clk: sirf: Constify parent names in clock init data
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639 struct regulator *sibling;
640 int current_uA = 0, output_uV, input_uV, err;
641 unsigned int mode;
642
643 /*
644 * first check to see if we can set modes at all, otherwise just
645 * tell the consumer everything is OK.
646 */
647 err = regulator_check_drms(rdev);
648 if (err < 0)
649 return 0;
650
651 if (!rdev->desc->ops->get_optimum_mode &&
652 !rdev->desc->ops->set_load)
653 return 0;
654
655 if (!rdev->desc->ops->set_mode &&
656 !rdev->desc->ops->set_load)
657 return -EINVAL;
658
659 /* get output voltage */
660 output_uV = _regulator_get_voltage(rdev);
661 if (output_uV <= 0) {
662 rdev_err(rdev, "invalid output voltage found\n");
663 return -EINVAL;
664 }
665
666 /* get input voltage */
667 input_uV = 0;
668 if (rdev->supply)
669 input_uV = regulator_get_voltage(rdev->supply);
670 if (input_uV <= 0)
671 input_uV = rdev->constraints->input_uV;
672 if (input_uV <= 0) {
673 rdev_err(rdev, "invalid input voltage found\n");
674 return -EINVAL;
675 }
676
677 /* calc total requested load */
678 list_for_each_entry(sibling, &rdev->consumer_list, list)
679 current_uA += sibling->uA_load;
680
681 if (rdev->desc->ops->set_load) {
682 /* set the optimum mode for our new total regulator load */
683 err = rdev->desc->ops->set_load(rdev, current_uA);
684 if (err < 0)
685 rdev_err(rdev, "failed to set load %d\n", current_uA);
686 } else {
687 /* now get the optimum mode for our new total regulator load */
688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 output_uV, current_uA);
690
691 /* check the new mode is allowed */
692 err = regulator_mode_constrain(rdev, &mode);
693 if (err < 0) {
694 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
695 current_uA, input_uV, output_uV);
696 return err;
697 }
698
699 err = rdev->desc->ops->set_mode(rdev, mode);
700 if (err < 0)
701 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
702 }
703
704 return err;
705 }
706
707 static int suspend_set_state(struct regulator_dev *rdev,
708 struct regulator_state *rstate)
709 {
710 int ret = 0;
711
712 /* If we have no suspend mode configration don't set anything;
713 * only warn if the driver implements set_suspend_voltage or
714 * set_suspend_mode callback.
715 */
716 if (!rstate->enabled && !rstate->disabled) {
717 if (rdev->desc->ops->set_suspend_voltage ||
718 rdev->desc->ops->set_suspend_mode)
719 rdev_warn(rdev, "No configuration\n");
720 return 0;
721 }
722
723 if (rstate->enabled && rstate->disabled) {
724 rdev_err(rdev, "invalid configuration\n");
725 return -EINVAL;
726 }
727
728 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
729 ret = rdev->desc->ops->set_suspend_enable(rdev);
730 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
731 ret = rdev->desc->ops->set_suspend_disable(rdev);
732 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
733 ret = 0;
734
735 if (ret < 0) {
736 rdev_err(rdev, "failed to enabled/disable\n");
737 return ret;
738 }
739
740 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
741 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
742 if (ret < 0) {
743 rdev_err(rdev, "failed to set voltage\n");
744 return ret;
745 }
746 }
747
748 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
749 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
750 if (ret < 0) {
751 rdev_err(rdev, "failed to set mode\n");
752 return ret;
753 }
754 }
755 return ret;
756 }
757
758 /* locks held by caller */
759 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
760 {
761 if (!rdev->constraints)
762 return -EINVAL;
763
764 switch (state) {
765 case PM_SUSPEND_STANDBY:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_standby);
768 case PM_SUSPEND_MEM:
769 return suspend_set_state(rdev,
770 &rdev->constraints->state_mem);
771 case PM_SUSPEND_MAX:
772 return suspend_set_state(rdev,
773 &rdev->constraints->state_disk);
774 default:
775 return -EINVAL;
776 }
777 }
778
779 static void print_constraints(struct regulator_dev *rdev)
780 {
781 struct regulation_constraints *constraints = rdev->constraints;
782 char buf[80] = "";
783 int count = 0;
784 int ret;
785
786 if (constraints->min_uV && constraints->max_uV) {
787 if (constraints->min_uV == constraints->max_uV)
788 count += sprintf(buf + count, "%d mV ",
789 constraints->min_uV / 1000);
790 else
791 count += sprintf(buf + count, "%d <--> %d mV ",
792 constraints->min_uV / 1000,
793 constraints->max_uV / 1000);
794 }
795
796 if (!constraints->min_uV ||
797 constraints->min_uV != constraints->max_uV) {
798 ret = _regulator_get_voltage(rdev);
799 if (ret > 0)
800 count += sprintf(buf + count, "at %d mV ", ret / 1000);
801 }
802
803 if (constraints->uV_offset)
804 count += sprintf(buf, "%dmV offset ",
805 constraints->uV_offset / 1000);
806
807 if (constraints->min_uA && constraints->max_uA) {
808 if (constraints->min_uA == constraints->max_uA)
809 count += sprintf(buf + count, "%d mA ",
810 constraints->min_uA / 1000);
811 else
812 count += sprintf(buf + count, "%d <--> %d mA ",
813 constraints->min_uA / 1000,
814 constraints->max_uA / 1000);
815 }
816
817 if (!constraints->min_uA ||
818 constraints->min_uA != constraints->max_uA) {
819 ret = _regulator_get_current_limit(rdev);
820 if (ret > 0)
821 count += sprintf(buf + count, "at %d mA ", ret / 1000);
822 }
823
824 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
825 count += sprintf(buf + count, "fast ");
826 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
827 count += sprintf(buf + count, "normal ");
828 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
829 count += sprintf(buf + count, "idle ");
830 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
831 count += sprintf(buf + count, "standby");
832
833 if (!count)
834 sprintf(buf, "no parameters");
835
836 rdev_dbg(rdev, "%s\n", buf);
837
838 if ((constraints->min_uV != constraints->max_uV) &&
839 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
840 rdev_warn(rdev,
841 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
842 }
843
844 static int machine_constraints_voltage(struct regulator_dev *rdev,
845 struct regulation_constraints *constraints)
846 {
847 const struct regulator_ops *ops = rdev->desc->ops;
848 int ret;
849
850 /* do we need to apply the constraint voltage */
851 if (rdev->constraints->apply_uV &&
852 rdev->constraints->min_uV == rdev->constraints->max_uV) {
853 int current_uV = _regulator_get_voltage(rdev);
854 if (current_uV < 0) {
855 rdev_err(rdev,
856 "failed to get the current voltage(%d)\n",
857 current_uV);
858 return current_uV;
859 }
860 if (current_uV < rdev->constraints->min_uV ||
861 current_uV > rdev->constraints->max_uV) {
862 ret = _regulator_do_set_voltage(
863 rdev, rdev->constraints->min_uV,
864 rdev->constraints->max_uV);
865 if (ret < 0) {
866 rdev_err(rdev,
867 "failed to apply %duV constraint(%d)\n",
868 rdev->constraints->min_uV, ret);
869 return ret;
870 }
871 }
872 }
873
874 /* constrain machine-level voltage specs to fit
875 * the actual range supported by this regulator.
876 */
877 if (ops->list_voltage && rdev->desc->n_voltages) {
878 int count = rdev->desc->n_voltages;
879 int i;
880 int min_uV = INT_MAX;
881 int max_uV = INT_MIN;
882 int cmin = constraints->min_uV;
883 int cmax = constraints->max_uV;
884
885 /* it's safe to autoconfigure fixed-voltage supplies
886 and the constraints are used by list_voltage. */
887 if (count == 1 && !cmin) {
888 cmin = 1;
889 cmax = INT_MAX;
890 constraints->min_uV = cmin;
891 constraints->max_uV = cmax;
892 }
893
894 /* voltage constraints are optional */
895 if ((cmin == 0) && (cmax == 0))
896 return 0;
897
898 /* else require explicit machine-level constraints */
899 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
900 rdev_err(rdev, "invalid voltage constraints\n");
901 return -EINVAL;
902 }
903
904 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
905 for (i = 0; i < count; i++) {
906 int value;
907
908 value = ops->list_voltage(rdev, i);
909 if (value <= 0)
910 continue;
911
912 /* maybe adjust [min_uV..max_uV] */
913 if (value >= cmin && value < min_uV)
914 min_uV = value;
915 if (value <= cmax && value > max_uV)
916 max_uV = value;
917 }
918
919 /* final: [min_uV..max_uV] valid iff constraints valid */
920 if (max_uV < min_uV) {
921 rdev_err(rdev,
922 "unsupportable voltage constraints %u-%uuV\n",
923 min_uV, max_uV);
924 return -EINVAL;
925 }
926
927 /* use regulator's subset of machine constraints */
928 if (constraints->min_uV < min_uV) {
929 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
930 constraints->min_uV, min_uV);
931 constraints->min_uV = min_uV;
932 }
933 if (constraints->max_uV > max_uV) {
934 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
935 constraints->max_uV, max_uV);
936 constraints->max_uV = max_uV;
937 }
938 }
939
940 return 0;
941 }
942
943 static int machine_constraints_current(struct regulator_dev *rdev,
944 struct regulation_constraints *constraints)
945 {
946 const struct regulator_ops *ops = rdev->desc->ops;
947 int ret;
948
949 if (!constraints->min_uA && !constraints->max_uA)
950 return 0;
951
952 if (constraints->min_uA > constraints->max_uA) {
953 rdev_err(rdev, "Invalid current constraints\n");
954 return -EINVAL;
955 }
956
957 if (!ops->set_current_limit || !ops->get_current_limit) {
958 rdev_warn(rdev, "Operation of current configuration missing\n");
959 return 0;
960 }
961
962 /* Set regulator current in constraints range */
963 ret = ops->set_current_limit(rdev, constraints->min_uA,
964 constraints->max_uA);
965 if (ret < 0) {
966 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
967 return ret;
968 }
969
970 return 0;
971 }
972
973 static int _regulator_do_enable(struct regulator_dev *rdev);
974
975 /**
976 * set_machine_constraints - sets regulator constraints
977 * @rdev: regulator source
978 * @constraints: constraints to apply
979 *
980 * Allows platform initialisation code to define and constrain
981 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
982 * Constraints *must* be set by platform code in order for some
983 * regulator operations to proceed i.e. set_voltage, set_current_limit,
984 * set_mode.
985 */
986 static int set_machine_constraints(struct regulator_dev *rdev,
987 const struct regulation_constraints *constraints)
988 {
989 int ret = 0;
990 const struct regulator_ops *ops = rdev->desc->ops;
991
992 if (constraints)
993 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
994 GFP_KERNEL);
995 else
996 rdev->constraints = kzalloc(sizeof(*constraints),
997 GFP_KERNEL);
998 if (!rdev->constraints)
999 return -ENOMEM;
1000
1001 ret = machine_constraints_voltage(rdev, rdev->constraints);
1002 if (ret != 0)
1003 goto out;
1004
1005 ret = machine_constraints_current(rdev, rdev->constraints);
1006 if (ret != 0)
1007 goto out;
1008
1009 /* do we need to setup our suspend state */
1010 if (rdev->constraints->initial_state) {
1011 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1012 if (ret < 0) {
1013 rdev_err(rdev, "failed to set suspend state\n");
1014 goto out;
1015 }
1016 }
1017
1018 if (rdev->constraints->initial_mode) {
1019 if (!ops->set_mode) {
1020 rdev_err(rdev, "no set_mode operation\n");
1021 ret = -EINVAL;
1022 goto out;
1023 }
1024
1025 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1028 goto out;
1029 }
1030 }
1031
1032 /* If the constraints say the regulator should be on at this point
1033 * and we have control then make sure it is enabled.
1034 */
1035 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1036 ret = _regulator_do_enable(rdev);
1037 if (ret < 0 && ret != -EINVAL) {
1038 rdev_err(rdev, "failed to enable\n");
1039 goto out;
1040 }
1041 }
1042
1043 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1044 && ops->set_ramp_delay) {
1045 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1046 if (ret < 0) {
1047 rdev_err(rdev, "failed to set ramp_delay\n");
1048 goto out;
1049 }
1050 }
1051
1052 print_constraints(rdev);
1053 return 0;
1054 out:
1055 kfree(rdev->constraints);
1056 rdev->constraints = NULL;
1057 return ret;
1058 }
1059
1060 /**
1061 * set_supply - set regulator supply regulator
1062 * @rdev: regulator name
1063 * @supply_rdev: supply regulator name
1064 *
1065 * Called by platform initialisation code to set the supply regulator for this
1066 * regulator. This ensures that a regulators supply will also be enabled by the
1067 * core if it's child is enabled.
1068 */
1069 static int set_supply(struct regulator_dev *rdev,
1070 struct regulator_dev *supply_rdev)
1071 {
1072 int err;
1073
1074 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1075
1076 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1077 if (rdev->supply == NULL) {
1078 err = -ENOMEM;
1079 return err;
1080 }
1081 supply_rdev->open_count++;
1082
1083 return 0;
1084 }
1085
1086 /**
1087 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1088 * @rdev: regulator source
1089 * @consumer_dev_name: dev_name() string for device supply applies to
1090 * @supply: symbolic name for supply
1091 *
1092 * Allows platform initialisation code to map physical regulator
1093 * sources to symbolic names for supplies for use by devices. Devices
1094 * should use these symbolic names to request regulators, avoiding the
1095 * need to provide board-specific regulator names as platform data.
1096 */
1097 static int set_consumer_device_supply(struct regulator_dev *rdev,
1098 const char *consumer_dev_name,
1099 const char *supply)
1100 {
1101 struct regulator_map *node;
1102 int has_dev;
1103
1104 if (supply == NULL)
1105 return -EINVAL;
1106
1107 if (consumer_dev_name != NULL)
1108 has_dev = 1;
1109 else
1110 has_dev = 0;
1111
1112 list_for_each_entry(node, &regulator_map_list, list) {
1113 if (node->dev_name && consumer_dev_name) {
1114 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1115 continue;
1116 } else if (node->dev_name || consumer_dev_name) {
1117 continue;
1118 }
1119
1120 if (strcmp(node->supply, supply) != 0)
1121 continue;
1122
1123 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1124 consumer_dev_name,
1125 dev_name(&node->regulator->dev),
1126 node->regulator->desc->name,
1127 supply,
1128 dev_name(&rdev->dev), rdev_get_name(rdev));
1129 return -EBUSY;
1130 }
1131
1132 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1133 if (node == NULL)
1134 return -ENOMEM;
1135
1136 node->regulator = rdev;
1137 node->supply = supply;
1138
1139 if (has_dev) {
1140 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1141 if (node->dev_name == NULL) {
1142 kfree(node);
1143 return -ENOMEM;
1144 }
1145 }
1146
1147 list_add(&node->list, &regulator_map_list);
1148 return 0;
1149 }
1150
1151 static void unset_regulator_supplies(struct regulator_dev *rdev)
1152 {
1153 struct regulator_map *node, *n;
1154
1155 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1156 if (rdev == node->regulator) {
1157 list_del(&node->list);
1158 kfree(node->dev_name);
1159 kfree(node);
1160 }
1161 }
1162 }
1163
1164 #define REG_STR_SIZE 64
1165
1166 static struct regulator *create_regulator(struct regulator_dev *rdev,
1167 struct device *dev,
1168 const char *supply_name)
1169 {
1170 struct regulator *regulator;
1171 char buf[REG_STR_SIZE];
1172 int err, size;
1173
1174 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1175 if (regulator == NULL)
1176 return NULL;
1177
1178 mutex_lock(&rdev->mutex);
1179 regulator->rdev = rdev;
1180 list_add(&regulator->list, &rdev->consumer_list);
1181
1182 if (dev) {
1183 regulator->dev = dev;
1184
1185 /* Add a link to the device sysfs entry */
1186 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1187 dev->kobj.name, supply_name);
1188 if (size >= REG_STR_SIZE)
1189 goto overflow_err;
1190
1191 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1192 if (regulator->supply_name == NULL)
1193 goto overflow_err;
1194
1195 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1196 buf);
1197 if (err) {
1198 rdev_warn(rdev, "could not add device link %s err %d\n",
1199 dev->kobj.name, err);
1200 /* non-fatal */
1201 }
1202 } else {
1203 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1204 if (regulator->supply_name == NULL)
1205 goto overflow_err;
1206 }
1207
1208 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1209 rdev->debugfs);
1210 if (!regulator->debugfs) {
1211 rdev_warn(rdev, "Failed to create debugfs directory\n");
1212 } else {
1213 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1214 &regulator->uA_load);
1215 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1216 &regulator->min_uV);
1217 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1218 &regulator->max_uV);
1219 }
1220
1221 /*
1222 * Check now if the regulator is an always on regulator - if
1223 * it is then we don't need to do nearly so much work for
1224 * enable/disable calls.
1225 */
1226 if (!_regulator_can_change_status(rdev) &&
1227 _regulator_is_enabled(rdev))
1228 regulator->always_on = true;
1229
1230 mutex_unlock(&rdev->mutex);
1231 return regulator;
1232 overflow_err:
1233 list_del(&regulator->list);
1234 kfree(regulator);
1235 mutex_unlock(&rdev->mutex);
1236 return NULL;
1237 }
1238
1239 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1240 {
1241 if (rdev->constraints && rdev->constraints->enable_time)
1242 return rdev->constraints->enable_time;
1243 if (!rdev->desc->ops->enable_time)
1244 return rdev->desc->enable_time;
1245 return rdev->desc->ops->enable_time(rdev);
1246 }
1247
1248 static struct regulator_supply_alias *regulator_find_supply_alias(
1249 struct device *dev, const char *supply)
1250 {
1251 struct regulator_supply_alias *map;
1252
1253 list_for_each_entry(map, &regulator_supply_alias_list, list)
1254 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1255 return map;
1256
1257 return NULL;
1258 }
1259
1260 static void regulator_supply_alias(struct device **dev, const char **supply)
1261 {
1262 struct regulator_supply_alias *map;
1263
1264 map = regulator_find_supply_alias(*dev, *supply);
1265 if (map) {
1266 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1267 *supply, map->alias_supply,
1268 dev_name(map->alias_dev));
1269 *dev = map->alias_dev;
1270 *supply = map->alias_supply;
1271 }
1272 }
1273
1274 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1275 const char *supply,
1276 int *ret)
1277 {
1278 struct regulator_dev *r;
1279 struct device_node *node;
1280 struct regulator_map *map;
1281 const char *devname = NULL;
1282
1283 regulator_supply_alias(&dev, &supply);
1284
1285 /* first do a dt based lookup */
1286 if (dev && dev->of_node) {
1287 node = of_get_regulator(dev, supply);
1288 if (node) {
1289 list_for_each_entry(r, &regulator_list, list)
1290 if (r->dev.parent &&
1291 node == r->dev.of_node)
1292 return r;
1293 *ret = -EPROBE_DEFER;
1294 return NULL;
1295 } else {
1296 /*
1297 * If we couldn't even get the node then it's
1298 * not just that the device didn't register
1299 * yet, there's no node and we'll never
1300 * succeed.
1301 */
1302 *ret = -ENODEV;
1303 }
1304 }
1305
1306 /* if not found, try doing it non-dt way */
1307 if (dev)
1308 devname = dev_name(dev);
1309
1310 list_for_each_entry(r, &regulator_list, list)
1311 if (strcmp(rdev_get_name(r), supply) == 0)
1312 return r;
1313
1314 list_for_each_entry(map, &regulator_map_list, list) {
1315 /* If the mapping has a device set up it must match */
1316 if (map->dev_name &&
1317 (!devname || strcmp(map->dev_name, devname)))
1318 continue;
1319
1320 if (strcmp(map->supply, supply) == 0)
1321 return map->regulator;
1322 }
1323
1324
1325 return NULL;
1326 }
1327
1328 static int regulator_resolve_supply(struct regulator_dev *rdev)
1329 {
1330 struct regulator_dev *r;
1331 struct device *dev = rdev->dev.parent;
1332 int ret;
1333
1334 /* No supply to resovle? */
1335 if (!rdev->supply_name)
1336 return 0;
1337
1338 /* Supply already resolved? */
1339 if (rdev->supply)
1340 return 0;
1341
1342 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1343 if (ret == -ENODEV) {
1344 /*
1345 * No supply was specified for this regulator and
1346 * there will never be one.
1347 */
1348 return 0;
1349 }
1350
1351 if (!r) {
1352 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1353 rdev->supply_name, rdev->desc->name);
1354 return -EPROBE_DEFER;
1355 }
1356
1357 /* Recursively resolve the supply of the supply */
1358 ret = regulator_resolve_supply(r);
1359 if (ret < 0)
1360 return ret;
1361
1362 ret = set_supply(rdev, r);
1363 if (ret < 0)
1364 return ret;
1365
1366 /* Cascade always-on state to supply */
1367 if (_regulator_is_enabled(rdev)) {
1368 ret = regulator_enable(rdev->supply);
1369 if (ret < 0)
1370 return ret;
1371 }
1372
1373 return 0;
1374 }
1375
1376 /* Internal regulator request function */
1377 static struct regulator *_regulator_get(struct device *dev, const char *id,
1378 bool exclusive, bool allow_dummy)
1379 {
1380 struct regulator_dev *rdev;
1381 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1382 const char *devname = NULL;
1383 int ret;
1384
1385 if (id == NULL) {
1386 pr_err("get() with no identifier\n");
1387 return ERR_PTR(-EINVAL);
1388 }
1389
1390 if (dev)
1391 devname = dev_name(dev);
1392
1393 if (have_full_constraints())
1394 ret = -ENODEV;
1395 else
1396 ret = -EPROBE_DEFER;
1397
1398 mutex_lock(&regulator_list_mutex);
1399
1400 rdev = regulator_dev_lookup(dev, id, &ret);
1401 if (rdev)
1402 goto found;
1403
1404 regulator = ERR_PTR(ret);
1405
1406 /*
1407 * If we have return value from dev_lookup fail, we do not expect to
1408 * succeed, so, quit with appropriate error value
1409 */
1410 if (ret && ret != -ENODEV)
1411 goto out;
1412
1413 if (!devname)
1414 devname = "deviceless";
1415
1416 /*
1417 * Assume that a regulator is physically present and enabled
1418 * even if it isn't hooked up and just provide a dummy.
1419 */
1420 if (have_full_constraints() && allow_dummy) {
1421 pr_warn("%s supply %s not found, using dummy regulator\n",
1422 devname, id);
1423
1424 rdev = dummy_regulator_rdev;
1425 goto found;
1426 /* Don't log an error when called from regulator_get_optional() */
1427 } else if (!have_full_constraints() || exclusive) {
1428 dev_warn(dev, "dummy supplies not allowed\n");
1429 }
1430
1431 mutex_unlock(&regulator_list_mutex);
1432 return regulator;
1433
1434 found:
1435 if (rdev->exclusive) {
1436 regulator = ERR_PTR(-EPERM);
1437 goto out;
1438 }
1439
1440 if (exclusive && rdev->open_count) {
1441 regulator = ERR_PTR(-EBUSY);
1442 goto out;
1443 }
1444
1445 ret = regulator_resolve_supply(rdev);
1446 if (ret < 0) {
1447 regulator = ERR_PTR(ret);
1448 goto out;
1449 }
1450
1451 if (!try_module_get(rdev->owner))
1452 goto out;
1453
1454 regulator = create_regulator(rdev, dev, id);
1455 if (regulator == NULL) {
1456 regulator = ERR_PTR(-ENOMEM);
1457 module_put(rdev->owner);
1458 goto out;
1459 }
1460
1461 rdev->open_count++;
1462 if (exclusive) {
1463 rdev->exclusive = 1;
1464
1465 ret = _regulator_is_enabled(rdev);
1466 if (ret > 0)
1467 rdev->use_count = 1;
1468 else
1469 rdev->use_count = 0;
1470 }
1471
1472 out:
1473 mutex_unlock(&regulator_list_mutex);
1474
1475 return regulator;
1476 }
1477
1478 /**
1479 * regulator_get - lookup and obtain a reference to a regulator.
1480 * @dev: device for regulator "consumer"
1481 * @id: Supply name or regulator ID.
1482 *
1483 * Returns a struct regulator corresponding to the regulator producer,
1484 * or IS_ERR() condition containing errno.
1485 *
1486 * Use of supply names configured via regulator_set_device_supply() is
1487 * strongly encouraged. It is recommended that the supply name used
1488 * should match the name used for the supply and/or the relevant
1489 * device pins in the datasheet.
1490 */
1491 struct regulator *regulator_get(struct device *dev, const char *id)
1492 {
1493 return _regulator_get(dev, id, false, true);
1494 }
1495 EXPORT_SYMBOL_GPL(regulator_get);
1496
1497 /**
1498 * regulator_get_exclusive - obtain exclusive access to a regulator.
1499 * @dev: device for regulator "consumer"
1500 * @id: Supply name or regulator ID.
1501 *
1502 * Returns a struct regulator corresponding to the regulator producer,
1503 * or IS_ERR() condition containing errno. Other consumers will be
1504 * unable to obtain this regulator while this reference is held and the
1505 * use count for the regulator will be initialised to reflect the current
1506 * state of the regulator.
1507 *
1508 * This is intended for use by consumers which cannot tolerate shared
1509 * use of the regulator such as those which need to force the
1510 * regulator off for correct operation of the hardware they are
1511 * controlling.
1512 *
1513 * Use of supply names configured via regulator_set_device_supply() is
1514 * strongly encouraged. It is recommended that the supply name used
1515 * should match the name used for the supply and/or the relevant
1516 * device pins in the datasheet.
1517 */
1518 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1519 {
1520 return _regulator_get(dev, id, true, false);
1521 }
1522 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1523
1524 /**
1525 * regulator_get_optional - obtain optional access to a regulator.
1526 * @dev: device for regulator "consumer"
1527 * @id: Supply name or regulator ID.
1528 *
1529 * Returns a struct regulator corresponding to the regulator producer,
1530 * or IS_ERR() condition containing errno.
1531 *
1532 * This is intended for use by consumers for devices which can have
1533 * some supplies unconnected in normal use, such as some MMC devices.
1534 * It can allow the regulator core to provide stub supplies for other
1535 * supplies requested using normal regulator_get() calls without
1536 * disrupting the operation of drivers that can handle absent
1537 * supplies.
1538 *
1539 * Use of supply names configured via regulator_set_device_supply() is
1540 * strongly encouraged. It is recommended that the supply name used
1541 * should match the name used for the supply and/or the relevant
1542 * device pins in the datasheet.
1543 */
1544 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1545 {
1546 return _regulator_get(dev, id, false, false);
1547 }
1548 EXPORT_SYMBOL_GPL(regulator_get_optional);
1549
1550 /* regulator_list_mutex lock held by regulator_put() */
1551 static void _regulator_put(struct regulator *regulator)
1552 {
1553 struct regulator_dev *rdev;
1554
1555 if (regulator == NULL || IS_ERR(regulator))
1556 return;
1557
1558 rdev = regulator->rdev;
1559
1560 debugfs_remove_recursive(regulator->debugfs);
1561
1562 /* remove any sysfs entries */
1563 if (regulator->dev)
1564 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1565 mutex_lock(&rdev->mutex);
1566 kfree(regulator->supply_name);
1567 list_del(&regulator->list);
1568 kfree(regulator);
1569
1570 rdev->open_count--;
1571 rdev->exclusive = 0;
1572 mutex_unlock(&rdev->mutex);
1573
1574 module_put(rdev->owner);
1575 }
1576
1577 /**
1578 * regulator_put - "free" the regulator source
1579 * @regulator: regulator source
1580 *
1581 * Note: drivers must ensure that all regulator_enable calls made on this
1582 * regulator source are balanced by regulator_disable calls prior to calling
1583 * this function.
1584 */
1585 void regulator_put(struct regulator *regulator)
1586 {
1587 mutex_lock(&regulator_list_mutex);
1588 _regulator_put(regulator);
1589 mutex_unlock(&regulator_list_mutex);
1590 }
1591 EXPORT_SYMBOL_GPL(regulator_put);
1592
1593 /**
1594 * regulator_register_supply_alias - Provide device alias for supply lookup
1595 *
1596 * @dev: device that will be given as the regulator "consumer"
1597 * @id: Supply name or regulator ID
1598 * @alias_dev: device that should be used to lookup the supply
1599 * @alias_id: Supply name or regulator ID that should be used to lookup the
1600 * supply
1601 *
1602 * All lookups for id on dev will instead be conducted for alias_id on
1603 * alias_dev.
1604 */
1605 int regulator_register_supply_alias(struct device *dev, const char *id,
1606 struct device *alias_dev,
1607 const char *alias_id)
1608 {
1609 struct regulator_supply_alias *map;
1610
1611 map = regulator_find_supply_alias(dev, id);
1612 if (map)
1613 return -EEXIST;
1614
1615 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1616 if (!map)
1617 return -ENOMEM;
1618
1619 map->src_dev = dev;
1620 map->src_supply = id;
1621 map->alias_dev = alias_dev;
1622 map->alias_supply = alias_id;
1623
1624 list_add(&map->list, &regulator_supply_alias_list);
1625
1626 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1627 id, dev_name(dev), alias_id, dev_name(alias_dev));
1628
1629 return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1632
1633 /**
1634 * regulator_unregister_supply_alias - Remove device alias
1635 *
1636 * @dev: device that will be given as the regulator "consumer"
1637 * @id: Supply name or regulator ID
1638 *
1639 * Remove a lookup alias if one exists for id on dev.
1640 */
1641 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1642 {
1643 struct regulator_supply_alias *map;
1644
1645 map = regulator_find_supply_alias(dev, id);
1646 if (map) {
1647 list_del(&map->list);
1648 kfree(map);
1649 }
1650 }
1651 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1652
1653 /**
1654 * regulator_bulk_register_supply_alias - register multiple aliases
1655 *
1656 * @dev: device that will be given as the regulator "consumer"
1657 * @id: List of supply names or regulator IDs
1658 * @alias_dev: device that should be used to lookup the supply
1659 * @alias_id: List of supply names or regulator IDs that should be used to
1660 * lookup the supply
1661 * @num_id: Number of aliases to register
1662 *
1663 * @return 0 on success, an errno on failure.
1664 *
1665 * This helper function allows drivers to register several supply
1666 * aliases in one operation. If any of the aliases cannot be
1667 * registered any aliases that were registered will be removed
1668 * before returning to the caller.
1669 */
1670 int regulator_bulk_register_supply_alias(struct device *dev,
1671 const char *const *id,
1672 struct device *alias_dev,
1673 const char *const *alias_id,
1674 int num_id)
1675 {
1676 int i;
1677 int ret;
1678
1679 for (i = 0; i < num_id; ++i) {
1680 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1681 alias_id[i]);
1682 if (ret < 0)
1683 goto err;
1684 }
1685
1686 return 0;
1687
1688 err:
1689 dev_err(dev,
1690 "Failed to create supply alias %s,%s -> %s,%s\n",
1691 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1692
1693 while (--i >= 0)
1694 regulator_unregister_supply_alias(dev, id[i]);
1695
1696 return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1699
1700 /**
1701 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1702 *
1703 * @dev: device that will be given as the regulator "consumer"
1704 * @id: List of supply names or regulator IDs
1705 * @num_id: Number of aliases to unregister
1706 *
1707 * This helper function allows drivers to unregister several supply
1708 * aliases in one operation.
1709 */
1710 void regulator_bulk_unregister_supply_alias(struct device *dev,
1711 const char *const *id,
1712 int num_id)
1713 {
1714 int i;
1715
1716 for (i = 0; i < num_id; ++i)
1717 regulator_unregister_supply_alias(dev, id[i]);
1718 }
1719 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1720
1721
1722 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1723 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1724 const struct regulator_config *config)
1725 {
1726 struct regulator_enable_gpio *pin;
1727 struct gpio_desc *gpiod;
1728 int ret;
1729
1730 gpiod = gpio_to_desc(config->ena_gpio);
1731
1732 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1733 if (pin->gpiod == gpiod) {
1734 rdev_dbg(rdev, "GPIO %d is already used\n",
1735 config->ena_gpio);
1736 goto update_ena_gpio_to_rdev;
1737 }
1738 }
1739
1740 ret = gpio_request_one(config->ena_gpio,
1741 GPIOF_DIR_OUT | config->ena_gpio_flags,
1742 rdev_get_name(rdev));
1743 if (ret)
1744 return ret;
1745
1746 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1747 if (pin == NULL) {
1748 gpio_free(config->ena_gpio);
1749 return -ENOMEM;
1750 }
1751
1752 pin->gpiod = gpiod;
1753 pin->ena_gpio_invert = config->ena_gpio_invert;
1754 list_add(&pin->list, &regulator_ena_gpio_list);
1755
1756 update_ena_gpio_to_rdev:
1757 pin->request_count++;
1758 rdev->ena_pin = pin;
1759 return 0;
1760 }
1761
1762 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1763 {
1764 struct regulator_enable_gpio *pin, *n;
1765
1766 if (!rdev->ena_pin)
1767 return;
1768
1769 /* Free the GPIO only in case of no use */
1770 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1771 if (pin->gpiod == rdev->ena_pin->gpiod) {
1772 if (pin->request_count <= 1) {
1773 pin->request_count = 0;
1774 gpiod_put(pin->gpiod);
1775 list_del(&pin->list);
1776 kfree(pin);
1777 rdev->ena_pin = NULL;
1778 return;
1779 } else {
1780 pin->request_count--;
1781 }
1782 }
1783 }
1784 }
1785
1786 /**
1787 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1788 * @rdev: regulator_dev structure
1789 * @enable: enable GPIO at initial use?
1790 *
1791 * GPIO is enabled in case of initial use. (enable_count is 0)
1792 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1793 */
1794 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1795 {
1796 struct regulator_enable_gpio *pin = rdev->ena_pin;
1797
1798 if (!pin)
1799 return -EINVAL;
1800
1801 if (enable) {
1802 /* Enable GPIO at initial use */
1803 if (pin->enable_count == 0)
1804 gpiod_set_value_cansleep(pin->gpiod,
1805 !pin->ena_gpio_invert);
1806
1807 pin->enable_count++;
1808 } else {
1809 if (pin->enable_count > 1) {
1810 pin->enable_count--;
1811 return 0;
1812 }
1813
1814 /* Disable GPIO if not used */
1815 if (pin->enable_count <= 1) {
1816 gpiod_set_value_cansleep(pin->gpiod,
1817 pin->ena_gpio_invert);
1818 pin->enable_count = 0;
1819 }
1820 }
1821
1822 return 0;
1823 }
1824
1825 /**
1826 * _regulator_enable_delay - a delay helper function
1827 * @delay: time to delay in microseconds
1828 *
1829 * Delay for the requested amount of time as per the guidelines in:
1830 *
1831 * Documentation/timers/timers-howto.txt
1832 *
1833 * The assumption here is that regulators will never be enabled in
1834 * atomic context and therefore sleeping functions can be used.
1835 */
1836 static void _regulator_enable_delay(unsigned int delay)
1837 {
1838 unsigned int ms = delay / 1000;
1839 unsigned int us = delay % 1000;
1840
1841 if (ms > 0) {
1842 /*
1843 * For small enough values, handle super-millisecond
1844 * delays in the usleep_range() call below.
1845 */
1846 if (ms < 20)
1847 us += ms * 1000;
1848 else
1849 msleep(ms);
1850 }
1851
1852 /*
1853 * Give the scheduler some room to coalesce with any other
1854 * wakeup sources. For delays shorter than 10 us, don't even
1855 * bother setting up high-resolution timers and just busy-
1856 * loop.
1857 */
1858 if (us >= 10)
1859 usleep_range(us, us + 100);
1860 else
1861 udelay(us);
1862 }
1863
1864 static int _regulator_do_enable(struct regulator_dev *rdev)
1865 {
1866 int ret, delay;
1867
1868 /* Query before enabling in case configuration dependent. */
1869 ret = _regulator_get_enable_time(rdev);
1870 if (ret >= 0) {
1871 delay = ret;
1872 } else {
1873 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1874 delay = 0;
1875 }
1876
1877 trace_regulator_enable(rdev_get_name(rdev));
1878
1879 if (rdev->desc->off_on_delay) {
1880 /* if needed, keep a distance of off_on_delay from last time
1881 * this regulator was disabled.
1882 */
1883 unsigned long start_jiffy = jiffies;
1884 unsigned long intended, max_delay, remaining;
1885
1886 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1887 intended = rdev->last_off_jiffy + max_delay;
1888
1889 if (time_before(start_jiffy, intended)) {
1890 /* calc remaining jiffies to deal with one-time
1891 * timer wrapping.
1892 * in case of multiple timer wrapping, either it can be
1893 * detected by out-of-range remaining, or it cannot be
1894 * detected and we gets a panelty of
1895 * _regulator_enable_delay().
1896 */
1897 remaining = intended - start_jiffy;
1898 if (remaining <= max_delay)
1899 _regulator_enable_delay(
1900 jiffies_to_usecs(remaining));
1901 }
1902 }
1903
1904 if (rdev->ena_pin) {
1905 if (!rdev->ena_gpio_state) {
1906 ret = regulator_ena_gpio_ctrl(rdev, true);
1907 if (ret < 0)
1908 return ret;
1909 rdev->ena_gpio_state = 1;
1910 }
1911 } else if (rdev->desc->ops->enable) {
1912 ret = rdev->desc->ops->enable(rdev);
1913 if (ret < 0)
1914 return ret;
1915 } else {
1916 return -EINVAL;
1917 }
1918
1919 /* Allow the regulator to ramp; it would be useful to extend
1920 * this for bulk operations so that the regulators can ramp
1921 * together. */
1922 trace_regulator_enable_delay(rdev_get_name(rdev));
1923
1924 _regulator_enable_delay(delay);
1925
1926 trace_regulator_enable_complete(rdev_get_name(rdev));
1927
1928 return 0;
1929 }
1930
1931 /* locks held by regulator_enable() */
1932 static int _regulator_enable(struct regulator_dev *rdev)
1933 {
1934 int ret;
1935
1936 /* check voltage and requested load before enabling */
1937 if (rdev->constraints &&
1938 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1939 drms_uA_update(rdev);
1940
1941 if (rdev->use_count == 0) {
1942 /* The regulator may on if it's not switchable or left on */
1943 ret = _regulator_is_enabled(rdev);
1944 if (ret == -EINVAL || ret == 0) {
1945 if (!_regulator_can_change_status(rdev))
1946 return -EPERM;
1947
1948 ret = _regulator_do_enable(rdev);
1949 if (ret < 0)
1950 return ret;
1951
1952 } else if (ret < 0) {
1953 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1954 return ret;
1955 }
1956 /* Fallthrough on positive return values - already enabled */
1957 }
1958
1959 rdev->use_count++;
1960
1961 return 0;
1962 }
1963
1964 /**
1965 * regulator_enable - enable regulator output
1966 * @regulator: regulator source
1967 *
1968 * Request that the regulator be enabled with the regulator output at
1969 * the predefined voltage or current value. Calls to regulator_enable()
1970 * must be balanced with calls to regulator_disable().
1971 *
1972 * NOTE: the output value can be set by other drivers, boot loader or may be
1973 * hardwired in the regulator.
1974 */
1975 int regulator_enable(struct regulator *regulator)
1976 {
1977 struct regulator_dev *rdev = regulator->rdev;
1978 int ret = 0;
1979
1980 if (regulator->always_on)
1981 return 0;
1982
1983 if (rdev->supply) {
1984 ret = regulator_enable(rdev->supply);
1985 if (ret != 0)
1986 return ret;
1987 }
1988
1989 mutex_lock(&rdev->mutex);
1990 ret = _regulator_enable(rdev);
1991 mutex_unlock(&rdev->mutex);
1992
1993 if (ret != 0 && rdev->supply)
1994 regulator_disable(rdev->supply);
1995
1996 return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(regulator_enable);
1999
2000 static int _regulator_do_disable(struct regulator_dev *rdev)
2001 {
2002 int ret;
2003
2004 trace_regulator_disable(rdev_get_name(rdev));
2005
2006 if (rdev->ena_pin) {
2007 if (rdev->ena_gpio_state) {
2008 ret = regulator_ena_gpio_ctrl(rdev, false);
2009 if (ret < 0)
2010 return ret;
2011 rdev->ena_gpio_state = 0;
2012 }
2013
2014 } else if (rdev->desc->ops->disable) {
2015 ret = rdev->desc->ops->disable(rdev);
2016 if (ret != 0)
2017 return ret;
2018 }
2019
2020 /* cares about last_off_jiffy only if off_on_delay is required by
2021 * device.
2022 */
2023 if (rdev->desc->off_on_delay)
2024 rdev->last_off_jiffy = jiffies;
2025
2026 trace_regulator_disable_complete(rdev_get_name(rdev));
2027
2028 return 0;
2029 }
2030
2031 /* locks held by regulator_disable() */
2032 static int _regulator_disable(struct regulator_dev *rdev)
2033 {
2034 int ret = 0;
2035
2036 if (WARN(rdev->use_count <= 0,
2037 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2038 return -EIO;
2039
2040 /* are we the last user and permitted to disable ? */
2041 if (rdev->use_count == 1 &&
2042 (rdev->constraints && !rdev->constraints->always_on)) {
2043
2044 /* we are last user */
2045 if (_regulator_can_change_status(rdev)) {
2046 ret = _notifier_call_chain(rdev,
2047 REGULATOR_EVENT_PRE_DISABLE,
2048 NULL);
2049 if (ret & NOTIFY_STOP_MASK)
2050 return -EINVAL;
2051
2052 ret = _regulator_do_disable(rdev);
2053 if (ret < 0) {
2054 rdev_err(rdev, "failed to disable\n");
2055 _notifier_call_chain(rdev,
2056 REGULATOR_EVENT_ABORT_DISABLE,
2057 NULL);
2058 return ret;
2059 }
2060 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2061 NULL);
2062 }
2063
2064 rdev->use_count = 0;
2065 } else if (rdev->use_count > 1) {
2066
2067 if (rdev->constraints &&
2068 (rdev->constraints->valid_ops_mask &
2069 REGULATOR_CHANGE_DRMS))
2070 drms_uA_update(rdev);
2071
2072 rdev->use_count--;
2073 }
2074
2075 return ret;
2076 }
2077
2078 /**
2079 * regulator_disable - disable regulator output
2080 * @regulator: regulator source
2081 *
2082 * Disable the regulator output voltage or current. Calls to
2083 * regulator_enable() must be balanced with calls to
2084 * regulator_disable().
2085 *
2086 * NOTE: this will only disable the regulator output if no other consumer
2087 * devices have it enabled, the regulator device supports disabling and
2088 * machine constraints permit this operation.
2089 */
2090 int regulator_disable(struct regulator *regulator)
2091 {
2092 struct regulator_dev *rdev = regulator->rdev;
2093 int ret = 0;
2094
2095 if (regulator->always_on)
2096 return 0;
2097
2098 mutex_lock(&rdev->mutex);
2099 ret = _regulator_disable(rdev);
2100 mutex_unlock(&rdev->mutex);
2101
2102 if (ret == 0 && rdev->supply)
2103 regulator_disable(rdev->supply);
2104
2105 return ret;
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_disable);
2108
2109 /* locks held by regulator_force_disable() */
2110 static int _regulator_force_disable(struct regulator_dev *rdev)
2111 {
2112 int ret = 0;
2113
2114 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2115 REGULATOR_EVENT_PRE_DISABLE, NULL);
2116 if (ret & NOTIFY_STOP_MASK)
2117 return -EINVAL;
2118
2119 ret = _regulator_do_disable(rdev);
2120 if (ret < 0) {
2121 rdev_err(rdev, "failed to force disable\n");
2122 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2123 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2124 return ret;
2125 }
2126
2127 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2128 REGULATOR_EVENT_DISABLE, NULL);
2129
2130 return 0;
2131 }
2132
2133 /**
2134 * regulator_force_disable - force disable regulator output
2135 * @regulator: regulator source
2136 *
2137 * Forcibly disable the regulator output voltage or current.
2138 * NOTE: this *will* disable the regulator output even if other consumer
2139 * devices have it enabled. This should be used for situations when device
2140 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2141 */
2142 int regulator_force_disable(struct regulator *regulator)
2143 {
2144 struct regulator_dev *rdev = regulator->rdev;
2145 int ret;
2146
2147 mutex_lock(&rdev->mutex);
2148 regulator->uA_load = 0;
2149 ret = _regulator_force_disable(regulator->rdev);
2150 mutex_unlock(&rdev->mutex);
2151
2152 if (rdev->supply)
2153 while (rdev->open_count--)
2154 regulator_disable(rdev->supply);
2155
2156 return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_force_disable);
2159
2160 static void regulator_disable_work(struct work_struct *work)
2161 {
2162 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2163 disable_work.work);
2164 int count, i, ret;
2165
2166 mutex_lock(&rdev->mutex);
2167
2168 BUG_ON(!rdev->deferred_disables);
2169
2170 count = rdev->deferred_disables;
2171 rdev->deferred_disables = 0;
2172
2173 for (i = 0; i < count; i++) {
2174 ret = _regulator_disable(rdev);
2175 if (ret != 0)
2176 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2177 }
2178
2179 mutex_unlock(&rdev->mutex);
2180
2181 if (rdev->supply) {
2182 for (i = 0; i < count; i++) {
2183 ret = regulator_disable(rdev->supply);
2184 if (ret != 0) {
2185 rdev_err(rdev,
2186 "Supply disable failed: %d\n", ret);
2187 }
2188 }
2189 }
2190 }
2191
2192 /**
2193 * regulator_disable_deferred - disable regulator output with delay
2194 * @regulator: regulator source
2195 * @ms: miliseconds until the regulator is disabled
2196 *
2197 * Execute regulator_disable() on the regulator after a delay. This
2198 * is intended for use with devices that require some time to quiesce.
2199 *
2200 * NOTE: this will only disable the regulator output if no other consumer
2201 * devices have it enabled, the regulator device supports disabling and
2202 * machine constraints permit this operation.
2203 */
2204 int regulator_disable_deferred(struct regulator *regulator, int ms)
2205 {
2206 struct regulator_dev *rdev = regulator->rdev;
2207 int ret;
2208
2209 if (regulator->always_on)
2210 return 0;
2211
2212 if (!ms)
2213 return regulator_disable(regulator);
2214
2215 mutex_lock(&rdev->mutex);
2216 rdev->deferred_disables++;
2217 mutex_unlock(&rdev->mutex);
2218
2219 ret = queue_delayed_work(system_power_efficient_wq,
2220 &rdev->disable_work,
2221 msecs_to_jiffies(ms));
2222 if (ret < 0)
2223 return ret;
2224 else
2225 return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2228
2229 static int _regulator_is_enabled(struct regulator_dev *rdev)
2230 {
2231 /* A GPIO control always takes precedence */
2232 if (rdev->ena_pin)
2233 return rdev->ena_gpio_state;
2234
2235 /* If we don't know then assume that the regulator is always on */
2236 if (!rdev->desc->ops->is_enabled)
2237 return 1;
2238
2239 return rdev->desc->ops->is_enabled(rdev);
2240 }
2241
2242 /**
2243 * regulator_is_enabled - is the regulator output enabled
2244 * @regulator: regulator source
2245 *
2246 * Returns positive if the regulator driver backing the source/client
2247 * has requested that the device be enabled, zero if it hasn't, else a
2248 * negative errno code.
2249 *
2250 * Note that the device backing this regulator handle can have multiple
2251 * users, so it might be enabled even if regulator_enable() was never
2252 * called for this particular source.
2253 */
2254 int regulator_is_enabled(struct regulator *regulator)
2255 {
2256 int ret;
2257
2258 if (regulator->always_on)
2259 return 1;
2260
2261 mutex_lock(&regulator->rdev->mutex);
2262 ret = _regulator_is_enabled(regulator->rdev);
2263 mutex_unlock(&regulator->rdev->mutex);
2264
2265 return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2268
2269 /**
2270 * regulator_can_change_voltage - check if regulator can change voltage
2271 * @regulator: regulator source
2272 *
2273 * Returns positive if the regulator driver backing the source/client
2274 * can change its voltage, false otherwise. Useful for detecting fixed
2275 * or dummy regulators and disabling voltage change logic in the client
2276 * driver.
2277 */
2278 int regulator_can_change_voltage(struct regulator *regulator)
2279 {
2280 struct regulator_dev *rdev = regulator->rdev;
2281
2282 if (rdev->constraints &&
2283 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2284 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2285 return 1;
2286
2287 if (rdev->desc->continuous_voltage_range &&
2288 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2289 rdev->constraints->min_uV != rdev->constraints->max_uV)
2290 return 1;
2291 }
2292
2293 return 0;
2294 }
2295 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2296
2297 /**
2298 * regulator_count_voltages - count regulator_list_voltage() selectors
2299 * @regulator: regulator source
2300 *
2301 * Returns number of selectors, or negative errno. Selectors are
2302 * numbered starting at zero, and typically correspond to bitfields
2303 * in hardware registers.
2304 */
2305 int regulator_count_voltages(struct regulator *regulator)
2306 {
2307 struct regulator_dev *rdev = regulator->rdev;
2308
2309 if (rdev->desc->n_voltages)
2310 return rdev->desc->n_voltages;
2311
2312 if (!rdev->supply)
2313 return -EINVAL;
2314
2315 return regulator_count_voltages(rdev->supply);
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2318
2319 /**
2320 * regulator_list_voltage - enumerate supported voltages
2321 * @regulator: regulator source
2322 * @selector: identify voltage to list
2323 * Context: can sleep
2324 *
2325 * Returns a voltage that can be passed to @regulator_set_voltage(),
2326 * zero if this selector code can't be used on this system, or a
2327 * negative errno.
2328 */
2329 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2330 {
2331 struct regulator_dev *rdev = regulator->rdev;
2332 const struct regulator_ops *ops = rdev->desc->ops;
2333 int ret;
2334
2335 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2336 return rdev->desc->fixed_uV;
2337
2338 if (ops->list_voltage) {
2339 if (selector >= rdev->desc->n_voltages)
2340 return -EINVAL;
2341 mutex_lock(&rdev->mutex);
2342 ret = ops->list_voltage(rdev, selector);
2343 mutex_unlock(&rdev->mutex);
2344 } else if (rdev->supply) {
2345 ret = regulator_list_voltage(rdev->supply, selector);
2346 } else {
2347 return -EINVAL;
2348 }
2349
2350 if (ret > 0) {
2351 if (ret < rdev->constraints->min_uV)
2352 ret = 0;
2353 else if (ret > rdev->constraints->max_uV)
2354 ret = 0;
2355 }
2356
2357 return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2360
2361 /**
2362 * regulator_get_regmap - get the regulator's register map
2363 * @regulator: regulator source
2364 *
2365 * Returns the register map for the given regulator, or an ERR_PTR value
2366 * if the regulator doesn't use regmap.
2367 */
2368 struct regmap *regulator_get_regmap(struct regulator *regulator)
2369 {
2370 struct regmap *map = regulator->rdev->regmap;
2371
2372 return map ? map : ERR_PTR(-EOPNOTSUPP);
2373 }
2374
2375 /**
2376 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2377 * @regulator: regulator source
2378 * @vsel_reg: voltage selector register, output parameter
2379 * @vsel_mask: mask for voltage selector bitfield, output parameter
2380 *
2381 * Returns the hardware register offset and bitmask used for setting the
2382 * regulator voltage. This might be useful when configuring voltage-scaling
2383 * hardware or firmware that can make I2C requests behind the kernel's back,
2384 * for example.
2385 *
2386 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2387 * and 0 is returned, otherwise a negative errno is returned.
2388 */
2389 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2390 unsigned *vsel_reg,
2391 unsigned *vsel_mask)
2392 {
2393 struct regulator_dev *rdev = regulator->rdev;
2394 const struct regulator_ops *ops = rdev->desc->ops;
2395
2396 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2397 return -EOPNOTSUPP;
2398
2399 *vsel_reg = rdev->desc->vsel_reg;
2400 *vsel_mask = rdev->desc->vsel_mask;
2401
2402 return 0;
2403 }
2404 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2405
2406 /**
2407 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2408 * @regulator: regulator source
2409 * @selector: identify voltage to list
2410 *
2411 * Converts the selector to a hardware-specific voltage selector that can be
2412 * directly written to the regulator registers. The address of the voltage
2413 * register can be determined by calling @regulator_get_hardware_vsel_register.
2414 *
2415 * On error a negative errno is returned.
2416 */
2417 int regulator_list_hardware_vsel(struct regulator *regulator,
2418 unsigned selector)
2419 {
2420 struct regulator_dev *rdev = regulator->rdev;
2421 const struct regulator_ops *ops = rdev->desc->ops;
2422
2423 if (selector >= rdev->desc->n_voltages)
2424 return -EINVAL;
2425 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2426 return -EOPNOTSUPP;
2427
2428 return selector;
2429 }
2430 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2431
2432 /**
2433 * regulator_get_linear_step - return the voltage step size between VSEL values
2434 * @regulator: regulator source
2435 *
2436 * Returns the voltage step size between VSEL values for linear
2437 * regulators, or return 0 if the regulator isn't a linear regulator.
2438 */
2439 unsigned int regulator_get_linear_step(struct regulator *regulator)
2440 {
2441 struct regulator_dev *rdev = regulator->rdev;
2442
2443 return rdev->desc->uV_step;
2444 }
2445 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2446
2447 /**
2448 * regulator_is_supported_voltage - check if a voltage range can be supported
2449 *
2450 * @regulator: Regulator to check.
2451 * @min_uV: Minimum required voltage in uV.
2452 * @max_uV: Maximum required voltage in uV.
2453 *
2454 * Returns a boolean or a negative error code.
2455 */
2456 int regulator_is_supported_voltage(struct regulator *regulator,
2457 int min_uV, int max_uV)
2458 {
2459 struct regulator_dev *rdev = regulator->rdev;
2460 int i, voltages, ret;
2461
2462 /* If we can't change voltage check the current voltage */
2463 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2464 ret = regulator_get_voltage(regulator);
2465 if (ret >= 0)
2466 return min_uV <= ret && ret <= max_uV;
2467 else
2468 return ret;
2469 }
2470
2471 /* Any voltage within constrains range is fine? */
2472 if (rdev->desc->continuous_voltage_range)
2473 return min_uV >= rdev->constraints->min_uV &&
2474 max_uV <= rdev->constraints->max_uV;
2475
2476 ret = regulator_count_voltages(regulator);
2477 if (ret < 0)
2478 return ret;
2479 voltages = ret;
2480
2481 for (i = 0; i < voltages; i++) {
2482 ret = regulator_list_voltage(regulator, i);
2483
2484 if (ret >= min_uV && ret <= max_uV)
2485 return 1;
2486 }
2487
2488 return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2491
2492 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2493 int min_uV, int max_uV,
2494 unsigned *selector)
2495 {
2496 struct pre_voltage_change_data data;
2497 int ret;
2498
2499 data.old_uV = _regulator_get_voltage(rdev);
2500 data.min_uV = min_uV;
2501 data.max_uV = max_uV;
2502 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2503 &data);
2504 if (ret & NOTIFY_STOP_MASK)
2505 return -EINVAL;
2506
2507 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2508 if (ret >= 0)
2509 return ret;
2510
2511 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2512 (void *)data.old_uV);
2513
2514 return ret;
2515 }
2516
2517 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2518 int uV, unsigned selector)
2519 {
2520 struct pre_voltage_change_data data;
2521 int ret;
2522
2523 data.old_uV = _regulator_get_voltage(rdev);
2524 data.min_uV = uV;
2525 data.max_uV = uV;
2526 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2527 &data);
2528 if (ret & NOTIFY_STOP_MASK)
2529 return -EINVAL;
2530
2531 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2532 if (ret >= 0)
2533 return ret;
2534
2535 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2536 (void *)data.old_uV);
2537
2538 return ret;
2539 }
2540
2541 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2542 int min_uV, int max_uV)
2543 {
2544 int ret;
2545 int delay = 0;
2546 int best_val = 0;
2547 unsigned int selector;
2548 int old_selector = -1;
2549
2550 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2551
2552 min_uV += rdev->constraints->uV_offset;
2553 max_uV += rdev->constraints->uV_offset;
2554
2555 /*
2556 * If we can't obtain the old selector there is not enough
2557 * info to call set_voltage_time_sel().
2558 */
2559 if (_regulator_is_enabled(rdev) &&
2560 rdev->desc->ops->set_voltage_time_sel &&
2561 rdev->desc->ops->get_voltage_sel) {
2562 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2563 if (old_selector < 0)
2564 return old_selector;
2565 }
2566
2567 if (rdev->desc->ops->set_voltage) {
2568 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2569 &selector);
2570
2571 if (ret >= 0) {
2572 if (rdev->desc->ops->list_voltage)
2573 best_val = rdev->desc->ops->list_voltage(rdev,
2574 selector);
2575 else
2576 best_val = _regulator_get_voltage(rdev);
2577 }
2578
2579 } else if (rdev->desc->ops->set_voltage_sel) {
2580 if (rdev->desc->ops->map_voltage) {
2581 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2582 max_uV);
2583 } else {
2584 if (rdev->desc->ops->list_voltage ==
2585 regulator_list_voltage_linear)
2586 ret = regulator_map_voltage_linear(rdev,
2587 min_uV, max_uV);
2588 else if (rdev->desc->ops->list_voltage ==
2589 regulator_list_voltage_linear_range)
2590 ret = regulator_map_voltage_linear_range(rdev,
2591 min_uV, max_uV);
2592 else
2593 ret = regulator_map_voltage_iterate(rdev,
2594 min_uV, max_uV);
2595 }
2596
2597 if (ret >= 0) {
2598 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2599 if (min_uV <= best_val && max_uV >= best_val) {
2600 selector = ret;
2601 if (old_selector == selector)
2602 ret = 0;
2603 else
2604 ret = _regulator_call_set_voltage_sel(
2605 rdev, best_val, selector);
2606 } else {
2607 ret = -EINVAL;
2608 }
2609 }
2610 } else {
2611 ret = -EINVAL;
2612 }
2613
2614 /* Call set_voltage_time_sel if successfully obtained old_selector */
2615 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2616 && old_selector != selector) {
2617
2618 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2619 old_selector, selector);
2620 if (delay < 0) {
2621 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2622 delay);
2623 delay = 0;
2624 }
2625
2626 /* Insert any necessary delays */
2627 if (delay >= 1000) {
2628 mdelay(delay / 1000);
2629 udelay(delay % 1000);
2630 } else if (delay) {
2631 udelay(delay);
2632 }
2633 }
2634
2635 if (ret == 0 && best_val >= 0) {
2636 unsigned long data = best_val;
2637
2638 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2639 (void *)data);
2640 }
2641
2642 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2643
2644 return ret;
2645 }
2646
2647 /**
2648 * regulator_set_voltage - set regulator output voltage
2649 * @regulator: regulator source
2650 * @min_uV: Minimum required voltage in uV
2651 * @max_uV: Maximum acceptable voltage in uV
2652 *
2653 * Sets a voltage regulator to the desired output voltage. This can be set
2654 * during any regulator state. IOW, regulator can be disabled or enabled.
2655 *
2656 * If the regulator is enabled then the voltage will change to the new value
2657 * immediately otherwise if the regulator is disabled the regulator will
2658 * output at the new voltage when enabled.
2659 *
2660 * NOTE: If the regulator is shared between several devices then the lowest
2661 * request voltage that meets the system constraints will be used.
2662 * Regulator system constraints must be set for this regulator before
2663 * calling this function otherwise this call will fail.
2664 */
2665 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2666 {
2667 struct regulator_dev *rdev = regulator->rdev;
2668 int ret = 0;
2669 int old_min_uV, old_max_uV;
2670 int current_uV;
2671
2672 mutex_lock(&rdev->mutex);
2673
2674 /* If we're setting the same range as last time the change
2675 * should be a noop (some cpufreq implementations use the same
2676 * voltage for multiple frequencies, for example).
2677 */
2678 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2679 goto out;
2680
2681 /* If we're trying to set a range that overlaps the current voltage,
2682 * return succesfully even though the regulator does not support
2683 * changing the voltage.
2684 */
2685 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2686 current_uV = _regulator_get_voltage(rdev);
2687 if (min_uV <= current_uV && current_uV <= max_uV) {
2688 regulator->min_uV = min_uV;
2689 regulator->max_uV = max_uV;
2690 goto out;
2691 }
2692 }
2693
2694 /* sanity check */
2695 if (!rdev->desc->ops->set_voltage &&
2696 !rdev->desc->ops->set_voltage_sel) {
2697 ret = -EINVAL;
2698 goto out;
2699 }
2700
2701 /* constraints check */
2702 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2703 if (ret < 0)
2704 goto out;
2705
2706 /* restore original values in case of error */
2707 old_min_uV = regulator->min_uV;
2708 old_max_uV = regulator->max_uV;
2709 regulator->min_uV = min_uV;
2710 regulator->max_uV = max_uV;
2711
2712 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2713 if (ret < 0)
2714 goto out2;
2715
2716 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2717 if (ret < 0)
2718 goto out2;
2719
2720 out:
2721 mutex_unlock(&rdev->mutex);
2722 return ret;
2723 out2:
2724 regulator->min_uV = old_min_uV;
2725 regulator->max_uV = old_max_uV;
2726 mutex_unlock(&rdev->mutex);
2727 return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2730
2731 /**
2732 * regulator_set_voltage_time - get raise/fall time
2733 * @regulator: regulator source
2734 * @old_uV: starting voltage in microvolts
2735 * @new_uV: target voltage in microvolts
2736 *
2737 * Provided with the starting and ending voltage, this function attempts to
2738 * calculate the time in microseconds required to rise or fall to this new
2739 * voltage.
2740 */
2741 int regulator_set_voltage_time(struct regulator *regulator,
2742 int old_uV, int new_uV)
2743 {
2744 struct regulator_dev *rdev = regulator->rdev;
2745 const struct regulator_ops *ops = rdev->desc->ops;
2746 int old_sel = -1;
2747 int new_sel = -1;
2748 int voltage;
2749 int i;
2750
2751 /* Currently requires operations to do this */
2752 if (!ops->list_voltage || !ops->set_voltage_time_sel
2753 || !rdev->desc->n_voltages)
2754 return -EINVAL;
2755
2756 for (i = 0; i < rdev->desc->n_voltages; i++) {
2757 /* We only look for exact voltage matches here */
2758 voltage = regulator_list_voltage(regulator, i);
2759 if (voltage < 0)
2760 return -EINVAL;
2761 if (voltage == 0)
2762 continue;
2763 if (voltage == old_uV)
2764 old_sel = i;
2765 if (voltage == new_uV)
2766 new_sel = i;
2767 }
2768
2769 if (old_sel < 0 || new_sel < 0)
2770 return -EINVAL;
2771
2772 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2773 }
2774 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2775
2776 /**
2777 * regulator_set_voltage_time_sel - get raise/fall time
2778 * @rdev: regulator source device
2779 * @old_selector: selector for starting voltage
2780 * @new_selector: selector for target voltage
2781 *
2782 * Provided with the starting and target voltage selectors, this function
2783 * returns time in microseconds required to rise or fall to this new voltage
2784 *
2785 * Drivers providing ramp_delay in regulation_constraints can use this as their
2786 * set_voltage_time_sel() operation.
2787 */
2788 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2789 unsigned int old_selector,
2790 unsigned int new_selector)
2791 {
2792 unsigned int ramp_delay = 0;
2793 int old_volt, new_volt;
2794
2795 if (rdev->constraints->ramp_delay)
2796 ramp_delay = rdev->constraints->ramp_delay;
2797 else if (rdev->desc->ramp_delay)
2798 ramp_delay = rdev->desc->ramp_delay;
2799
2800 if (ramp_delay == 0) {
2801 rdev_warn(rdev, "ramp_delay not set\n");
2802 return 0;
2803 }
2804
2805 /* sanity check */
2806 if (!rdev->desc->ops->list_voltage)
2807 return -EINVAL;
2808
2809 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2810 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2811
2812 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2813 }
2814 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2815
2816 /**
2817 * regulator_sync_voltage - re-apply last regulator output voltage
2818 * @regulator: regulator source
2819 *
2820 * Re-apply the last configured voltage. This is intended to be used
2821 * where some external control source the consumer is cooperating with
2822 * has caused the configured voltage to change.
2823 */
2824 int regulator_sync_voltage(struct regulator *regulator)
2825 {
2826 struct regulator_dev *rdev = regulator->rdev;
2827 int ret, min_uV, max_uV;
2828
2829 mutex_lock(&rdev->mutex);
2830
2831 if (!rdev->desc->ops->set_voltage &&
2832 !rdev->desc->ops->set_voltage_sel) {
2833 ret = -EINVAL;
2834 goto out;
2835 }
2836
2837 /* This is only going to work if we've had a voltage configured. */
2838 if (!regulator->min_uV && !regulator->max_uV) {
2839 ret = -EINVAL;
2840 goto out;
2841 }
2842
2843 min_uV = regulator->min_uV;
2844 max_uV = regulator->max_uV;
2845
2846 /* This should be a paranoia check... */
2847 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2848 if (ret < 0)
2849 goto out;
2850
2851 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2852 if (ret < 0)
2853 goto out;
2854
2855 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2856
2857 out:
2858 mutex_unlock(&rdev->mutex);
2859 return ret;
2860 }
2861 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2862
2863 static int _regulator_get_voltage(struct regulator_dev *rdev)
2864 {
2865 int sel, ret;
2866
2867 if (rdev->desc->ops->get_voltage_sel) {
2868 sel = rdev->desc->ops->get_voltage_sel(rdev);
2869 if (sel < 0)
2870 return sel;
2871 ret = rdev->desc->ops->list_voltage(rdev, sel);
2872 } else if (rdev->desc->ops->get_voltage) {
2873 ret = rdev->desc->ops->get_voltage(rdev);
2874 } else if (rdev->desc->ops->list_voltage) {
2875 ret = rdev->desc->ops->list_voltage(rdev, 0);
2876 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2877 ret = rdev->desc->fixed_uV;
2878 } else if (rdev->supply) {
2879 ret = regulator_get_voltage(rdev->supply);
2880 } else {
2881 return -EINVAL;
2882 }
2883
2884 if (ret < 0)
2885 return ret;
2886 return ret - rdev->constraints->uV_offset;
2887 }
2888
2889 /**
2890 * regulator_get_voltage - get regulator output voltage
2891 * @regulator: regulator source
2892 *
2893 * This returns the current regulator voltage in uV.
2894 *
2895 * NOTE: If the regulator is disabled it will return the voltage value. This
2896 * function should not be used to determine regulator state.
2897 */
2898 int regulator_get_voltage(struct regulator *regulator)
2899 {
2900 int ret;
2901
2902 mutex_lock(&regulator->rdev->mutex);
2903
2904 ret = _regulator_get_voltage(regulator->rdev);
2905
2906 mutex_unlock(&regulator->rdev->mutex);
2907
2908 return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2911
2912 /**
2913 * regulator_set_current_limit - set regulator output current limit
2914 * @regulator: regulator source
2915 * @min_uA: Minimum supported current in uA
2916 * @max_uA: Maximum supported current in uA
2917 *
2918 * Sets current sink to the desired output current. This can be set during
2919 * any regulator state. IOW, regulator can be disabled or enabled.
2920 *
2921 * If the regulator is enabled then the current will change to the new value
2922 * immediately otherwise if the regulator is disabled the regulator will
2923 * output at the new current when enabled.
2924 *
2925 * NOTE: Regulator system constraints must be set for this regulator before
2926 * calling this function otherwise this call will fail.
2927 */
2928 int regulator_set_current_limit(struct regulator *regulator,
2929 int min_uA, int max_uA)
2930 {
2931 struct regulator_dev *rdev = regulator->rdev;
2932 int ret;
2933
2934 mutex_lock(&rdev->mutex);
2935
2936 /* sanity check */
2937 if (!rdev->desc->ops->set_current_limit) {
2938 ret = -EINVAL;
2939 goto out;
2940 }
2941
2942 /* constraints check */
2943 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2944 if (ret < 0)
2945 goto out;
2946
2947 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2948 out:
2949 mutex_unlock(&rdev->mutex);
2950 return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2953
2954 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2955 {
2956 int ret;
2957
2958 mutex_lock(&rdev->mutex);
2959
2960 /* sanity check */
2961 if (!rdev->desc->ops->get_current_limit) {
2962 ret = -EINVAL;
2963 goto out;
2964 }
2965
2966 ret = rdev->desc->ops->get_current_limit(rdev);
2967 out:
2968 mutex_unlock(&rdev->mutex);
2969 return ret;
2970 }
2971
2972 /**
2973 * regulator_get_current_limit - get regulator output current
2974 * @regulator: regulator source
2975 *
2976 * This returns the current supplied by the specified current sink in uA.
2977 *
2978 * NOTE: If the regulator is disabled it will return the current value. This
2979 * function should not be used to determine regulator state.
2980 */
2981 int regulator_get_current_limit(struct regulator *regulator)
2982 {
2983 return _regulator_get_current_limit(regulator->rdev);
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2986
2987 /**
2988 * regulator_set_mode - set regulator operating mode
2989 * @regulator: regulator source
2990 * @mode: operating mode - one of the REGULATOR_MODE constants
2991 *
2992 * Set regulator operating mode to increase regulator efficiency or improve
2993 * regulation performance.
2994 *
2995 * NOTE: Regulator system constraints must be set for this regulator before
2996 * calling this function otherwise this call will fail.
2997 */
2998 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2999 {
3000 struct regulator_dev *rdev = regulator->rdev;
3001 int ret;
3002 int regulator_curr_mode;
3003
3004 mutex_lock(&rdev->mutex);
3005
3006 /* sanity check */
3007 if (!rdev->desc->ops->set_mode) {
3008 ret = -EINVAL;
3009 goto out;
3010 }
3011
3012 /* return if the same mode is requested */
3013 if (rdev->desc->ops->get_mode) {
3014 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3015 if (regulator_curr_mode == mode) {
3016 ret = 0;
3017 goto out;
3018 }
3019 }
3020
3021 /* constraints check */
3022 ret = regulator_mode_constrain(rdev, &mode);
3023 if (ret < 0)
3024 goto out;
3025
3026 ret = rdev->desc->ops->set_mode(rdev, mode);
3027 out:
3028 mutex_unlock(&rdev->mutex);
3029 return ret;
3030 }
3031 EXPORT_SYMBOL_GPL(regulator_set_mode);
3032
3033 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3034 {
3035 int ret;
3036
3037 mutex_lock(&rdev->mutex);
3038
3039 /* sanity check */
3040 if (!rdev->desc->ops->get_mode) {
3041 ret = -EINVAL;
3042 goto out;
3043 }
3044
3045 ret = rdev->desc->ops->get_mode(rdev);
3046 out:
3047 mutex_unlock(&rdev->mutex);
3048 return ret;
3049 }
3050
3051 /**
3052 * regulator_get_mode - get regulator operating mode
3053 * @regulator: regulator source
3054 *
3055 * Get the current regulator operating mode.
3056 */
3057 unsigned int regulator_get_mode(struct regulator *regulator)
3058 {
3059 return _regulator_get_mode(regulator->rdev);
3060 }
3061 EXPORT_SYMBOL_GPL(regulator_get_mode);
3062
3063 /**
3064 * regulator_set_load - set regulator load
3065 * @regulator: regulator source
3066 * @uA_load: load current
3067 *
3068 * Notifies the regulator core of a new device load. This is then used by
3069 * DRMS (if enabled by constraints) to set the most efficient regulator
3070 * operating mode for the new regulator loading.
3071 *
3072 * Consumer devices notify their supply regulator of the maximum power
3073 * they will require (can be taken from device datasheet in the power
3074 * consumption tables) when they change operational status and hence power
3075 * state. Examples of operational state changes that can affect power
3076 * consumption are :-
3077 *
3078 * o Device is opened / closed.
3079 * o Device I/O is about to begin or has just finished.
3080 * o Device is idling in between work.
3081 *
3082 * This information is also exported via sysfs to userspace.
3083 *
3084 * DRMS will sum the total requested load on the regulator and change
3085 * to the most efficient operating mode if platform constraints allow.
3086 *
3087 * On error a negative errno is returned.
3088 */
3089 int regulator_set_load(struct regulator *regulator, int uA_load)
3090 {
3091 struct regulator_dev *rdev = regulator->rdev;
3092 int ret;
3093
3094 mutex_lock(&rdev->mutex);
3095 regulator->uA_load = uA_load;
3096 ret = drms_uA_update(rdev);
3097 mutex_unlock(&rdev->mutex);
3098
3099 return ret;
3100 }
3101 EXPORT_SYMBOL_GPL(regulator_set_load);
3102
3103 /**
3104 * regulator_allow_bypass - allow the regulator to go into bypass mode
3105 *
3106 * @regulator: Regulator to configure
3107 * @enable: enable or disable bypass mode
3108 *
3109 * Allow the regulator to go into bypass mode if all other consumers
3110 * for the regulator also enable bypass mode and the machine
3111 * constraints allow this. Bypass mode means that the regulator is
3112 * simply passing the input directly to the output with no regulation.
3113 */
3114 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3115 {
3116 struct regulator_dev *rdev = regulator->rdev;
3117 int ret = 0;
3118
3119 if (!rdev->desc->ops->set_bypass)
3120 return 0;
3121
3122 if (rdev->constraints &&
3123 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3124 return 0;
3125
3126 mutex_lock(&rdev->mutex);
3127
3128 if (enable && !regulator->bypass) {
3129 rdev->bypass_count++;
3130
3131 if (rdev->bypass_count == rdev->open_count) {
3132 ret = rdev->desc->ops->set_bypass(rdev, enable);
3133 if (ret != 0)
3134 rdev->bypass_count--;
3135 }
3136
3137 } else if (!enable && regulator->bypass) {
3138 rdev->bypass_count--;
3139
3140 if (rdev->bypass_count != rdev->open_count) {
3141 ret = rdev->desc->ops->set_bypass(rdev, enable);
3142 if (ret != 0)
3143 rdev->bypass_count++;
3144 }
3145 }
3146
3147 if (ret == 0)
3148 regulator->bypass = enable;
3149
3150 mutex_unlock(&rdev->mutex);
3151
3152 return ret;
3153 }
3154 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3155
3156 /**
3157 * regulator_register_notifier - register regulator event notifier
3158 * @regulator: regulator source
3159 * @nb: notifier block
3160 *
3161 * Register notifier block to receive regulator events.
3162 */
3163 int regulator_register_notifier(struct regulator *regulator,
3164 struct notifier_block *nb)
3165 {
3166 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3167 nb);
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3170
3171 /**
3172 * regulator_unregister_notifier - unregister regulator event notifier
3173 * @regulator: regulator source
3174 * @nb: notifier block
3175 *
3176 * Unregister regulator event notifier block.
3177 */
3178 int regulator_unregister_notifier(struct regulator *regulator,
3179 struct notifier_block *nb)
3180 {
3181 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3182 nb);
3183 }
3184 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3185
3186 /* notify regulator consumers and downstream regulator consumers.
3187 * Note mutex must be held by caller.
3188 */
3189 static int _notifier_call_chain(struct regulator_dev *rdev,
3190 unsigned long event, void *data)
3191 {
3192 /* call rdev chain first */
3193 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3194 }
3195
3196 /**
3197 * regulator_bulk_get - get multiple regulator consumers
3198 *
3199 * @dev: Device to supply
3200 * @num_consumers: Number of consumers to register
3201 * @consumers: Configuration of consumers; clients are stored here.
3202 *
3203 * @return 0 on success, an errno on failure.
3204 *
3205 * This helper function allows drivers to get several regulator
3206 * consumers in one operation. If any of the regulators cannot be
3207 * acquired then any regulators that were allocated will be freed
3208 * before returning to the caller.
3209 */
3210 int regulator_bulk_get(struct device *dev, int num_consumers,
3211 struct regulator_bulk_data *consumers)
3212 {
3213 int i;
3214 int ret;
3215
3216 for (i = 0; i < num_consumers; i++)
3217 consumers[i].consumer = NULL;
3218
3219 for (i = 0; i < num_consumers; i++) {
3220 consumers[i].consumer = regulator_get(dev,
3221 consumers[i].supply);
3222 if (IS_ERR(consumers[i].consumer)) {
3223 ret = PTR_ERR(consumers[i].consumer);
3224 dev_err(dev, "Failed to get supply '%s': %d\n",
3225 consumers[i].supply, ret);
3226 consumers[i].consumer = NULL;
3227 goto err;
3228 }
3229 }
3230
3231 return 0;
3232
3233 err:
3234 while (--i >= 0)
3235 regulator_put(consumers[i].consumer);
3236
3237 return ret;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3240
3241 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3242 {
3243 struct regulator_bulk_data *bulk = data;
3244
3245 bulk->ret = regulator_enable(bulk->consumer);
3246 }
3247
3248 /**
3249 * regulator_bulk_enable - enable multiple regulator consumers
3250 *
3251 * @num_consumers: Number of consumers
3252 * @consumers: Consumer data; clients are stored here.
3253 * @return 0 on success, an errno on failure
3254 *
3255 * This convenience API allows consumers to enable multiple regulator
3256 * clients in a single API call. If any consumers cannot be enabled
3257 * then any others that were enabled will be disabled again prior to
3258 * return.
3259 */
3260 int regulator_bulk_enable(int num_consumers,
3261 struct regulator_bulk_data *consumers)
3262 {
3263 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3264 int i;
3265 int ret = 0;
3266
3267 for (i = 0; i < num_consumers; i++) {
3268 if (consumers[i].consumer->always_on)
3269 consumers[i].ret = 0;
3270 else
3271 async_schedule_domain(regulator_bulk_enable_async,
3272 &consumers[i], &async_domain);
3273 }
3274
3275 async_synchronize_full_domain(&async_domain);
3276
3277 /* If any consumer failed we need to unwind any that succeeded */
3278 for (i = 0; i < num_consumers; i++) {
3279 if (consumers[i].ret != 0) {
3280 ret = consumers[i].ret;
3281 goto err;
3282 }
3283 }
3284
3285 return 0;
3286
3287 err:
3288 for (i = 0; i < num_consumers; i++) {
3289 if (consumers[i].ret < 0)
3290 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3291 consumers[i].ret);
3292 else
3293 regulator_disable(consumers[i].consumer);
3294 }
3295
3296 return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3299
3300 /**
3301 * regulator_bulk_disable - disable multiple regulator consumers
3302 *
3303 * @num_consumers: Number of consumers
3304 * @consumers: Consumer data; clients are stored here.
3305 * @return 0 on success, an errno on failure
3306 *
3307 * This convenience API allows consumers to disable multiple regulator
3308 * clients in a single API call. If any consumers cannot be disabled
3309 * then any others that were disabled will be enabled again prior to
3310 * return.
3311 */
3312 int regulator_bulk_disable(int num_consumers,
3313 struct regulator_bulk_data *consumers)
3314 {
3315 int i;
3316 int ret, r;
3317
3318 for (i = num_consumers - 1; i >= 0; --i) {
3319 ret = regulator_disable(consumers[i].consumer);
3320 if (ret != 0)
3321 goto err;
3322 }
3323
3324 return 0;
3325
3326 err:
3327 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3328 for (++i; i < num_consumers; ++i) {
3329 r = regulator_enable(consumers[i].consumer);
3330 if (r != 0)
3331 pr_err("Failed to reename %s: %d\n",
3332 consumers[i].supply, r);
3333 }
3334
3335 return ret;
3336 }
3337 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3338
3339 /**
3340 * regulator_bulk_force_disable - force disable multiple regulator consumers
3341 *
3342 * @num_consumers: Number of consumers
3343 * @consumers: Consumer data; clients are stored here.
3344 * @return 0 on success, an errno on failure
3345 *
3346 * This convenience API allows consumers to forcibly disable multiple regulator
3347 * clients in a single API call.
3348 * NOTE: This should be used for situations when device damage will
3349 * likely occur if the regulators are not disabled (e.g. over temp).
3350 * Although regulator_force_disable function call for some consumers can
3351 * return error numbers, the function is called for all consumers.
3352 */
3353 int regulator_bulk_force_disable(int num_consumers,
3354 struct regulator_bulk_data *consumers)
3355 {
3356 int i;
3357 int ret;
3358
3359 for (i = 0; i < num_consumers; i++)
3360 consumers[i].ret =
3361 regulator_force_disable(consumers[i].consumer);
3362
3363 for (i = 0; i < num_consumers; i++) {
3364 if (consumers[i].ret != 0) {
3365 ret = consumers[i].ret;
3366 goto out;
3367 }
3368 }
3369
3370 return 0;
3371 out:
3372 return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3375
3376 /**
3377 * regulator_bulk_free - free multiple regulator consumers
3378 *
3379 * @num_consumers: Number of consumers
3380 * @consumers: Consumer data; clients are stored here.
3381 *
3382 * This convenience API allows consumers to free multiple regulator
3383 * clients in a single API call.
3384 */
3385 void regulator_bulk_free(int num_consumers,
3386 struct regulator_bulk_data *consumers)
3387 {
3388 int i;
3389
3390 for (i = 0; i < num_consumers; i++) {
3391 regulator_put(consumers[i].consumer);
3392 consumers[i].consumer = NULL;
3393 }
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3396
3397 /**
3398 * regulator_notifier_call_chain - call regulator event notifier
3399 * @rdev: regulator source
3400 * @event: notifier block
3401 * @data: callback-specific data.
3402 *
3403 * Called by regulator drivers to notify clients a regulator event has
3404 * occurred. We also notify regulator clients downstream.
3405 * Note lock must be held by caller.
3406 */
3407 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3408 unsigned long event, void *data)
3409 {
3410 _notifier_call_chain(rdev, event, data);
3411 return NOTIFY_DONE;
3412
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3415
3416 /**
3417 * regulator_mode_to_status - convert a regulator mode into a status
3418 *
3419 * @mode: Mode to convert
3420 *
3421 * Convert a regulator mode into a status.
3422 */
3423 int regulator_mode_to_status(unsigned int mode)
3424 {
3425 switch (mode) {
3426 case REGULATOR_MODE_FAST:
3427 return REGULATOR_STATUS_FAST;
3428 case REGULATOR_MODE_NORMAL:
3429 return REGULATOR_STATUS_NORMAL;
3430 case REGULATOR_MODE_IDLE:
3431 return REGULATOR_STATUS_IDLE;
3432 case REGULATOR_MODE_STANDBY:
3433 return REGULATOR_STATUS_STANDBY;
3434 default:
3435 return REGULATOR_STATUS_UNDEFINED;
3436 }
3437 }
3438 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3439
3440 static struct attribute *regulator_dev_attrs[] = {
3441 &dev_attr_name.attr,
3442 &dev_attr_num_users.attr,
3443 &dev_attr_type.attr,
3444 &dev_attr_microvolts.attr,
3445 &dev_attr_microamps.attr,
3446 &dev_attr_opmode.attr,
3447 &dev_attr_state.attr,
3448 &dev_attr_status.attr,
3449 &dev_attr_bypass.attr,
3450 &dev_attr_requested_microamps.attr,
3451 &dev_attr_min_microvolts.attr,
3452 &dev_attr_max_microvolts.attr,
3453 &dev_attr_min_microamps.attr,
3454 &dev_attr_max_microamps.attr,
3455 &dev_attr_suspend_standby_state.attr,
3456 &dev_attr_suspend_mem_state.attr,
3457 &dev_attr_suspend_disk_state.attr,
3458 &dev_attr_suspend_standby_microvolts.attr,
3459 &dev_attr_suspend_mem_microvolts.attr,
3460 &dev_attr_suspend_disk_microvolts.attr,
3461 &dev_attr_suspend_standby_mode.attr,
3462 &dev_attr_suspend_mem_mode.attr,
3463 &dev_attr_suspend_disk_mode.attr,
3464 NULL
3465 };
3466
3467 /*
3468 * To avoid cluttering sysfs (and memory) with useless state, only
3469 * create attributes that can be meaningfully displayed.
3470 */
3471 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3472 struct attribute *attr, int idx)
3473 {
3474 struct device *dev = kobj_to_dev(kobj);
3475 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3476 const struct regulator_ops *ops = rdev->desc->ops;
3477 umode_t mode = attr->mode;
3478
3479 /* these three are always present */
3480 if (attr == &dev_attr_name.attr ||
3481 attr == &dev_attr_num_users.attr ||
3482 attr == &dev_attr_type.attr)
3483 return mode;
3484
3485 /* some attributes need specific methods to be displayed */
3486 if (attr == &dev_attr_microvolts.attr) {
3487 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3488 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3489 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3490 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3491 return mode;
3492 return 0;
3493 }
3494
3495 if (attr == &dev_attr_microamps.attr)
3496 return ops->get_current_limit ? mode : 0;
3497
3498 if (attr == &dev_attr_opmode.attr)
3499 return ops->get_mode ? mode : 0;
3500
3501 if (attr == &dev_attr_state.attr)
3502 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3503
3504 if (attr == &dev_attr_status.attr)
3505 return ops->get_status ? mode : 0;
3506
3507 if (attr == &dev_attr_bypass.attr)
3508 return ops->get_bypass ? mode : 0;
3509
3510 /* some attributes are type-specific */
3511 if (attr == &dev_attr_requested_microamps.attr)
3512 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3513
3514 /* constraints need specific supporting methods */
3515 if (attr == &dev_attr_min_microvolts.attr ||
3516 attr == &dev_attr_max_microvolts.attr)
3517 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3518
3519 if (attr == &dev_attr_min_microamps.attr ||
3520 attr == &dev_attr_max_microamps.attr)
3521 return ops->set_current_limit ? mode : 0;
3522
3523 if (attr == &dev_attr_suspend_standby_state.attr ||
3524 attr == &dev_attr_suspend_mem_state.attr ||
3525 attr == &dev_attr_suspend_disk_state.attr)
3526 return mode;
3527
3528 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3529 attr == &dev_attr_suspend_mem_microvolts.attr ||
3530 attr == &dev_attr_suspend_disk_microvolts.attr)
3531 return ops->set_suspend_voltage ? mode : 0;
3532
3533 if (attr == &dev_attr_suspend_standby_mode.attr ||
3534 attr == &dev_attr_suspend_mem_mode.attr ||
3535 attr == &dev_attr_suspend_disk_mode.attr)
3536 return ops->set_suspend_mode ? mode : 0;
3537
3538 return mode;
3539 }
3540
3541 static const struct attribute_group regulator_dev_group = {
3542 .attrs = regulator_dev_attrs,
3543 .is_visible = regulator_attr_is_visible,
3544 };
3545
3546 static const struct attribute_group *regulator_dev_groups[] = {
3547 &regulator_dev_group,
3548 NULL
3549 };
3550
3551 static void regulator_dev_release(struct device *dev)
3552 {
3553 struct regulator_dev *rdev = dev_get_drvdata(dev);
3554 kfree(rdev);
3555 }
3556
3557 static struct class regulator_class = {
3558 .name = "regulator",
3559 .dev_release = regulator_dev_release,
3560 .dev_groups = regulator_dev_groups,
3561 };
3562
3563 static void rdev_init_debugfs(struct regulator_dev *rdev)
3564 {
3565 struct device *parent = rdev->dev.parent;
3566 const char *rname = rdev_get_name(rdev);
3567 char name[NAME_MAX];
3568
3569 /* Avoid duplicate debugfs directory names */
3570 if (parent && rname == rdev->desc->name) {
3571 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3572 rname);
3573 rname = name;
3574 }
3575
3576 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3577 if (!rdev->debugfs) {
3578 rdev_warn(rdev, "Failed to create debugfs directory\n");
3579 return;
3580 }
3581
3582 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3583 &rdev->use_count);
3584 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3585 &rdev->open_count);
3586 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3587 &rdev->bypass_count);
3588 }
3589
3590 /**
3591 * regulator_register - register regulator
3592 * @regulator_desc: regulator to register
3593 * @cfg: runtime configuration for regulator
3594 *
3595 * Called by regulator drivers to register a regulator.
3596 * Returns a valid pointer to struct regulator_dev on success
3597 * or an ERR_PTR() on error.
3598 */
3599 struct regulator_dev *
3600 regulator_register(const struct regulator_desc *regulator_desc,
3601 const struct regulator_config *cfg)
3602 {
3603 const struct regulation_constraints *constraints = NULL;
3604 const struct regulator_init_data *init_data;
3605 struct regulator_config *config = NULL;
3606 static atomic_t regulator_no = ATOMIC_INIT(-1);
3607 struct regulator_dev *rdev;
3608 struct device *dev;
3609 int ret, i;
3610
3611 if (regulator_desc == NULL || cfg == NULL)
3612 return ERR_PTR(-EINVAL);
3613
3614 dev = cfg->dev;
3615 WARN_ON(!dev);
3616
3617 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3618 return ERR_PTR(-EINVAL);
3619
3620 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3621 regulator_desc->type != REGULATOR_CURRENT)
3622 return ERR_PTR(-EINVAL);
3623
3624 /* Only one of each should be implemented */
3625 WARN_ON(regulator_desc->ops->get_voltage &&
3626 regulator_desc->ops->get_voltage_sel);
3627 WARN_ON(regulator_desc->ops->set_voltage &&
3628 regulator_desc->ops->set_voltage_sel);
3629
3630 /* If we're using selectors we must implement list_voltage. */
3631 if (regulator_desc->ops->get_voltage_sel &&
3632 !regulator_desc->ops->list_voltage) {
3633 return ERR_PTR(-EINVAL);
3634 }
3635 if (regulator_desc->ops->set_voltage_sel &&
3636 !regulator_desc->ops->list_voltage) {
3637 return ERR_PTR(-EINVAL);
3638 }
3639
3640 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3641 if (rdev == NULL)
3642 return ERR_PTR(-ENOMEM);
3643
3644 /*
3645 * Duplicate the config so the driver could override it after
3646 * parsing init data.
3647 */
3648 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3649 if (config == NULL) {
3650 kfree(rdev);
3651 return ERR_PTR(-ENOMEM);
3652 }
3653
3654 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3655 &rdev->dev.of_node);
3656 if (!init_data) {
3657 init_data = config->init_data;
3658 rdev->dev.of_node = of_node_get(config->of_node);
3659 }
3660
3661 mutex_lock(&regulator_list_mutex);
3662
3663 mutex_init(&rdev->mutex);
3664 rdev->reg_data = config->driver_data;
3665 rdev->owner = regulator_desc->owner;
3666 rdev->desc = regulator_desc;
3667 if (config->regmap)
3668 rdev->regmap = config->regmap;
3669 else if (dev_get_regmap(dev, NULL))
3670 rdev->regmap = dev_get_regmap(dev, NULL);
3671 else if (dev->parent)
3672 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3673 INIT_LIST_HEAD(&rdev->consumer_list);
3674 INIT_LIST_HEAD(&rdev->list);
3675 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3676 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3677
3678 /* preform any regulator specific init */
3679 if (init_data && init_data->regulator_init) {
3680 ret = init_data->regulator_init(rdev->reg_data);
3681 if (ret < 0)
3682 goto clean;
3683 }
3684
3685 /* register with sysfs */
3686 rdev->dev.class = &regulator_class;
3687 rdev->dev.parent = dev;
3688 dev_set_name(&rdev->dev, "regulator.%lu",
3689 (unsigned long) atomic_inc_return(&regulator_no));
3690 ret = device_register(&rdev->dev);
3691 if (ret != 0) {
3692 put_device(&rdev->dev);
3693 goto clean;
3694 }
3695
3696 dev_set_drvdata(&rdev->dev, rdev);
3697
3698 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3699 gpio_is_valid(config->ena_gpio)) {
3700 ret = regulator_ena_gpio_request(rdev, config);
3701 if (ret != 0) {
3702 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3703 config->ena_gpio, ret);
3704 goto wash;
3705 }
3706 }
3707
3708 /* set regulator constraints */
3709 if (init_data)
3710 constraints = &init_data->constraints;
3711
3712 ret = set_machine_constraints(rdev, constraints);
3713 if (ret < 0)
3714 goto scrub;
3715
3716 if (init_data && init_data->supply_regulator)
3717 rdev->supply_name = init_data->supply_regulator;
3718 else if (regulator_desc->supply_name)
3719 rdev->supply_name = regulator_desc->supply_name;
3720
3721 /* add consumers devices */
3722 if (init_data) {
3723 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3724 ret = set_consumer_device_supply(rdev,
3725 init_data->consumer_supplies[i].dev_name,
3726 init_data->consumer_supplies[i].supply);
3727 if (ret < 0) {
3728 dev_err(dev, "Failed to set supply %s\n",
3729 init_data->consumer_supplies[i].supply);
3730 goto unset_supplies;
3731 }
3732 }
3733 }
3734
3735 list_add(&rdev->list, &regulator_list);
3736
3737 rdev_init_debugfs(rdev);
3738 out:
3739 mutex_unlock(&regulator_list_mutex);
3740 kfree(config);
3741 return rdev;
3742
3743 unset_supplies:
3744 unset_regulator_supplies(rdev);
3745
3746 scrub:
3747 regulator_ena_gpio_free(rdev);
3748 kfree(rdev->constraints);
3749 wash:
3750 device_unregister(&rdev->dev);
3751 /* device core frees rdev */
3752 rdev = ERR_PTR(ret);
3753 goto out;
3754
3755 clean:
3756 kfree(rdev);
3757 rdev = ERR_PTR(ret);
3758 goto out;
3759 }
3760 EXPORT_SYMBOL_GPL(regulator_register);
3761
3762 /**
3763 * regulator_unregister - unregister regulator
3764 * @rdev: regulator to unregister
3765 *
3766 * Called by regulator drivers to unregister a regulator.
3767 */
3768 void regulator_unregister(struct regulator_dev *rdev)
3769 {
3770 if (rdev == NULL)
3771 return;
3772
3773 if (rdev->supply) {
3774 while (rdev->use_count--)
3775 regulator_disable(rdev->supply);
3776 regulator_put(rdev->supply);
3777 }
3778 mutex_lock(&regulator_list_mutex);
3779 debugfs_remove_recursive(rdev->debugfs);
3780 flush_work(&rdev->disable_work.work);
3781 WARN_ON(rdev->open_count);
3782 unset_regulator_supplies(rdev);
3783 list_del(&rdev->list);
3784 kfree(rdev->constraints);
3785 regulator_ena_gpio_free(rdev);
3786 of_node_put(rdev->dev.of_node);
3787 device_unregister(&rdev->dev);
3788 mutex_unlock(&regulator_list_mutex);
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_unregister);
3791
3792 /**
3793 * regulator_suspend_prepare - prepare regulators for system wide suspend
3794 * @state: system suspend state
3795 *
3796 * Configure each regulator with it's suspend operating parameters for state.
3797 * This will usually be called by machine suspend code prior to supending.
3798 */
3799 int regulator_suspend_prepare(suspend_state_t state)
3800 {
3801 struct regulator_dev *rdev;
3802 int ret = 0;
3803
3804 /* ON is handled by regulator active state */
3805 if (state == PM_SUSPEND_ON)
3806 return -EINVAL;
3807
3808 mutex_lock(&regulator_list_mutex);
3809 list_for_each_entry(rdev, &regulator_list, list) {
3810
3811 mutex_lock(&rdev->mutex);
3812 ret = suspend_prepare(rdev, state);
3813 mutex_unlock(&rdev->mutex);
3814
3815 if (ret < 0) {
3816 rdev_err(rdev, "failed to prepare\n");
3817 goto out;
3818 }
3819 }
3820 out:
3821 mutex_unlock(&regulator_list_mutex);
3822 return ret;
3823 }
3824 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3825
3826 /**
3827 * regulator_suspend_finish - resume regulators from system wide suspend
3828 *
3829 * Turn on regulators that might be turned off by regulator_suspend_prepare
3830 * and that should be turned on according to the regulators properties.
3831 */
3832 int regulator_suspend_finish(void)
3833 {
3834 struct regulator_dev *rdev;
3835 int ret = 0, error;
3836
3837 mutex_lock(&regulator_list_mutex);
3838 list_for_each_entry(rdev, &regulator_list, list) {
3839 mutex_lock(&rdev->mutex);
3840 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3841 if (!_regulator_is_enabled(rdev)) {
3842 error = _regulator_do_enable(rdev);
3843 if (error)
3844 ret = error;
3845 }
3846 } else {
3847 if (!have_full_constraints())
3848 goto unlock;
3849 if (!_regulator_is_enabled(rdev))
3850 goto unlock;
3851
3852 error = _regulator_do_disable(rdev);
3853 if (error)
3854 ret = error;
3855 }
3856 unlock:
3857 mutex_unlock(&rdev->mutex);
3858 }
3859 mutex_unlock(&regulator_list_mutex);
3860 return ret;
3861 }
3862 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3863
3864 /**
3865 * regulator_has_full_constraints - the system has fully specified constraints
3866 *
3867 * Calling this function will cause the regulator API to disable all
3868 * regulators which have a zero use count and don't have an always_on
3869 * constraint in a late_initcall.
3870 *
3871 * The intention is that this will become the default behaviour in a
3872 * future kernel release so users are encouraged to use this facility
3873 * now.
3874 */
3875 void regulator_has_full_constraints(void)
3876 {
3877 has_full_constraints = 1;
3878 }
3879 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3880
3881 /**
3882 * rdev_get_drvdata - get rdev regulator driver data
3883 * @rdev: regulator
3884 *
3885 * Get rdev regulator driver private data. This call can be used in the
3886 * regulator driver context.
3887 */
3888 void *rdev_get_drvdata(struct regulator_dev *rdev)
3889 {
3890 return rdev->reg_data;
3891 }
3892 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3893
3894 /**
3895 * regulator_get_drvdata - get regulator driver data
3896 * @regulator: regulator
3897 *
3898 * Get regulator driver private data. This call can be used in the consumer
3899 * driver context when non API regulator specific functions need to be called.
3900 */
3901 void *regulator_get_drvdata(struct regulator *regulator)
3902 {
3903 return regulator->rdev->reg_data;
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3906
3907 /**
3908 * regulator_set_drvdata - set regulator driver data
3909 * @regulator: regulator
3910 * @data: data
3911 */
3912 void regulator_set_drvdata(struct regulator *regulator, void *data)
3913 {
3914 regulator->rdev->reg_data = data;
3915 }
3916 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3917
3918 /**
3919 * regulator_get_id - get regulator ID
3920 * @rdev: regulator
3921 */
3922 int rdev_get_id(struct regulator_dev *rdev)
3923 {
3924 return rdev->desc->id;
3925 }
3926 EXPORT_SYMBOL_GPL(rdev_get_id);
3927
3928 struct device *rdev_get_dev(struct regulator_dev *rdev)
3929 {
3930 return &rdev->dev;
3931 }
3932 EXPORT_SYMBOL_GPL(rdev_get_dev);
3933
3934 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3935 {
3936 return reg_init_data->driver_data;
3937 }
3938 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3939
3940 #ifdef CONFIG_DEBUG_FS
3941 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3942 size_t count, loff_t *ppos)
3943 {
3944 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3945 ssize_t len, ret = 0;
3946 struct regulator_map *map;
3947
3948 if (!buf)
3949 return -ENOMEM;
3950
3951 list_for_each_entry(map, &regulator_map_list, list) {
3952 len = snprintf(buf + ret, PAGE_SIZE - ret,
3953 "%s -> %s.%s\n",
3954 rdev_get_name(map->regulator), map->dev_name,
3955 map->supply);
3956 if (len >= 0)
3957 ret += len;
3958 if (ret > PAGE_SIZE) {
3959 ret = PAGE_SIZE;
3960 break;
3961 }
3962 }
3963
3964 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3965
3966 kfree(buf);
3967
3968 return ret;
3969 }
3970 #endif
3971
3972 static const struct file_operations supply_map_fops = {
3973 #ifdef CONFIG_DEBUG_FS
3974 .read = supply_map_read_file,
3975 .llseek = default_llseek,
3976 #endif
3977 };
3978
3979 #ifdef CONFIG_DEBUG_FS
3980 static void regulator_summary_show_subtree(struct seq_file *s,
3981 struct regulator_dev *rdev,
3982 int level)
3983 {
3984 struct list_head *list = s->private;
3985 struct regulator_dev *child;
3986 struct regulation_constraints *c;
3987 struct regulator *consumer;
3988
3989 if (!rdev)
3990 return;
3991
3992 seq_printf(s, "%*s%-*s %3d %4d %6d ",
3993 level * 3 + 1, "",
3994 30 - level * 3, rdev_get_name(rdev),
3995 rdev->use_count, rdev->open_count, rdev->bypass_count);
3996
3997 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
3998 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
3999
4000 c = rdev->constraints;
4001 if (c) {
4002 switch (rdev->desc->type) {
4003 case REGULATOR_VOLTAGE:
4004 seq_printf(s, "%5dmV %5dmV ",
4005 c->min_uV / 1000, c->max_uV / 1000);
4006 break;
4007 case REGULATOR_CURRENT:
4008 seq_printf(s, "%5dmA %5dmA ",
4009 c->min_uA / 1000, c->max_uA / 1000);
4010 break;
4011 }
4012 }
4013
4014 seq_puts(s, "\n");
4015
4016 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4017 if (consumer->dev->class == &regulator_class)
4018 continue;
4019
4020 seq_printf(s, "%*s%-*s ",
4021 (level + 1) * 3 + 1, "",
4022 30 - (level + 1) * 3, dev_name(consumer->dev));
4023
4024 switch (rdev->desc->type) {
4025 case REGULATOR_VOLTAGE:
4026 seq_printf(s, "%37dmV %5dmV",
4027 consumer->min_uV / 1000,
4028 consumer->max_uV / 1000);
4029 break;
4030 case REGULATOR_CURRENT:
4031 break;
4032 }
4033
4034 seq_puts(s, "\n");
4035 }
4036
4037 list_for_each_entry(child, list, list) {
4038 /* handle only non-root regulators supplied by current rdev */
4039 if (!child->supply || child->supply->rdev != rdev)
4040 continue;
4041
4042 regulator_summary_show_subtree(s, child, level + 1);
4043 }
4044 }
4045
4046 static int regulator_summary_show(struct seq_file *s, void *data)
4047 {
4048 struct list_head *list = s->private;
4049 struct regulator_dev *rdev;
4050
4051 seq_puts(s, " regulator use open bypass voltage current min max\n");
4052 seq_puts(s, "-------------------------------------------------------------------------------\n");
4053
4054 mutex_lock(&regulator_list_mutex);
4055
4056 list_for_each_entry(rdev, list, list) {
4057 if (rdev->supply)
4058 continue;
4059
4060 regulator_summary_show_subtree(s, rdev, 0);
4061 }
4062
4063 mutex_unlock(&regulator_list_mutex);
4064
4065 return 0;
4066 }
4067
4068 static int regulator_summary_open(struct inode *inode, struct file *file)
4069 {
4070 return single_open(file, regulator_summary_show, inode->i_private);
4071 }
4072 #endif
4073
4074 static const struct file_operations regulator_summary_fops = {
4075 #ifdef CONFIG_DEBUG_FS
4076 .open = regulator_summary_open,
4077 .read = seq_read,
4078 .llseek = seq_lseek,
4079 .release = single_release,
4080 #endif
4081 };
4082
4083 static int __init regulator_init(void)
4084 {
4085 int ret;
4086
4087 ret = class_register(&regulator_class);
4088
4089 debugfs_root = debugfs_create_dir("regulator", NULL);
4090 if (!debugfs_root)
4091 pr_warn("regulator: Failed to create debugfs directory\n");
4092
4093 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4094 &supply_map_fops);
4095
4096 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4097 &regulator_list, &regulator_summary_fops);
4098
4099 regulator_dummy_init();
4100
4101 return ret;
4102 }
4103
4104 /* init early to allow our consumers to complete system booting */
4105 core_initcall(regulator_init);
4106
4107 static int __init regulator_init_complete(void)
4108 {
4109 struct regulator_dev *rdev;
4110 const struct regulator_ops *ops;
4111 struct regulation_constraints *c;
4112 int enabled, ret;
4113
4114 /*
4115 * Since DT doesn't provide an idiomatic mechanism for
4116 * enabling full constraints and since it's much more natural
4117 * with DT to provide them just assume that a DT enabled
4118 * system has full constraints.
4119 */
4120 if (of_have_populated_dt())
4121 has_full_constraints = true;
4122
4123 mutex_lock(&regulator_list_mutex);
4124
4125 /* If we have a full configuration then disable any regulators
4126 * we have permission to change the status for and which are
4127 * not in use or always_on. This is effectively the default
4128 * for DT and ACPI as they have full constraints.
4129 */
4130 list_for_each_entry(rdev, &regulator_list, list) {
4131 ops = rdev->desc->ops;
4132 c = rdev->constraints;
4133
4134 if (c && c->always_on)
4135 continue;
4136
4137 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4138 continue;
4139
4140 mutex_lock(&rdev->mutex);
4141
4142 if (rdev->use_count)
4143 goto unlock;
4144
4145 /* If we can't read the status assume it's on. */
4146 if (ops->is_enabled)
4147 enabled = ops->is_enabled(rdev);
4148 else
4149 enabled = 1;
4150
4151 if (!enabled)
4152 goto unlock;
4153
4154 if (have_full_constraints()) {
4155 /* We log since this may kill the system if it
4156 * goes wrong. */
4157 rdev_info(rdev, "disabling\n");
4158 ret = _regulator_do_disable(rdev);
4159 if (ret != 0)
4160 rdev_err(rdev, "couldn't disable: %d\n", ret);
4161 } else {
4162 /* The intention is that in future we will
4163 * assume that full constraints are provided
4164 * so warn even if we aren't going to do
4165 * anything here.
4166 */
4167 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4168 }
4169
4170 unlock:
4171 mutex_unlock(&rdev->mutex);
4172 }
4173
4174 mutex_unlock(&regulator_list_mutex);
4175
4176 return 0;
4177 }
4178 late_initcall_sync(regulator_init_complete);
This page took 0.168086 seconds and 5 git commands to generate.