net: s2io: simplify logical constraint
[deliverable/linux.git] / drivers / pwm / core.c
1 /*
2 * Generic pwmlib implementation
3 *
4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
5 * Copyright (C) 2011-2012 Avionic Design GmbH
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; see the file COPYING. If not, write to
19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/module.h>
23 #include <linux/pwm.h>
24 #include <linux/radix-tree.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/device.h>
30 #include <linux/debugfs.h>
31 #include <linux/seq_file.h>
32
33 #include <dt-bindings/pwm/pwm.h>
34
35 #define MAX_PWMS 1024
36
37 static DEFINE_MUTEX(pwm_lookup_lock);
38 static LIST_HEAD(pwm_lookup_list);
39 static DEFINE_MUTEX(pwm_lock);
40 static LIST_HEAD(pwm_chips);
41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
42 static RADIX_TREE(pwm_tree, GFP_KERNEL);
43
44 static struct pwm_device *pwm_to_device(unsigned int pwm)
45 {
46 return radix_tree_lookup(&pwm_tree, pwm);
47 }
48
49 static int alloc_pwms(int pwm, unsigned int count)
50 {
51 unsigned int from = 0;
52 unsigned int start;
53
54 if (pwm >= MAX_PWMS)
55 return -EINVAL;
56
57 if (pwm >= 0)
58 from = pwm;
59
60 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
61 count, 0);
62
63 if (pwm >= 0 && start != pwm)
64 return -EEXIST;
65
66 if (start + count > MAX_PWMS)
67 return -ENOSPC;
68
69 return start;
70 }
71
72 static void free_pwms(struct pwm_chip *chip)
73 {
74 unsigned int i;
75
76 for (i = 0; i < chip->npwm; i++) {
77 struct pwm_device *pwm = &chip->pwms[i];
78
79 radix_tree_delete(&pwm_tree, pwm->pwm);
80 }
81
82 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
83
84 kfree(chip->pwms);
85 chip->pwms = NULL;
86 }
87
88 static struct pwm_chip *pwmchip_find_by_name(const char *name)
89 {
90 struct pwm_chip *chip;
91
92 if (!name)
93 return NULL;
94
95 mutex_lock(&pwm_lock);
96
97 list_for_each_entry(chip, &pwm_chips, list) {
98 const char *chip_name = dev_name(chip->dev);
99
100 if (chip_name && strcmp(chip_name, name) == 0) {
101 mutex_unlock(&pwm_lock);
102 return chip;
103 }
104 }
105
106 mutex_unlock(&pwm_lock);
107
108 return NULL;
109 }
110
111 static int pwm_device_request(struct pwm_device *pwm, const char *label)
112 {
113 int err;
114
115 if (test_bit(PWMF_REQUESTED, &pwm->flags))
116 return -EBUSY;
117
118 if (!try_module_get(pwm->chip->ops->owner))
119 return -ENODEV;
120
121 if (pwm->chip->ops->request) {
122 err = pwm->chip->ops->request(pwm->chip, pwm);
123 if (err) {
124 module_put(pwm->chip->ops->owner);
125 return err;
126 }
127 }
128
129 set_bit(PWMF_REQUESTED, &pwm->flags);
130 pwm->label = label;
131
132 return 0;
133 }
134
135 struct pwm_device *
136 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
137 {
138 struct pwm_device *pwm;
139
140 if (pc->of_pwm_n_cells < 3)
141 return ERR_PTR(-EINVAL);
142
143 if (args->args[0] >= pc->npwm)
144 return ERR_PTR(-EINVAL);
145
146 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
147 if (IS_ERR(pwm))
148 return pwm;
149
150 pwm->args.period = args->args[1];
151
152 if (args->args[2] & PWM_POLARITY_INVERTED)
153 pwm->args.polarity = PWM_POLARITY_INVERSED;
154 else
155 pwm->args.polarity = PWM_POLARITY_NORMAL;
156
157 return pwm;
158 }
159 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
160
161 static struct pwm_device *
162 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
163 {
164 struct pwm_device *pwm;
165
166 if (pc->of_pwm_n_cells < 2)
167 return ERR_PTR(-EINVAL);
168
169 if (args->args[0] >= pc->npwm)
170 return ERR_PTR(-EINVAL);
171
172 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
173 if (IS_ERR(pwm))
174 return pwm;
175
176 pwm->args.period = args->args[1];
177
178 return pwm;
179 }
180
181 static void of_pwmchip_add(struct pwm_chip *chip)
182 {
183 if (!chip->dev || !chip->dev->of_node)
184 return;
185
186 if (!chip->of_xlate) {
187 chip->of_xlate = of_pwm_simple_xlate;
188 chip->of_pwm_n_cells = 2;
189 }
190
191 of_node_get(chip->dev->of_node);
192 }
193
194 static void of_pwmchip_remove(struct pwm_chip *chip)
195 {
196 if (chip->dev)
197 of_node_put(chip->dev->of_node);
198 }
199
200 /**
201 * pwm_set_chip_data() - set private chip data for a PWM
202 * @pwm: PWM device
203 * @data: pointer to chip-specific data
204 *
205 * Returns: 0 on success or a negative error code on failure.
206 */
207 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
208 {
209 if (!pwm)
210 return -EINVAL;
211
212 pwm->chip_data = data;
213
214 return 0;
215 }
216 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
217
218 /**
219 * pwm_get_chip_data() - get private chip data for a PWM
220 * @pwm: PWM device
221 *
222 * Returns: A pointer to the chip-private data for the PWM device.
223 */
224 void *pwm_get_chip_data(struct pwm_device *pwm)
225 {
226 return pwm ? pwm->chip_data : NULL;
227 }
228 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
229
230 static bool pwm_ops_check(const struct pwm_ops *ops)
231 {
232 /* driver supports legacy, non-atomic operation */
233 if (ops->config && ops->enable && ops->disable)
234 return true;
235
236 /* driver supports atomic operation */
237 if (ops->apply)
238 return true;
239
240 return false;
241 }
242
243 /**
244 * pwmchip_add_with_polarity() - register a new PWM chip
245 * @chip: the PWM chip to add
246 * @polarity: initial polarity of PWM channels
247 *
248 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
249 * will be used. The initial polarity for all channels is specified by the
250 * @polarity parameter.
251 *
252 * Returns: 0 on success or a negative error code on failure.
253 */
254 int pwmchip_add_with_polarity(struct pwm_chip *chip,
255 enum pwm_polarity polarity)
256 {
257 struct pwm_device *pwm;
258 unsigned int i;
259 int ret;
260
261 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
262 return -EINVAL;
263
264 if (!pwm_ops_check(chip->ops))
265 return -EINVAL;
266
267 mutex_lock(&pwm_lock);
268
269 ret = alloc_pwms(chip->base, chip->npwm);
270 if (ret < 0)
271 goto out;
272
273 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
274 if (!chip->pwms) {
275 ret = -ENOMEM;
276 goto out;
277 }
278
279 chip->base = ret;
280
281 for (i = 0; i < chip->npwm; i++) {
282 pwm = &chip->pwms[i];
283
284 pwm->chip = chip;
285 pwm->pwm = chip->base + i;
286 pwm->hwpwm = i;
287 pwm->state.polarity = polarity;
288
289 if (chip->ops->get_state)
290 chip->ops->get_state(chip, pwm, &pwm->state);
291
292 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
293 }
294
295 bitmap_set(allocated_pwms, chip->base, chip->npwm);
296
297 INIT_LIST_HEAD(&chip->list);
298 list_add(&chip->list, &pwm_chips);
299
300 ret = 0;
301
302 if (IS_ENABLED(CONFIG_OF))
303 of_pwmchip_add(chip);
304
305 pwmchip_sysfs_export(chip);
306
307 out:
308 mutex_unlock(&pwm_lock);
309 return ret;
310 }
311 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
312
313 /**
314 * pwmchip_add() - register a new PWM chip
315 * @chip: the PWM chip to add
316 *
317 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
318 * will be used. The initial polarity for all channels is normal.
319 *
320 * Returns: 0 on success or a negative error code on failure.
321 */
322 int pwmchip_add(struct pwm_chip *chip)
323 {
324 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
325 }
326 EXPORT_SYMBOL_GPL(pwmchip_add);
327
328 /**
329 * pwmchip_remove() - remove a PWM chip
330 * @chip: the PWM chip to remove
331 *
332 * Removes a PWM chip. This function may return busy if the PWM chip provides
333 * a PWM device that is still requested.
334 *
335 * Returns: 0 on success or a negative error code on failure.
336 */
337 int pwmchip_remove(struct pwm_chip *chip)
338 {
339 unsigned int i;
340 int ret = 0;
341
342 mutex_lock(&pwm_lock);
343
344 for (i = 0; i < chip->npwm; i++) {
345 struct pwm_device *pwm = &chip->pwms[i];
346
347 if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
348 ret = -EBUSY;
349 goto out;
350 }
351 }
352
353 list_del_init(&chip->list);
354
355 if (IS_ENABLED(CONFIG_OF))
356 of_pwmchip_remove(chip);
357
358 free_pwms(chip);
359
360 pwmchip_sysfs_unexport(chip);
361
362 out:
363 mutex_unlock(&pwm_lock);
364 return ret;
365 }
366 EXPORT_SYMBOL_GPL(pwmchip_remove);
367
368 /**
369 * pwm_request() - request a PWM device
370 * @pwm: global PWM device index
371 * @label: PWM device label
372 *
373 * This function is deprecated, use pwm_get() instead.
374 *
375 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
376 * failure.
377 */
378 struct pwm_device *pwm_request(int pwm, const char *label)
379 {
380 struct pwm_device *dev;
381 int err;
382
383 if (pwm < 0 || pwm >= MAX_PWMS)
384 return ERR_PTR(-EINVAL);
385
386 mutex_lock(&pwm_lock);
387
388 dev = pwm_to_device(pwm);
389 if (!dev) {
390 dev = ERR_PTR(-EPROBE_DEFER);
391 goto out;
392 }
393
394 err = pwm_device_request(dev, label);
395 if (err < 0)
396 dev = ERR_PTR(err);
397
398 out:
399 mutex_unlock(&pwm_lock);
400
401 return dev;
402 }
403 EXPORT_SYMBOL_GPL(pwm_request);
404
405 /**
406 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
407 * @chip: PWM chip
408 * @index: per-chip index of the PWM to request
409 * @label: a literal description string of this PWM
410 *
411 * Returns: A pointer to the PWM device at the given index of the given PWM
412 * chip. A negative error code is returned if the index is not valid for the
413 * specified PWM chip or if the PWM device cannot be requested.
414 */
415 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
416 unsigned int index,
417 const char *label)
418 {
419 struct pwm_device *pwm;
420 int err;
421
422 if (!chip || index >= chip->npwm)
423 return ERR_PTR(-EINVAL);
424
425 mutex_lock(&pwm_lock);
426 pwm = &chip->pwms[index];
427
428 err = pwm_device_request(pwm, label);
429 if (err < 0)
430 pwm = ERR_PTR(err);
431
432 mutex_unlock(&pwm_lock);
433 return pwm;
434 }
435 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
436
437 /**
438 * pwm_free() - free a PWM device
439 * @pwm: PWM device
440 *
441 * This function is deprecated, use pwm_put() instead.
442 */
443 void pwm_free(struct pwm_device *pwm)
444 {
445 pwm_put(pwm);
446 }
447 EXPORT_SYMBOL_GPL(pwm_free);
448
449 /**
450 * pwm_apply_state() - atomically apply a new state to a PWM device
451 * @pwm: PWM device
452 * @state: new state to apply. This can be adjusted by the PWM driver
453 * if the requested config is not achievable, for example,
454 * ->duty_cycle and ->period might be approximated.
455 */
456 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
457 {
458 int err;
459
460 if (!pwm || !state || !state->period ||
461 state->duty_cycle > state->period)
462 return -EINVAL;
463
464 if (!memcmp(state, &pwm->state, sizeof(*state)))
465 return 0;
466
467 if (pwm->chip->ops->apply) {
468 err = pwm->chip->ops->apply(pwm->chip, pwm, state);
469 if (err)
470 return err;
471
472 pwm->state = *state;
473 } else {
474 /*
475 * FIXME: restore the initial state in case of error.
476 */
477 if (state->polarity != pwm->state.polarity) {
478 if (!pwm->chip->ops->set_polarity)
479 return -ENOTSUPP;
480
481 /*
482 * Changing the polarity of a running PWM is
483 * only allowed when the PWM driver implements
484 * ->apply().
485 */
486 if (pwm->state.enabled) {
487 pwm->chip->ops->disable(pwm->chip, pwm);
488 pwm->state.enabled = false;
489 }
490
491 err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
492 state->polarity);
493 if (err)
494 return err;
495
496 pwm->state.polarity = state->polarity;
497 }
498
499 if (state->period != pwm->state.period ||
500 state->duty_cycle != pwm->state.duty_cycle) {
501 err = pwm->chip->ops->config(pwm->chip, pwm,
502 state->duty_cycle,
503 state->period);
504 if (err)
505 return err;
506
507 pwm->state.duty_cycle = state->duty_cycle;
508 pwm->state.period = state->period;
509 }
510
511 if (state->enabled != pwm->state.enabled) {
512 if (state->enabled) {
513 err = pwm->chip->ops->enable(pwm->chip, pwm);
514 if (err)
515 return err;
516 } else {
517 pwm->chip->ops->disable(pwm->chip, pwm);
518 }
519
520 pwm->state.enabled = state->enabled;
521 }
522 }
523
524 return 0;
525 }
526 EXPORT_SYMBOL_GPL(pwm_apply_state);
527
528 /**
529 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
530 * @pwm: PWM device
531 *
532 * This function will adjust the PWM config to the PWM arguments provided
533 * by the DT or PWM lookup table. This is particularly useful to adapt
534 * the bootloader config to the Linux one.
535 */
536 int pwm_adjust_config(struct pwm_device *pwm)
537 {
538 struct pwm_state state;
539 struct pwm_args pargs;
540
541 pwm_get_args(pwm, &pargs);
542 pwm_get_state(pwm, &state);
543
544 /*
545 * If the current period is zero it means that either the PWM driver
546 * does not support initial state retrieval or the PWM has not yet
547 * been configured.
548 *
549 * In either case, we setup the new period and polarity, and assign a
550 * duty cycle of 0.
551 */
552 if (!state.period) {
553 state.duty_cycle = 0;
554 state.period = pargs.period;
555 state.polarity = pargs.polarity;
556
557 return pwm_apply_state(pwm, &state);
558 }
559
560 /*
561 * Adjust the PWM duty cycle/period based on the period value provided
562 * in PWM args.
563 */
564 if (pargs.period != state.period) {
565 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
566
567 do_div(dutycycle, state.period);
568 state.duty_cycle = dutycycle;
569 state.period = pargs.period;
570 }
571
572 /*
573 * If the polarity changed, we should also change the duty cycle.
574 */
575 if (pargs.polarity != state.polarity) {
576 state.polarity = pargs.polarity;
577 state.duty_cycle = state.period - state.duty_cycle;
578 }
579
580 return pwm_apply_state(pwm, &state);
581 }
582 EXPORT_SYMBOL_GPL(pwm_adjust_config);
583
584 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
585 {
586 struct pwm_chip *chip;
587
588 mutex_lock(&pwm_lock);
589
590 list_for_each_entry(chip, &pwm_chips, list)
591 if (chip->dev && chip->dev->of_node == np) {
592 mutex_unlock(&pwm_lock);
593 return chip;
594 }
595
596 mutex_unlock(&pwm_lock);
597
598 return ERR_PTR(-EPROBE_DEFER);
599 }
600
601 /**
602 * of_pwm_get() - request a PWM via the PWM framework
603 * @np: device node to get the PWM from
604 * @con_id: consumer name
605 *
606 * Returns the PWM device parsed from the phandle and index specified in the
607 * "pwms" property of a device tree node or a negative error-code on failure.
608 * Values parsed from the device tree are stored in the returned PWM device
609 * object.
610 *
611 * If con_id is NULL, the first PWM device listed in the "pwms" property will
612 * be requested. Otherwise the "pwm-names" property is used to do a reverse
613 * lookup of the PWM index. This also means that the "pwm-names" property
614 * becomes mandatory for devices that look up the PWM device via the con_id
615 * parameter.
616 *
617 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
618 * error code on failure.
619 */
620 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
621 {
622 struct pwm_device *pwm = NULL;
623 struct of_phandle_args args;
624 struct pwm_chip *pc;
625 int index = 0;
626 int err;
627
628 if (con_id) {
629 index = of_property_match_string(np, "pwm-names", con_id);
630 if (index < 0)
631 return ERR_PTR(index);
632 }
633
634 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
635 &args);
636 if (err) {
637 pr_debug("%s(): can't parse \"pwms\" property\n", __func__);
638 return ERR_PTR(err);
639 }
640
641 pc = of_node_to_pwmchip(args.np);
642 if (IS_ERR(pc)) {
643 pr_debug("%s(): PWM chip not found\n", __func__);
644 pwm = ERR_CAST(pc);
645 goto put;
646 }
647
648 if (args.args_count != pc->of_pwm_n_cells) {
649 pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name,
650 args.np->full_name);
651 pwm = ERR_PTR(-EINVAL);
652 goto put;
653 }
654
655 pwm = pc->of_xlate(pc, &args);
656 if (IS_ERR(pwm))
657 goto put;
658
659 /*
660 * If a consumer name was not given, try to look it up from the
661 * "pwm-names" property if it exists. Otherwise use the name of
662 * the user device node.
663 */
664 if (!con_id) {
665 err = of_property_read_string_index(np, "pwm-names", index,
666 &con_id);
667 if (err < 0)
668 con_id = np->name;
669 }
670
671 pwm->label = con_id;
672
673 put:
674 of_node_put(args.np);
675
676 return pwm;
677 }
678 EXPORT_SYMBOL_GPL(of_pwm_get);
679
680 /**
681 * pwm_add_table() - register PWM device consumers
682 * @table: array of consumers to register
683 * @num: number of consumers in table
684 */
685 void pwm_add_table(struct pwm_lookup *table, size_t num)
686 {
687 mutex_lock(&pwm_lookup_lock);
688
689 while (num--) {
690 list_add_tail(&table->list, &pwm_lookup_list);
691 table++;
692 }
693
694 mutex_unlock(&pwm_lookup_lock);
695 }
696
697 /**
698 * pwm_remove_table() - unregister PWM device consumers
699 * @table: array of consumers to unregister
700 * @num: number of consumers in table
701 */
702 void pwm_remove_table(struct pwm_lookup *table, size_t num)
703 {
704 mutex_lock(&pwm_lookup_lock);
705
706 while (num--) {
707 list_del(&table->list);
708 table++;
709 }
710
711 mutex_unlock(&pwm_lookup_lock);
712 }
713
714 /**
715 * pwm_get() - look up and request a PWM device
716 * @dev: device for PWM consumer
717 * @con_id: consumer name
718 *
719 * Lookup is first attempted using DT. If the device was not instantiated from
720 * a device tree, a PWM chip and a relative index is looked up via a table
721 * supplied by board setup code (see pwm_add_table()).
722 *
723 * Once a PWM chip has been found the specified PWM device will be requested
724 * and is ready to be used.
725 *
726 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
727 * error code on failure.
728 */
729 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
730 {
731 struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER);
732 const char *dev_id = dev ? dev_name(dev) : NULL;
733 struct pwm_chip *chip = NULL;
734 unsigned int best = 0;
735 struct pwm_lookup *p, *chosen = NULL;
736 unsigned int match;
737
738 /* look up via DT first */
739 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
740 return of_pwm_get(dev->of_node, con_id);
741
742 /*
743 * We look up the provider in the static table typically provided by
744 * board setup code. We first try to lookup the consumer device by
745 * name. If the consumer device was passed in as NULL or if no match
746 * was found, we try to find the consumer by directly looking it up
747 * by name.
748 *
749 * If a match is found, the provider PWM chip is looked up by name
750 * and a PWM device is requested using the PWM device per-chip index.
751 *
752 * The lookup algorithm was shamelessly taken from the clock
753 * framework:
754 *
755 * We do slightly fuzzy matching here:
756 * An entry with a NULL ID is assumed to be a wildcard.
757 * If an entry has a device ID, it must match
758 * If an entry has a connection ID, it must match
759 * Then we take the most specific entry - with the following order
760 * of precedence: dev+con > dev only > con only.
761 */
762 mutex_lock(&pwm_lookup_lock);
763
764 list_for_each_entry(p, &pwm_lookup_list, list) {
765 match = 0;
766
767 if (p->dev_id) {
768 if (!dev_id || strcmp(p->dev_id, dev_id))
769 continue;
770
771 match += 2;
772 }
773
774 if (p->con_id) {
775 if (!con_id || strcmp(p->con_id, con_id))
776 continue;
777
778 match += 1;
779 }
780
781 if (match > best) {
782 chosen = p;
783
784 if (match != 3)
785 best = match;
786 else
787 break;
788 }
789 }
790
791 if (!chosen) {
792 pwm = ERR_PTR(-ENODEV);
793 goto out;
794 }
795
796 chip = pwmchip_find_by_name(chosen->provider);
797 if (!chip)
798 goto out;
799
800 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
801 if (IS_ERR(pwm))
802 goto out;
803
804 pwm->args.period = chosen->period;
805 pwm->args.polarity = chosen->polarity;
806
807 out:
808 mutex_unlock(&pwm_lookup_lock);
809 return pwm;
810 }
811 EXPORT_SYMBOL_GPL(pwm_get);
812
813 /**
814 * pwm_put() - release a PWM device
815 * @pwm: PWM device
816 */
817 void pwm_put(struct pwm_device *pwm)
818 {
819 if (!pwm)
820 return;
821
822 mutex_lock(&pwm_lock);
823
824 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
825 pr_warn("PWM device already freed\n");
826 goto out;
827 }
828
829 if (pwm->chip->ops->free)
830 pwm->chip->ops->free(pwm->chip, pwm);
831
832 pwm->label = NULL;
833
834 module_put(pwm->chip->ops->owner);
835 out:
836 mutex_unlock(&pwm_lock);
837 }
838 EXPORT_SYMBOL_GPL(pwm_put);
839
840 static void devm_pwm_release(struct device *dev, void *res)
841 {
842 pwm_put(*(struct pwm_device **)res);
843 }
844
845 /**
846 * devm_pwm_get() - resource managed pwm_get()
847 * @dev: device for PWM consumer
848 * @con_id: consumer name
849 *
850 * This function performs like pwm_get() but the acquired PWM device will
851 * automatically be released on driver detach.
852 *
853 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
854 * error code on failure.
855 */
856 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
857 {
858 struct pwm_device **ptr, *pwm;
859
860 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
861 if (!ptr)
862 return ERR_PTR(-ENOMEM);
863
864 pwm = pwm_get(dev, con_id);
865 if (!IS_ERR(pwm)) {
866 *ptr = pwm;
867 devres_add(dev, ptr);
868 } else {
869 devres_free(ptr);
870 }
871
872 return pwm;
873 }
874 EXPORT_SYMBOL_GPL(devm_pwm_get);
875
876 /**
877 * devm_of_pwm_get() - resource managed of_pwm_get()
878 * @dev: device for PWM consumer
879 * @np: device node to get the PWM from
880 * @con_id: consumer name
881 *
882 * This function performs like of_pwm_get() but the acquired PWM device will
883 * automatically be released on driver detach.
884 *
885 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
886 * error code on failure.
887 */
888 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
889 const char *con_id)
890 {
891 struct pwm_device **ptr, *pwm;
892
893 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
894 if (!ptr)
895 return ERR_PTR(-ENOMEM);
896
897 pwm = of_pwm_get(np, con_id);
898 if (!IS_ERR(pwm)) {
899 *ptr = pwm;
900 devres_add(dev, ptr);
901 } else {
902 devres_free(ptr);
903 }
904
905 return pwm;
906 }
907 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
908
909 static int devm_pwm_match(struct device *dev, void *res, void *data)
910 {
911 struct pwm_device **p = res;
912
913 if (WARN_ON(!p || !*p))
914 return 0;
915
916 return *p == data;
917 }
918
919 /**
920 * devm_pwm_put() - resource managed pwm_put()
921 * @dev: device for PWM consumer
922 * @pwm: PWM device
923 *
924 * Release a PWM previously allocated using devm_pwm_get(). Calling this
925 * function is usually not needed because devm-allocated resources are
926 * automatically released on driver detach.
927 */
928 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
929 {
930 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
931 }
932 EXPORT_SYMBOL_GPL(devm_pwm_put);
933
934 /**
935 * pwm_can_sleep() - report whether PWM access will sleep
936 * @pwm: PWM device
937 *
938 * Returns: True if accessing the PWM can sleep, false otherwise.
939 */
940 bool pwm_can_sleep(struct pwm_device *pwm)
941 {
942 return true;
943 }
944 EXPORT_SYMBOL_GPL(pwm_can_sleep);
945
946 #ifdef CONFIG_DEBUG_FS
947 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
948 {
949 unsigned int i;
950
951 for (i = 0; i < chip->npwm; i++) {
952 struct pwm_device *pwm = &chip->pwms[i];
953 struct pwm_state state;
954
955 pwm_get_state(pwm, &state);
956
957 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
958
959 if (test_bit(PWMF_REQUESTED, &pwm->flags))
960 seq_puts(s, " requested");
961
962 if (state.enabled)
963 seq_puts(s, " enabled");
964
965 seq_printf(s, " period: %u ns", state.period);
966 seq_printf(s, " duty: %u ns", state.duty_cycle);
967 seq_printf(s, " polarity: %s",
968 state.polarity ? "inverse" : "normal");
969
970 seq_puts(s, "\n");
971 }
972 }
973
974 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
975 {
976 mutex_lock(&pwm_lock);
977 s->private = "";
978
979 return seq_list_start(&pwm_chips, *pos);
980 }
981
982 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
983 {
984 s->private = "\n";
985
986 return seq_list_next(v, &pwm_chips, pos);
987 }
988
989 static void pwm_seq_stop(struct seq_file *s, void *v)
990 {
991 mutex_unlock(&pwm_lock);
992 }
993
994 static int pwm_seq_show(struct seq_file *s, void *v)
995 {
996 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
997
998 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
999 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1000 dev_name(chip->dev), chip->npwm,
1001 (chip->npwm != 1) ? "s" : "");
1002
1003 if (chip->ops->dbg_show)
1004 chip->ops->dbg_show(chip, s);
1005 else
1006 pwm_dbg_show(chip, s);
1007
1008 return 0;
1009 }
1010
1011 static const struct seq_operations pwm_seq_ops = {
1012 .start = pwm_seq_start,
1013 .next = pwm_seq_next,
1014 .stop = pwm_seq_stop,
1015 .show = pwm_seq_show,
1016 };
1017
1018 static int pwm_seq_open(struct inode *inode, struct file *file)
1019 {
1020 return seq_open(file, &pwm_seq_ops);
1021 }
1022
1023 static const struct file_operations pwm_debugfs_ops = {
1024 .owner = THIS_MODULE,
1025 .open = pwm_seq_open,
1026 .read = seq_read,
1027 .llseek = seq_lseek,
1028 .release = seq_release,
1029 };
1030
1031 static int __init pwm_debugfs_init(void)
1032 {
1033 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1034 &pwm_debugfs_ops);
1035
1036 return 0;
1037 }
1038 subsys_initcall(pwm_debugfs_init);
1039 #endif /* CONFIG_DEBUG_FS */
This page took 0.0753 seconds and 5 git commands to generate.