regulator: Clean up logging a bit
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34
35 #define rdev_err(rdev, fmt, ...) \
36 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37 #define rdev_warn(rdev, fmt, ...) \
38 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_info(rdev, fmt, ...) \
40 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_dbg(rdev, fmt, ...) \
42 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44 static DEFINE_MUTEX(regulator_list_mutex);
45 static LIST_HEAD(regulator_list);
46 static LIST_HEAD(regulator_map_list);
47 static int has_full_constraints;
48 static bool board_wants_dummy_regulator;
49
50 /*
51 * struct regulator_map
52 *
53 * Used to provide symbolic supply names to devices.
54 */
55 struct regulator_map {
56 struct list_head list;
57 const char *dev_name; /* The dev_name() for the consumer */
58 const char *supply;
59 struct regulator_dev *regulator;
60 };
61
62 /*
63 * struct regulator
64 *
65 * One for each consumer device.
66 */
67 struct regulator {
68 struct device *dev;
69 struct list_head list;
70 int uA_load;
71 int min_uV;
72 int max_uV;
73 char *supply_name;
74 struct device_attribute dev_attr;
75 struct regulator_dev *rdev;
76 };
77
78 static int _regulator_is_enabled(struct regulator_dev *rdev);
79 static int _regulator_disable(struct regulator_dev *rdev,
80 struct regulator_dev **supply_rdev_ptr);
81 static int _regulator_get_voltage(struct regulator_dev *rdev);
82 static int _regulator_get_current_limit(struct regulator_dev *rdev);
83 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84 static void _notifier_call_chain(struct regulator_dev *rdev,
85 unsigned long event, void *data);
86 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
87 int min_uV, int max_uV);
88
89 static const char *rdev_get_name(struct regulator_dev *rdev)
90 {
91 if (rdev->constraints && rdev->constraints->name)
92 return rdev->constraints->name;
93 else if (rdev->desc->name)
94 return rdev->desc->name;
95 else
96 return "";
97 }
98
99 /* gets the regulator for a given consumer device */
100 static struct regulator *get_device_regulator(struct device *dev)
101 {
102 struct regulator *regulator = NULL;
103 struct regulator_dev *rdev;
104
105 mutex_lock(&regulator_list_mutex);
106 list_for_each_entry(rdev, &regulator_list, list) {
107 mutex_lock(&rdev->mutex);
108 list_for_each_entry(regulator, &rdev->consumer_list, list) {
109 if (regulator->dev == dev) {
110 mutex_unlock(&rdev->mutex);
111 mutex_unlock(&regulator_list_mutex);
112 return regulator;
113 }
114 }
115 mutex_unlock(&rdev->mutex);
116 }
117 mutex_unlock(&regulator_list_mutex);
118 return NULL;
119 }
120
121 /* Platform voltage constraint check */
122 static int regulator_check_voltage(struct regulator_dev *rdev,
123 int *min_uV, int *max_uV)
124 {
125 BUG_ON(*min_uV > *max_uV);
126
127 if (!rdev->constraints) {
128 rdev_err(rdev, "no constraints\n");
129 return -ENODEV;
130 }
131 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
132 rdev_err(rdev, "operation not allowed\n");
133 return -EPERM;
134 }
135
136 if (*max_uV > rdev->constraints->max_uV)
137 *max_uV = rdev->constraints->max_uV;
138 if (*min_uV < rdev->constraints->min_uV)
139 *min_uV = rdev->constraints->min_uV;
140
141 if (*min_uV > *max_uV)
142 return -EINVAL;
143
144 return 0;
145 }
146
147 /* Make sure we select a voltage that suits the needs of all
148 * regulator consumers
149 */
150 static int regulator_check_consumers(struct regulator_dev *rdev,
151 int *min_uV, int *max_uV)
152 {
153 struct regulator *regulator;
154
155 list_for_each_entry(regulator, &rdev->consumer_list, list) {
156 if (*max_uV > regulator->max_uV)
157 *max_uV = regulator->max_uV;
158 if (*min_uV < regulator->min_uV)
159 *min_uV = regulator->min_uV;
160 }
161
162 if (*min_uV > *max_uV)
163 return -EINVAL;
164
165 return 0;
166 }
167
168 /* current constraint check */
169 static int regulator_check_current_limit(struct regulator_dev *rdev,
170 int *min_uA, int *max_uA)
171 {
172 BUG_ON(*min_uA > *max_uA);
173
174 if (!rdev->constraints) {
175 rdev_err(rdev, "no constraints\n");
176 return -ENODEV;
177 }
178 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
179 rdev_err(rdev, "operation not allowed\n");
180 return -EPERM;
181 }
182
183 if (*max_uA > rdev->constraints->max_uA)
184 *max_uA = rdev->constraints->max_uA;
185 if (*min_uA < rdev->constraints->min_uA)
186 *min_uA = rdev->constraints->min_uA;
187
188 if (*min_uA > *max_uA)
189 return -EINVAL;
190
191 return 0;
192 }
193
194 /* operating mode constraint check */
195 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
196 {
197 switch (mode) {
198 case REGULATOR_MODE_FAST:
199 case REGULATOR_MODE_NORMAL:
200 case REGULATOR_MODE_IDLE:
201 case REGULATOR_MODE_STANDBY:
202 break;
203 default:
204 return -EINVAL;
205 }
206
207 if (!rdev->constraints) {
208 rdev_err(rdev, "no constraints\n");
209 return -ENODEV;
210 }
211 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
212 rdev_err(rdev, "operation not allowed\n");
213 return -EPERM;
214 }
215 if (!(rdev->constraints->valid_modes_mask & mode)) {
216 rdev_err(rdev, "invalid mode %x\n", mode);
217 return -EINVAL;
218 }
219 return 0;
220 }
221
222 /* dynamic regulator mode switching constraint check */
223 static int regulator_check_drms(struct regulator_dev *rdev)
224 {
225 if (!rdev->constraints) {
226 rdev_err(rdev, "no constraints\n");
227 return -ENODEV;
228 }
229 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
230 rdev_err(rdev, "operation not allowed\n");
231 return -EPERM;
232 }
233 return 0;
234 }
235
236 static ssize_t device_requested_uA_show(struct device *dev,
237 struct device_attribute *attr, char *buf)
238 {
239 struct regulator *regulator;
240
241 regulator = get_device_regulator(dev);
242 if (regulator == NULL)
243 return 0;
244
245 return sprintf(buf, "%d\n", regulator->uA_load);
246 }
247
248 static ssize_t regulator_uV_show(struct device *dev,
249 struct device_attribute *attr, char *buf)
250 {
251 struct regulator_dev *rdev = dev_get_drvdata(dev);
252 ssize_t ret;
253
254 mutex_lock(&rdev->mutex);
255 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
256 mutex_unlock(&rdev->mutex);
257
258 return ret;
259 }
260 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
261
262 static ssize_t regulator_uA_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
264 {
265 struct regulator_dev *rdev = dev_get_drvdata(dev);
266
267 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
268 }
269 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
270
271 static ssize_t regulator_name_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct regulator_dev *rdev = dev_get_drvdata(dev);
275
276 return sprintf(buf, "%s\n", rdev_get_name(rdev));
277 }
278
279 static ssize_t regulator_print_opmode(char *buf, int mode)
280 {
281 switch (mode) {
282 case REGULATOR_MODE_FAST:
283 return sprintf(buf, "fast\n");
284 case REGULATOR_MODE_NORMAL:
285 return sprintf(buf, "normal\n");
286 case REGULATOR_MODE_IDLE:
287 return sprintf(buf, "idle\n");
288 case REGULATOR_MODE_STANDBY:
289 return sprintf(buf, "standby\n");
290 }
291 return sprintf(buf, "unknown\n");
292 }
293
294 static ssize_t regulator_opmode_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296 {
297 struct regulator_dev *rdev = dev_get_drvdata(dev);
298
299 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
300 }
301 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
302
303 static ssize_t regulator_print_state(char *buf, int state)
304 {
305 if (state > 0)
306 return sprintf(buf, "enabled\n");
307 else if (state == 0)
308 return sprintf(buf, "disabled\n");
309 else
310 return sprintf(buf, "unknown\n");
311 }
312
313 static ssize_t regulator_state_show(struct device *dev,
314 struct device_attribute *attr, char *buf)
315 {
316 struct regulator_dev *rdev = dev_get_drvdata(dev);
317 ssize_t ret;
318
319 mutex_lock(&rdev->mutex);
320 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
321 mutex_unlock(&rdev->mutex);
322
323 return ret;
324 }
325 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
326
327 static ssize_t regulator_status_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 int status;
332 char *label;
333
334 status = rdev->desc->ops->get_status(rdev);
335 if (status < 0)
336 return status;
337
338 switch (status) {
339 case REGULATOR_STATUS_OFF:
340 label = "off";
341 break;
342 case REGULATOR_STATUS_ON:
343 label = "on";
344 break;
345 case REGULATOR_STATUS_ERROR:
346 label = "error";
347 break;
348 case REGULATOR_STATUS_FAST:
349 label = "fast";
350 break;
351 case REGULATOR_STATUS_NORMAL:
352 label = "normal";
353 break;
354 case REGULATOR_STATUS_IDLE:
355 label = "idle";
356 break;
357 case REGULATOR_STATUS_STANDBY:
358 label = "standby";
359 break;
360 default:
361 return -ERANGE;
362 }
363
364 return sprintf(buf, "%s\n", label);
365 }
366 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
367
368 static ssize_t regulator_min_uA_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct regulator_dev *rdev = dev_get_drvdata(dev);
372
373 if (!rdev->constraints)
374 return sprintf(buf, "constraint not defined\n");
375
376 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
377 }
378 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
379
380 static ssize_t regulator_max_uA_show(struct device *dev,
381 struct device_attribute *attr, char *buf)
382 {
383 struct regulator_dev *rdev = dev_get_drvdata(dev);
384
385 if (!rdev->constraints)
386 return sprintf(buf, "constraint not defined\n");
387
388 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
389 }
390 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
391
392 static ssize_t regulator_min_uV_show(struct device *dev,
393 struct device_attribute *attr, char *buf)
394 {
395 struct regulator_dev *rdev = dev_get_drvdata(dev);
396
397 if (!rdev->constraints)
398 return sprintf(buf, "constraint not defined\n");
399
400 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
401 }
402 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
403
404 static ssize_t regulator_max_uV_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
406 {
407 struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409 if (!rdev->constraints)
410 return sprintf(buf, "constraint not defined\n");
411
412 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
413 }
414 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
415
416 static ssize_t regulator_total_uA_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
418 {
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 struct regulator *regulator;
421 int uA = 0;
422
423 mutex_lock(&rdev->mutex);
424 list_for_each_entry(regulator, &rdev->consumer_list, list)
425 uA += regulator->uA_load;
426 mutex_unlock(&rdev->mutex);
427 return sprintf(buf, "%d\n", uA);
428 }
429 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
430
431 static ssize_t regulator_num_users_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435 return sprintf(buf, "%d\n", rdev->use_count);
436 }
437
438 static ssize_t regulator_type_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443 switch (rdev->desc->type) {
444 case REGULATOR_VOLTAGE:
445 return sprintf(buf, "voltage\n");
446 case REGULATOR_CURRENT:
447 return sprintf(buf, "current\n");
448 }
449 return sprintf(buf, "unknown\n");
450 }
451
452 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
453 struct device_attribute *attr, char *buf)
454 {
455 struct regulator_dev *rdev = dev_get_drvdata(dev);
456
457 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
458 }
459 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
460 regulator_suspend_mem_uV_show, NULL);
461
462 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
468 }
469 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
470 regulator_suspend_disk_uV_show, NULL);
471
472 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
473 struct device_attribute *attr, char *buf)
474 {
475 struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
478 }
479 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
480 regulator_suspend_standby_uV_show, NULL);
481
482 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
483 struct device_attribute *attr, char *buf)
484 {
485 struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487 return regulator_print_opmode(buf,
488 rdev->constraints->state_mem.mode);
489 }
490 static DEVICE_ATTR(suspend_mem_mode, 0444,
491 regulator_suspend_mem_mode_show, NULL);
492
493 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
494 struct device_attribute *attr, char *buf)
495 {
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497
498 return regulator_print_opmode(buf,
499 rdev->constraints->state_disk.mode);
500 }
501 static DEVICE_ATTR(suspend_disk_mode, 0444,
502 regulator_suspend_disk_mode_show, NULL);
503
504 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
505 struct device_attribute *attr, char *buf)
506 {
507 struct regulator_dev *rdev = dev_get_drvdata(dev);
508
509 return regulator_print_opmode(buf,
510 rdev->constraints->state_standby.mode);
511 }
512 static DEVICE_ATTR(suspend_standby_mode, 0444,
513 regulator_suspend_standby_mode_show, NULL);
514
515 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
517 {
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520 return regulator_print_state(buf,
521 rdev->constraints->state_mem.enabled);
522 }
523 static DEVICE_ATTR(suspend_mem_state, 0444,
524 regulator_suspend_mem_state_show, NULL);
525
526 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528 {
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return regulator_print_state(buf,
532 rdev->constraints->state_disk.enabled);
533 }
534 static DEVICE_ATTR(suspend_disk_state, 0444,
535 regulator_suspend_disk_state_show, NULL);
536
537 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return regulator_print_state(buf,
543 rdev->constraints->state_standby.enabled);
544 }
545 static DEVICE_ATTR(suspend_standby_state, 0444,
546 regulator_suspend_standby_state_show, NULL);
547
548
549 /*
550 * These are the only attributes are present for all regulators.
551 * Other attributes are a function of regulator functionality.
552 */
553 static struct device_attribute regulator_dev_attrs[] = {
554 __ATTR(name, 0444, regulator_name_show, NULL),
555 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
556 __ATTR(type, 0444, regulator_type_show, NULL),
557 __ATTR_NULL,
558 };
559
560 static void regulator_dev_release(struct device *dev)
561 {
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563 kfree(rdev);
564 }
565
566 static struct class regulator_class = {
567 .name = "regulator",
568 .dev_release = regulator_dev_release,
569 .dev_attrs = regulator_dev_attrs,
570 };
571
572 /* Calculate the new optimum regulator operating mode based on the new total
573 * consumer load. All locks held by caller */
574 static void drms_uA_update(struct regulator_dev *rdev)
575 {
576 struct regulator *sibling;
577 int current_uA = 0, output_uV, input_uV, err;
578 unsigned int mode;
579
580 err = regulator_check_drms(rdev);
581 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
582 (!rdev->desc->ops->get_voltage &&
583 !rdev->desc->ops->get_voltage_sel) ||
584 !rdev->desc->ops->set_mode)
585 return;
586
587 /* get output voltage */
588 output_uV = _regulator_get_voltage(rdev);
589 if (output_uV <= 0)
590 return;
591
592 /* get input voltage */
593 input_uV = 0;
594 if (rdev->supply)
595 input_uV = _regulator_get_voltage(rdev);
596 if (input_uV <= 0)
597 input_uV = rdev->constraints->input_uV;
598 if (input_uV <= 0)
599 return;
600
601 /* calc total requested load */
602 list_for_each_entry(sibling, &rdev->consumer_list, list)
603 current_uA += sibling->uA_load;
604
605 /* now get the optimum mode for our new total regulator load */
606 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
607 output_uV, current_uA);
608
609 /* check the new mode is allowed */
610 err = regulator_check_mode(rdev, mode);
611 if (err == 0)
612 rdev->desc->ops->set_mode(rdev, mode);
613 }
614
615 static int suspend_set_state(struct regulator_dev *rdev,
616 struct regulator_state *rstate)
617 {
618 int ret = 0;
619 bool can_set_state;
620
621 can_set_state = rdev->desc->ops->set_suspend_enable &&
622 rdev->desc->ops->set_suspend_disable;
623
624 /* If we have no suspend mode configration don't set anything;
625 * only warn if the driver actually makes the suspend mode
626 * configurable.
627 */
628 if (!rstate->enabled && !rstate->disabled) {
629 if (can_set_state)
630 rdev_warn(rdev, "No configuration\n");
631 return 0;
632 }
633
634 if (rstate->enabled && rstate->disabled) {
635 rdev_err(rdev, "invalid configuration\n");
636 return -EINVAL;
637 }
638
639 if (!can_set_state) {
640 rdev_err(rdev, "no way to set suspend state\n");
641 return -EINVAL;
642 }
643
644 if (rstate->enabled)
645 ret = rdev->desc->ops->set_suspend_enable(rdev);
646 else
647 ret = rdev->desc->ops->set_suspend_disable(rdev);
648 if (ret < 0) {
649 rdev_err(rdev, "failed to enabled/disable\n");
650 return ret;
651 }
652
653 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
654 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
655 if (ret < 0) {
656 rdev_err(rdev, "failed to set voltage\n");
657 return ret;
658 }
659 }
660
661 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
662 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
663 if (ret < 0) {
664 rdev_err(rdev, "failed to set mode\n");
665 return ret;
666 }
667 }
668 return ret;
669 }
670
671 /* locks held by caller */
672 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
673 {
674 if (!rdev->constraints)
675 return -EINVAL;
676
677 switch (state) {
678 case PM_SUSPEND_STANDBY:
679 return suspend_set_state(rdev,
680 &rdev->constraints->state_standby);
681 case PM_SUSPEND_MEM:
682 return suspend_set_state(rdev,
683 &rdev->constraints->state_mem);
684 case PM_SUSPEND_MAX:
685 return suspend_set_state(rdev,
686 &rdev->constraints->state_disk);
687 default:
688 return -EINVAL;
689 }
690 }
691
692 static void print_constraints(struct regulator_dev *rdev)
693 {
694 struct regulation_constraints *constraints = rdev->constraints;
695 char buf[80] = "";
696 int count = 0;
697 int ret;
698
699 if (constraints->min_uV && constraints->max_uV) {
700 if (constraints->min_uV == constraints->max_uV)
701 count += sprintf(buf + count, "%d mV ",
702 constraints->min_uV / 1000);
703 else
704 count += sprintf(buf + count, "%d <--> %d mV ",
705 constraints->min_uV / 1000,
706 constraints->max_uV / 1000);
707 }
708
709 if (!constraints->min_uV ||
710 constraints->min_uV != constraints->max_uV) {
711 ret = _regulator_get_voltage(rdev);
712 if (ret > 0)
713 count += sprintf(buf + count, "at %d mV ", ret / 1000);
714 }
715
716 if (constraints->min_uA && constraints->max_uA) {
717 if (constraints->min_uA == constraints->max_uA)
718 count += sprintf(buf + count, "%d mA ",
719 constraints->min_uA / 1000);
720 else
721 count += sprintf(buf + count, "%d <--> %d mA ",
722 constraints->min_uA / 1000,
723 constraints->max_uA / 1000);
724 }
725
726 if (!constraints->min_uA ||
727 constraints->min_uA != constraints->max_uA) {
728 ret = _regulator_get_current_limit(rdev);
729 if (ret > 0)
730 count += sprintf(buf + count, "at %d mA ", ret / 1000);
731 }
732
733 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
734 count += sprintf(buf + count, "fast ");
735 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
736 count += sprintf(buf + count, "normal ");
737 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
738 count += sprintf(buf + count, "idle ");
739 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
740 count += sprintf(buf + count, "standby");
741
742 rdev_info(rdev, "%s\n", buf);
743 }
744
745 static int machine_constraints_voltage(struct regulator_dev *rdev,
746 struct regulation_constraints *constraints)
747 {
748 struct regulator_ops *ops = rdev->desc->ops;
749 int ret;
750
751 /* do we need to apply the constraint voltage */
752 if (rdev->constraints->apply_uV &&
753 rdev->constraints->min_uV == rdev->constraints->max_uV) {
754 ret = _regulator_do_set_voltage(rdev,
755 rdev->constraints->min_uV,
756 rdev->constraints->max_uV);
757 if (ret < 0) {
758 rdev_err(rdev, "failed to apply %duV constraint\n",
759 rdev->constraints->min_uV);
760 rdev->constraints = NULL;
761 return ret;
762 }
763 }
764
765 /* constrain machine-level voltage specs to fit
766 * the actual range supported by this regulator.
767 */
768 if (ops->list_voltage && rdev->desc->n_voltages) {
769 int count = rdev->desc->n_voltages;
770 int i;
771 int min_uV = INT_MAX;
772 int max_uV = INT_MIN;
773 int cmin = constraints->min_uV;
774 int cmax = constraints->max_uV;
775
776 /* it's safe to autoconfigure fixed-voltage supplies
777 and the constraints are used by list_voltage. */
778 if (count == 1 && !cmin) {
779 cmin = 1;
780 cmax = INT_MAX;
781 constraints->min_uV = cmin;
782 constraints->max_uV = cmax;
783 }
784
785 /* voltage constraints are optional */
786 if ((cmin == 0) && (cmax == 0))
787 return 0;
788
789 /* else require explicit machine-level constraints */
790 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
791 rdev_err(rdev, "invalid voltage constraints\n");
792 return -EINVAL;
793 }
794
795 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
796 for (i = 0; i < count; i++) {
797 int value;
798
799 value = ops->list_voltage(rdev, i);
800 if (value <= 0)
801 continue;
802
803 /* maybe adjust [min_uV..max_uV] */
804 if (value >= cmin && value < min_uV)
805 min_uV = value;
806 if (value <= cmax && value > max_uV)
807 max_uV = value;
808 }
809
810 /* final: [min_uV..max_uV] valid iff constraints valid */
811 if (max_uV < min_uV) {
812 rdev_err(rdev, "unsupportable voltage constraints\n");
813 return -EINVAL;
814 }
815
816 /* use regulator's subset of machine constraints */
817 if (constraints->min_uV < min_uV) {
818 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
819 constraints->min_uV, min_uV);
820 constraints->min_uV = min_uV;
821 }
822 if (constraints->max_uV > max_uV) {
823 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
824 constraints->max_uV, max_uV);
825 constraints->max_uV = max_uV;
826 }
827 }
828
829 return 0;
830 }
831
832 /**
833 * set_machine_constraints - sets regulator constraints
834 * @rdev: regulator source
835 * @constraints: constraints to apply
836 *
837 * Allows platform initialisation code to define and constrain
838 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
839 * Constraints *must* be set by platform code in order for some
840 * regulator operations to proceed i.e. set_voltage, set_current_limit,
841 * set_mode.
842 */
843 static int set_machine_constraints(struct regulator_dev *rdev,
844 const struct regulation_constraints *constraints)
845 {
846 int ret = 0;
847 struct regulator_ops *ops = rdev->desc->ops;
848
849 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
850 GFP_KERNEL);
851 if (!rdev->constraints)
852 return -ENOMEM;
853
854 ret = machine_constraints_voltage(rdev, rdev->constraints);
855 if (ret != 0)
856 goto out;
857
858 /* do we need to setup our suspend state */
859 if (constraints->initial_state) {
860 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
861 if (ret < 0) {
862 rdev_err(rdev, "failed to set suspend state\n");
863 rdev->constraints = NULL;
864 goto out;
865 }
866 }
867
868 if (constraints->initial_mode) {
869 if (!ops->set_mode) {
870 rdev_err(rdev, "no set_mode operation\n");
871 ret = -EINVAL;
872 goto out;
873 }
874
875 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
876 if (ret < 0) {
877 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
878 goto out;
879 }
880 }
881
882 /* If the constraints say the regulator should be on at this point
883 * and we have control then make sure it is enabled.
884 */
885 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
886 ops->enable) {
887 ret = ops->enable(rdev);
888 if (ret < 0) {
889 rdev_err(rdev, "failed to enable\n");
890 rdev->constraints = NULL;
891 goto out;
892 }
893 }
894
895 print_constraints(rdev);
896 out:
897 return ret;
898 }
899
900 /**
901 * set_supply - set regulator supply regulator
902 * @rdev: regulator name
903 * @supply_rdev: supply regulator name
904 *
905 * Called by platform initialisation code to set the supply regulator for this
906 * regulator. This ensures that a regulators supply will also be enabled by the
907 * core if it's child is enabled.
908 */
909 static int set_supply(struct regulator_dev *rdev,
910 struct regulator_dev *supply_rdev)
911 {
912 int err;
913
914 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
915 "supply");
916 if (err) {
917 rdev_err(rdev, "could not add device link %s err %d\n",
918 supply_rdev->dev.kobj.name, err);
919 goto out;
920 }
921 rdev->supply = supply_rdev;
922 list_add(&rdev->slist, &supply_rdev->supply_list);
923 out:
924 return err;
925 }
926
927 /**
928 * set_consumer_device_supply - Bind a regulator to a symbolic supply
929 * @rdev: regulator source
930 * @consumer_dev: device the supply applies to
931 * @consumer_dev_name: dev_name() string for device supply applies to
932 * @supply: symbolic name for supply
933 *
934 * Allows platform initialisation code to map physical regulator
935 * sources to symbolic names for supplies for use by devices. Devices
936 * should use these symbolic names to request regulators, avoiding the
937 * need to provide board-specific regulator names as platform data.
938 *
939 * Only one of consumer_dev and consumer_dev_name may be specified.
940 */
941 static int set_consumer_device_supply(struct regulator_dev *rdev,
942 struct device *consumer_dev, const char *consumer_dev_name,
943 const char *supply)
944 {
945 struct regulator_map *node;
946 int has_dev;
947
948 if (consumer_dev && consumer_dev_name)
949 return -EINVAL;
950
951 if (!consumer_dev_name && consumer_dev)
952 consumer_dev_name = dev_name(consumer_dev);
953
954 if (supply == NULL)
955 return -EINVAL;
956
957 if (consumer_dev_name != NULL)
958 has_dev = 1;
959 else
960 has_dev = 0;
961
962 list_for_each_entry(node, &regulator_map_list, list) {
963 if (node->dev_name && consumer_dev_name) {
964 if (strcmp(node->dev_name, consumer_dev_name) != 0)
965 continue;
966 } else if (node->dev_name || consumer_dev_name) {
967 continue;
968 }
969
970 if (strcmp(node->supply, supply) != 0)
971 continue;
972
973 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
974 dev_name(&node->regulator->dev),
975 node->regulator->desc->name,
976 supply,
977 dev_name(&rdev->dev), rdev_get_name(rdev));
978 return -EBUSY;
979 }
980
981 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
982 if (node == NULL)
983 return -ENOMEM;
984
985 node->regulator = rdev;
986 node->supply = supply;
987
988 if (has_dev) {
989 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
990 if (node->dev_name == NULL) {
991 kfree(node);
992 return -ENOMEM;
993 }
994 }
995
996 list_add(&node->list, &regulator_map_list);
997 return 0;
998 }
999
1000 static void unset_regulator_supplies(struct regulator_dev *rdev)
1001 {
1002 struct regulator_map *node, *n;
1003
1004 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1005 if (rdev == node->regulator) {
1006 list_del(&node->list);
1007 kfree(node->dev_name);
1008 kfree(node);
1009 }
1010 }
1011 }
1012
1013 #define REG_STR_SIZE 32
1014
1015 static struct regulator *create_regulator(struct regulator_dev *rdev,
1016 struct device *dev,
1017 const char *supply_name)
1018 {
1019 struct regulator *regulator;
1020 char buf[REG_STR_SIZE];
1021 int err, size;
1022
1023 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1024 if (regulator == NULL)
1025 return NULL;
1026
1027 mutex_lock(&rdev->mutex);
1028 regulator->rdev = rdev;
1029 list_add(&regulator->list, &rdev->consumer_list);
1030
1031 if (dev) {
1032 /* create a 'requested_microamps_name' sysfs entry */
1033 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1034 supply_name);
1035 if (size >= REG_STR_SIZE)
1036 goto overflow_err;
1037
1038 regulator->dev = dev;
1039 sysfs_attr_init(&regulator->dev_attr.attr);
1040 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1041 if (regulator->dev_attr.attr.name == NULL)
1042 goto attr_name_err;
1043
1044 regulator->dev_attr.attr.mode = 0444;
1045 regulator->dev_attr.show = device_requested_uA_show;
1046 err = device_create_file(dev, &regulator->dev_attr);
1047 if (err < 0) {
1048 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1049 goto attr_name_err;
1050 }
1051
1052 /* also add a link to the device sysfs entry */
1053 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1054 dev->kobj.name, supply_name);
1055 if (size >= REG_STR_SIZE)
1056 goto attr_err;
1057
1058 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1059 if (regulator->supply_name == NULL)
1060 goto attr_err;
1061
1062 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1063 buf);
1064 if (err) {
1065 rdev_warn(rdev, "could not add device link %s err %d\n",
1066 dev->kobj.name, err);
1067 goto link_name_err;
1068 }
1069 }
1070 mutex_unlock(&rdev->mutex);
1071 return regulator;
1072 link_name_err:
1073 kfree(regulator->supply_name);
1074 attr_err:
1075 device_remove_file(regulator->dev, &regulator->dev_attr);
1076 attr_name_err:
1077 kfree(regulator->dev_attr.attr.name);
1078 overflow_err:
1079 list_del(&regulator->list);
1080 kfree(regulator);
1081 mutex_unlock(&rdev->mutex);
1082 return NULL;
1083 }
1084
1085 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1086 {
1087 if (!rdev->desc->ops->enable_time)
1088 return 0;
1089 return rdev->desc->ops->enable_time(rdev);
1090 }
1091
1092 /* Internal regulator request function */
1093 static struct regulator *_regulator_get(struct device *dev, const char *id,
1094 int exclusive)
1095 {
1096 struct regulator_dev *rdev;
1097 struct regulator_map *map;
1098 struct regulator *regulator = ERR_PTR(-ENODEV);
1099 const char *devname = NULL;
1100 int ret;
1101
1102 if (id == NULL) {
1103 pr_err("get() with no identifier\n");
1104 return regulator;
1105 }
1106
1107 if (dev)
1108 devname = dev_name(dev);
1109
1110 mutex_lock(&regulator_list_mutex);
1111
1112 list_for_each_entry(map, &regulator_map_list, list) {
1113 /* If the mapping has a device set up it must match */
1114 if (map->dev_name &&
1115 (!devname || strcmp(map->dev_name, devname)))
1116 continue;
1117
1118 if (strcmp(map->supply, id) == 0) {
1119 rdev = map->regulator;
1120 goto found;
1121 }
1122 }
1123
1124 if (board_wants_dummy_regulator) {
1125 rdev = dummy_regulator_rdev;
1126 goto found;
1127 }
1128
1129 #ifdef CONFIG_REGULATOR_DUMMY
1130 if (!devname)
1131 devname = "deviceless";
1132
1133 /* If the board didn't flag that it was fully constrained then
1134 * substitute in a dummy regulator so consumers can continue.
1135 */
1136 if (!has_full_constraints) {
1137 pr_warn("%s supply %s not found, using dummy regulator\n",
1138 devname, id);
1139 rdev = dummy_regulator_rdev;
1140 goto found;
1141 }
1142 #endif
1143
1144 mutex_unlock(&regulator_list_mutex);
1145 return regulator;
1146
1147 found:
1148 if (rdev->exclusive) {
1149 regulator = ERR_PTR(-EPERM);
1150 goto out;
1151 }
1152
1153 if (exclusive && rdev->open_count) {
1154 regulator = ERR_PTR(-EBUSY);
1155 goto out;
1156 }
1157
1158 if (!try_module_get(rdev->owner))
1159 goto out;
1160
1161 regulator = create_regulator(rdev, dev, id);
1162 if (regulator == NULL) {
1163 regulator = ERR_PTR(-ENOMEM);
1164 module_put(rdev->owner);
1165 }
1166
1167 rdev->open_count++;
1168 if (exclusive) {
1169 rdev->exclusive = 1;
1170
1171 ret = _regulator_is_enabled(rdev);
1172 if (ret > 0)
1173 rdev->use_count = 1;
1174 else
1175 rdev->use_count = 0;
1176 }
1177
1178 out:
1179 mutex_unlock(&regulator_list_mutex);
1180
1181 return regulator;
1182 }
1183
1184 /**
1185 * regulator_get - lookup and obtain a reference to a regulator.
1186 * @dev: device for regulator "consumer"
1187 * @id: Supply name or regulator ID.
1188 *
1189 * Returns a struct regulator corresponding to the regulator producer,
1190 * or IS_ERR() condition containing errno.
1191 *
1192 * Use of supply names configured via regulator_set_device_supply() is
1193 * strongly encouraged. It is recommended that the supply name used
1194 * should match the name used for the supply and/or the relevant
1195 * device pins in the datasheet.
1196 */
1197 struct regulator *regulator_get(struct device *dev, const char *id)
1198 {
1199 return _regulator_get(dev, id, 0);
1200 }
1201 EXPORT_SYMBOL_GPL(regulator_get);
1202
1203 /**
1204 * regulator_get_exclusive - obtain exclusive access to a regulator.
1205 * @dev: device for regulator "consumer"
1206 * @id: Supply name or regulator ID.
1207 *
1208 * Returns a struct regulator corresponding to the regulator producer,
1209 * or IS_ERR() condition containing errno. Other consumers will be
1210 * unable to obtain this reference is held and the use count for the
1211 * regulator will be initialised to reflect the current state of the
1212 * regulator.
1213 *
1214 * This is intended for use by consumers which cannot tolerate shared
1215 * use of the regulator such as those which need to force the
1216 * regulator off for correct operation of the hardware they are
1217 * controlling.
1218 *
1219 * Use of supply names configured via regulator_set_device_supply() is
1220 * strongly encouraged. It is recommended that the supply name used
1221 * should match the name used for the supply and/or the relevant
1222 * device pins in the datasheet.
1223 */
1224 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1225 {
1226 return _regulator_get(dev, id, 1);
1227 }
1228 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1229
1230 /**
1231 * regulator_put - "free" the regulator source
1232 * @regulator: regulator source
1233 *
1234 * Note: drivers must ensure that all regulator_enable calls made on this
1235 * regulator source are balanced by regulator_disable calls prior to calling
1236 * this function.
1237 */
1238 void regulator_put(struct regulator *regulator)
1239 {
1240 struct regulator_dev *rdev;
1241
1242 if (regulator == NULL || IS_ERR(regulator))
1243 return;
1244
1245 mutex_lock(&regulator_list_mutex);
1246 rdev = regulator->rdev;
1247
1248 /* remove any sysfs entries */
1249 if (regulator->dev) {
1250 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1251 kfree(regulator->supply_name);
1252 device_remove_file(regulator->dev, &regulator->dev_attr);
1253 kfree(regulator->dev_attr.attr.name);
1254 }
1255 list_del(&regulator->list);
1256 kfree(regulator);
1257
1258 rdev->open_count--;
1259 rdev->exclusive = 0;
1260
1261 module_put(rdev->owner);
1262 mutex_unlock(&regulator_list_mutex);
1263 }
1264 EXPORT_SYMBOL_GPL(regulator_put);
1265
1266 static int _regulator_can_change_status(struct regulator_dev *rdev)
1267 {
1268 if (!rdev->constraints)
1269 return 0;
1270
1271 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1272 return 1;
1273 else
1274 return 0;
1275 }
1276
1277 /* locks held by regulator_enable() */
1278 static int _regulator_enable(struct regulator_dev *rdev)
1279 {
1280 int ret, delay;
1281
1282 if (rdev->use_count == 0) {
1283 /* do we need to enable the supply regulator first */
1284 if (rdev->supply) {
1285 mutex_lock(&rdev->supply->mutex);
1286 ret = _regulator_enable(rdev->supply);
1287 mutex_unlock(&rdev->supply->mutex);
1288 if (ret < 0) {
1289 rdev_err(rdev, "failed to enable: %d\n", ret);
1290 return ret;
1291 }
1292 }
1293 }
1294
1295 /* check voltage and requested load before enabling */
1296 if (rdev->constraints &&
1297 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1298 drms_uA_update(rdev);
1299
1300 if (rdev->use_count == 0) {
1301 /* The regulator may on if it's not switchable or left on */
1302 ret = _regulator_is_enabled(rdev);
1303 if (ret == -EINVAL || ret == 0) {
1304 if (!_regulator_can_change_status(rdev))
1305 return -EPERM;
1306
1307 if (!rdev->desc->ops->enable)
1308 return -EINVAL;
1309
1310 /* Query before enabling in case configuration
1311 * dependant. */
1312 ret = _regulator_get_enable_time(rdev);
1313 if (ret >= 0) {
1314 delay = ret;
1315 } else {
1316 rdev_warn(rdev, "enable_time() failed: %d\n",
1317 ret);
1318 delay = 0;
1319 }
1320
1321 trace_regulator_enable(rdev_get_name(rdev));
1322
1323 /* Allow the regulator to ramp; it would be useful
1324 * to extend this for bulk operations so that the
1325 * regulators can ramp together. */
1326 ret = rdev->desc->ops->enable(rdev);
1327 if (ret < 0)
1328 return ret;
1329
1330 trace_regulator_enable_delay(rdev_get_name(rdev));
1331
1332 if (delay >= 1000) {
1333 mdelay(delay / 1000);
1334 udelay(delay % 1000);
1335 } else if (delay) {
1336 udelay(delay);
1337 }
1338
1339 trace_regulator_enable_complete(rdev_get_name(rdev));
1340
1341 } else if (ret < 0) {
1342 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1343 return ret;
1344 }
1345 /* Fallthrough on positive return values - already enabled */
1346 }
1347
1348 rdev->use_count++;
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * regulator_enable - enable regulator output
1355 * @regulator: regulator source
1356 *
1357 * Request that the regulator be enabled with the regulator output at
1358 * the predefined voltage or current value. Calls to regulator_enable()
1359 * must be balanced with calls to regulator_disable().
1360 *
1361 * NOTE: the output value can be set by other drivers, boot loader or may be
1362 * hardwired in the regulator.
1363 */
1364 int regulator_enable(struct regulator *regulator)
1365 {
1366 struct regulator_dev *rdev = regulator->rdev;
1367 int ret = 0;
1368
1369 mutex_lock(&rdev->mutex);
1370 ret = _regulator_enable(rdev);
1371 mutex_unlock(&rdev->mutex);
1372 return ret;
1373 }
1374 EXPORT_SYMBOL_GPL(regulator_enable);
1375
1376 /* locks held by regulator_disable() */
1377 static int _regulator_disable(struct regulator_dev *rdev,
1378 struct regulator_dev **supply_rdev_ptr)
1379 {
1380 int ret = 0;
1381 *supply_rdev_ptr = NULL;
1382
1383 if (WARN(rdev->use_count <= 0,
1384 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1385 return -EIO;
1386
1387 /* are we the last user and permitted to disable ? */
1388 if (rdev->use_count == 1 &&
1389 (rdev->constraints && !rdev->constraints->always_on)) {
1390
1391 /* we are last user */
1392 if (_regulator_can_change_status(rdev) &&
1393 rdev->desc->ops->disable) {
1394 trace_regulator_disable(rdev_get_name(rdev));
1395
1396 ret = rdev->desc->ops->disable(rdev);
1397 if (ret < 0) {
1398 rdev_err(rdev, "failed to disable\n");
1399 return ret;
1400 }
1401
1402 trace_regulator_disable_complete(rdev_get_name(rdev));
1403
1404 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1405 NULL);
1406 }
1407
1408 /* decrease our supplies ref count and disable if required */
1409 *supply_rdev_ptr = rdev->supply;
1410
1411 rdev->use_count = 0;
1412 } else if (rdev->use_count > 1) {
1413
1414 if (rdev->constraints &&
1415 (rdev->constraints->valid_ops_mask &
1416 REGULATOR_CHANGE_DRMS))
1417 drms_uA_update(rdev);
1418
1419 rdev->use_count--;
1420 }
1421 return ret;
1422 }
1423
1424 /**
1425 * regulator_disable - disable regulator output
1426 * @regulator: regulator source
1427 *
1428 * Disable the regulator output voltage or current. Calls to
1429 * regulator_enable() must be balanced with calls to
1430 * regulator_disable().
1431 *
1432 * NOTE: this will only disable the regulator output if no other consumer
1433 * devices have it enabled, the regulator device supports disabling and
1434 * machine constraints permit this operation.
1435 */
1436 int regulator_disable(struct regulator *regulator)
1437 {
1438 struct regulator_dev *rdev = regulator->rdev;
1439 struct regulator_dev *supply_rdev = NULL;
1440 int ret = 0;
1441
1442 mutex_lock(&rdev->mutex);
1443 ret = _regulator_disable(rdev, &supply_rdev);
1444 mutex_unlock(&rdev->mutex);
1445
1446 /* decrease our supplies ref count and disable if required */
1447 while (supply_rdev != NULL) {
1448 rdev = supply_rdev;
1449
1450 mutex_lock(&rdev->mutex);
1451 _regulator_disable(rdev, &supply_rdev);
1452 mutex_unlock(&rdev->mutex);
1453 }
1454
1455 return ret;
1456 }
1457 EXPORT_SYMBOL_GPL(regulator_disable);
1458
1459 /* locks held by regulator_force_disable() */
1460 static int _regulator_force_disable(struct regulator_dev *rdev,
1461 struct regulator_dev **supply_rdev_ptr)
1462 {
1463 int ret = 0;
1464
1465 /* force disable */
1466 if (rdev->desc->ops->disable) {
1467 /* ah well, who wants to live forever... */
1468 ret = rdev->desc->ops->disable(rdev);
1469 if (ret < 0) {
1470 rdev_err(rdev, "failed to force disable\n");
1471 return ret;
1472 }
1473 /* notify other consumers that power has been forced off */
1474 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1475 REGULATOR_EVENT_DISABLE, NULL);
1476 }
1477
1478 /* decrease our supplies ref count and disable if required */
1479 *supply_rdev_ptr = rdev->supply;
1480
1481 rdev->use_count = 0;
1482 return ret;
1483 }
1484
1485 /**
1486 * regulator_force_disable - force disable regulator output
1487 * @regulator: regulator source
1488 *
1489 * Forcibly disable the regulator output voltage or current.
1490 * NOTE: this *will* disable the regulator output even if other consumer
1491 * devices have it enabled. This should be used for situations when device
1492 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1493 */
1494 int regulator_force_disable(struct regulator *regulator)
1495 {
1496 struct regulator_dev *supply_rdev = NULL;
1497 int ret;
1498
1499 mutex_lock(&regulator->rdev->mutex);
1500 regulator->uA_load = 0;
1501 ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1502 mutex_unlock(&regulator->rdev->mutex);
1503
1504 if (supply_rdev)
1505 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1506
1507 return ret;
1508 }
1509 EXPORT_SYMBOL_GPL(regulator_force_disable);
1510
1511 static int _regulator_is_enabled(struct regulator_dev *rdev)
1512 {
1513 /* If we don't know then assume that the regulator is always on */
1514 if (!rdev->desc->ops->is_enabled)
1515 return 1;
1516
1517 return rdev->desc->ops->is_enabled(rdev);
1518 }
1519
1520 /**
1521 * regulator_is_enabled - is the regulator output enabled
1522 * @regulator: regulator source
1523 *
1524 * Returns positive if the regulator driver backing the source/client
1525 * has requested that the device be enabled, zero if it hasn't, else a
1526 * negative errno code.
1527 *
1528 * Note that the device backing this regulator handle can have multiple
1529 * users, so it might be enabled even if regulator_enable() was never
1530 * called for this particular source.
1531 */
1532 int regulator_is_enabled(struct regulator *regulator)
1533 {
1534 int ret;
1535
1536 mutex_lock(&regulator->rdev->mutex);
1537 ret = _regulator_is_enabled(regulator->rdev);
1538 mutex_unlock(&regulator->rdev->mutex);
1539
1540 return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1543
1544 /**
1545 * regulator_count_voltages - count regulator_list_voltage() selectors
1546 * @regulator: regulator source
1547 *
1548 * Returns number of selectors, or negative errno. Selectors are
1549 * numbered starting at zero, and typically correspond to bitfields
1550 * in hardware registers.
1551 */
1552 int regulator_count_voltages(struct regulator *regulator)
1553 {
1554 struct regulator_dev *rdev = regulator->rdev;
1555
1556 return rdev->desc->n_voltages ? : -EINVAL;
1557 }
1558 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1559
1560 /**
1561 * regulator_list_voltage - enumerate supported voltages
1562 * @regulator: regulator source
1563 * @selector: identify voltage to list
1564 * Context: can sleep
1565 *
1566 * Returns a voltage that can be passed to @regulator_set_voltage(),
1567 * zero if this selector code can't be used on this system, or a
1568 * negative errno.
1569 */
1570 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1571 {
1572 struct regulator_dev *rdev = regulator->rdev;
1573 struct regulator_ops *ops = rdev->desc->ops;
1574 int ret;
1575
1576 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1577 return -EINVAL;
1578
1579 mutex_lock(&rdev->mutex);
1580 ret = ops->list_voltage(rdev, selector);
1581 mutex_unlock(&rdev->mutex);
1582
1583 if (ret > 0) {
1584 if (ret < rdev->constraints->min_uV)
1585 ret = 0;
1586 else if (ret > rdev->constraints->max_uV)
1587 ret = 0;
1588 }
1589
1590 return ret;
1591 }
1592 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1593
1594 /**
1595 * regulator_is_supported_voltage - check if a voltage range can be supported
1596 *
1597 * @regulator: Regulator to check.
1598 * @min_uV: Minimum required voltage in uV.
1599 * @max_uV: Maximum required voltage in uV.
1600 *
1601 * Returns a boolean or a negative error code.
1602 */
1603 int regulator_is_supported_voltage(struct regulator *regulator,
1604 int min_uV, int max_uV)
1605 {
1606 int i, voltages, ret;
1607
1608 ret = regulator_count_voltages(regulator);
1609 if (ret < 0)
1610 return ret;
1611 voltages = ret;
1612
1613 for (i = 0; i < voltages; i++) {
1614 ret = regulator_list_voltage(regulator, i);
1615
1616 if (ret >= min_uV && ret <= max_uV)
1617 return 1;
1618 }
1619
1620 return 0;
1621 }
1622
1623 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1624 int min_uV, int max_uV)
1625 {
1626 int ret;
1627 unsigned int selector;
1628
1629 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1630
1631 if (rdev->desc->ops->set_voltage) {
1632 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1633 &selector);
1634
1635 if (rdev->desc->ops->list_voltage)
1636 selector = rdev->desc->ops->list_voltage(rdev,
1637 selector);
1638 else
1639 selector = -1;
1640 } else if (rdev->desc->ops->set_voltage_sel) {
1641 int best_val = INT_MAX;
1642 int i;
1643
1644 selector = 0;
1645
1646 /* Find the smallest voltage that falls within the specified
1647 * range.
1648 */
1649 for (i = 0; i < rdev->desc->n_voltages; i++) {
1650 ret = rdev->desc->ops->list_voltage(rdev, i);
1651 if (ret < 0)
1652 continue;
1653
1654 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1655 best_val = ret;
1656 selector = i;
1657 }
1658 }
1659
1660 if (best_val != INT_MAX) {
1661 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1662 selector = best_val;
1663 } else {
1664 ret = -EINVAL;
1665 }
1666 } else {
1667 ret = -EINVAL;
1668 }
1669
1670 if (ret == 0)
1671 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1672 NULL);
1673
1674 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1675
1676 return ret;
1677 }
1678
1679 /**
1680 * regulator_set_voltage - set regulator output voltage
1681 * @regulator: regulator source
1682 * @min_uV: Minimum required voltage in uV
1683 * @max_uV: Maximum acceptable voltage in uV
1684 *
1685 * Sets a voltage regulator to the desired output voltage. This can be set
1686 * during any regulator state. IOW, regulator can be disabled or enabled.
1687 *
1688 * If the regulator is enabled then the voltage will change to the new value
1689 * immediately otherwise if the regulator is disabled the regulator will
1690 * output at the new voltage when enabled.
1691 *
1692 * NOTE: If the regulator is shared between several devices then the lowest
1693 * request voltage that meets the system constraints will be used.
1694 * Regulator system constraints must be set for this regulator before
1695 * calling this function otherwise this call will fail.
1696 */
1697 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1698 {
1699 struct regulator_dev *rdev = regulator->rdev;
1700 int ret = 0;
1701
1702 mutex_lock(&rdev->mutex);
1703
1704 /* If we're setting the same range as last time the change
1705 * should be a noop (some cpufreq implementations use the same
1706 * voltage for multiple frequencies, for example).
1707 */
1708 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1709 goto out;
1710
1711 /* sanity check */
1712 if (!rdev->desc->ops->set_voltage &&
1713 !rdev->desc->ops->set_voltage_sel) {
1714 ret = -EINVAL;
1715 goto out;
1716 }
1717
1718 /* constraints check */
1719 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1720 if (ret < 0)
1721 goto out;
1722 regulator->min_uV = min_uV;
1723 regulator->max_uV = max_uV;
1724
1725 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1726 if (ret < 0)
1727 goto out;
1728
1729 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1730
1731 out:
1732 mutex_unlock(&rdev->mutex);
1733 return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1736
1737 /**
1738 * regulator_sync_voltage - re-apply last regulator output voltage
1739 * @regulator: regulator source
1740 *
1741 * Re-apply the last configured voltage. This is intended to be used
1742 * where some external control source the consumer is cooperating with
1743 * has caused the configured voltage to change.
1744 */
1745 int regulator_sync_voltage(struct regulator *regulator)
1746 {
1747 struct regulator_dev *rdev = regulator->rdev;
1748 int ret, min_uV, max_uV;
1749
1750 mutex_lock(&rdev->mutex);
1751
1752 if (!rdev->desc->ops->set_voltage &&
1753 !rdev->desc->ops->set_voltage_sel) {
1754 ret = -EINVAL;
1755 goto out;
1756 }
1757
1758 /* This is only going to work if we've had a voltage configured. */
1759 if (!regulator->min_uV && !regulator->max_uV) {
1760 ret = -EINVAL;
1761 goto out;
1762 }
1763
1764 min_uV = regulator->min_uV;
1765 max_uV = regulator->max_uV;
1766
1767 /* This should be a paranoia check... */
1768 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1769 if (ret < 0)
1770 goto out;
1771
1772 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1773 if (ret < 0)
1774 goto out;
1775
1776 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1777
1778 out:
1779 mutex_unlock(&rdev->mutex);
1780 return ret;
1781 }
1782 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1783
1784 static int _regulator_get_voltage(struct regulator_dev *rdev)
1785 {
1786 int sel;
1787
1788 if (rdev->desc->ops->get_voltage_sel) {
1789 sel = rdev->desc->ops->get_voltage_sel(rdev);
1790 if (sel < 0)
1791 return sel;
1792 return rdev->desc->ops->list_voltage(rdev, sel);
1793 }
1794 if (rdev->desc->ops->get_voltage)
1795 return rdev->desc->ops->get_voltage(rdev);
1796 else
1797 return -EINVAL;
1798 }
1799
1800 /**
1801 * regulator_get_voltage - get regulator output voltage
1802 * @regulator: regulator source
1803 *
1804 * This returns the current regulator voltage in uV.
1805 *
1806 * NOTE: If the regulator is disabled it will return the voltage value. This
1807 * function should not be used to determine regulator state.
1808 */
1809 int regulator_get_voltage(struct regulator *regulator)
1810 {
1811 int ret;
1812
1813 mutex_lock(&regulator->rdev->mutex);
1814
1815 ret = _regulator_get_voltage(regulator->rdev);
1816
1817 mutex_unlock(&regulator->rdev->mutex);
1818
1819 return ret;
1820 }
1821 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1822
1823 /**
1824 * regulator_set_current_limit - set regulator output current limit
1825 * @regulator: regulator source
1826 * @min_uA: Minimuum supported current in uA
1827 * @max_uA: Maximum supported current in uA
1828 *
1829 * Sets current sink to the desired output current. This can be set during
1830 * any regulator state. IOW, regulator can be disabled or enabled.
1831 *
1832 * If the regulator is enabled then the current will change to the new value
1833 * immediately otherwise if the regulator is disabled the regulator will
1834 * output at the new current when enabled.
1835 *
1836 * NOTE: Regulator system constraints must be set for this regulator before
1837 * calling this function otherwise this call will fail.
1838 */
1839 int regulator_set_current_limit(struct regulator *regulator,
1840 int min_uA, int max_uA)
1841 {
1842 struct regulator_dev *rdev = regulator->rdev;
1843 int ret;
1844
1845 mutex_lock(&rdev->mutex);
1846
1847 /* sanity check */
1848 if (!rdev->desc->ops->set_current_limit) {
1849 ret = -EINVAL;
1850 goto out;
1851 }
1852
1853 /* constraints check */
1854 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1855 if (ret < 0)
1856 goto out;
1857
1858 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1859 out:
1860 mutex_unlock(&rdev->mutex);
1861 return ret;
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1864
1865 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1866 {
1867 int ret;
1868
1869 mutex_lock(&rdev->mutex);
1870
1871 /* sanity check */
1872 if (!rdev->desc->ops->get_current_limit) {
1873 ret = -EINVAL;
1874 goto out;
1875 }
1876
1877 ret = rdev->desc->ops->get_current_limit(rdev);
1878 out:
1879 mutex_unlock(&rdev->mutex);
1880 return ret;
1881 }
1882
1883 /**
1884 * regulator_get_current_limit - get regulator output current
1885 * @regulator: regulator source
1886 *
1887 * This returns the current supplied by the specified current sink in uA.
1888 *
1889 * NOTE: If the regulator is disabled it will return the current value. This
1890 * function should not be used to determine regulator state.
1891 */
1892 int regulator_get_current_limit(struct regulator *regulator)
1893 {
1894 return _regulator_get_current_limit(regulator->rdev);
1895 }
1896 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1897
1898 /**
1899 * regulator_set_mode - set regulator operating mode
1900 * @regulator: regulator source
1901 * @mode: operating mode - one of the REGULATOR_MODE constants
1902 *
1903 * Set regulator operating mode to increase regulator efficiency or improve
1904 * regulation performance.
1905 *
1906 * NOTE: Regulator system constraints must be set for this regulator before
1907 * calling this function otherwise this call will fail.
1908 */
1909 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1910 {
1911 struct regulator_dev *rdev = regulator->rdev;
1912 int ret;
1913 int regulator_curr_mode;
1914
1915 mutex_lock(&rdev->mutex);
1916
1917 /* sanity check */
1918 if (!rdev->desc->ops->set_mode) {
1919 ret = -EINVAL;
1920 goto out;
1921 }
1922
1923 /* return if the same mode is requested */
1924 if (rdev->desc->ops->get_mode) {
1925 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1926 if (regulator_curr_mode == mode) {
1927 ret = 0;
1928 goto out;
1929 }
1930 }
1931
1932 /* constraints check */
1933 ret = regulator_check_mode(rdev, mode);
1934 if (ret < 0)
1935 goto out;
1936
1937 ret = rdev->desc->ops->set_mode(rdev, mode);
1938 out:
1939 mutex_unlock(&rdev->mutex);
1940 return ret;
1941 }
1942 EXPORT_SYMBOL_GPL(regulator_set_mode);
1943
1944 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1945 {
1946 int ret;
1947
1948 mutex_lock(&rdev->mutex);
1949
1950 /* sanity check */
1951 if (!rdev->desc->ops->get_mode) {
1952 ret = -EINVAL;
1953 goto out;
1954 }
1955
1956 ret = rdev->desc->ops->get_mode(rdev);
1957 out:
1958 mutex_unlock(&rdev->mutex);
1959 return ret;
1960 }
1961
1962 /**
1963 * regulator_get_mode - get regulator operating mode
1964 * @regulator: regulator source
1965 *
1966 * Get the current regulator operating mode.
1967 */
1968 unsigned int regulator_get_mode(struct regulator *regulator)
1969 {
1970 return _regulator_get_mode(regulator->rdev);
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_get_mode);
1973
1974 /**
1975 * regulator_set_optimum_mode - set regulator optimum operating mode
1976 * @regulator: regulator source
1977 * @uA_load: load current
1978 *
1979 * Notifies the regulator core of a new device load. This is then used by
1980 * DRMS (if enabled by constraints) to set the most efficient regulator
1981 * operating mode for the new regulator loading.
1982 *
1983 * Consumer devices notify their supply regulator of the maximum power
1984 * they will require (can be taken from device datasheet in the power
1985 * consumption tables) when they change operational status and hence power
1986 * state. Examples of operational state changes that can affect power
1987 * consumption are :-
1988 *
1989 * o Device is opened / closed.
1990 * o Device I/O is about to begin or has just finished.
1991 * o Device is idling in between work.
1992 *
1993 * This information is also exported via sysfs to userspace.
1994 *
1995 * DRMS will sum the total requested load on the regulator and change
1996 * to the most efficient operating mode if platform constraints allow.
1997 *
1998 * Returns the new regulator mode or error.
1999 */
2000 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2001 {
2002 struct regulator_dev *rdev = regulator->rdev;
2003 struct regulator *consumer;
2004 int ret, output_uV, input_uV, total_uA_load = 0;
2005 unsigned int mode;
2006
2007 mutex_lock(&rdev->mutex);
2008
2009 regulator->uA_load = uA_load;
2010 ret = regulator_check_drms(rdev);
2011 if (ret < 0)
2012 goto out;
2013 ret = -EINVAL;
2014
2015 /* sanity check */
2016 if (!rdev->desc->ops->get_optimum_mode)
2017 goto out;
2018
2019 /* get output voltage */
2020 output_uV = _regulator_get_voltage(rdev);
2021 if (output_uV <= 0) {
2022 rdev_err(rdev, "invalid output voltage found\n");
2023 goto out;
2024 }
2025
2026 /* get input voltage */
2027 input_uV = 0;
2028 if (rdev->supply)
2029 input_uV = _regulator_get_voltage(rdev->supply);
2030 if (input_uV <= 0)
2031 input_uV = rdev->constraints->input_uV;
2032 if (input_uV <= 0) {
2033 rdev_err(rdev, "invalid input voltage found\n");
2034 goto out;
2035 }
2036
2037 /* calc total requested load for this regulator */
2038 list_for_each_entry(consumer, &rdev->consumer_list, list)
2039 total_uA_load += consumer->uA_load;
2040
2041 mode = rdev->desc->ops->get_optimum_mode(rdev,
2042 input_uV, output_uV,
2043 total_uA_load);
2044 ret = regulator_check_mode(rdev, mode);
2045 if (ret < 0) {
2046 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2047 total_uA_load, input_uV, output_uV);
2048 goto out;
2049 }
2050
2051 ret = rdev->desc->ops->set_mode(rdev, mode);
2052 if (ret < 0) {
2053 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2054 goto out;
2055 }
2056 ret = mode;
2057 out:
2058 mutex_unlock(&rdev->mutex);
2059 return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2062
2063 /**
2064 * regulator_register_notifier - register regulator event notifier
2065 * @regulator: regulator source
2066 * @nb: notifier block
2067 *
2068 * Register notifier block to receive regulator events.
2069 */
2070 int regulator_register_notifier(struct regulator *regulator,
2071 struct notifier_block *nb)
2072 {
2073 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2074 nb);
2075 }
2076 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2077
2078 /**
2079 * regulator_unregister_notifier - unregister regulator event notifier
2080 * @regulator: regulator source
2081 * @nb: notifier block
2082 *
2083 * Unregister regulator event notifier block.
2084 */
2085 int regulator_unregister_notifier(struct regulator *regulator,
2086 struct notifier_block *nb)
2087 {
2088 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2089 nb);
2090 }
2091 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2092
2093 /* notify regulator consumers and downstream regulator consumers.
2094 * Note mutex must be held by caller.
2095 */
2096 static void _notifier_call_chain(struct regulator_dev *rdev,
2097 unsigned long event, void *data)
2098 {
2099 struct regulator_dev *_rdev;
2100
2101 /* call rdev chain first */
2102 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2103
2104 /* now notify regulator we supply */
2105 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2106 mutex_lock(&_rdev->mutex);
2107 _notifier_call_chain(_rdev, event, data);
2108 mutex_unlock(&_rdev->mutex);
2109 }
2110 }
2111
2112 /**
2113 * regulator_bulk_get - get multiple regulator consumers
2114 *
2115 * @dev: Device to supply
2116 * @num_consumers: Number of consumers to register
2117 * @consumers: Configuration of consumers; clients are stored here.
2118 *
2119 * @return 0 on success, an errno on failure.
2120 *
2121 * This helper function allows drivers to get several regulator
2122 * consumers in one operation. If any of the regulators cannot be
2123 * acquired then any regulators that were allocated will be freed
2124 * before returning to the caller.
2125 */
2126 int regulator_bulk_get(struct device *dev, int num_consumers,
2127 struct regulator_bulk_data *consumers)
2128 {
2129 int i;
2130 int ret;
2131
2132 for (i = 0; i < num_consumers; i++)
2133 consumers[i].consumer = NULL;
2134
2135 for (i = 0; i < num_consumers; i++) {
2136 consumers[i].consumer = regulator_get(dev,
2137 consumers[i].supply);
2138 if (IS_ERR(consumers[i].consumer)) {
2139 ret = PTR_ERR(consumers[i].consumer);
2140 dev_err(dev, "Failed to get supply '%s': %d\n",
2141 consumers[i].supply, ret);
2142 consumers[i].consumer = NULL;
2143 goto err;
2144 }
2145 }
2146
2147 return 0;
2148
2149 err:
2150 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2151 regulator_put(consumers[i].consumer);
2152
2153 return ret;
2154 }
2155 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2156
2157 /**
2158 * regulator_bulk_enable - enable multiple regulator consumers
2159 *
2160 * @num_consumers: Number of consumers
2161 * @consumers: Consumer data; clients are stored here.
2162 * @return 0 on success, an errno on failure
2163 *
2164 * This convenience API allows consumers to enable multiple regulator
2165 * clients in a single API call. If any consumers cannot be enabled
2166 * then any others that were enabled will be disabled again prior to
2167 * return.
2168 */
2169 int regulator_bulk_enable(int num_consumers,
2170 struct regulator_bulk_data *consumers)
2171 {
2172 int i;
2173 int ret;
2174
2175 for (i = 0; i < num_consumers; i++) {
2176 ret = regulator_enable(consumers[i].consumer);
2177 if (ret != 0)
2178 goto err;
2179 }
2180
2181 return 0;
2182
2183 err:
2184 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2185 for (--i; i >= 0; --i)
2186 regulator_disable(consumers[i].consumer);
2187
2188 return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2191
2192 /**
2193 * regulator_bulk_disable - disable multiple regulator consumers
2194 *
2195 * @num_consumers: Number of consumers
2196 * @consumers: Consumer data; clients are stored here.
2197 * @return 0 on success, an errno on failure
2198 *
2199 * This convenience API allows consumers to disable multiple regulator
2200 * clients in a single API call. If any consumers cannot be enabled
2201 * then any others that were disabled will be disabled again prior to
2202 * return.
2203 */
2204 int regulator_bulk_disable(int num_consumers,
2205 struct regulator_bulk_data *consumers)
2206 {
2207 int i;
2208 int ret;
2209
2210 for (i = 0; i < num_consumers; i++) {
2211 ret = regulator_disable(consumers[i].consumer);
2212 if (ret != 0)
2213 goto err;
2214 }
2215
2216 return 0;
2217
2218 err:
2219 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2220 for (--i; i >= 0; --i)
2221 regulator_enable(consumers[i].consumer);
2222
2223 return ret;
2224 }
2225 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2226
2227 /**
2228 * regulator_bulk_free - free multiple regulator consumers
2229 *
2230 * @num_consumers: Number of consumers
2231 * @consumers: Consumer data; clients are stored here.
2232 *
2233 * This convenience API allows consumers to free multiple regulator
2234 * clients in a single API call.
2235 */
2236 void regulator_bulk_free(int num_consumers,
2237 struct regulator_bulk_data *consumers)
2238 {
2239 int i;
2240
2241 for (i = 0; i < num_consumers; i++) {
2242 regulator_put(consumers[i].consumer);
2243 consumers[i].consumer = NULL;
2244 }
2245 }
2246 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2247
2248 /**
2249 * regulator_notifier_call_chain - call regulator event notifier
2250 * @rdev: regulator source
2251 * @event: notifier block
2252 * @data: callback-specific data.
2253 *
2254 * Called by regulator drivers to notify clients a regulator event has
2255 * occurred. We also notify regulator clients downstream.
2256 * Note lock must be held by caller.
2257 */
2258 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2259 unsigned long event, void *data)
2260 {
2261 _notifier_call_chain(rdev, event, data);
2262 return NOTIFY_DONE;
2263
2264 }
2265 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2266
2267 /**
2268 * regulator_mode_to_status - convert a regulator mode into a status
2269 *
2270 * @mode: Mode to convert
2271 *
2272 * Convert a regulator mode into a status.
2273 */
2274 int regulator_mode_to_status(unsigned int mode)
2275 {
2276 switch (mode) {
2277 case REGULATOR_MODE_FAST:
2278 return REGULATOR_STATUS_FAST;
2279 case REGULATOR_MODE_NORMAL:
2280 return REGULATOR_STATUS_NORMAL;
2281 case REGULATOR_MODE_IDLE:
2282 return REGULATOR_STATUS_IDLE;
2283 case REGULATOR_STATUS_STANDBY:
2284 return REGULATOR_STATUS_STANDBY;
2285 default:
2286 return 0;
2287 }
2288 }
2289 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2290
2291 /*
2292 * To avoid cluttering sysfs (and memory) with useless state, only
2293 * create attributes that can be meaningfully displayed.
2294 */
2295 static int add_regulator_attributes(struct regulator_dev *rdev)
2296 {
2297 struct device *dev = &rdev->dev;
2298 struct regulator_ops *ops = rdev->desc->ops;
2299 int status = 0;
2300
2301 /* some attributes need specific methods to be displayed */
2302 if (ops->get_voltage || ops->get_voltage_sel) {
2303 status = device_create_file(dev, &dev_attr_microvolts);
2304 if (status < 0)
2305 return status;
2306 }
2307 if (ops->get_current_limit) {
2308 status = device_create_file(dev, &dev_attr_microamps);
2309 if (status < 0)
2310 return status;
2311 }
2312 if (ops->get_mode) {
2313 status = device_create_file(dev, &dev_attr_opmode);
2314 if (status < 0)
2315 return status;
2316 }
2317 if (ops->is_enabled) {
2318 status = device_create_file(dev, &dev_attr_state);
2319 if (status < 0)
2320 return status;
2321 }
2322 if (ops->get_status) {
2323 status = device_create_file(dev, &dev_attr_status);
2324 if (status < 0)
2325 return status;
2326 }
2327
2328 /* some attributes are type-specific */
2329 if (rdev->desc->type == REGULATOR_CURRENT) {
2330 status = device_create_file(dev, &dev_attr_requested_microamps);
2331 if (status < 0)
2332 return status;
2333 }
2334
2335 /* all the other attributes exist to support constraints;
2336 * don't show them if there are no constraints, or if the
2337 * relevant supporting methods are missing.
2338 */
2339 if (!rdev->constraints)
2340 return status;
2341
2342 /* constraints need specific supporting methods */
2343 if (ops->set_voltage || ops->set_voltage_sel) {
2344 status = device_create_file(dev, &dev_attr_min_microvolts);
2345 if (status < 0)
2346 return status;
2347 status = device_create_file(dev, &dev_attr_max_microvolts);
2348 if (status < 0)
2349 return status;
2350 }
2351 if (ops->set_current_limit) {
2352 status = device_create_file(dev, &dev_attr_min_microamps);
2353 if (status < 0)
2354 return status;
2355 status = device_create_file(dev, &dev_attr_max_microamps);
2356 if (status < 0)
2357 return status;
2358 }
2359
2360 /* suspend mode constraints need multiple supporting methods */
2361 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2362 return status;
2363
2364 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2365 if (status < 0)
2366 return status;
2367 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2368 if (status < 0)
2369 return status;
2370 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2371 if (status < 0)
2372 return status;
2373
2374 if (ops->set_suspend_voltage) {
2375 status = device_create_file(dev,
2376 &dev_attr_suspend_standby_microvolts);
2377 if (status < 0)
2378 return status;
2379 status = device_create_file(dev,
2380 &dev_attr_suspend_mem_microvolts);
2381 if (status < 0)
2382 return status;
2383 status = device_create_file(dev,
2384 &dev_attr_suspend_disk_microvolts);
2385 if (status < 0)
2386 return status;
2387 }
2388
2389 if (ops->set_suspend_mode) {
2390 status = device_create_file(dev,
2391 &dev_attr_suspend_standby_mode);
2392 if (status < 0)
2393 return status;
2394 status = device_create_file(dev,
2395 &dev_attr_suspend_mem_mode);
2396 if (status < 0)
2397 return status;
2398 status = device_create_file(dev,
2399 &dev_attr_suspend_disk_mode);
2400 if (status < 0)
2401 return status;
2402 }
2403
2404 return status;
2405 }
2406
2407 /**
2408 * regulator_register - register regulator
2409 * @regulator_desc: regulator to register
2410 * @dev: struct device for the regulator
2411 * @init_data: platform provided init data, passed through by driver
2412 * @driver_data: private regulator data
2413 *
2414 * Called by regulator drivers to register a regulator.
2415 * Returns 0 on success.
2416 */
2417 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2418 struct device *dev, const struct regulator_init_data *init_data,
2419 void *driver_data)
2420 {
2421 static atomic_t regulator_no = ATOMIC_INIT(0);
2422 struct regulator_dev *rdev;
2423 int ret, i;
2424
2425 if (regulator_desc == NULL)
2426 return ERR_PTR(-EINVAL);
2427
2428 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2429 return ERR_PTR(-EINVAL);
2430
2431 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2432 regulator_desc->type != REGULATOR_CURRENT)
2433 return ERR_PTR(-EINVAL);
2434
2435 if (!init_data)
2436 return ERR_PTR(-EINVAL);
2437
2438 /* Only one of each should be implemented */
2439 WARN_ON(regulator_desc->ops->get_voltage &&
2440 regulator_desc->ops->get_voltage_sel);
2441 WARN_ON(regulator_desc->ops->set_voltage &&
2442 regulator_desc->ops->set_voltage_sel);
2443
2444 /* If we're using selectors we must implement list_voltage. */
2445 if (regulator_desc->ops->get_voltage_sel &&
2446 !regulator_desc->ops->list_voltage) {
2447 return ERR_PTR(-EINVAL);
2448 }
2449 if (regulator_desc->ops->set_voltage_sel &&
2450 !regulator_desc->ops->list_voltage) {
2451 return ERR_PTR(-EINVAL);
2452 }
2453
2454 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2455 if (rdev == NULL)
2456 return ERR_PTR(-ENOMEM);
2457
2458 mutex_lock(&regulator_list_mutex);
2459
2460 mutex_init(&rdev->mutex);
2461 rdev->reg_data = driver_data;
2462 rdev->owner = regulator_desc->owner;
2463 rdev->desc = regulator_desc;
2464 INIT_LIST_HEAD(&rdev->consumer_list);
2465 INIT_LIST_HEAD(&rdev->supply_list);
2466 INIT_LIST_HEAD(&rdev->list);
2467 INIT_LIST_HEAD(&rdev->slist);
2468 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2469
2470 /* preform any regulator specific init */
2471 if (init_data->regulator_init) {
2472 ret = init_data->regulator_init(rdev->reg_data);
2473 if (ret < 0)
2474 goto clean;
2475 }
2476
2477 /* register with sysfs */
2478 rdev->dev.class = &regulator_class;
2479 rdev->dev.parent = dev;
2480 dev_set_name(&rdev->dev, "regulator.%d",
2481 atomic_inc_return(&regulator_no) - 1);
2482 ret = device_register(&rdev->dev);
2483 if (ret != 0) {
2484 put_device(&rdev->dev);
2485 goto clean;
2486 }
2487
2488 dev_set_drvdata(&rdev->dev, rdev);
2489
2490 /* set regulator constraints */
2491 ret = set_machine_constraints(rdev, &init_data->constraints);
2492 if (ret < 0)
2493 goto scrub;
2494
2495 /* add attributes supported by this regulator */
2496 ret = add_regulator_attributes(rdev);
2497 if (ret < 0)
2498 goto scrub;
2499
2500 /* set supply regulator if it exists */
2501 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2502 dev_err(dev,
2503 "Supply regulator specified by both name and dev\n");
2504 ret = -EINVAL;
2505 goto scrub;
2506 }
2507
2508 if (init_data->supply_regulator) {
2509 struct regulator_dev *r;
2510 int found = 0;
2511
2512 list_for_each_entry(r, &regulator_list, list) {
2513 if (strcmp(rdev_get_name(r),
2514 init_data->supply_regulator) == 0) {
2515 found = 1;
2516 break;
2517 }
2518 }
2519
2520 if (!found) {
2521 dev_err(dev, "Failed to find supply %s\n",
2522 init_data->supply_regulator);
2523 ret = -ENODEV;
2524 goto scrub;
2525 }
2526
2527 ret = set_supply(rdev, r);
2528 if (ret < 0)
2529 goto scrub;
2530 }
2531
2532 if (init_data->supply_regulator_dev) {
2533 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2534 ret = set_supply(rdev,
2535 dev_get_drvdata(init_data->supply_regulator_dev));
2536 if (ret < 0)
2537 goto scrub;
2538 }
2539
2540 /* add consumers devices */
2541 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2542 ret = set_consumer_device_supply(rdev,
2543 init_data->consumer_supplies[i].dev,
2544 init_data->consumer_supplies[i].dev_name,
2545 init_data->consumer_supplies[i].supply);
2546 if (ret < 0)
2547 goto unset_supplies;
2548 }
2549
2550 list_add(&rdev->list, &regulator_list);
2551 out:
2552 mutex_unlock(&regulator_list_mutex);
2553 return rdev;
2554
2555 unset_supplies:
2556 unset_regulator_supplies(rdev);
2557
2558 scrub:
2559 device_unregister(&rdev->dev);
2560 /* device core frees rdev */
2561 rdev = ERR_PTR(ret);
2562 goto out;
2563
2564 clean:
2565 kfree(rdev);
2566 rdev = ERR_PTR(ret);
2567 goto out;
2568 }
2569 EXPORT_SYMBOL_GPL(regulator_register);
2570
2571 /**
2572 * regulator_unregister - unregister regulator
2573 * @rdev: regulator to unregister
2574 *
2575 * Called by regulator drivers to unregister a regulator.
2576 */
2577 void regulator_unregister(struct regulator_dev *rdev)
2578 {
2579 if (rdev == NULL)
2580 return;
2581
2582 mutex_lock(&regulator_list_mutex);
2583 WARN_ON(rdev->open_count);
2584 unset_regulator_supplies(rdev);
2585 list_del(&rdev->list);
2586 if (rdev->supply)
2587 sysfs_remove_link(&rdev->dev.kobj, "supply");
2588 device_unregister(&rdev->dev);
2589 kfree(rdev->constraints);
2590 mutex_unlock(&regulator_list_mutex);
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_unregister);
2593
2594 /**
2595 * regulator_suspend_prepare - prepare regulators for system wide suspend
2596 * @state: system suspend state
2597 *
2598 * Configure each regulator with it's suspend operating parameters for state.
2599 * This will usually be called by machine suspend code prior to supending.
2600 */
2601 int regulator_suspend_prepare(suspend_state_t state)
2602 {
2603 struct regulator_dev *rdev;
2604 int ret = 0;
2605
2606 /* ON is handled by regulator active state */
2607 if (state == PM_SUSPEND_ON)
2608 return -EINVAL;
2609
2610 mutex_lock(&regulator_list_mutex);
2611 list_for_each_entry(rdev, &regulator_list, list) {
2612
2613 mutex_lock(&rdev->mutex);
2614 ret = suspend_prepare(rdev, state);
2615 mutex_unlock(&rdev->mutex);
2616
2617 if (ret < 0) {
2618 rdev_err(rdev, "failed to prepare\n");
2619 goto out;
2620 }
2621 }
2622 out:
2623 mutex_unlock(&regulator_list_mutex);
2624 return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2627
2628 /**
2629 * regulator_has_full_constraints - the system has fully specified constraints
2630 *
2631 * Calling this function will cause the regulator API to disable all
2632 * regulators which have a zero use count and don't have an always_on
2633 * constraint in a late_initcall.
2634 *
2635 * The intention is that this will become the default behaviour in a
2636 * future kernel release so users are encouraged to use this facility
2637 * now.
2638 */
2639 void regulator_has_full_constraints(void)
2640 {
2641 has_full_constraints = 1;
2642 }
2643 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2644
2645 /**
2646 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2647 *
2648 * Calling this function will cause the regulator API to provide a
2649 * dummy regulator to consumers if no physical regulator is found,
2650 * allowing most consumers to proceed as though a regulator were
2651 * configured. This allows systems such as those with software
2652 * controllable regulators for the CPU core only to be brought up more
2653 * readily.
2654 */
2655 void regulator_use_dummy_regulator(void)
2656 {
2657 board_wants_dummy_regulator = true;
2658 }
2659 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2660
2661 /**
2662 * rdev_get_drvdata - get rdev regulator driver data
2663 * @rdev: regulator
2664 *
2665 * Get rdev regulator driver private data. This call can be used in the
2666 * regulator driver context.
2667 */
2668 void *rdev_get_drvdata(struct regulator_dev *rdev)
2669 {
2670 return rdev->reg_data;
2671 }
2672 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2673
2674 /**
2675 * regulator_get_drvdata - get regulator driver data
2676 * @regulator: regulator
2677 *
2678 * Get regulator driver private data. This call can be used in the consumer
2679 * driver context when non API regulator specific functions need to be called.
2680 */
2681 void *regulator_get_drvdata(struct regulator *regulator)
2682 {
2683 return regulator->rdev->reg_data;
2684 }
2685 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2686
2687 /**
2688 * regulator_set_drvdata - set regulator driver data
2689 * @regulator: regulator
2690 * @data: data
2691 */
2692 void regulator_set_drvdata(struct regulator *regulator, void *data)
2693 {
2694 regulator->rdev->reg_data = data;
2695 }
2696 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2697
2698 /**
2699 * regulator_get_id - get regulator ID
2700 * @rdev: regulator
2701 */
2702 int rdev_get_id(struct regulator_dev *rdev)
2703 {
2704 return rdev->desc->id;
2705 }
2706 EXPORT_SYMBOL_GPL(rdev_get_id);
2707
2708 struct device *rdev_get_dev(struct regulator_dev *rdev)
2709 {
2710 return &rdev->dev;
2711 }
2712 EXPORT_SYMBOL_GPL(rdev_get_dev);
2713
2714 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2715 {
2716 return reg_init_data->driver_data;
2717 }
2718 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2719
2720 static int __init regulator_init(void)
2721 {
2722 int ret;
2723
2724 ret = class_register(&regulator_class);
2725
2726 regulator_dummy_init();
2727
2728 return ret;
2729 }
2730
2731 /* init early to allow our consumers to complete system booting */
2732 core_initcall(regulator_init);
2733
2734 static int __init regulator_init_complete(void)
2735 {
2736 struct regulator_dev *rdev;
2737 struct regulator_ops *ops;
2738 struct regulation_constraints *c;
2739 int enabled, ret;
2740
2741 mutex_lock(&regulator_list_mutex);
2742
2743 /* If we have a full configuration then disable any regulators
2744 * which are not in use or always_on. This will become the
2745 * default behaviour in the future.
2746 */
2747 list_for_each_entry(rdev, &regulator_list, list) {
2748 ops = rdev->desc->ops;
2749 c = rdev->constraints;
2750
2751 if (!ops->disable || (c && c->always_on))
2752 continue;
2753
2754 mutex_lock(&rdev->mutex);
2755
2756 if (rdev->use_count)
2757 goto unlock;
2758
2759 /* If we can't read the status assume it's on. */
2760 if (ops->is_enabled)
2761 enabled = ops->is_enabled(rdev);
2762 else
2763 enabled = 1;
2764
2765 if (!enabled)
2766 goto unlock;
2767
2768 if (has_full_constraints) {
2769 /* We log since this may kill the system if it
2770 * goes wrong. */
2771 rdev_info(rdev, "disabling\n");
2772 ret = ops->disable(rdev);
2773 if (ret != 0) {
2774 rdev_err(rdev, "couldn't disable: %d\n", ret);
2775 }
2776 } else {
2777 /* The intention is that in future we will
2778 * assume that full constraints are provided
2779 * so warn even if we aren't going to do
2780 * anything here.
2781 */
2782 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2783 }
2784
2785 unlock:
2786 mutex_unlock(&rdev->mutex);
2787 }
2788
2789 mutex_unlock(&regulator_list_mutex);
2790
2791 return 0;
2792 }
2793 late_initcall(regulator_init_complete);
This page took 0.087898 seconds and 5 git commands to generate.