Merge tag 'kvm-s390-master-4.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 /**
136 * regulator_lock_supply - lock a regulator and its supplies
137 * @rdev: regulator source
138 */
139 static void regulator_lock_supply(struct regulator_dev *rdev)
140 {
141 struct regulator *supply;
142 int i = 0;
143
144 while (1) {
145 mutex_lock_nested(&rdev->mutex, i++);
146 supply = rdev->supply;
147
148 if (!rdev->supply)
149 return;
150
151 rdev = supply->rdev;
152 }
153 }
154
155 /**
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
158 */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161 struct regulator *supply;
162
163 while (1) {
164 mutex_unlock(&rdev->mutex);
165 supply = rdev->supply;
166
167 if (!rdev->supply)
168 return;
169
170 rdev = supply->rdev;
171 }
172 }
173
174 /**
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
178 *
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
181 * returns NULL.
182 */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185 struct device_node *regnode = NULL;
186 char prop_name[32]; /* 32 is max size of property name */
187
188 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190 snprintf(prop_name, 32, "%s-supply", supply);
191 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193 if (!regnode) {
194 dev_dbg(dev, "Looking up %s property in node %s failed",
195 prop_name, dev->of_node->full_name);
196 return NULL;
197 }
198 return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203 if (!rdev->constraints)
204 return 0;
205
206 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 return 1;
208 else
209 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 int *min_uV, int *max_uV)
215 {
216 BUG_ON(*min_uV > *max_uV);
217
218 if (!rdev->constraints) {
219 rdev_err(rdev, "no constraints\n");
220 return -ENODEV;
221 }
222 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 rdev_err(rdev, "voltage operation not allowed\n");
224 return -EPERM;
225 }
226
227 if (*max_uV > rdev->constraints->max_uV)
228 *max_uV = rdev->constraints->max_uV;
229 if (*min_uV < rdev->constraints->min_uV)
230 *min_uV = rdev->constraints->min_uV;
231
232 if (*min_uV > *max_uV) {
233 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 *min_uV, *max_uV);
235 return -EINVAL;
236 }
237
238 return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
243 */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 int *min_uV, int *max_uV)
246 {
247 struct regulator *regulator;
248
249 list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 /*
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
253 */
254 if (!regulator->min_uV && !regulator->max_uV)
255 continue;
256
257 if (*max_uV > regulator->max_uV)
258 *max_uV = regulator->max_uV;
259 if (*min_uV < regulator->min_uV)
260 *min_uV = regulator->min_uV;
261 }
262
263 if (*min_uV > *max_uV) {
264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 *min_uV, *max_uV);
266 return -EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 int *min_uA, int *max_uA)
275 {
276 BUG_ON(*min_uA > *max_uA);
277
278 if (!rdev->constraints) {
279 rdev_err(rdev, "no constraints\n");
280 return -ENODEV;
281 }
282 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 rdev_err(rdev, "current operation not allowed\n");
284 return -EPERM;
285 }
286
287 if (*max_uA > rdev->constraints->max_uA)
288 *max_uA = rdev->constraints->max_uA;
289 if (*min_uA < rdev->constraints->min_uA)
290 *min_uA = rdev->constraints->min_uA;
291
292 if (*min_uA > *max_uA) {
293 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 *min_uA, *max_uA);
295 return -EINVAL;
296 }
297
298 return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304 switch (*mode) {
305 case REGULATOR_MODE_FAST:
306 case REGULATOR_MODE_NORMAL:
307 case REGULATOR_MODE_IDLE:
308 case REGULATOR_MODE_STANDBY:
309 break;
310 default:
311 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 return -EINVAL;
313 }
314
315 if (!rdev->constraints) {
316 rdev_err(rdev, "no constraints\n");
317 return -ENODEV;
318 }
319 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 rdev_err(rdev, "mode operation not allowed\n");
321 return -EPERM;
322 }
323
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
327 while (*mode) {
328 if (rdev->constraints->valid_modes_mask & *mode)
329 return 0;
330 *mode /= 2;
331 }
332
333 return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339 if (!rdev->constraints) {
340 rdev_err(rdev, "no constraints\n");
341 return -ENODEV;
342 }
343 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 rdev_dbg(rdev, "drms operation not allowed\n");
345 return -EPERM;
346 }
347 return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
355
356 mutex_lock(&rdev->mutex);
357 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 mutex_unlock(&rdev->mutex);
359
360 return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366 {
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 char *buf)
375 {
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378 return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384 switch (mode) {
385 case REGULATOR_MODE_FAST:
386 return sprintf(buf, "fast\n");
387 case REGULATOR_MODE_NORMAL:
388 return sprintf(buf, "normal\n");
389 case REGULATOR_MODE_IDLE:
390 return sprintf(buf, "idle\n");
391 case REGULATOR_MODE_STANDBY:
392 return sprintf(buf, "standby\n");
393 }
394 return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408 if (state > 0)
409 return sprintf(buf, "enabled\n");
410 else if (state == 0)
411 return sprintf(buf, "disabled\n");
412 else
413 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
418 {
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 ssize_t ret;
421
422 mutex_lock(&rdev->mutex);
423 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 mutex_unlock(&rdev->mutex);
425
426 return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432 {
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434 int status;
435 char *label;
436
437 status = rdev->desc->ops->get_status(rdev);
438 if (status < 0)
439 return status;
440
441 switch (status) {
442 case REGULATOR_STATUS_OFF:
443 label = "off";
444 break;
445 case REGULATOR_STATUS_ON:
446 label = "on";
447 break;
448 case REGULATOR_STATUS_ERROR:
449 label = "error";
450 break;
451 case REGULATOR_STATUS_FAST:
452 label = "fast";
453 break;
454 case REGULATOR_STATUS_NORMAL:
455 label = "normal";
456 break;
457 case REGULATOR_STATUS_IDLE:
458 label = "idle";
459 break;
460 case REGULATOR_STATUS_STANDBY:
461 label = "standby";
462 break;
463 case REGULATOR_STATUS_BYPASS:
464 label = "bypass";
465 break;
466 case REGULATOR_STATUS_UNDEFINED:
467 label = "undefined";
468 break;
469 default:
470 return -ERANGE;
471 }
472
473 return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
484
485 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
496
497 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 if (!rdev->constraints)
507 return sprintf(buf, "constraint not defined\n");
508
509 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 if (!rdev->constraints)
519 return sprintf(buf, "constraint not defined\n");
520
521 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 struct regulator *regulator;
530 int uA = 0;
531
532 mutex_lock(&rdev->mutex);
533 list_for_each_entry(regulator, &rdev->consumer_list, list)
534 uA += regulator->uA_load;
535 mutex_unlock(&rdev->mutex);
536 return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 switch (rdev->desc->type) {
554 case REGULATOR_VOLTAGE:
555 return sprintf(buf, "voltage\n");
556 case REGULATOR_CURRENT:
557 return sprintf(buf, "current\n");
558 }
559 return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
575 {
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598 return regulator_print_opmode(buf,
599 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 struct device_attribute *attr, char *buf)
606 {
607 struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609 return regulator_print_opmode(buf,
610 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
617 {
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return regulator_print_opmode(buf,
621 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 struct device_attribute *attr, char *buf)
628 {
629 struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631 return regulator_print_state(buf,
632 rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
639 {
640 struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642 return regulator_print_state(buf,
643 rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 struct device_attribute *attr, char *buf)
650 {
651 struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653 return regulator_print_state(buf,
654 rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660 struct device_attribute *attr, char *buf)
661 {
662 struct regulator_dev *rdev = dev_get_drvdata(dev);
663 const char *report;
664 bool bypass;
665 int ret;
666
667 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669 if (ret != 0)
670 report = "unknown";
671 else if (bypass)
672 report = "enabled";
673 else
674 report = "disabled";
675
676 return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679 regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685 struct regulator *sibling;
686 int current_uA = 0, output_uV, input_uV, err;
687 unsigned int mode;
688
689 lockdep_assert_held_once(&rdev->mutex);
690
691 /*
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
694 */
695 err = regulator_check_drms(rdev);
696 if (err < 0)
697 return 0;
698
699 if (!rdev->desc->ops->get_optimum_mode &&
700 !rdev->desc->ops->set_load)
701 return 0;
702
703 if (!rdev->desc->ops->set_mode &&
704 !rdev->desc->ops->set_load)
705 return -EINVAL;
706
707 /* get output voltage */
708 output_uV = _regulator_get_voltage(rdev);
709 if (output_uV <= 0) {
710 rdev_err(rdev, "invalid output voltage found\n");
711 return -EINVAL;
712 }
713
714 /* get input voltage */
715 input_uV = 0;
716 if (rdev->supply)
717 input_uV = regulator_get_voltage(rdev->supply);
718 if (input_uV <= 0)
719 input_uV = rdev->constraints->input_uV;
720 if (input_uV <= 0) {
721 rdev_err(rdev, "invalid input voltage found\n");
722 return -EINVAL;
723 }
724
725 /* calc total requested load */
726 list_for_each_entry(sibling, &rdev->consumer_list, list)
727 current_uA += sibling->uA_load;
728
729 current_uA += rdev->constraints->system_load;
730
731 if (rdev->desc->ops->set_load) {
732 /* set the optimum mode for our new total regulator load */
733 err = rdev->desc->ops->set_load(rdev, current_uA);
734 if (err < 0)
735 rdev_err(rdev, "failed to set load %d\n", current_uA);
736 } else {
737 /* now get the optimum mode for our new total regulator load */
738 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 output_uV, current_uA);
740
741 /* check the new mode is allowed */
742 err = regulator_mode_constrain(rdev, &mode);
743 if (err < 0) {
744 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA, input_uV, output_uV);
746 return err;
747 }
748
749 err = rdev->desc->ops->set_mode(rdev, mode);
750 if (err < 0)
751 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 }
753
754 return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758 struct regulator_state *rstate)
759 {
760 int ret = 0;
761
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
765 */
766 if (!rstate->enabled && !rstate->disabled) {
767 if (rdev->desc->ops->set_suspend_voltage ||
768 rdev->desc->ops->set_suspend_mode)
769 rdev_warn(rdev, "No configuration\n");
770 return 0;
771 }
772
773 if (rstate->enabled && rstate->disabled) {
774 rdev_err(rdev, "invalid configuration\n");
775 return -EINVAL;
776 }
777
778 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 ret = rdev->desc->ops->set_suspend_enable(rdev);
780 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 ret = rdev->desc->ops->set_suspend_disable(rdev);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 ret = 0;
784
785 if (ret < 0) {
786 rdev_err(rdev, "failed to enabled/disable\n");
787 return ret;
788 }
789
790 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 if (ret < 0) {
793 rdev_err(rdev, "failed to set voltage\n");
794 return ret;
795 }
796 }
797
798 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 if (ret < 0) {
801 rdev_err(rdev, "failed to set mode\n");
802 return ret;
803 }
804 }
805 return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811 lockdep_assert_held_once(&rdev->mutex);
812
813 if (!rdev->constraints)
814 return -EINVAL;
815
816 switch (state) {
817 case PM_SUSPEND_STANDBY:
818 return suspend_set_state(rdev,
819 &rdev->constraints->state_standby);
820 case PM_SUSPEND_MEM:
821 return suspend_set_state(rdev,
822 &rdev->constraints->state_mem);
823 case PM_SUSPEND_MAX:
824 return suspend_set_state(rdev,
825 &rdev->constraints->state_disk);
826 default:
827 return -EINVAL;
828 }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833 struct regulation_constraints *constraints = rdev->constraints;
834 char buf[160] = "";
835 size_t len = sizeof(buf) - 1;
836 int count = 0;
837 int ret;
838
839 if (constraints->min_uV && constraints->max_uV) {
840 if (constraints->min_uV == constraints->max_uV)
841 count += scnprintf(buf + count, len - count, "%d mV ",
842 constraints->min_uV / 1000);
843 else
844 count += scnprintf(buf + count, len - count,
845 "%d <--> %d mV ",
846 constraints->min_uV / 1000,
847 constraints->max_uV / 1000);
848 }
849
850 if (!constraints->min_uV ||
851 constraints->min_uV != constraints->max_uV) {
852 ret = _regulator_get_voltage(rdev);
853 if (ret > 0)
854 count += scnprintf(buf + count, len - count,
855 "at %d mV ", ret / 1000);
856 }
857
858 if (constraints->uV_offset)
859 count += scnprintf(buf + count, len - count, "%dmV offset ",
860 constraints->uV_offset / 1000);
861
862 if (constraints->min_uA && constraints->max_uA) {
863 if (constraints->min_uA == constraints->max_uA)
864 count += scnprintf(buf + count, len - count, "%d mA ",
865 constraints->min_uA / 1000);
866 else
867 count += scnprintf(buf + count, len - count,
868 "%d <--> %d mA ",
869 constraints->min_uA / 1000,
870 constraints->max_uA / 1000);
871 }
872
873 if (!constraints->min_uA ||
874 constraints->min_uA != constraints->max_uA) {
875 ret = _regulator_get_current_limit(rdev);
876 if (ret > 0)
877 count += scnprintf(buf + count, len - count,
878 "at %d mA ", ret / 1000);
879 }
880
881 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 count += scnprintf(buf + count, len - count, "fast ");
883 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 count += scnprintf(buf + count, len - count, "normal ");
885 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 count += scnprintf(buf + count, len - count, "idle ");
887 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 count += scnprintf(buf + count, len - count, "standby");
889
890 if (!count)
891 scnprintf(buf, len, "no parameters");
892
893 rdev_dbg(rdev, "%s\n", buf);
894
895 if ((constraints->min_uV != constraints->max_uV) &&
896 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 rdev_warn(rdev,
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 struct regulation_constraints *constraints)
903 {
904 const struct regulator_ops *ops = rdev->desc->ops;
905 int ret;
906
907 /* do we need to apply the constraint voltage */
908 if (rdev->constraints->apply_uV &&
909 rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 int current_uV = _regulator_get_voltage(rdev);
911 if (current_uV < 0) {
912 rdev_err(rdev,
913 "failed to get the current voltage(%d)\n",
914 current_uV);
915 return current_uV;
916 }
917 if (current_uV < rdev->constraints->min_uV ||
918 current_uV > rdev->constraints->max_uV) {
919 ret = _regulator_do_set_voltage(
920 rdev, rdev->constraints->min_uV,
921 rdev->constraints->max_uV);
922 if (ret < 0) {
923 rdev_err(rdev,
924 "failed to apply %duV constraint(%d)\n",
925 rdev->constraints->min_uV, ret);
926 return ret;
927 }
928 }
929 }
930
931 /* constrain machine-level voltage specs to fit
932 * the actual range supported by this regulator.
933 */
934 if (ops->list_voltage && rdev->desc->n_voltages) {
935 int count = rdev->desc->n_voltages;
936 int i;
937 int min_uV = INT_MAX;
938 int max_uV = INT_MIN;
939 int cmin = constraints->min_uV;
940 int cmax = constraints->max_uV;
941
942 /* it's safe to autoconfigure fixed-voltage supplies
943 and the constraints are used by list_voltage. */
944 if (count == 1 && !cmin) {
945 cmin = 1;
946 cmax = INT_MAX;
947 constraints->min_uV = cmin;
948 constraints->max_uV = cmax;
949 }
950
951 /* voltage constraints are optional */
952 if ((cmin == 0) && (cmax == 0))
953 return 0;
954
955 /* else require explicit machine-level constraints */
956 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 rdev_err(rdev, "invalid voltage constraints\n");
958 return -EINVAL;
959 }
960
961 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 for (i = 0; i < count; i++) {
963 int value;
964
965 value = ops->list_voltage(rdev, i);
966 if (value <= 0)
967 continue;
968
969 /* maybe adjust [min_uV..max_uV] */
970 if (value >= cmin && value < min_uV)
971 min_uV = value;
972 if (value <= cmax && value > max_uV)
973 max_uV = value;
974 }
975
976 /* final: [min_uV..max_uV] valid iff constraints valid */
977 if (max_uV < min_uV) {
978 rdev_err(rdev,
979 "unsupportable voltage constraints %u-%uuV\n",
980 min_uV, max_uV);
981 return -EINVAL;
982 }
983
984 /* use regulator's subset of machine constraints */
985 if (constraints->min_uV < min_uV) {
986 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 constraints->min_uV, min_uV);
988 constraints->min_uV = min_uV;
989 }
990 if (constraints->max_uV > max_uV) {
991 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 constraints->max_uV, max_uV);
993 constraints->max_uV = max_uV;
994 }
995 }
996
997 return 0;
998 }
999
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001 struct regulation_constraints *constraints)
1002 {
1003 const struct regulator_ops *ops = rdev->desc->ops;
1004 int ret;
1005
1006 if (!constraints->min_uA && !constraints->max_uA)
1007 return 0;
1008
1009 if (constraints->min_uA > constraints->max_uA) {
1010 rdev_err(rdev, "Invalid current constraints\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!ops->set_current_limit || !ops->get_current_limit) {
1015 rdev_warn(rdev, "Operation of current configuration missing\n");
1016 return 0;
1017 }
1018
1019 /* Set regulator current in constraints range */
1020 ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 constraints->max_uA);
1022 if (ret < 0) {
1023 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 return ret;
1025 }
1026
1027 return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044 const struct regulation_constraints *constraints)
1045 {
1046 int ret = 0;
1047 const struct regulator_ops *ops = rdev->desc->ops;
1048
1049 if (constraints)
1050 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 GFP_KERNEL);
1052 else
1053 rdev->constraints = kzalloc(sizeof(*constraints),
1054 GFP_KERNEL);
1055 if (!rdev->constraints)
1056 return -ENOMEM;
1057
1058 ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 if (ret != 0)
1060 goto out;
1061
1062 ret = machine_constraints_current(rdev, rdev->constraints);
1063 if (ret != 0)
1064 goto out;
1065
1066 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 ret = ops->set_input_current_limit(rdev,
1068 rdev->constraints->ilim_uA);
1069 if (ret < 0) {
1070 rdev_err(rdev, "failed to set input limit\n");
1071 goto out;
1072 }
1073 }
1074
1075 /* do we need to setup our suspend state */
1076 if (rdev->constraints->initial_state) {
1077 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 if (ret < 0) {
1079 rdev_err(rdev, "failed to set suspend state\n");
1080 goto out;
1081 }
1082 }
1083
1084 if (rdev->constraints->initial_mode) {
1085 if (!ops->set_mode) {
1086 rdev_err(rdev, "no set_mode operation\n");
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1092 if (ret < 0) {
1093 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1094 goto out;
1095 }
1096 }
1097
1098 /* If the constraints say the regulator should be on at this point
1099 * and we have control then make sure it is enabled.
1100 */
1101 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1102 ret = _regulator_do_enable(rdev);
1103 if (ret < 0 && ret != -EINVAL) {
1104 rdev_err(rdev, "failed to enable\n");
1105 goto out;
1106 }
1107 }
1108
1109 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1110 && ops->set_ramp_delay) {
1111 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1112 if (ret < 0) {
1113 rdev_err(rdev, "failed to set ramp_delay\n");
1114 goto out;
1115 }
1116 }
1117
1118 if (rdev->constraints->pull_down && ops->set_pull_down) {
1119 ret = ops->set_pull_down(rdev);
1120 if (ret < 0) {
1121 rdev_err(rdev, "failed to set pull down\n");
1122 goto out;
1123 }
1124 }
1125
1126 if (rdev->constraints->soft_start && ops->set_soft_start) {
1127 ret = ops->set_soft_start(rdev);
1128 if (ret < 0) {
1129 rdev_err(rdev, "failed to set soft start\n");
1130 goto out;
1131 }
1132 }
1133
1134 if (rdev->constraints->over_current_protection
1135 && ops->set_over_current_protection) {
1136 ret = ops->set_over_current_protection(rdev);
1137 if (ret < 0) {
1138 rdev_err(rdev, "failed to set over current protection\n");
1139 goto out;
1140 }
1141 }
1142
1143 print_constraints(rdev);
1144 return 0;
1145 out:
1146 kfree(rdev->constraints);
1147 rdev->constraints = NULL;
1148 return ret;
1149 }
1150
1151 /**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160 static int set_supply(struct regulator_dev *rdev,
1161 struct regulator_dev *supply_rdev)
1162 {
1163 int err;
1164
1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167 if (!try_module_get(supply_rdev->owner))
1168 return -ENODEV;
1169
1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 if (rdev->supply == NULL) {
1172 err = -ENOMEM;
1173 return err;
1174 }
1175 supply_rdev->open_count++;
1176
1177 return 0;
1178 }
1179
1180 /**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1190 */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 const char *consumer_dev_name,
1193 const char *supply)
1194 {
1195 struct regulator_map *node;
1196 int has_dev;
1197
1198 if (supply == NULL)
1199 return -EINVAL;
1200
1201 if (consumer_dev_name != NULL)
1202 has_dev = 1;
1203 else
1204 has_dev = 0;
1205
1206 list_for_each_entry(node, &regulator_map_list, list) {
1207 if (node->dev_name && consumer_dev_name) {
1208 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 continue;
1210 } else if (node->dev_name || consumer_dev_name) {
1211 continue;
1212 }
1213
1214 if (strcmp(node->supply, supply) != 0)
1215 continue;
1216
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 consumer_dev_name,
1219 dev_name(&node->regulator->dev),
1220 node->regulator->desc->name,
1221 supply,
1222 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 return -EBUSY;
1224 }
1225
1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 if (node == NULL)
1228 return -ENOMEM;
1229
1230 node->regulator = rdev;
1231 node->supply = supply;
1232
1233 if (has_dev) {
1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 if (node->dev_name == NULL) {
1236 kfree(node);
1237 return -ENOMEM;
1238 }
1239 }
1240
1241 list_add(&node->list, &regulator_map_list);
1242 return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 struct regulator_map *node, *n;
1248
1249 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 if (rdev == node->regulator) {
1251 list_del(&node->list);
1252 kfree(node->dev_name);
1253 kfree(node);
1254 }
1255 }
1256 }
1257
1258 #define REG_STR_SIZE 64
1259
1260 static struct regulator *create_regulator(struct regulator_dev *rdev,
1261 struct device *dev,
1262 const char *supply_name)
1263 {
1264 struct regulator *regulator;
1265 char buf[REG_STR_SIZE];
1266 int err, size;
1267
1268 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1269 if (regulator == NULL)
1270 return NULL;
1271
1272 mutex_lock(&rdev->mutex);
1273 regulator->rdev = rdev;
1274 list_add(&regulator->list, &rdev->consumer_list);
1275
1276 if (dev) {
1277 regulator->dev = dev;
1278
1279 /* Add a link to the device sysfs entry */
1280 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1281 dev->kobj.name, supply_name);
1282 if (size >= REG_STR_SIZE)
1283 goto overflow_err;
1284
1285 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1286 if (regulator->supply_name == NULL)
1287 goto overflow_err;
1288
1289 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1290 buf);
1291 if (err) {
1292 rdev_dbg(rdev, "could not add device link %s err %d\n",
1293 dev->kobj.name, err);
1294 /* non-fatal */
1295 }
1296 } else {
1297 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1298 if (regulator->supply_name == NULL)
1299 goto overflow_err;
1300 }
1301
1302 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1303 rdev->debugfs);
1304 if (!regulator->debugfs) {
1305 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1306 } else {
1307 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1308 &regulator->uA_load);
1309 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1310 &regulator->min_uV);
1311 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1312 &regulator->max_uV);
1313 }
1314
1315 /*
1316 * Check now if the regulator is an always on regulator - if
1317 * it is then we don't need to do nearly so much work for
1318 * enable/disable calls.
1319 */
1320 if (!_regulator_can_change_status(rdev) &&
1321 _regulator_is_enabled(rdev))
1322 regulator->always_on = true;
1323
1324 mutex_unlock(&rdev->mutex);
1325 return regulator;
1326 overflow_err:
1327 list_del(&regulator->list);
1328 kfree(regulator);
1329 mutex_unlock(&rdev->mutex);
1330 return NULL;
1331 }
1332
1333 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1334 {
1335 if (rdev->constraints && rdev->constraints->enable_time)
1336 return rdev->constraints->enable_time;
1337 if (!rdev->desc->ops->enable_time)
1338 return rdev->desc->enable_time;
1339 return rdev->desc->ops->enable_time(rdev);
1340 }
1341
1342 static struct regulator_supply_alias *regulator_find_supply_alias(
1343 struct device *dev, const char *supply)
1344 {
1345 struct regulator_supply_alias *map;
1346
1347 list_for_each_entry(map, &regulator_supply_alias_list, list)
1348 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1349 return map;
1350
1351 return NULL;
1352 }
1353
1354 static void regulator_supply_alias(struct device **dev, const char **supply)
1355 {
1356 struct regulator_supply_alias *map;
1357
1358 map = regulator_find_supply_alias(*dev, *supply);
1359 if (map) {
1360 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1361 *supply, map->alias_supply,
1362 dev_name(map->alias_dev));
1363 *dev = map->alias_dev;
1364 *supply = map->alias_supply;
1365 }
1366 }
1367
1368 static int of_node_match(struct device *dev, const void *data)
1369 {
1370 return dev->of_node == data;
1371 }
1372
1373 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1374 {
1375 struct device *dev;
1376
1377 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1378
1379 return dev ? dev_to_rdev(dev) : NULL;
1380 }
1381
1382 static int regulator_match(struct device *dev, const void *data)
1383 {
1384 struct regulator_dev *r = dev_to_rdev(dev);
1385
1386 return strcmp(rdev_get_name(r), data) == 0;
1387 }
1388
1389 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1390 {
1391 struct device *dev;
1392
1393 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1394
1395 return dev ? dev_to_rdev(dev) : NULL;
1396 }
1397
1398 /**
1399 * regulator_dev_lookup - lookup a regulator device.
1400 * @dev: device for regulator "consumer".
1401 * @supply: Supply name or regulator ID.
1402 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1403 * lookup could succeed in the future.
1404 *
1405 * If successful, returns a struct regulator_dev that corresponds to the name
1406 * @supply and with the embedded struct device refcount incremented by one,
1407 * or NULL on failure. The refcount must be dropped by calling put_device().
1408 */
1409 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1410 const char *supply,
1411 int *ret)
1412 {
1413 struct regulator_dev *r;
1414 struct device_node *node;
1415 struct regulator_map *map;
1416 const char *devname = NULL;
1417
1418 regulator_supply_alias(&dev, &supply);
1419
1420 /* first do a dt based lookup */
1421 if (dev && dev->of_node) {
1422 node = of_get_regulator(dev, supply);
1423 if (node) {
1424 r = of_find_regulator_by_node(node);
1425 if (r)
1426 return r;
1427 *ret = -EPROBE_DEFER;
1428 return NULL;
1429 } else {
1430 /*
1431 * If we couldn't even get the node then it's
1432 * not just that the device didn't register
1433 * yet, there's no node and we'll never
1434 * succeed.
1435 */
1436 *ret = -ENODEV;
1437 }
1438 }
1439
1440 /* if not found, try doing it non-dt way */
1441 if (dev)
1442 devname = dev_name(dev);
1443
1444 r = regulator_lookup_by_name(supply);
1445 if (r)
1446 return r;
1447
1448 mutex_lock(&regulator_list_mutex);
1449 list_for_each_entry(map, &regulator_map_list, list) {
1450 /* If the mapping has a device set up it must match */
1451 if (map->dev_name &&
1452 (!devname || strcmp(map->dev_name, devname)))
1453 continue;
1454
1455 if (strcmp(map->supply, supply) == 0 &&
1456 get_device(&map->regulator->dev)) {
1457 mutex_unlock(&regulator_list_mutex);
1458 return map->regulator;
1459 }
1460 }
1461 mutex_unlock(&regulator_list_mutex);
1462
1463 return NULL;
1464 }
1465
1466 static int regulator_resolve_supply(struct regulator_dev *rdev)
1467 {
1468 struct regulator_dev *r;
1469 struct device *dev = rdev->dev.parent;
1470 int ret;
1471
1472 /* No supply to resovle? */
1473 if (!rdev->supply_name)
1474 return 0;
1475
1476 /* Supply already resolved? */
1477 if (rdev->supply)
1478 return 0;
1479
1480 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1481 if (!r) {
1482 if (ret == -ENODEV) {
1483 /*
1484 * No supply was specified for this regulator and
1485 * there will never be one.
1486 */
1487 return 0;
1488 }
1489
1490 /* Did the lookup explicitly defer for us? */
1491 if (ret == -EPROBE_DEFER)
1492 return ret;
1493
1494 if (have_full_constraints()) {
1495 r = dummy_regulator_rdev;
1496 get_device(&r->dev);
1497 } else {
1498 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1499 rdev->supply_name, rdev->desc->name);
1500 return -EPROBE_DEFER;
1501 }
1502 }
1503
1504 /* Recursively resolve the supply of the supply */
1505 ret = regulator_resolve_supply(r);
1506 if (ret < 0) {
1507 put_device(&r->dev);
1508 return ret;
1509 }
1510
1511 ret = set_supply(rdev, r);
1512 if (ret < 0) {
1513 put_device(&r->dev);
1514 return ret;
1515 }
1516
1517 /* Cascade always-on state to supply */
1518 if (_regulator_is_enabled(rdev) && rdev->supply) {
1519 ret = regulator_enable(rdev->supply);
1520 if (ret < 0) {
1521 _regulator_put(rdev->supply);
1522 return ret;
1523 }
1524 }
1525
1526 return 0;
1527 }
1528
1529 /* Internal regulator request function */
1530 static struct regulator *_regulator_get(struct device *dev, const char *id,
1531 bool exclusive, bool allow_dummy)
1532 {
1533 struct regulator_dev *rdev;
1534 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1535 const char *devname = NULL;
1536 int ret;
1537
1538 if (id == NULL) {
1539 pr_err("get() with no identifier\n");
1540 return ERR_PTR(-EINVAL);
1541 }
1542
1543 if (dev)
1544 devname = dev_name(dev);
1545
1546 if (have_full_constraints())
1547 ret = -ENODEV;
1548 else
1549 ret = -EPROBE_DEFER;
1550
1551 rdev = regulator_dev_lookup(dev, id, &ret);
1552 if (rdev)
1553 goto found;
1554
1555 regulator = ERR_PTR(ret);
1556
1557 /*
1558 * If we have return value from dev_lookup fail, we do not expect to
1559 * succeed, so, quit with appropriate error value
1560 */
1561 if (ret && ret != -ENODEV)
1562 return regulator;
1563
1564 if (!devname)
1565 devname = "deviceless";
1566
1567 /*
1568 * Assume that a regulator is physically present and enabled
1569 * even if it isn't hooked up and just provide a dummy.
1570 */
1571 if (have_full_constraints() && allow_dummy) {
1572 pr_warn("%s supply %s not found, using dummy regulator\n",
1573 devname, id);
1574
1575 rdev = dummy_regulator_rdev;
1576 get_device(&rdev->dev);
1577 goto found;
1578 /* Don't log an error when called from regulator_get_optional() */
1579 } else if (!have_full_constraints() || exclusive) {
1580 dev_warn(dev, "dummy supplies not allowed\n");
1581 }
1582
1583 return regulator;
1584
1585 found:
1586 if (rdev->exclusive) {
1587 regulator = ERR_PTR(-EPERM);
1588 put_device(&rdev->dev);
1589 return regulator;
1590 }
1591
1592 if (exclusive && rdev->open_count) {
1593 regulator = ERR_PTR(-EBUSY);
1594 put_device(&rdev->dev);
1595 return regulator;
1596 }
1597
1598 ret = regulator_resolve_supply(rdev);
1599 if (ret < 0) {
1600 regulator = ERR_PTR(ret);
1601 put_device(&rdev->dev);
1602 return regulator;
1603 }
1604
1605 if (!try_module_get(rdev->owner)) {
1606 put_device(&rdev->dev);
1607 return regulator;
1608 }
1609
1610 regulator = create_regulator(rdev, dev, id);
1611 if (regulator == NULL) {
1612 regulator = ERR_PTR(-ENOMEM);
1613 put_device(&rdev->dev);
1614 module_put(rdev->owner);
1615 return regulator;
1616 }
1617
1618 rdev->open_count++;
1619 if (exclusive) {
1620 rdev->exclusive = 1;
1621
1622 ret = _regulator_is_enabled(rdev);
1623 if (ret > 0)
1624 rdev->use_count = 1;
1625 else
1626 rdev->use_count = 0;
1627 }
1628
1629 return regulator;
1630 }
1631
1632 /**
1633 * regulator_get - lookup and obtain a reference to a regulator.
1634 * @dev: device for regulator "consumer"
1635 * @id: Supply name or regulator ID.
1636 *
1637 * Returns a struct regulator corresponding to the regulator producer,
1638 * or IS_ERR() condition containing errno.
1639 *
1640 * Use of supply names configured via regulator_set_device_supply() is
1641 * strongly encouraged. It is recommended that the supply name used
1642 * should match the name used for the supply and/or the relevant
1643 * device pins in the datasheet.
1644 */
1645 struct regulator *regulator_get(struct device *dev, const char *id)
1646 {
1647 return _regulator_get(dev, id, false, true);
1648 }
1649 EXPORT_SYMBOL_GPL(regulator_get);
1650
1651 /**
1652 * regulator_get_exclusive - obtain exclusive access to a regulator.
1653 * @dev: device for regulator "consumer"
1654 * @id: Supply name or regulator ID.
1655 *
1656 * Returns a struct regulator corresponding to the regulator producer,
1657 * or IS_ERR() condition containing errno. Other consumers will be
1658 * unable to obtain this regulator while this reference is held and the
1659 * use count for the regulator will be initialised to reflect the current
1660 * state of the regulator.
1661 *
1662 * This is intended for use by consumers which cannot tolerate shared
1663 * use of the regulator such as those which need to force the
1664 * regulator off for correct operation of the hardware they are
1665 * controlling.
1666 *
1667 * Use of supply names configured via regulator_set_device_supply() is
1668 * strongly encouraged. It is recommended that the supply name used
1669 * should match the name used for the supply and/or the relevant
1670 * device pins in the datasheet.
1671 */
1672 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1673 {
1674 return _regulator_get(dev, id, true, false);
1675 }
1676 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1677
1678 /**
1679 * regulator_get_optional - obtain optional access to a regulator.
1680 * @dev: device for regulator "consumer"
1681 * @id: Supply name or regulator ID.
1682 *
1683 * Returns a struct regulator corresponding to the regulator producer,
1684 * or IS_ERR() condition containing errno.
1685 *
1686 * This is intended for use by consumers for devices which can have
1687 * some supplies unconnected in normal use, such as some MMC devices.
1688 * It can allow the regulator core to provide stub supplies for other
1689 * supplies requested using normal regulator_get() calls without
1690 * disrupting the operation of drivers that can handle absent
1691 * supplies.
1692 *
1693 * Use of supply names configured via regulator_set_device_supply() is
1694 * strongly encouraged. It is recommended that the supply name used
1695 * should match the name used for the supply and/or the relevant
1696 * device pins in the datasheet.
1697 */
1698 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1699 {
1700 return _regulator_get(dev, id, false, false);
1701 }
1702 EXPORT_SYMBOL_GPL(regulator_get_optional);
1703
1704 /* regulator_list_mutex lock held by regulator_put() */
1705 static void _regulator_put(struct regulator *regulator)
1706 {
1707 struct regulator_dev *rdev;
1708
1709 if (IS_ERR_OR_NULL(regulator))
1710 return;
1711
1712 lockdep_assert_held_once(&regulator_list_mutex);
1713
1714 rdev = regulator->rdev;
1715
1716 debugfs_remove_recursive(regulator->debugfs);
1717
1718 /* remove any sysfs entries */
1719 if (regulator->dev)
1720 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1721 mutex_lock(&rdev->mutex);
1722 list_del(&regulator->list);
1723
1724 rdev->open_count--;
1725 rdev->exclusive = 0;
1726 put_device(&rdev->dev);
1727 mutex_unlock(&rdev->mutex);
1728
1729 kfree(regulator->supply_name);
1730 kfree(regulator);
1731
1732 module_put(rdev->owner);
1733 }
1734
1735 /**
1736 * regulator_put - "free" the regulator source
1737 * @regulator: regulator source
1738 *
1739 * Note: drivers must ensure that all regulator_enable calls made on this
1740 * regulator source are balanced by regulator_disable calls prior to calling
1741 * this function.
1742 */
1743 void regulator_put(struct regulator *regulator)
1744 {
1745 mutex_lock(&regulator_list_mutex);
1746 _regulator_put(regulator);
1747 mutex_unlock(&regulator_list_mutex);
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_put);
1750
1751 /**
1752 * regulator_register_supply_alias - Provide device alias for supply lookup
1753 *
1754 * @dev: device that will be given as the regulator "consumer"
1755 * @id: Supply name or regulator ID
1756 * @alias_dev: device that should be used to lookup the supply
1757 * @alias_id: Supply name or regulator ID that should be used to lookup the
1758 * supply
1759 *
1760 * All lookups for id on dev will instead be conducted for alias_id on
1761 * alias_dev.
1762 */
1763 int regulator_register_supply_alias(struct device *dev, const char *id,
1764 struct device *alias_dev,
1765 const char *alias_id)
1766 {
1767 struct regulator_supply_alias *map;
1768
1769 map = regulator_find_supply_alias(dev, id);
1770 if (map)
1771 return -EEXIST;
1772
1773 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1774 if (!map)
1775 return -ENOMEM;
1776
1777 map->src_dev = dev;
1778 map->src_supply = id;
1779 map->alias_dev = alias_dev;
1780 map->alias_supply = alias_id;
1781
1782 list_add(&map->list, &regulator_supply_alias_list);
1783
1784 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1785 id, dev_name(dev), alias_id, dev_name(alias_dev));
1786
1787 return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1790
1791 /**
1792 * regulator_unregister_supply_alias - Remove device alias
1793 *
1794 * @dev: device that will be given as the regulator "consumer"
1795 * @id: Supply name or regulator ID
1796 *
1797 * Remove a lookup alias if one exists for id on dev.
1798 */
1799 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1800 {
1801 struct regulator_supply_alias *map;
1802
1803 map = regulator_find_supply_alias(dev, id);
1804 if (map) {
1805 list_del(&map->list);
1806 kfree(map);
1807 }
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1810
1811 /**
1812 * regulator_bulk_register_supply_alias - register multiple aliases
1813 *
1814 * @dev: device that will be given as the regulator "consumer"
1815 * @id: List of supply names or regulator IDs
1816 * @alias_dev: device that should be used to lookup the supply
1817 * @alias_id: List of supply names or regulator IDs that should be used to
1818 * lookup the supply
1819 * @num_id: Number of aliases to register
1820 *
1821 * @return 0 on success, an errno on failure.
1822 *
1823 * This helper function allows drivers to register several supply
1824 * aliases in one operation. If any of the aliases cannot be
1825 * registered any aliases that were registered will be removed
1826 * before returning to the caller.
1827 */
1828 int regulator_bulk_register_supply_alias(struct device *dev,
1829 const char *const *id,
1830 struct device *alias_dev,
1831 const char *const *alias_id,
1832 int num_id)
1833 {
1834 int i;
1835 int ret;
1836
1837 for (i = 0; i < num_id; ++i) {
1838 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1839 alias_id[i]);
1840 if (ret < 0)
1841 goto err;
1842 }
1843
1844 return 0;
1845
1846 err:
1847 dev_err(dev,
1848 "Failed to create supply alias %s,%s -> %s,%s\n",
1849 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1850
1851 while (--i >= 0)
1852 regulator_unregister_supply_alias(dev, id[i]);
1853
1854 return ret;
1855 }
1856 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1857
1858 /**
1859 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1860 *
1861 * @dev: device that will be given as the regulator "consumer"
1862 * @id: List of supply names or regulator IDs
1863 * @num_id: Number of aliases to unregister
1864 *
1865 * This helper function allows drivers to unregister several supply
1866 * aliases in one operation.
1867 */
1868 void regulator_bulk_unregister_supply_alias(struct device *dev,
1869 const char *const *id,
1870 int num_id)
1871 {
1872 int i;
1873
1874 for (i = 0; i < num_id; ++i)
1875 regulator_unregister_supply_alias(dev, id[i]);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1878
1879
1880 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1881 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1882 const struct regulator_config *config)
1883 {
1884 struct regulator_enable_gpio *pin;
1885 struct gpio_desc *gpiod;
1886 int ret;
1887
1888 gpiod = gpio_to_desc(config->ena_gpio);
1889
1890 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1891 if (pin->gpiod == gpiod) {
1892 rdev_dbg(rdev, "GPIO %d is already used\n",
1893 config->ena_gpio);
1894 goto update_ena_gpio_to_rdev;
1895 }
1896 }
1897
1898 ret = gpio_request_one(config->ena_gpio,
1899 GPIOF_DIR_OUT | config->ena_gpio_flags,
1900 rdev_get_name(rdev));
1901 if (ret)
1902 return ret;
1903
1904 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1905 if (pin == NULL) {
1906 gpio_free(config->ena_gpio);
1907 return -ENOMEM;
1908 }
1909
1910 pin->gpiod = gpiod;
1911 pin->ena_gpio_invert = config->ena_gpio_invert;
1912 list_add(&pin->list, &regulator_ena_gpio_list);
1913
1914 update_ena_gpio_to_rdev:
1915 pin->request_count++;
1916 rdev->ena_pin = pin;
1917 return 0;
1918 }
1919
1920 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1921 {
1922 struct regulator_enable_gpio *pin, *n;
1923
1924 if (!rdev->ena_pin)
1925 return;
1926
1927 /* Free the GPIO only in case of no use */
1928 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1929 if (pin->gpiod == rdev->ena_pin->gpiod) {
1930 if (pin->request_count <= 1) {
1931 pin->request_count = 0;
1932 gpiod_put(pin->gpiod);
1933 list_del(&pin->list);
1934 kfree(pin);
1935 rdev->ena_pin = NULL;
1936 return;
1937 } else {
1938 pin->request_count--;
1939 }
1940 }
1941 }
1942 }
1943
1944 /**
1945 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1946 * @rdev: regulator_dev structure
1947 * @enable: enable GPIO at initial use?
1948 *
1949 * GPIO is enabled in case of initial use. (enable_count is 0)
1950 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1951 */
1952 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1953 {
1954 struct regulator_enable_gpio *pin = rdev->ena_pin;
1955
1956 if (!pin)
1957 return -EINVAL;
1958
1959 if (enable) {
1960 /* Enable GPIO at initial use */
1961 if (pin->enable_count == 0)
1962 gpiod_set_value_cansleep(pin->gpiod,
1963 !pin->ena_gpio_invert);
1964
1965 pin->enable_count++;
1966 } else {
1967 if (pin->enable_count > 1) {
1968 pin->enable_count--;
1969 return 0;
1970 }
1971
1972 /* Disable GPIO if not used */
1973 if (pin->enable_count <= 1) {
1974 gpiod_set_value_cansleep(pin->gpiod,
1975 pin->ena_gpio_invert);
1976 pin->enable_count = 0;
1977 }
1978 }
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * _regulator_enable_delay - a delay helper function
1985 * @delay: time to delay in microseconds
1986 *
1987 * Delay for the requested amount of time as per the guidelines in:
1988 *
1989 * Documentation/timers/timers-howto.txt
1990 *
1991 * The assumption here is that regulators will never be enabled in
1992 * atomic context and therefore sleeping functions can be used.
1993 */
1994 static void _regulator_enable_delay(unsigned int delay)
1995 {
1996 unsigned int ms = delay / 1000;
1997 unsigned int us = delay % 1000;
1998
1999 if (ms > 0) {
2000 /*
2001 * For small enough values, handle super-millisecond
2002 * delays in the usleep_range() call below.
2003 */
2004 if (ms < 20)
2005 us += ms * 1000;
2006 else
2007 msleep(ms);
2008 }
2009
2010 /*
2011 * Give the scheduler some room to coalesce with any other
2012 * wakeup sources. For delays shorter than 10 us, don't even
2013 * bother setting up high-resolution timers and just busy-
2014 * loop.
2015 */
2016 if (us >= 10)
2017 usleep_range(us, us + 100);
2018 else
2019 udelay(us);
2020 }
2021
2022 static int _regulator_do_enable(struct regulator_dev *rdev)
2023 {
2024 int ret, delay;
2025
2026 /* Query before enabling in case configuration dependent. */
2027 ret = _regulator_get_enable_time(rdev);
2028 if (ret >= 0) {
2029 delay = ret;
2030 } else {
2031 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2032 delay = 0;
2033 }
2034
2035 trace_regulator_enable(rdev_get_name(rdev));
2036
2037 if (rdev->desc->off_on_delay) {
2038 /* if needed, keep a distance of off_on_delay from last time
2039 * this regulator was disabled.
2040 */
2041 unsigned long start_jiffy = jiffies;
2042 unsigned long intended, max_delay, remaining;
2043
2044 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2045 intended = rdev->last_off_jiffy + max_delay;
2046
2047 if (time_before(start_jiffy, intended)) {
2048 /* calc remaining jiffies to deal with one-time
2049 * timer wrapping.
2050 * in case of multiple timer wrapping, either it can be
2051 * detected by out-of-range remaining, or it cannot be
2052 * detected and we gets a panelty of
2053 * _regulator_enable_delay().
2054 */
2055 remaining = intended - start_jiffy;
2056 if (remaining <= max_delay)
2057 _regulator_enable_delay(
2058 jiffies_to_usecs(remaining));
2059 }
2060 }
2061
2062 if (rdev->ena_pin) {
2063 if (!rdev->ena_gpio_state) {
2064 ret = regulator_ena_gpio_ctrl(rdev, true);
2065 if (ret < 0)
2066 return ret;
2067 rdev->ena_gpio_state = 1;
2068 }
2069 } else if (rdev->desc->ops->enable) {
2070 ret = rdev->desc->ops->enable(rdev);
2071 if (ret < 0)
2072 return ret;
2073 } else {
2074 return -EINVAL;
2075 }
2076
2077 /* Allow the regulator to ramp; it would be useful to extend
2078 * this for bulk operations so that the regulators can ramp
2079 * together. */
2080 trace_regulator_enable_delay(rdev_get_name(rdev));
2081
2082 _regulator_enable_delay(delay);
2083
2084 trace_regulator_enable_complete(rdev_get_name(rdev));
2085
2086 return 0;
2087 }
2088
2089 /* locks held by regulator_enable() */
2090 static int _regulator_enable(struct regulator_dev *rdev)
2091 {
2092 int ret;
2093
2094 lockdep_assert_held_once(&rdev->mutex);
2095
2096 /* check voltage and requested load before enabling */
2097 if (rdev->constraints &&
2098 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2099 drms_uA_update(rdev);
2100
2101 if (rdev->use_count == 0) {
2102 /* The regulator may on if it's not switchable or left on */
2103 ret = _regulator_is_enabled(rdev);
2104 if (ret == -EINVAL || ret == 0) {
2105 if (!_regulator_can_change_status(rdev))
2106 return -EPERM;
2107
2108 ret = _regulator_do_enable(rdev);
2109 if (ret < 0)
2110 return ret;
2111
2112 } else if (ret < 0) {
2113 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2114 return ret;
2115 }
2116 /* Fallthrough on positive return values - already enabled */
2117 }
2118
2119 rdev->use_count++;
2120
2121 return 0;
2122 }
2123
2124 /**
2125 * regulator_enable - enable regulator output
2126 * @regulator: regulator source
2127 *
2128 * Request that the regulator be enabled with the regulator output at
2129 * the predefined voltage or current value. Calls to regulator_enable()
2130 * must be balanced with calls to regulator_disable().
2131 *
2132 * NOTE: the output value can be set by other drivers, boot loader or may be
2133 * hardwired in the regulator.
2134 */
2135 int regulator_enable(struct regulator *regulator)
2136 {
2137 struct regulator_dev *rdev = regulator->rdev;
2138 int ret = 0;
2139
2140 if (regulator->always_on)
2141 return 0;
2142
2143 if (rdev->supply) {
2144 ret = regulator_enable(rdev->supply);
2145 if (ret != 0)
2146 return ret;
2147 }
2148
2149 mutex_lock(&rdev->mutex);
2150 ret = _regulator_enable(rdev);
2151 mutex_unlock(&rdev->mutex);
2152
2153 if (ret != 0 && rdev->supply)
2154 regulator_disable(rdev->supply);
2155
2156 return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_enable);
2159
2160 static int _regulator_do_disable(struct regulator_dev *rdev)
2161 {
2162 int ret;
2163
2164 trace_regulator_disable(rdev_get_name(rdev));
2165
2166 if (rdev->ena_pin) {
2167 if (rdev->ena_gpio_state) {
2168 ret = regulator_ena_gpio_ctrl(rdev, false);
2169 if (ret < 0)
2170 return ret;
2171 rdev->ena_gpio_state = 0;
2172 }
2173
2174 } else if (rdev->desc->ops->disable) {
2175 ret = rdev->desc->ops->disable(rdev);
2176 if (ret != 0)
2177 return ret;
2178 }
2179
2180 /* cares about last_off_jiffy only if off_on_delay is required by
2181 * device.
2182 */
2183 if (rdev->desc->off_on_delay)
2184 rdev->last_off_jiffy = jiffies;
2185
2186 trace_regulator_disable_complete(rdev_get_name(rdev));
2187
2188 return 0;
2189 }
2190
2191 /* locks held by regulator_disable() */
2192 static int _regulator_disable(struct regulator_dev *rdev)
2193 {
2194 int ret = 0;
2195
2196 lockdep_assert_held_once(&rdev->mutex);
2197
2198 if (WARN(rdev->use_count <= 0,
2199 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2200 return -EIO;
2201
2202 /* are we the last user and permitted to disable ? */
2203 if (rdev->use_count == 1 &&
2204 (rdev->constraints && !rdev->constraints->always_on)) {
2205
2206 /* we are last user */
2207 if (_regulator_can_change_status(rdev)) {
2208 ret = _notifier_call_chain(rdev,
2209 REGULATOR_EVENT_PRE_DISABLE,
2210 NULL);
2211 if (ret & NOTIFY_STOP_MASK)
2212 return -EINVAL;
2213
2214 ret = _regulator_do_disable(rdev);
2215 if (ret < 0) {
2216 rdev_err(rdev, "failed to disable\n");
2217 _notifier_call_chain(rdev,
2218 REGULATOR_EVENT_ABORT_DISABLE,
2219 NULL);
2220 return ret;
2221 }
2222 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2223 NULL);
2224 }
2225
2226 rdev->use_count = 0;
2227 } else if (rdev->use_count > 1) {
2228
2229 if (rdev->constraints &&
2230 (rdev->constraints->valid_ops_mask &
2231 REGULATOR_CHANGE_DRMS))
2232 drms_uA_update(rdev);
2233
2234 rdev->use_count--;
2235 }
2236
2237 return ret;
2238 }
2239
2240 /**
2241 * regulator_disable - disable regulator output
2242 * @regulator: regulator source
2243 *
2244 * Disable the regulator output voltage or current. Calls to
2245 * regulator_enable() must be balanced with calls to
2246 * regulator_disable().
2247 *
2248 * NOTE: this will only disable the regulator output if no other consumer
2249 * devices have it enabled, the regulator device supports disabling and
2250 * machine constraints permit this operation.
2251 */
2252 int regulator_disable(struct regulator *regulator)
2253 {
2254 struct regulator_dev *rdev = regulator->rdev;
2255 int ret = 0;
2256
2257 if (regulator->always_on)
2258 return 0;
2259
2260 mutex_lock(&rdev->mutex);
2261 ret = _regulator_disable(rdev);
2262 mutex_unlock(&rdev->mutex);
2263
2264 if (ret == 0 && rdev->supply)
2265 regulator_disable(rdev->supply);
2266
2267 return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_disable);
2270
2271 /* locks held by regulator_force_disable() */
2272 static int _regulator_force_disable(struct regulator_dev *rdev)
2273 {
2274 int ret = 0;
2275
2276 lockdep_assert_held_once(&rdev->mutex);
2277
2278 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2279 REGULATOR_EVENT_PRE_DISABLE, NULL);
2280 if (ret & NOTIFY_STOP_MASK)
2281 return -EINVAL;
2282
2283 ret = _regulator_do_disable(rdev);
2284 if (ret < 0) {
2285 rdev_err(rdev, "failed to force disable\n");
2286 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2287 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2288 return ret;
2289 }
2290
2291 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2292 REGULATOR_EVENT_DISABLE, NULL);
2293
2294 return 0;
2295 }
2296
2297 /**
2298 * regulator_force_disable - force disable regulator output
2299 * @regulator: regulator source
2300 *
2301 * Forcibly disable the regulator output voltage or current.
2302 * NOTE: this *will* disable the regulator output even if other consumer
2303 * devices have it enabled. This should be used for situations when device
2304 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2305 */
2306 int regulator_force_disable(struct regulator *regulator)
2307 {
2308 struct regulator_dev *rdev = regulator->rdev;
2309 int ret;
2310
2311 mutex_lock(&rdev->mutex);
2312 regulator->uA_load = 0;
2313 ret = _regulator_force_disable(regulator->rdev);
2314 mutex_unlock(&rdev->mutex);
2315
2316 if (rdev->supply)
2317 while (rdev->open_count--)
2318 regulator_disable(rdev->supply);
2319
2320 return ret;
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_force_disable);
2323
2324 static void regulator_disable_work(struct work_struct *work)
2325 {
2326 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2327 disable_work.work);
2328 int count, i, ret;
2329
2330 mutex_lock(&rdev->mutex);
2331
2332 BUG_ON(!rdev->deferred_disables);
2333
2334 count = rdev->deferred_disables;
2335 rdev->deferred_disables = 0;
2336
2337 for (i = 0; i < count; i++) {
2338 ret = _regulator_disable(rdev);
2339 if (ret != 0)
2340 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2341 }
2342
2343 mutex_unlock(&rdev->mutex);
2344
2345 if (rdev->supply) {
2346 for (i = 0; i < count; i++) {
2347 ret = regulator_disable(rdev->supply);
2348 if (ret != 0) {
2349 rdev_err(rdev,
2350 "Supply disable failed: %d\n", ret);
2351 }
2352 }
2353 }
2354 }
2355
2356 /**
2357 * regulator_disable_deferred - disable regulator output with delay
2358 * @regulator: regulator source
2359 * @ms: miliseconds until the regulator is disabled
2360 *
2361 * Execute regulator_disable() on the regulator after a delay. This
2362 * is intended for use with devices that require some time to quiesce.
2363 *
2364 * NOTE: this will only disable the regulator output if no other consumer
2365 * devices have it enabled, the regulator device supports disabling and
2366 * machine constraints permit this operation.
2367 */
2368 int regulator_disable_deferred(struct regulator *regulator, int ms)
2369 {
2370 struct regulator_dev *rdev = regulator->rdev;
2371 int ret;
2372
2373 if (regulator->always_on)
2374 return 0;
2375
2376 if (!ms)
2377 return regulator_disable(regulator);
2378
2379 mutex_lock(&rdev->mutex);
2380 rdev->deferred_disables++;
2381 mutex_unlock(&rdev->mutex);
2382
2383 ret = queue_delayed_work(system_power_efficient_wq,
2384 &rdev->disable_work,
2385 msecs_to_jiffies(ms));
2386 if (ret < 0)
2387 return ret;
2388 else
2389 return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2392
2393 static int _regulator_is_enabled(struct regulator_dev *rdev)
2394 {
2395 /* A GPIO control always takes precedence */
2396 if (rdev->ena_pin)
2397 return rdev->ena_gpio_state;
2398
2399 /* If we don't know then assume that the regulator is always on */
2400 if (!rdev->desc->ops->is_enabled)
2401 return 1;
2402
2403 return rdev->desc->ops->is_enabled(rdev);
2404 }
2405
2406 static int _regulator_list_voltage(struct regulator *regulator,
2407 unsigned selector, int lock)
2408 {
2409 struct regulator_dev *rdev = regulator->rdev;
2410 const struct regulator_ops *ops = rdev->desc->ops;
2411 int ret;
2412
2413 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2414 return rdev->desc->fixed_uV;
2415
2416 if (ops->list_voltage) {
2417 if (selector >= rdev->desc->n_voltages)
2418 return -EINVAL;
2419 if (lock)
2420 mutex_lock(&rdev->mutex);
2421 ret = ops->list_voltage(rdev, selector);
2422 if (lock)
2423 mutex_unlock(&rdev->mutex);
2424 } else if (rdev->supply) {
2425 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2426 } else {
2427 return -EINVAL;
2428 }
2429
2430 if (ret > 0) {
2431 if (ret < rdev->constraints->min_uV)
2432 ret = 0;
2433 else if (ret > rdev->constraints->max_uV)
2434 ret = 0;
2435 }
2436
2437 return ret;
2438 }
2439
2440 /**
2441 * regulator_is_enabled - is the regulator output enabled
2442 * @regulator: regulator source
2443 *
2444 * Returns positive if the regulator driver backing the source/client
2445 * has requested that the device be enabled, zero if it hasn't, else a
2446 * negative errno code.
2447 *
2448 * Note that the device backing this regulator handle can have multiple
2449 * users, so it might be enabled even if regulator_enable() was never
2450 * called for this particular source.
2451 */
2452 int regulator_is_enabled(struct regulator *regulator)
2453 {
2454 int ret;
2455
2456 if (regulator->always_on)
2457 return 1;
2458
2459 mutex_lock(&regulator->rdev->mutex);
2460 ret = _regulator_is_enabled(regulator->rdev);
2461 mutex_unlock(&regulator->rdev->mutex);
2462
2463 return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2466
2467 /**
2468 * regulator_can_change_voltage - check if regulator can change voltage
2469 * @regulator: regulator source
2470 *
2471 * Returns positive if the regulator driver backing the source/client
2472 * can change its voltage, false otherwise. Useful for detecting fixed
2473 * or dummy regulators and disabling voltage change logic in the client
2474 * driver.
2475 */
2476 int regulator_can_change_voltage(struct regulator *regulator)
2477 {
2478 struct regulator_dev *rdev = regulator->rdev;
2479
2480 if (rdev->constraints &&
2481 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2482 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2483 return 1;
2484
2485 if (rdev->desc->continuous_voltage_range &&
2486 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2487 rdev->constraints->min_uV != rdev->constraints->max_uV)
2488 return 1;
2489 }
2490
2491 return 0;
2492 }
2493 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2494
2495 /**
2496 * regulator_count_voltages - count regulator_list_voltage() selectors
2497 * @regulator: regulator source
2498 *
2499 * Returns number of selectors, or negative errno. Selectors are
2500 * numbered starting at zero, and typically correspond to bitfields
2501 * in hardware registers.
2502 */
2503 int regulator_count_voltages(struct regulator *regulator)
2504 {
2505 struct regulator_dev *rdev = regulator->rdev;
2506
2507 if (rdev->desc->n_voltages)
2508 return rdev->desc->n_voltages;
2509
2510 if (!rdev->supply)
2511 return -EINVAL;
2512
2513 return regulator_count_voltages(rdev->supply);
2514 }
2515 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2516
2517 /**
2518 * regulator_list_voltage - enumerate supported voltages
2519 * @regulator: regulator source
2520 * @selector: identify voltage to list
2521 * Context: can sleep
2522 *
2523 * Returns a voltage that can be passed to @regulator_set_voltage(),
2524 * zero if this selector code can't be used on this system, or a
2525 * negative errno.
2526 */
2527 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2528 {
2529 return _regulator_list_voltage(regulator, selector, 1);
2530 }
2531 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2532
2533 /**
2534 * regulator_get_regmap - get the regulator's register map
2535 * @regulator: regulator source
2536 *
2537 * Returns the register map for the given regulator, or an ERR_PTR value
2538 * if the regulator doesn't use regmap.
2539 */
2540 struct regmap *regulator_get_regmap(struct regulator *regulator)
2541 {
2542 struct regmap *map = regulator->rdev->regmap;
2543
2544 return map ? map : ERR_PTR(-EOPNOTSUPP);
2545 }
2546
2547 /**
2548 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2549 * @regulator: regulator source
2550 * @vsel_reg: voltage selector register, output parameter
2551 * @vsel_mask: mask for voltage selector bitfield, output parameter
2552 *
2553 * Returns the hardware register offset and bitmask used for setting the
2554 * regulator voltage. This might be useful when configuring voltage-scaling
2555 * hardware or firmware that can make I2C requests behind the kernel's back,
2556 * for example.
2557 *
2558 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2559 * and 0 is returned, otherwise a negative errno is returned.
2560 */
2561 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2562 unsigned *vsel_reg,
2563 unsigned *vsel_mask)
2564 {
2565 struct regulator_dev *rdev = regulator->rdev;
2566 const struct regulator_ops *ops = rdev->desc->ops;
2567
2568 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2569 return -EOPNOTSUPP;
2570
2571 *vsel_reg = rdev->desc->vsel_reg;
2572 *vsel_mask = rdev->desc->vsel_mask;
2573
2574 return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2577
2578 /**
2579 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2580 * @regulator: regulator source
2581 * @selector: identify voltage to list
2582 *
2583 * Converts the selector to a hardware-specific voltage selector that can be
2584 * directly written to the regulator registers. The address of the voltage
2585 * register can be determined by calling @regulator_get_hardware_vsel_register.
2586 *
2587 * On error a negative errno is returned.
2588 */
2589 int regulator_list_hardware_vsel(struct regulator *regulator,
2590 unsigned selector)
2591 {
2592 struct regulator_dev *rdev = regulator->rdev;
2593 const struct regulator_ops *ops = rdev->desc->ops;
2594
2595 if (selector >= rdev->desc->n_voltages)
2596 return -EINVAL;
2597 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2598 return -EOPNOTSUPP;
2599
2600 return selector;
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2603
2604 /**
2605 * regulator_get_linear_step - return the voltage step size between VSEL values
2606 * @regulator: regulator source
2607 *
2608 * Returns the voltage step size between VSEL values for linear
2609 * regulators, or return 0 if the regulator isn't a linear regulator.
2610 */
2611 unsigned int regulator_get_linear_step(struct regulator *regulator)
2612 {
2613 struct regulator_dev *rdev = regulator->rdev;
2614
2615 return rdev->desc->uV_step;
2616 }
2617 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2618
2619 /**
2620 * regulator_is_supported_voltage - check if a voltage range can be supported
2621 *
2622 * @regulator: Regulator to check.
2623 * @min_uV: Minimum required voltage in uV.
2624 * @max_uV: Maximum required voltage in uV.
2625 *
2626 * Returns a boolean or a negative error code.
2627 */
2628 int regulator_is_supported_voltage(struct regulator *regulator,
2629 int min_uV, int max_uV)
2630 {
2631 struct regulator_dev *rdev = regulator->rdev;
2632 int i, voltages, ret;
2633
2634 /* If we can't change voltage check the current voltage */
2635 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2636 ret = regulator_get_voltage(regulator);
2637 if (ret >= 0)
2638 return min_uV <= ret && ret <= max_uV;
2639 else
2640 return ret;
2641 }
2642
2643 /* Any voltage within constrains range is fine? */
2644 if (rdev->desc->continuous_voltage_range)
2645 return min_uV >= rdev->constraints->min_uV &&
2646 max_uV <= rdev->constraints->max_uV;
2647
2648 ret = regulator_count_voltages(regulator);
2649 if (ret < 0)
2650 return ret;
2651 voltages = ret;
2652
2653 for (i = 0; i < voltages; i++) {
2654 ret = regulator_list_voltage(regulator, i);
2655
2656 if (ret >= min_uV && ret <= max_uV)
2657 return 1;
2658 }
2659
2660 return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2663
2664 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2665 int max_uV)
2666 {
2667 const struct regulator_desc *desc = rdev->desc;
2668
2669 if (desc->ops->map_voltage)
2670 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2671
2672 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2673 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2674
2675 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2676 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2677
2678 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2679 }
2680
2681 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2682 int min_uV, int max_uV,
2683 unsigned *selector)
2684 {
2685 struct pre_voltage_change_data data;
2686 int ret;
2687
2688 data.old_uV = _regulator_get_voltage(rdev);
2689 data.min_uV = min_uV;
2690 data.max_uV = max_uV;
2691 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2692 &data);
2693 if (ret & NOTIFY_STOP_MASK)
2694 return -EINVAL;
2695
2696 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2697 if (ret >= 0)
2698 return ret;
2699
2700 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2701 (void *)data.old_uV);
2702
2703 return ret;
2704 }
2705
2706 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2707 int uV, unsigned selector)
2708 {
2709 struct pre_voltage_change_data data;
2710 int ret;
2711
2712 data.old_uV = _regulator_get_voltage(rdev);
2713 data.min_uV = uV;
2714 data.max_uV = uV;
2715 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2716 &data);
2717 if (ret & NOTIFY_STOP_MASK)
2718 return -EINVAL;
2719
2720 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2721 if (ret >= 0)
2722 return ret;
2723
2724 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2725 (void *)data.old_uV);
2726
2727 return ret;
2728 }
2729
2730 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2731 int min_uV, int max_uV)
2732 {
2733 int ret;
2734 int delay = 0;
2735 int best_val = 0;
2736 unsigned int selector;
2737 int old_selector = -1;
2738
2739 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2740
2741 min_uV += rdev->constraints->uV_offset;
2742 max_uV += rdev->constraints->uV_offset;
2743
2744 /*
2745 * If we can't obtain the old selector there is not enough
2746 * info to call set_voltage_time_sel().
2747 */
2748 if (_regulator_is_enabled(rdev) &&
2749 rdev->desc->ops->set_voltage_time_sel &&
2750 rdev->desc->ops->get_voltage_sel) {
2751 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2752 if (old_selector < 0)
2753 return old_selector;
2754 }
2755
2756 if (rdev->desc->ops->set_voltage) {
2757 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2758 &selector);
2759
2760 if (ret >= 0) {
2761 if (rdev->desc->ops->list_voltage)
2762 best_val = rdev->desc->ops->list_voltage(rdev,
2763 selector);
2764 else
2765 best_val = _regulator_get_voltage(rdev);
2766 }
2767
2768 } else if (rdev->desc->ops->set_voltage_sel) {
2769 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2770 if (ret >= 0) {
2771 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2772 if (min_uV <= best_val && max_uV >= best_val) {
2773 selector = ret;
2774 if (old_selector == selector)
2775 ret = 0;
2776 else
2777 ret = _regulator_call_set_voltage_sel(
2778 rdev, best_val, selector);
2779 } else {
2780 ret = -EINVAL;
2781 }
2782 }
2783 } else {
2784 ret = -EINVAL;
2785 }
2786
2787 /* Call set_voltage_time_sel if successfully obtained old_selector */
2788 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2789 && old_selector != selector) {
2790
2791 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2792 old_selector, selector);
2793 if (delay < 0) {
2794 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2795 delay);
2796 delay = 0;
2797 }
2798
2799 /* Insert any necessary delays */
2800 if (delay >= 1000) {
2801 mdelay(delay / 1000);
2802 udelay(delay % 1000);
2803 } else if (delay) {
2804 udelay(delay);
2805 }
2806 }
2807
2808 if (ret == 0 && best_val >= 0) {
2809 unsigned long data = best_val;
2810
2811 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2812 (void *)data);
2813 }
2814
2815 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2816
2817 return ret;
2818 }
2819
2820 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2821 int min_uV, int max_uV)
2822 {
2823 struct regulator_dev *rdev = regulator->rdev;
2824 int ret = 0;
2825 int old_min_uV, old_max_uV;
2826 int current_uV;
2827 int best_supply_uV = 0;
2828 int supply_change_uV = 0;
2829
2830 /* If we're setting the same range as last time the change
2831 * should be a noop (some cpufreq implementations use the same
2832 * voltage for multiple frequencies, for example).
2833 */
2834 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2835 goto out;
2836
2837 /* If we're trying to set a range that overlaps the current voltage,
2838 * return successfully even though the regulator does not support
2839 * changing the voltage.
2840 */
2841 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2842 current_uV = _regulator_get_voltage(rdev);
2843 if (min_uV <= current_uV && current_uV <= max_uV) {
2844 regulator->min_uV = min_uV;
2845 regulator->max_uV = max_uV;
2846 goto out;
2847 }
2848 }
2849
2850 /* sanity check */
2851 if (!rdev->desc->ops->set_voltage &&
2852 !rdev->desc->ops->set_voltage_sel) {
2853 ret = -EINVAL;
2854 goto out;
2855 }
2856
2857 /* constraints check */
2858 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2859 if (ret < 0)
2860 goto out;
2861
2862 /* restore original values in case of error */
2863 old_min_uV = regulator->min_uV;
2864 old_max_uV = regulator->max_uV;
2865 regulator->min_uV = min_uV;
2866 regulator->max_uV = max_uV;
2867
2868 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2869 if (ret < 0)
2870 goto out2;
2871
2872 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2873 !rdev->desc->ops->get_voltage)) {
2874 int current_supply_uV;
2875 int selector;
2876
2877 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2878 if (selector < 0) {
2879 ret = selector;
2880 goto out2;
2881 }
2882
2883 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2884 if (best_supply_uV < 0) {
2885 ret = best_supply_uV;
2886 goto out2;
2887 }
2888
2889 best_supply_uV += rdev->desc->min_dropout_uV;
2890
2891 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2892 if (current_supply_uV < 0) {
2893 ret = current_supply_uV;
2894 goto out2;
2895 }
2896
2897 supply_change_uV = best_supply_uV - current_supply_uV;
2898 }
2899
2900 if (supply_change_uV > 0) {
2901 ret = regulator_set_voltage_unlocked(rdev->supply,
2902 best_supply_uV, INT_MAX);
2903 if (ret) {
2904 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2905 ret);
2906 goto out2;
2907 }
2908 }
2909
2910 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2911 if (ret < 0)
2912 goto out2;
2913
2914 if (supply_change_uV < 0) {
2915 ret = regulator_set_voltage_unlocked(rdev->supply,
2916 best_supply_uV, INT_MAX);
2917 if (ret)
2918 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2919 ret);
2920 /* No need to fail here */
2921 ret = 0;
2922 }
2923
2924 out:
2925 return ret;
2926 out2:
2927 regulator->min_uV = old_min_uV;
2928 regulator->max_uV = old_max_uV;
2929
2930 return ret;
2931 }
2932
2933 /**
2934 * regulator_set_voltage - set regulator output voltage
2935 * @regulator: regulator source
2936 * @min_uV: Minimum required voltage in uV
2937 * @max_uV: Maximum acceptable voltage in uV
2938 *
2939 * Sets a voltage regulator to the desired output voltage. This can be set
2940 * during any regulator state. IOW, regulator can be disabled or enabled.
2941 *
2942 * If the regulator is enabled then the voltage will change to the new value
2943 * immediately otherwise if the regulator is disabled the regulator will
2944 * output at the new voltage when enabled.
2945 *
2946 * NOTE: If the regulator is shared between several devices then the lowest
2947 * request voltage that meets the system constraints will be used.
2948 * Regulator system constraints must be set for this regulator before
2949 * calling this function otherwise this call will fail.
2950 */
2951 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2952 {
2953 int ret = 0;
2954
2955 regulator_lock_supply(regulator->rdev);
2956
2957 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2958
2959 regulator_unlock_supply(regulator->rdev);
2960
2961 return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2964
2965 /**
2966 * regulator_set_voltage_time - get raise/fall time
2967 * @regulator: regulator source
2968 * @old_uV: starting voltage in microvolts
2969 * @new_uV: target voltage in microvolts
2970 *
2971 * Provided with the starting and ending voltage, this function attempts to
2972 * calculate the time in microseconds required to rise or fall to this new
2973 * voltage.
2974 */
2975 int regulator_set_voltage_time(struct regulator *regulator,
2976 int old_uV, int new_uV)
2977 {
2978 struct regulator_dev *rdev = regulator->rdev;
2979 const struct regulator_ops *ops = rdev->desc->ops;
2980 int old_sel = -1;
2981 int new_sel = -1;
2982 int voltage;
2983 int i;
2984
2985 /* Currently requires operations to do this */
2986 if (!ops->list_voltage || !ops->set_voltage_time_sel
2987 || !rdev->desc->n_voltages)
2988 return -EINVAL;
2989
2990 for (i = 0; i < rdev->desc->n_voltages; i++) {
2991 /* We only look for exact voltage matches here */
2992 voltage = regulator_list_voltage(regulator, i);
2993 if (voltage < 0)
2994 return -EINVAL;
2995 if (voltage == 0)
2996 continue;
2997 if (voltage == old_uV)
2998 old_sel = i;
2999 if (voltage == new_uV)
3000 new_sel = i;
3001 }
3002
3003 if (old_sel < 0 || new_sel < 0)
3004 return -EINVAL;
3005
3006 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3007 }
3008 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3009
3010 /**
3011 * regulator_set_voltage_time_sel - get raise/fall time
3012 * @rdev: regulator source device
3013 * @old_selector: selector for starting voltage
3014 * @new_selector: selector for target voltage
3015 *
3016 * Provided with the starting and target voltage selectors, this function
3017 * returns time in microseconds required to rise or fall to this new voltage
3018 *
3019 * Drivers providing ramp_delay in regulation_constraints can use this as their
3020 * set_voltage_time_sel() operation.
3021 */
3022 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3023 unsigned int old_selector,
3024 unsigned int new_selector)
3025 {
3026 unsigned int ramp_delay = 0;
3027 int old_volt, new_volt;
3028
3029 if (rdev->constraints->ramp_delay)
3030 ramp_delay = rdev->constraints->ramp_delay;
3031 else if (rdev->desc->ramp_delay)
3032 ramp_delay = rdev->desc->ramp_delay;
3033
3034 if (ramp_delay == 0) {
3035 rdev_warn(rdev, "ramp_delay not set\n");
3036 return 0;
3037 }
3038
3039 /* sanity check */
3040 if (!rdev->desc->ops->list_voltage)
3041 return -EINVAL;
3042
3043 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3044 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3045
3046 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3049
3050 /**
3051 * regulator_sync_voltage - re-apply last regulator output voltage
3052 * @regulator: regulator source
3053 *
3054 * Re-apply the last configured voltage. This is intended to be used
3055 * where some external control source the consumer is cooperating with
3056 * has caused the configured voltage to change.
3057 */
3058 int regulator_sync_voltage(struct regulator *regulator)
3059 {
3060 struct regulator_dev *rdev = regulator->rdev;
3061 int ret, min_uV, max_uV;
3062
3063 mutex_lock(&rdev->mutex);
3064
3065 if (!rdev->desc->ops->set_voltage &&
3066 !rdev->desc->ops->set_voltage_sel) {
3067 ret = -EINVAL;
3068 goto out;
3069 }
3070
3071 /* This is only going to work if we've had a voltage configured. */
3072 if (!regulator->min_uV && !regulator->max_uV) {
3073 ret = -EINVAL;
3074 goto out;
3075 }
3076
3077 min_uV = regulator->min_uV;
3078 max_uV = regulator->max_uV;
3079
3080 /* This should be a paranoia check... */
3081 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3082 if (ret < 0)
3083 goto out;
3084
3085 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3086 if (ret < 0)
3087 goto out;
3088
3089 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3090
3091 out:
3092 mutex_unlock(&rdev->mutex);
3093 return ret;
3094 }
3095 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3096
3097 static int _regulator_get_voltage(struct regulator_dev *rdev)
3098 {
3099 int sel, ret;
3100
3101 if (rdev->desc->ops->get_voltage_sel) {
3102 sel = rdev->desc->ops->get_voltage_sel(rdev);
3103 if (sel < 0)
3104 return sel;
3105 ret = rdev->desc->ops->list_voltage(rdev, sel);
3106 } else if (rdev->desc->ops->get_voltage) {
3107 ret = rdev->desc->ops->get_voltage(rdev);
3108 } else if (rdev->desc->ops->list_voltage) {
3109 ret = rdev->desc->ops->list_voltage(rdev, 0);
3110 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3111 ret = rdev->desc->fixed_uV;
3112 } else if (rdev->supply) {
3113 ret = _regulator_get_voltage(rdev->supply->rdev);
3114 } else {
3115 return -EINVAL;
3116 }
3117
3118 if (ret < 0)
3119 return ret;
3120 return ret - rdev->constraints->uV_offset;
3121 }
3122
3123 /**
3124 * regulator_get_voltage - get regulator output voltage
3125 * @regulator: regulator source
3126 *
3127 * This returns the current regulator voltage in uV.
3128 *
3129 * NOTE: If the regulator is disabled it will return the voltage value. This
3130 * function should not be used to determine regulator state.
3131 */
3132 int regulator_get_voltage(struct regulator *regulator)
3133 {
3134 int ret;
3135
3136 regulator_lock_supply(regulator->rdev);
3137
3138 ret = _regulator_get_voltage(regulator->rdev);
3139
3140 regulator_unlock_supply(regulator->rdev);
3141
3142 return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3145
3146 /**
3147 * regulator_set_current_limit - set regulator output current limit
3148 * @regulator: regulator source
3149 * @min_uA: Minimum supported current in uA
3150 * @max_uA: Maximum supported current in uA
3151 *
3152 * Sets current sink to the desired output current. This can be set during
3153 * any regulator state. IOW, regulator can be disabled or enabled.
3154 *
3155 * If the regulator is enabled then the current will change to the new value
3156 * immediately otherwise if the regulator is disabled the regulator will
3157 * output at the new current when enabled.
3158 *
3159 * NOTE: Regulator system constraints must be set for this regulator before
3160 * calling this function otherwise this call will fail.
3161 */
3162 int regulator_set_current_limit(struct regulator *regulator,
3163 int min_uA, int max_uA)
3164 {
3165 struct regulator_dev *rdev = regulator->rdev;
3166 int ret;
3167
3168 mutex_lock(&rdev->mutex);
3169
3170 /* sanity check */
3171 if (!rdev->desc->ops->set_current_limit) {
3172 ret = -EINVAL;
3173 goto out;
3174 }
3175
3176 /* constraints check */
3177 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3178 if (ret < 0)
3179 goto out;
3180
3181 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3182 out:
3183 mutex_unlock(&rdev->mutex);
3184 return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3187
3188 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3189 {
3190 int ret;
3191
3192 mutex_lock(&rdev->mutex);
3193
3194 /* sanity check */
3195 if (!rdev->desc->ops->get_current_limit) {
3196 ret = -EINVAL;
3197 goto out;
3198 }
3199
3200 ret = rdev->desc->ops->get_current_limit(rdev);
3201 out:
3202 mutex_unlock(&rdev->mutex);
3203 return ret;
3204 }
3205
3206 /**
3207 * regulator_get_current_limit - get regulator output current
3208 * @regulator: regulator source
3209 *
3210 * This returns the current supplied by the specified current sink in uA.
3211 *
3212 * NOTE: If the regulator is disabled it will return the current value. This
3213 * function should not be used to determine regulator state.
3214 */
3215 int regulator_get_current_limit(struct regulator *regulator)
3216 {
3217 return _regulator_get_current_limit(regulator->rdev);
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3220
3221 /**
3222 * regulator_set_mode - set regulator operating mode
3223 * @regulator: regulator source
3224 * @mode: operating mode - one of the REGULATOR_MODE constants
3225 *
3226 * Set regulator operating mode to increase regulator efficiency or improve
3227 * regulation performance.
3228 *
3229 * NOTE: Regulator system constraints must be set for this regulator before
3230 * calling this function otherwise this call will fail.
3231 */
3232 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3233 {
3234 struct regulator_dev *rdev = regulator->rdev;
3235 int ret;
3236 int regulator_curr_mode;
3237
3238 mutex_lock(&rdev->mutex);
3239
3240 /* sanity check */
3241 if (!rdev->desc->ops->set_mode) {
3242 ret = -EINVAL;
3243 goto out;
3244 }
3245
3246 /* return if the same mode is requested */
3247 if (rdev->desc->ops->get_mode) {
3248 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3249 if (regulator_curr_mode == mode) {
3250 ret = 0;
3251 goto out;
3252 }
3253 }
3254
3255 /* constraints check */
3256 ret = regulator_mode_constrain(rdev, &mode);
3257 if (ret < 0)
3258 goto out;
3259
3260 ret = rdev->desc->ops->set_mode(rdev, mode);
3261 out:
3262 mutex_unlock(&rdev->mutex);
3263 return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(regulator_set_mode);
3266
3267 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3268 {
3269 int ret;
3270
3271 mutex_lock(&rdev->mutex);
3272
3273 /* sanity check */
3274 if (!rdev->desc->ops->get_mode) {
3275 ret = -EINVAL;
3276 goto out;
3277 }
3278
3279 ret = rdev->desc->ops->get_mode(rdev);
3280 out:
3281 mutex_unlock(&rdev->mutex);
3282 return ret;
3283 }
3284
3285 /**
3286 * regulator_get_mode - get regulator operating mode
3287 * @regulator: regulator source
3288 *
3289 * Get the current regulator operating mode.
3290 */
3291 unsigned int regulator_get_mode(struct regulator *regulator)
3292 {
3293 return _regulator_get_mode(regulator->rdev);
3294 }
3295 EXPORT_SYMBOL_GPL(regulator_get_mode);
3296
3297 /**
3298 * regulator_set_load - set regulator load
3299 * @regulator: regulator source
3300 * @uA_load: load current
3301 *
3302 * Notifies the regulator core of a new device load. This is then used by
3303 * DRMS (if enabled by constraints) to set the most efficient regulator
3304 * operating mode for the new regulator loading.
3305 *
3306 * Consumer devices notify their supply regulator of the maximum power
3307 * they will require (can be taken from device datasheet in the power
3308 * consumption tables) when they change operational status and hence power
3309 * state. Examples of operational state changes that can affect power
3310 * consumption are :-
3311 *
3312 * o Device is opened / closed.
3313 * o Device I/O is about to begin or has just finished.
3314 * o Device is idling in between work.
3315 *
3316 * This information is also exported via sysfs to userspace.
3317 *
3318 * DRMS will sum the total requested load on the regulator and change
3319 * to the most efficient operating mode if platform constraints allow.
3320 *
3321 * On error a negative errno is returned.
3322 */
3323 int regulator_set_load(struct regulator *regulator, int uA_load)
3324 {
3325 struct regulator_dev *rdev = regulator->rdev;
3326 int ret;
3327
3328 mutex_lock(&rdev->mutex);
3329 regulator->uA_load = uA_load;
3330 ret = drms_uA_update(rdev);
3331 mutex_unlock(&rdev->mutex);
3332
3333 return ret;
3334 }
3335 EXPORT_SYMBOL_GPL(regulator_set_load);
3336
3337 /**
3338 * regulator_allow_bypass - allow the regulator to go into bypass mode
3339 *
3340 * @regulator: Regulator to configure
3341 * @enable: enable or disable bypass mode
3342 *
3343 * Allow the regulator to go into bypass mode if all other consumers
3344 * for the regulator also enable bypass mode and the machine
3345 * constraints allow this. Bypass mode means that the regulator is
3346 * simply passing the input directly to the output with no regulation.
3347 */
3348 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3349 {
3350 struct regulator_dev *rdev = regulator->rdev;
3351 int ret = 0;
3352
3353 if (!rdev->desc->ops->set_bypass)
3354 return 0;
3355
3356 if (rdev->constraints &&
3357 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3358 return 0;
3359
3360 mutex_lock(&rdev->mutex);
3361
3362 if (enable && !regulator->bypass) {
3363 rdev->bypass_count++;
3364
3365 if (rdev->bypass_count == rdev->open_count) {
3366 ret = rdev->desc->ops->set_bypass(rdev, enable);
3367 if (ret != 0)
3368 rdev->bypass_count--;
3369 }
3370
3371 } else if (!enable && regulator->bypass) {
3372 rdev->bypass_count--;
3373
3374 if (rdev->bypass_count != rdev->open_count) {
3375 ret = rdev->desc->ops->set_bypass(rdev, enable);
3376 if (ret != 0)
3377 rdev->bypass_count++;
3378 }
3379 }
3380
3381 if (ret == 0)
3382 regulator->bypass = enable;
3383
3384 mutex_unlock(&rdev->mutex);
3385
3386 return ret;
3387 }
3388 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3389
3390 /**
3391 * regulator_register_notifier - register regulator event notifier
3392 * @regulator: regulator source
3393 * @nb: notifier block
3394 *
3395 * Register notifier block to receive regulator events.
3396 */
3397 int regulator_register_notifier(struct regulator *regulator,
3398 struct notifier_block *nb)
3399 {
3400 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3401 nb);
3402 }
3403 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3404
3405 /**
3406 * regulator_unregister_notifier - unregister regulator event notifier
3407 * @regulator: regulator source
3408 * @nb: notifier block
3409 *
3410 * Unregister regulator event notifier block.
3411 */
3412 int regulator_unregister_notifier(struct regulator *regulator,
3413 struct notifier_block *nb)
3414 {
3415 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3416 nb);
3417 }
3418 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3419
3420 /* notify regulator consumers and downstream regulator consumers.
3421 * Note mutex must be held by caller.
3422 */
3423 static int _notifier_call_chain(struct regulator_dev *rdev,
3424 unsigned long event, void *data)
3425 {
3426 /* call rdev chain first */
3427 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3428 }
3429
3430 /**
3431 * regulator_bulk_get - get multiple regulator consumers
3432 *
3433 * @dev: Device to supply
3434 * @num_consumers: Number of consumers to register
3435 * @consumers: Configuration of consumers; clients are stored here.
3436 *
3437 * @return 0 on success, an errno on failure.
3438 *
3439 * This helper function allows drivers to get several regulator
3440 * consumers in one operation. If any of the regulators cannot be
3441 * acquired then any regulators that were allocated will be freed
3442 * before returning to the caller.
3443 */
3444 int regulator_bulk_get(struct device *dev, int num_consumers,
3445 struct regulator_bulk_data *consumers)
3446 {
3447 int i;
3448 int ret;
3449
3450 for (i = 0; i < num_consumers; i++)
3451 consumers[i].consumer = NULL;
3452
3453 for (i = 0; i < num_consumers; i++) {
3454 consumers[i].consumer = regulator_get(dev,
3455 consumers[i].supply);
3456 if (IS_ERR(consumers[i].consumer)) {
3457 ret = PTR_ERR(consumers[i].consumer);
3458 dev_err(dev, "Failed to get supply '%s': %d\n",
3459 consumers[i].supply, ret);
3460 consumers[i].consumer = NULL;
3461 goto err;
3462 }
3463 }
3464
3465 return 0;
3466
3467 err:
3468 while (--i >= 0)
3469 regulator_put(consumers[i].consumer);
3470
3471 return ret;
3472 }
3473 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3474
3475 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3476 {
3477 struct regulator_bulk_data *bulk = data;
3478
3479 bulk->ret = regulator_enable(bulk->consumer);
3480 }
3481
3482 /**
3483 * regulator_bulk_enable - enable multiple regulator consumers
3484 *
3485 * @num_consumers: Number of consumers
3486 * @consumers: Consumer data; clients are stored here.
3487 * @return 0 on success, an errno on failure
3488 *
3489 * This convenience API allows consumers to enable multiple regulator
3490 * clients in a single API call. If any consumers cannot be enabled
3491 * then any others that were enabled will be disabled again prior to
3492 * return.
3493 */
3494 int regulator_bulk_enable(int num_consumers,
3495 struct regulator_bulk_data *consumers)
3496 {
3497 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3498 int i;
3499 int ret = 0;
3500
3501 for (i = 0; i < num_consumers; i++) {
3502 if (consumers[i].consumer->always_on)
3503 consumers[i].ret = 0;
3504 else
3505 async_schedule_domain(regulator_bulk_enable_async,
3506 &consumers[i], &async_domain);
3507 }
3508
3509 async_synchronize_full_domain(&async_domain);
3510
3511 /* If any consumer failed we need to unwind any that succeeded */
3512 for (i = 0; i < num_consumers; i++) {
3513 if (consumers[i].ret != 0) {
3514 ret = consumers[i].ret;
3515 goto err;
3516 }
3517 }
3518
3519 return 0;
3520
3521 err:
3522 for (i = 0; i < num_consumers; i++) {
3523 if (consumers[i].ret < 0)
3524 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3525 consumers[i].ret);
3526 else
3527 regulator_disable(consumers[i].consumer);
3528 }
3529
3530 return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3533
3534 /**
3535 * regulator_bulk_disable - disable multiple regulator consumers
3536 *
3537 * @num_consumers: Number of consumers
3538 * @consumers: Consumer data; clients are stored here.
3539 * @return 0 on success, an errno on failure
3540 *
3541 * This convenience API allows consumers to disable multiple regulator
3542 * clients in a single API call. If any consumers cannot be disabled
3543 * then any others that were disabled will be enabled again prior to
3544 * return.
3545 */
3546 int regulator_bulk_disable(int num_consumers,
3547 struct regulator_bulk_data *consumers)
3548 {
3549 int i;
3550 int ret, r;
3551
3552 for (i = num_consumers - 1; i >= 0; --i) {
3553 ret = regulator_disable(consumers[i].consumer);
3554 if (ret != 0)
3555 goto err;
3556 }
3557
3558 return 0;
3559
3560 err:
3561 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3562 for (++i; i < num_consumers; ++i) {
3563 r = regulator_enable(consumers[i].consumer);
3564 if (r != 0)
3565 pr_err("Failed to reename %s: %d\n",
3566 consumers[i].supply, r);
3567 }
3568
3569 return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3572
3573 /**
3574 * regulator_bulk_force_disable - force disable multiple regulator consumers
3575 *
3576 * @num_consumers: Number of consumers
3577 * @consumers: Consumer data; clients are stored here.
3578 * @return 0 on success, an errno on failure
3579 *
3580 * This convenience API allows consumers to forcibly disable multiple regulator
3581 * clients in a single API call.
3582 * NOTE: This should be used for situations when device damage will
3583 * likely occur if the regulators are not disabled (e.g. over temp).
3584 * Although regulator_force_disable function call for some consumers can
3585 * return error numbers, the function is called for all consumers.
3586 */
3587 int regulator_bulk_force_disable(int num_consumers,
3588 struct regulator_bulk_data *consumers)
3589 {
3590 int i;
3591 int ret;
3592
3593 for (i = 0; i < num_consumers; i++)
3594 consumers[i].ret =
3595 regulator_force_disable(consumers[i].consumer);
3596
3597 for (i = 0; i < num_consumers; i++) {
3598 if (consumers[i].ret != 0) {
3599 ret = consumers[i].ret;
3600 goto out;
3601 }
3602 }
3603
3604 return 0;
3605 out:
3606 return ret;
3607 }
3608 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3609
3610 /**
3611 * regulator_bulk_free - free multiple regulator consumers
3612 *
3613 * @num_consumers: Number of consumers
3614 * @consumers: Consumer data; clients are stored here.
3615 *
3616 * This convenience API allows consumers to free multiple regulator
3617 * clients in a single API call.
3618 */
3619 void regulator_bulk_free(int num_consumers,
3620 struct regulator_bulk_data *consumers)
3621 {
3622 int i;
3623
3624 for (i = 0; i < num_consumers; i++) {
3625 regulator_put(consumers[i].consumer);
3626 consumers[i].consumer = NULL;
3627 }
3628 }
3629 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3630
3631 /**
3632 * regulator_notifier_call_chain - call regulator event notifier
3633 * @rdev: regulator source
3634 * @event: notifier block
3635 * @data: callback-specific data.
3636 *
3637 * Called by regulator drivers to notify clients a regulator event has
3638 * occurred. We also notify regulator clients downstream.
3639 * Note lock must be held by caller.
3640 */
3641 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3642 unsigned long event, void *data)
3643 {
3644 lockdep_assert_held_once(&rdev->mutex);
3645
3646 _notifier_call_chain(rdev, event, data);
3647 return NOTIFY_DONE;
3648
3649 }
3650 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3651
3652 /**
3653 * regulator_mode_to_status - convert a regulator mode into a status
3654 *
3655 * @mode: Mode to convert
3656 *
3657 * Convert a regulator mode into a status.
3658 */
3659 int regulator_mode_to_status(unsigned int mode)
3660 {
3661 switch (mode) {
3662 case REGULATOR_MODE_FAST:
3663 return REGULATOR_STATUS_FAST;
3664 case REGULATOR_MODE_NORMAL:
3665 return REGULATOR_STATUS_NORMAL;
3666 case REGULATOR_MODE_IDLE:
3667 return REGULATOR_STATUS_IDLE;
3668 case REGULATOR_MODE_STANDBY:
3669 return REGULATOR_STATUS_STANDBY;
3670 default:
3671 return REGULATOR_STATUS_UNDEFINED;
3672 }
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3675
3676 static struct attribute *regulator_dev_attrs[] = {
3677 &dev_attr_name.attr,
3678 &dev_attr_num_users.attr,
3679 &dev_attr_type.attr,
3680 &dev_attr_microvolts.attr,
3681 &dev_attr_microamps.attr,
3682 &dev_attr_opmode.attr,
3683 &dev_attr_state.attr,
3684 &dev_attr_status.attr,
3685 &dev_attr_bypass.attr,
3686 &dev_attr_requested_microamps.attr,
3687 &dev_attr_min_microvolts.attr,
3688 &dev_attr_max_microvolts.attr,
3689 &dev_attr_min_microamps.attr,
3690 &dev_attr_max_microamps.attr,
3691 &dev_attr_suspend_standby_state.attr,
3692 &dev_attr_suspend_mem_state.attr,
3693 &dev_attr_suspend_disk_state.attr,
3694 &dev_attr_suspend_standby_microvolts.attr,
3695 &dev_attr_suspend_mem_microvolts.attr,
3696 &dev_attr_suspend_disk_microvolts.attr,
3697 &dev_attr_suspend_standby_mode.attr,
3698 &dev_attr_suspend_mem_mode.attr,
3699 &dev_attr_suspend_disk_mode.attr,
3700 NULL
3701 };
3702
3703 /*
3704 * To avoid cluttering sysfs (and memory) with useless state, only
3705 * create attributes that can be meaningfully displayed.
3706 */
3707 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3708 struct attribute *attr, int idx)
3709 {
3710 struct device *dev = kobj_to_dev(kobj);
3711 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3712 const struct regulator_ops *ops = rdev->desc->ops;
3713 umode_t mode = attr->mode;
3714
3715 /* these three are always present */
3716 if (attr == &dev_attr_name.attr ||
3717 attr == &dev_attr_num_users.attr ||
3718 attr == &dev_attr_type.attr)
3719 return mode;
3720
3721 /* some attributes need specific methods to be displayed */
3722 if (attr == &dev_attr_microvolts.attr) {
3723 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3724 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3725 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3726 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3727 return mode;
3728 return 0;
3729 }
3730
3731 if (attr == &dev_attr_microamps.attr)
3732 return ops->get_current_limit ? mode : 0;
3733
3734 if (attr == &dev_attr_opmode.attr)
3735 return ops->get_mode ? mode : 0;
3736
3737 if (attr == &dev_attr_state.attr)
3738 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3739
3740 if (attr == &dev_attr_status.attr)
3741 return ops->get_status ? mode : 0;
3742
3743 if (attr == &dev_attr_bypass.attr)
3744 return ops->get_bypass ? mode : 0;
3745
3746 /* some attributes are type-specific */
3747 if (attr == &dev_attr_requested_microamps.attr)
3748 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3749
3750 /* constraints need specific supporting methods */
3751 if (attr == &dev_attr_min_microvolts.attr ||
3752 attr == &dev_attr_max_microvolts.attr)
3753 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3754
3755 if (attr == &dev_attr_min_microamps.attr ||
3756 attr == &dev_attr_max_microamps.attr)
3757 return ops->set_current_limit ? mode : 0;
3758
3759 if (attr == &dev_attr_suspend_standby_state.attr ||
3760 attr == &dev_attr_suspend_mem_state.attr ||
3761 attr == &dev_attr_suspend_disk_state.attr)
3762 return mode;
3763
3764 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3765 attr == &dev_attr_suspend_mem_microvolts.attr ||
3766 attr == &dev_attr_suspend_disk_microvolts.attr)
3767 return ops->set_suspend_voltage ? mode : 0;
3768
3769 if (attr == &dev_attr_suspend_standby_mode.attr ||
3770 attr == &dev_attr_suspend_mem_mode.attr ||
3771 attr == &dev_attr_suspend_disk_mode.attr)
3772 return ops->set_suspend_mode ? mode : 0;
3773
3774 return mode;
3775 }
3776
3777 static const struct attribute_group regulator_dev_group = {
3778 .attrs = regulator_dev_attrs,
3779 .is_visible = regulator_attr_is_visible,
3780 };
3781
3782 static const struct attribute_group *regulator_dev_groups[] = {
3783 &regulator_dev_group,
3784 NULL
3785 };
3786
3787 static void regulator_dev_release(struct device *dev)
3788 {
3789 struct regulator_dev *rdev = dev_get_drvdata(dev);
3790
3791 kfree(rdev->constraints);
3792 of_node_put(rdev->dev.of_node);
3793 kfree(rdev);
3794 }
3795
3796 static struct class regulator_class = {
3797 .name = "regulator",
3798 .dev_release = regulator_dev_release,
3799 .dev_groups = regulator_dev_groups,
3800 };
3801
3802 static void rdev_init_debugfs(struct regulator_dev *rdev)
3803 {
3804 struct device *parent = rdev->dev.parent;
3805 const char *rname = rdev_get_name(rdev);
3806 char name[NAME_MAX];
3807
3808 /* Avoid duplicate debugfs directory names */
3809 if (parent && rname == rdev->desc->name) {
3810 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3811 rname);
3812 rname = name;
3813 }
3814
3815 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3816 if (!rdev->debugfs) {
3817 rdev_warn(rdev, "Failed to create debugfs directory\n");
3818 return;
3819 }
3820
3821 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3822 &rdev->use_count);
3823 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3824 &rdev->open_count);
3825 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3826 &rdev->bypass_count);
3827 }
3828
3829 /**
3830 * regulator_register - register regulator
3831 * @regulator_desc: regulator to register
3832 * @cfg: runtime configuration for regulator
3833 *
3834 * Called by regulator drivers to register a regulator.
3835 * Returns a valid pointer to struct regulator_dev on success
3836 * or an ERR_PTR() on error.
3837 */
3838 struct regulator_dev *
3839 regulator_register(const struct regulator_desc *regulator_desc,
3840 const struct regulator_config *cfg)
3841 {
3842 const struct regulation_constraints *constraints = NULL;
3843 const struct regulator_init_data *init_data;
3844 struct regulator_config *config = NULL;
3845 static atomic_t regulator_no = ATOMIC_INIT(-1);
3846 struct regulator_dev *rdev;
3847 struct device *dev;
3848 int ret, i;
3849
3850 if (regulator_desc == NULL || cfg == NULL)
3851 return ERR_PTR(-EINVAL);
3852
3853 dev = cfg->dev;
3854 WARN_ON(!dev);
3855
3856 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3857 return ERR_PTR(-EINVAL);
3858
3859 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3860 regulator_desc->type != REGULATOR_CURRENT)
3861 return ERR_PTR(-EINVAL);
3862
3863 /* Only one of each should be implemented */
3864 WARN_ON(regulator_desc->ops->get_voltage &&
3865 regulator_desc->ops->get_voltage_sel);
3866 WARN_ON(regulator_desc->ops->set_voltage &&
3867 regulator_desc->ops->set_voltage_sel);
3868
3869 /* If we're using selectors we must implement list_voltage. */
3870 if (regulator_desc->ops->get_voltage_sel &&
3871 !regulator_desc->ops->list_voltage) {
3872 return ERR_PTR(-EINVAL);
3873 }
3874 if (regulator_desc->ops->set_voltage_sel &&
3875 !regulator_desc->ops->list_voltage) {
3876 return ERR_PTR(-EINVAL);
3877 }
3878
3879 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3880 if (rdev == NULL)
3881 return ERR_PTR(-ENOMEM);
3882
3883 /*
3884 * Duplicate the config so the driver could override it after
3885 * parsing init data.
3886 */
3887 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3888 if (config == NULL) {
3889 kfree(rdev);
3890 return ERR_PTR(-ENOMEM);
3891 }
3892
3893 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3894 &rdev->dev.of_node);
3895 if (!init_data) {
3896 init_data = config->init_data;
3897 rdev->dev.of_node = of_node_get(config->of_node);
3898 }
3899
3900 mutex_lock(&regulator_list_mutex);
3901
3902 mutex_init(&rdev->mutex);
3903 rdev->reg_data = config->driver_data;
3904 rdev->owner = regulator_desc->owner;
3905 rdev->desc = regulator_desc;
3906 if (config->regmap)
3907 rdev->regmap = config->regmap;
3908 else if (dev_get_regmap(dev, NULL))
3909 rdev->regmap = dev_get_regmap(dev, NULL);
3910 else if (dev->parent)
3911 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3912 INIT_LIST_HEAD(&rdev->consumer_list);
3913 INIT_LIST_HEAD(&rdev->list);
3914 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3915 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3916
3917 /* preform any regulator specific init */
3918 if (init_data && init_data->regulator_init) {
3919 ret = init_data->regulator_init(rdev->reg_data);
3920 if (ret < 0)
3921 goto clean;
3922 }
3923
3924 /* register with sysfs */
3925 rdev->dev.class = &regulator_class;
3926 rdev->dev.parent = dev;
3927 dev_set_name(&rdev->dev, "regulator.%lu",
3928 (unsigned long) atomic_inc_return(&regulator_no));
3929 ret = device_register(&rdev->dev);
3930 if (ret != 0) {
3931 put_device(&rdev->dev);
3932 goto clean;
3933 }
3934
3935 dev_set_drvdata(&rdev->dev, rdev);
3936
3937 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3938 gpio_is_valid(config->ena_gpio)) {
3939 ret = regulator_ena_gpio_request(rdev, config);
3940 if (ret != 0) {
3941 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3942 config->ena_gpio, ret);
3943 goto wash;
3944 }
3945 }
3946
3947 /* set regulator constraints */
3948 if (init_data)
3949 constraints = &init_data->constraints;
3950
3951 ret = set_machine_constraints(rdev, constraints);
3952 if (ret < 0)
3953 goto scrub;
3954
3955 if (init_data && init_data->supply_regulator)
3956 rdev->supply_name = init_data->supply_regulator;
3957 else if (regulator_desc->supply_name)
3958 rdev->supply_name = regulator_desc->supply_name;
3959
3960 /* add consumers devices */
3961 if (init_data) {
3962 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3963 ret = set_consumer_device_supply(rdev,
3964 init_data->consumer_supplies[i].dev_name,
3965 init_data->consumer_supplies[i].supply);
3966 if (ret < 0) {
3967 dev_err(dev, "Failed to set supply %s\n",
3968 init_data->consumer_supplies[i].supply);
3969 goto unset_supplies;
3970 }
3971 }
3972 }
3973
3974 rdev_init_debugfs(rdev);
3975 out:
3976 mutex_unlock(&regulator_list_mutex);
3977 kfree(config);
3978 return rdev;
3979
3980 unset_supplies:
3981 unset_regulator_supplies(rdev);
3982
3983 scrub:
3984 regulator_ena_gpio_free(rdev);
3985 kfree(rdev->constraints);
3986 wash:
3987 device_unregister(&rdev->dev);
3988 /* device core frees rdev */
3989 rdev = ERR_PTR(ret);
3990 goto out;
3991
3992 clean:
3993 kfree(rdev);
3994 rdev = ERR_PTR(ret);
3995 goto out;
3996 }
3997 EXPORT_SYMBOL_GPL(regulator_register);
3998
3999 /**
4000 * regulator_unregister - unregister regulator
4001 * @rdev: regulator to unregister
4002 *
4003 * Called by regulator drivers to unregister a regulator.
4004 */
4005 void regulator_unregister(struct regulator_dev *rdev)
4006 {
4007 if (rdev == NULL)
4008 return;
4009
4010 if (rdev->supply) {
4011 while (rdev->use_count--)
4012 regulator_disable(rdev->supply);
4013 regulator_put(rdev->supply);
4014 }
4015 mutex_lock(&regulator_list_mutex);
4016 debugfs_remove_recursive(rdev->debugfs);
4017 flush_work(&rdev->disable_work.work);
4018 WARN_ON(rdev->open_count);
4019 unset_regulator_supplies(rdev);
4020 list_del(&rdev->list);
4021 mutex_unlock(&regulator_list_mutex);
4022 regulator_ena_gpio_free(rdev);
4023 device_unregister(&rdev->dev);
4024 }
4025 EXPORT_SYMBOL_GPL(regulator_unregister);
4026
4027 static int _regulator_suspend_prepare(struct device *dev, void *data)
4028 {
4029 struct regulator_dev *rdev = dev_to_rdev(dev);
4030 const suspend_state_t *state = data;
4031 int ret;
4032
4033 mutex_lock(&rdev->mutex);
4034 ret = suspend_prepare(rdev, *state);
4035 mutex_unlock(&rdev->mutex);
4036
4037 return ret;
4038 }
4039
4040 /**
4041 * regulator_suspend_prepare - prepare regulators for system wide suspend
4042 * @state: system suspend state
4043 *
4044 * Configure each regulator with it's suspend operating parameters for state.
4045 * This will usually be called by machine suspend code prior to supending.
4046 */
4047 int regulator_suspend_prepare(suspend_state_t state)
4048 {
4049 /* ON is handled by regulator active state */
4050 if (state == PM_SUSPEND_ON)
4051 return -EINVAL;
4052
4053 return class_for_each_device(&regulator_class, NULL, &state,
4054 _regulator_suspend_prepare);
4055 }
4056 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4057
4058 static int _regulator_suspend_finish(struct device *dev, void *data)
4059 {
4060 struct regulator_dev *rdev = dev_to_rdev(dev);
4061 int ret;
4062
4063 mutex_lock(&rdev->mutex);
4064 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4065 if (!_regulator_is_enabled(rdev)) {
4066 ret = _regulator_do_enable(rdev);
4067 if (ret)
4068 dev_err(dev,
4069 "Failed to resume regulator %d\n",
4070 ret);
4071 }
4072 } else {
4073 if (!have_full_constraints())
4074 goto unlock;
4075 if (!_regulator_is_enabled(rdev))
4076 goto unlock;
4077
4078 ret = _regulator_do_disable(rdev);
4079 if (ret)
4080 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4081 }
4082 unlock:
4083 mutex_unlock(&rdev->mutex);
4084
4085 /* Keep processing regulators in spite of any errors */
4086 return 0;
4087 }
4088
4089 /**
4090 * regulator_suspend_finish - resume regulators from system wide suspend
4091 *
4092 * Turn on regulators that might be turned off by regulator_suspend_prepare
4093 * and that should be turned on according to the regulators properties.
4094 */
4095 int regulator_suspend_finish(void)
4096 {
4097 return class_for_each_device(&regulator_class, NULL, NULL,
4098 _regulator_suspend_finish);
4099 }
4100 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4101
4102 /**
4103 * regulator_has_full_constraints - the system has fully specified constraints
4104 *
4105 * Calling this function will cause the regulator API to disable all
4106 * regulators which have a zero use count and don't have an always_on
4107 * constraint in a late_initcall.
4108 *
4109 * The intention is that this will become the default behaviour in a
4110 * future kernel release so users are encouraged to use this facility
4111 * now.
4112 */
4113 void regulator_has_full_constraints(void)
4114 {
4115 has_full_constraints = 1;
4116 }
4117 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4118
4119 /**
4120 * rdev_get_drvdata - get rdev regulator driver data
4121 * @rdev: regulator
4122 *
4123 * Get rdev regulator driver private data. This call can be used in the
4124 * regulator driver context.
4125 */
4126 void *rdev_get_drvdata(struct regulator_dev *rdev)
4127 {
4128 return rdev->reg_data;
4129 }
4130 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4131
4132 /**
4133 * regulator_get_drvdata - get regulator driver data
4134 * @regulator: regulator
4135 *
4136 * Get regulator driver private data. This call can be used in the consumer
4137 * driver context when non API regulator specific functions need to be called.
4138 */
4139 void *regulator_get_drvdata(struct regulator *regulator)
4140 {
4141 return regulator->rdev->reg_data;
4142 }
4143 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4144
4145 /**
4146 * regulator_set_drvdata - set regulator driver data
4147 * @regulator: regulator
4148 * @data: data
4149 */
4150 void regulator_set_drvdata(struct regulator *regulator, void *data)
4151 {
4152 regulator->rdev->reg_data = data;
4153 }
4154 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4155
4156 /**
4157 * regulator_get_id - get regulator ID
4158 * @rdev: regulator
4159 */
4160 int rdev_get_id(struct regulator_dev *rdev)
4161 {
4162 return rdev->desc->id;
4163 }
4164 EXPORT_SYMBOL_GPL(rdev_get_id);
4165
4166 struct device *rdev_get_dev(struct regulator_dev *rdev)
4167 {
4168 return &rdev->dev;
4169 }
4170 EXPORT_SYMBOL_GPL(rdev_get_dev);
4171
4172 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4173 {
4174 return reg_init_data->driver_data;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4177
4178 #ifdef CONFIG_DEBUG_FS
4179 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4180 size_t count, loff_t *ppos)
4181 {
4182 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4183 ssize_t len, ret = 0;
4184 struct regulator_map *map;
4185
4186 if (!buf)
4187 return -ENOMEM;
4188
4189 list_for_each_entry(map, &regulator_map_list, list) {
4190 len = snprintf(buf + ret, PAGE_SIZE - ret,
4191 "%s -> %s.%s\n",
4192 rdev_get_name(map->regulator), map->dev_name,
4193 map->supply);
4194 if (len >= 0)
4195 ret += len;
4196 if (ret > PAGE_SIZE) {
4197 ret = PAGE_SIZE;
4198 break;
4199 }
4200 }
4201
4202 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4203
4204 kfree(buf);
4205
4206 return ret;
4207 }
4208 #endif
4209
4210 static const struct file_operations supply_map_fops = {
4211 #ifdef CONFIG_DEBUG_FS
4212 .read = supply_map_read_file,
4213 .llseek = default_llseek,
4214 #endif
4215 };
4216
4217 #ifdef CONFIG_DEBUG_FS
4218 struct summary_data {
4219 struct seq_file *s;
4220 struct regulator_dev *parent;
4221 int level;
4222 };
4223
4224 static void regulator_summary_show_subtree(struct seq_file *s,
4225 struct regulator_dev *rdev,
4226 int level);
4227
4228 static int regulator_summary_show_children(struct device *dev, void *data)
4229 {
4230 struct regulator_dev *rdev = dev_to_rdev(dev);
4231 struct summary_data *summary_data = data;
4232
4233 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4234 regulator_summary_show_subtree(summary_data->s, rdev,
4235 summary_data->level + 1);
4236
4237 return 0;
4238 }
4239
4240 static void regulator_summary_show_subtree(struct seq_file *s,
4241 struct regulator_dev *rdev,
4242 int level)
4243 {
4244 struct regulation_constraints *c;
4245 struct regulator *consumer;
4246 struct summary_data summary_data;
4247
4248 if (!rdev)
4249 return;
4250
4251 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4252 level * 3 + 1, "",
4253 30 - level * 3, rdev_get_name(rdev),
4254 rdev->use_count, rdev->open_count, rdev->bypass_count);
4255
4256 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4257 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4258
4259 c = rdev->constraints;
4260 if (c) {
4261 switch (rdev->desc->type) {
4262 case REGULATOR_VOLTAGE:
4263 seq_printf(s, "%5dmV %5dmV ",
4264 c->min_uV / 1000, c->max_uV / 1000);
4265 break;
4266 case REGULATOR_CURRENT:
4267 seq_printf(s, "%5dmA %5dmA ",
4268 c->min_uA / 1000, c->max_uA / 1000);
4269 break;
4270 }
4271 }
4272
4273 seq_puts(s, "\n");
4274
4275 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4276 if (consumer->dev->class == &regulator_class)
4277 continue;
4278
4279 seq_printf(s, "%*s%-*s ",
4280 (level + 1) * 3 + 1, "",
4281 30 - (level + 1) * 3, dev_name(consumer->dev));
4282
4283 switch (rdev->desc->type) {
4284 case REGULATOR_VOLTAGE:
4285 seq_printf(s, "%37dmV %5dmV",
4286 consumer->min_uV / 1000,
4287 consumer->max_uV / 1000);
4288 break;
4289 case REGULATOR_CURRENT:
4290 break;
4291 }
4292
4293 seq_puts(s, "\n");
4294 }
4295
4296 summary_data.s = s;
4297 summary_data.level = level;
4298 summary_data.parent = rdev;
4299
4300 class_for_each_device(&regulator_class, NULL, &summary_data,
4301 regulator_summary_show_children);
4302 }
4303
4304 static int regulator_summary_show_roots(struct device *dev, void *data)
4305 {
4306 struct regulator_dev *rdev = dev_to_rdev(dev);
4307 struct seq_file *s = data;
4308
4309 if (!rdev->supply)
4310 regulator_summary_show_subtree(s, rdev, 0);
4311
4312 return 0;
4313 }
4314
4315 static int regulator_summary_show(struct seq_file *s, void *data)
4316 {
4317 seq_puts(s, " regulator use open bypass voltage current min max\n");
4318 seq_puts(s, "-------------------------------------------------------------------------------\n");
4319
4320 class_for_each_device(&regulator_class, NULL, s,
4321 regulator_summary_show_roots);
4322
4323 return 0;
4324 }
4325
4326 static int regulator_summary_open(struct inode *inode, struct file *file)
4327 {
4328 return single_open(file, regulator_summary_show, inode->i_private);
4329 }
4330 #endif
4331
4332 static const struct file_operations regulator_summary_fops = {
4333 #ifdef CONFIG_DEBUG_FS
4334 .open = regulator_summary_open,
4335 .read = seq_read,
4336 .llseek = seq_lseek,
4337 .release = single_release,
4338 #endif
4339 };
4340
4341 static int __init regulator_init(void)
4342 {
4343 int ret;
4344
4345 ret = class_register(&regulator_class);
4346
4347 debugfs_root = debugfs_create_dir("regulator", NULL);
4348 if (!debugfs_root)
4349 pr_warn("regulator: Failed to create debugfs directory\n");
4350
4351 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4352 &supply_map_fops);
4353
4354 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4355 NULL, &regulator_summary_fops);
4356
4357 regulator_dummy_init();
4358
4359 return ret;
4360 }
4361
4362 /* init early to allow our consumers to complete system booting */
4363 core_initcall(regulator_init);
4364
4365 static int __init regulator_late_cleanup(struct device *dev, void *data)
4366 {
4367 struct regulator_dev *rdev = dev_to_rdev(dev);
4368 const struct regulator_ops *ops = rdev->desc->ops;
4369 struct regulation_constraints *c = rdev->constraints;
4370 int enabled, ret;
4371
4372 if (c && c->always_on)
4373 return 0;
4374
4375 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4376 return 0;
4377
4378 mutex_lock(&rdev->mutex);
4379
4380 if (rdev->use_count)
4381 goto unlock;
4382
4383 /* If we can't read the status assume it's on. */
4384 if (ops->is_enabled)
4385 enabled = ops->is_enabled(rdev);
4386 else
4387 enabled = 1;
4388
4389 if (!enabled)
4390 goto unlock;
4391
4392 if (have_full_constraints()) {
4393 /* We log since this may kill the system if it goes
4394 * wrong. */
4395 rdev_info(rdev, "disabling\n");
4396 ret = _regulator_do_disable(rdev);
4397 if (ret != 0)
4398 rdev_err(rdev, "couldn't disable: %d\n", ret);
4399 } else {
4400 /* The intention is that in future we will
4401 * assume that full constraints are provided
4402 * so warn even if we aren't going to do
4403 * anything here.
4404 */
4405 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4406 }
4407
4408 unlock:
4409 mutex_unlock(&rdev->mutex);
4410
4411 return 0;
4412 }
4413
4414 static int __init regulator_init_complete(void)
4415 {
4416 /*
4417 * Since DT doesn't provide an idiomatic mechanism for
4418 * enabling full constraints and since it's much more natural
4419 * with DT to provide them just assume that a DT enabled
4420 * system has full constraints.
4421 */
4422 if (of_have_populated_dt())
4423 has_full_constraints = true;
4424
4425 /* If we have a full configuration then disable any regulators
4426 * we have permission to change the status for and which are
4427 * not in use or always_on. This is effectively the default
4428 * for DT and ACPI as they have full constraints.
4429 */
4430 class_for_each_device(&regulator_class, NULL, NULL,
4431 regulator_late_cleanup);
4432
4433 return 0;
4434 }
4435 late_initcall_sync(regulator_init_complete);
This page took 0.154814 seconds and 5 git commands to generate.