK;
1402
1403 /* Sanity check TDP against CPU */
1404 if (limits->core_power_limit != (tdp / 8) * 1000) {
1405 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1406 tdp / 8, limits->core_power_limit / 1000);
1407 limits->core_power_limit = (tdp / 8) * 1000;
1408 }
1409
1410 out:
1411 return limits;
1412 }
1413
1414 /**
1415 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1416 * @ips: IPS driver
1417 *
1418 * The i915 driver exports several interfaces to allow the IPS driver to
1419 * monitor and control graphics turbo mode. If we can find them, we can
1420 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1421 * thermal and power limits in the MCP.
1422 */
1423 static bool ips_get_i915_syms(struct ips_driver *ips)
1424 {
1425 ips->read_mch_val = symbol_get(i915_read_mch_val);
1426 if (!ips->read_mch_val)
1427 goto out_err;
1428 ips->gpu_raise = symbol_get(i915_gpu_raise);
1429 if (!ips->gpu_raise)
1430 goto out_put_mch;
1431 ips->gpu_lower = symbol_get(i915_gpu_lower);
1432 if (!ips->gpu_lower)
1433 goto out_put_raise;
1434 ips->gpu_busy = symbol_get(i915_gpu_busy);
1435 if (!ips->gpu_busy)
1436 goto out_put_lower;
1437 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1438 if (!ips->gpu_turbo_disable)
1439 goto out_put_busy;
1440
1441 return true;
1442
1443 out_put_busy:
1444 symbol_put(i915_gpu_busy);
1445 out_put_lower:
1446 symbol_put(i915_gpu_lower);
1447 out_put_raise:
1448 symbol_put(i915_gpu_raise);
1449 out_put_mch:
1450 symbol_put(i915_read_mch_val);
1451 out_err:
1452 return false;
1453 }
1454
1455 static bool
1456 ips_gpu_turbo_enabled(struct ips_driver *ips)
1457 {
1458 if (!ips->gpu_busy && late_i915_load) {
1459 if (ips_get_i915_syms(ips)) {
1460 dev_info(&ips->dev->dev,
1461 "i915 driver attached, reenabling gpu turbo\n");
1462 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1463 }
1464 }
1465
1466 return ips->gpu_turbo_enabled;
1467 }
1468
1469 void
1470 ips_link_to_i915_driver(void)
1471 {
1472 /* We can't cleanly get at the various ips_driver structs from
1473 * this caller (the i915 driver), so just set a flag saying
1474 * that it's time to try getting the symbols again.
1475 */
1476 late_i915_load = true;
1477 }
1478 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1479
1480 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1481 { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1482 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1483 { 0, }
1484 };
1485
1486 MODULE_DEVICE_TABLE(pci, ips_id_table);
1487
1488 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1489 {
1490 u64 platform_info;
1491 struct ips_driver *ips;
1492 u32 hts;
1493 int ret = 0;
1494 u16 htshi, trc, trc_required_mask;
1495 u8 tse;
1496
1497 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1498 if (!ips)
1499 return -ENOMEM;
1500
1501 pci_set_drvdata(dev, ips);
1502 ips->dev = dev;
1503
1504 ips->limits = ips_detect_cpu(ips);
1505 if (!ips->limits) {
1506 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1507 ret = -ENXIO;
1508 goto error_free;
1509 }
1510
1511 spin_lock_init(&ips->turbo_status_lock);
1512
1513 ret = pci_enable_device(dev);
1514 if (ret) {
1515 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1516 goto error_free;
1517 }
1518
1519 if (!pci_resource_start(dev, 0)) {
1520 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1521 ret = -ENXIO;
1522 goto error_free;
1523 }
1524
1525 ret = pci_request_regions(dev, "ips thermal sensor");
1526 if (ret) {
1527 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1528 goto error_free;
1529 }
1530
1531
1532 ips->regmap = ioremap(pci_resource_start(dev, 0),
1533 pci_resource_len(dev, 0));
1534 if (!ips->regmap) {
1535 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1536 ret = -EBUSY;
1537 goto error_release;
1538 }
1539
1540 tse = thm_readb(THM_TSE);
1541 if (tse != TSE_EN) {
1542 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1543 ret = -ENXIO;
1544 goto error_unmap;
1545 }
1546
1547 trc = thm_readw(THM_TRC);
1548 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1549 if ((trc & trc_required_mask) != trc_required_mask) {
1550 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1551 ret = -ENXIO;
1552 goto error_unmap;
1553 }
1554
1555 if (trc & TRC_CORE2_EN)
1556 ips->second_cpu = true;
1557
1558 update_turbo_limits(ips);
1559 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1560 ips->mcp_power_limit / 10);
1561 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1562 ips->core_power_limit / 10);
1563 /* BIOS may update limits at runtime */
1564 if (thm_readl(THM_PSC) & PSP_PBRT)
1565 ips->poll_turbo_status = true;
1566
1567 if (!ips_get_i915_syms(ips)) {
1568 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1569 ips->gpu_turbo_enabled = false;
1570 } else {
1571 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1572 ips->gpu_turbo_enabled = true;
1573 }
1574
1575 /*
1576 * Check PLATFORM_INFO MSR to make sure this chip is
1577 * turbo capable.
1578 */
1579 rdmsrl(PLATFORM_INFO, platform_info);
1580 if (!(platform_info & PLATFORM_TDP)) {
1581 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1582 ret = -ENODEV;
1583 goto error_unmap;
1584 }
1585
1586 /*
1587 * IRQ handler for ME interaction
1588 * Note: don't use MSI here as the PCH has bugs.
1589 */
1590 pci_disable_msi(dev);
1591 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1592 ips);
1593 if (ret) {
1594 dev_err(&dev->dev, "request irq failed, aborting\n");
1595 goto error_unmap;
1596 }
1597
1598 /* Enable aux, hot & critical interrupts */
1599 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1600 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1601 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1602
1603 /* Collect adjustment values */
1604 ips->cta_val = thm_readw(THM_CTA);
1605 ips->pta_val = thm_readw(THM_PTA);
1606 ips->mgta_val = thm_readw(THM_MGTA);
1607
1608 /* Save turbo limits & ratios */
1609 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1610
1611 ips_disable_cpu_turbo(ips);
1612 ips->cpu_turbo_enabled = false;
1613
1614 /* Create thermal adjust thread */
1615 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1616 if (IS_ERR(ips->adjust)) {
1617 dev_err(&dev->dev,
1618 "failed to create thermal adjust thread, aborting\n");
1619 ret = -ENOMEM;
1620 goto error_free_irq;
1621
1622 }
1623
1624 /*
1625 * Set up the work queue and monitor thread. The monitor thread
1626 * will wake up ips_adjust thread.
1627 */
1628 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1629 if (IS_ERR(ips->monitor)) {
1630 dev_err(&dev->dev,
1631 "failed to create thermal monitor thread, aborting\n");
1632 ret = -ENOMEM;
1633 goto error_thread_cleanup;
1634 }
1635
1636 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1637 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1638 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1639
1640 thm_writew(THM_HTSHI, htshi);
1641 thm_writel(THM_HTS, hts);
1642
1643 ips_debugfs_init(ips);
1644
1645 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1646 ips->mcp_temp_limit);
1647 return ret;
1648
1649 error_thread_cleanup:
1650 kthread_stop(ips->adjust);
1651 error_free_irq:
1652 free_irq(ips->dev->irq, ips);
1653 error_unmap:
1654 iounmap(ips->regmap);
1655 error_release:
1656 pci_release_regions(dev);
1657 error_free:
1658 kfree(ips);
1659 return ret;
1660 }
1661
1662 static void ips_remove(struct pci_dev *dev)
1663 {
1664 struct ips_driver *ips = pci_get_drvdata(dev);
1665 u64 turbo_override;
1666
1667 if (!ips)
1668 return;
1669
1670 ips_debugfs_cleanup(ips);
1671
1672 /* Release i915 driver */
1673 if (ips->read_mch_val)
1674 symbol_put(i915_read_mch_val);
1675 if (ips->gpu_raise)
1676 symbol_put(i915_gpu_raise);
1677 if (ips->gpu_lower)
1678 symbol_put(i915_gpu_lower);
1679 if (ips->gpu_busy)
1680 symbol_put(i915_gpu_busy);
1681 if (ips->gpu_turbo_disable)
1682 symbol_put(i915_gpu_turbo_disable);
1683
1684 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1685 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1686 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1687 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1688
1689 free_irq(ips->dev->irq, ips);
1690 if (ips->adjust)
1691 kthread_stop(ips->adjust);
1692 if (ips->monitor)
1693 kthread_stop(ips->monitor);
1694 iounmap(ips->regmap);
1695 pci_release_regions(dev);
1696 kfree(ips);
1697 dev_dbg(&dev->dev, "IPS driver removed\n");
1698 }
1699
1700 #ifdef CONFIG_PM
1701 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1702 {
1703 return 0;
1704 }
1705
1706 static int ips_resume(struct pci_dev *dev)
1707 {
1708 return 0;
1709 }
1710 #else
1711 #define ips_suspend NULL
1712 #define ips_resume NULL
1713 #endif /* CONFIG_PM */
1714
1715 static void ips_shutdown(struct pci_dev *dev)
1716 {
1717 }
1718
1719 static struct pci_driver ips_pci_driver = {
1720 .name = "intel ips",
1721 .id_table = ips_id_table,
1722 .probe = ips_probe,
1723 .remove = ips_remove,
1724 .suspend = ips_suspend,
1725 .resume = ips_resume,
1726 .shutdown = ips_shutdown,
1727 };
1728
1729 static int __init ips_init(void)
1730 {
1731 return pci_register_driver(&ips_pci_driver);
1732 }
1733 module_init(ips_init);
1734
1735 static void ips_exit(void)
1736 {
1737 pci_unregister_driver(&ips_pci_driver);
1738 return;
1739 }
1740 module_exit(ips_exit);
1741
1742 MODULE_LICENSE("GPL");
1743 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1744 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
This page took 0.064944 seconds and 6 git commands to generate.