Merge tag 'v3.5-rc4' into regulator-drivers
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/of_regulator.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/regulator/driver.h>
31 #include <linux/regulator/machine.h>
32 #include <linux/module.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/regulator.h>
36
37 #include "dummy.h"
38
39 #define rdev_crit(rdev, fmt, ...) \
40 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_err(rdev, fmt, ...) \
42 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_warn(rdev, fmt, ...) \
44 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_info(rdev, fmt, ...) \
46 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_dbg(rdev, fmt, ...) \
48 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50 static DEFINE_MUTEX(regulator_list_mutex);
51 static LIST_HEAD(regulator_list);
52 static LIST_HEAD(regulator_map_list);
53 static bool has_full_constraints;
54 static bool board_wants_dummy_regulator;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75 struct regulator {
76 struct device *dev;
77 struct list_head list;
78 unsigned int always_on:1;
79 int uA_load;
80 int min_uV;
81 int max_uV;
82 char *supply_name;
83 struct device_attribute dev_attr;
84 struct regulator_dev *rdev;
85 struct dentry *debugfs;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
95 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96 int min_uV, int max_uV);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100
101 static const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109 }
110
111 /* gets the regulator for a given consumer device */
112 static struct regulator *get_device_regulator(struct device *dev)
113 {
114 struct regulator *regulator = NULL;
115 struct regulator_dev *rdev;
116
117 mutex_lock(&regulator_list_mutex);
118 list_for_each_entry(rdev, &regulator_list, list) {
119 mutex_lock(&rdev->mutex);
120 list_for_each_entry(regulator, &rdev->consumer_list, list) {
121 if (regulator->dev == dev) {
122 mutex_unlock(&rdev->mutex);
123 mutex_unlock(&regulator_list_mutex);
124 return regulator;
125 }
126 }
127 mutex_unlock(&rdev->mutex);
128 }
129 mutex_unlock(&regulator_list_mutex);
130 return NULL;
131 }
132
133 /**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144 struct device_node *regnode = NULL;
145 char prop_name[32]; /* 32 is max size of property name */
146
147 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149 snprintf(prop_name, 32, "%s-supply", supply);
150 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152 if (!regnode) {
153 dev_dbg(dev, "Looking up %s property in node %s failed",
154 prop_name, dev->of_node->full_name);
155 return NULL;
156 }
157 return regnode;
158 }
159
160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162 if (!rdev->constraints)
163 return 0;
164
165 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 return 1;
167 else
168 return 0;
169 }
170
171 /* Platform voltage constraint check */
172 static int regulator_check_voltage(struct regulator_dev *rdev,
173 int *min_uV, int *max_uV)
174 {
175 BUG_ON(*min_uV > *max_uV);
176
177 if (!rdev->constraints) {
178 rdev_err(rdev, "no constraints\n");
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182 rdev_err(rdev, "operation not allowed\n");
183 return -EPERM;
184 }
185
186 if (*max_uV > rdev->constraints->max_uV)
187 *max_uV = rdev->constraints->max_uV;
188 if (*min_uV < rdev->constraints->min_uV)
189 *min_uV = rdev->constraints->min_uV;
190
191 if (*min_uV > *max_uV) {
192 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193 *min_uV, *max_uV);
194 return -EINVAL;
195 }
196
197 return 0;
198 }
199
200 /* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203 static int regulator_check_consumers(struct regulator_dev *rdev,
204 int *min_uV, int *max_uV)
205 {
206 struct regulator *regulator;
207
208 list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 /*
210 * Assume consumers that didn't say anything are OK
211 * with anything in the constraint range.
212 */
213 if (!regulator->min_uV && !regulator->max_uV)
214 continue;
215
216 if (*max_uV > regulator->max_uV)
217 *max_uV = regulator->max_uV;
218 if (*min_uV < regulator->min_uV)
219 *min_uV = regulator->min_uV;
220 }
221
222 if (*min_uV > *max_uV)
223 return -EINVAL;
224
225 return 0;
226 }
227
228 /* current constraint check */
229 static int regulator_check_current_limit(struct regulator_dev *rdev,
230 int *min_uA, int *max_uA)
231 {
232 BUG_ON(*min_uA > *max_uA);
233
234 if (!rdev->constraints) {
235 rdev_err(rdev, "no constraints\n");
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239 rdev_err(rdev, "operation not allowed\n");
240 return -EPERM;
241 }
242
243 if (*max_uA > rdev->constraints->max_uA)
244 *max_uA = rdev->constraints->max_uA;
245 if (*min_uA < rdev->constraints->min_uA)
246 *min_uA = rdev->constraints->min_uA;
247
248 if (*min_uA > *max_uA) {
249 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250 *min_uA, *max_uA);
251 return -EINVAL;
252 }
253
254 return 0;
255 }
256
257 /* operating mode constraint check */
258 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259 {
260 switch (*mode) {
261 case REGULATOR_MODE_FAST:
262 case REGULATOR_MODE_NORMAL:
263 case REGULATOR_MODE_IDLE:
264 case REGULATOR_MODE_STANDBY:
265 break;
266 default:
267 rdev_err(rdev, "invalid mode %x specified\n", *mode);
268 return -EINVAL;
269 }
270
271 if (!rdev->constraints) {
272 rdev_err(rdev, "no constraints\n");
273 return -ENODEV;
274 }
275 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276 rdev_err(rdev, "operation not allowed\n");
277 return -EPERM;
278 }
279
280 /* The modes are bitmasks, the most power hungry modes having
281 * the lowest values. If the requested mode isn't supported
282 * try higher modes. */
283 while (*mode) {
284 if (rdev->constraints->valid_modes_mask & *mode)
285 return 0;
286 *mode /= 2;
287 }
288
289 return -EINVAL;
290 }
291
292 /* dynamic regulator mode switching constraint check */
293 static int regulator_check_drms(struct regulator_dev *rdev)
294 {
295 if (!rdev->constraints) {
296 rdev_err(rdev, "no constraints\n");
297 return -ENODEV;
298 }
299 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300 rdev_err(rdev, "operation not allowed\n");
301 return -EPERM;
302 }
303 return 0;
304 }
305
306 static ssize_t device_requested_uA_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308 {
309 struct regulator *regulator;
310
311 regulator = get_device_regulator(dev);
312 if (regulator == NULL)
313 return 0;
314
315 return sprintf(buf, "%d\n", regulator->uA_load);
316 }
317
318 static ssize_t regulator_uV_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 ssize_t ret;
323
324 mutex_lock(&rdev->mutex);
325 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326 mutex_unlock(&rdev->mutex);
327
328 return ret;
329 }
330 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332 static ssize_t regulator_uA_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
334 {
335 struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338 }
339 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341 static ssize_t regulator_name_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343 {
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346 return sprintf(buf, "%s\n", rdev_get_name(rdev));
347 }
348
349 static ssize_t regulator_print_opmode(char *buf, int mode)
350 {
351 switch (mode) {
352 case REGULATOR_MODE_FAST:
353 return sprintf(buf, "fast\n");
354 case REGULATOR_MODE_NORMAL:
355 return sprintf(buf, "normal\n");
356 case REGULATOR_MODE_IDLE:
357 return sprintf(buf, "idle\n");
358 case REGULATOR_MODE_STANDBY:
359 return sprintf(buf, "standby\n");
360 }
361 return sprintf(buf, "unknown\n");
362 }
363
364 static ssize_t regulator_opmode_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366 {
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370 }
371 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373 static ssize_t regulator_print_state(char *buf, int state)
374 {
375 if (state > 0)
376 return sprintf(buf, "enabled\n");
377 else if (state == 0)
378 return sprintf(buf, "disabled\n");
379 else
380 return sprintf(buf, "unknown\n");
381 }
382
383 static ssize_t regulator_state_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385 {
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 ssize_t ret;
388
389 mutex_lock(&rdev->mutex);
390 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391 mutex_unlock(&rdev->mutex);
392
393 return ret;
394 }
395 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397 static ssize_t regulator_status_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 int status;
402 char *label;
403
404 status = rdev->desc->ops->get_status(rdev);
405 if (status < 0)
406 return status;
407
408 switch (status) {
409 case REGULATOR_STATUS_OFF:
410 label = "off";
411 break;
412 case REGULATOR_STATUS_ON:
413 label = "on";
414 break;
415 case REGULATOR_STATUS_ERROR:
416 label = "error";
417 break;
418 case REGULATOR_STATUS_FAST:
419 label = "fast";
420 break;
421 case REGULATOR_STATUS_NORMAL:
422 label = "normal";
423 break;
424 case REGULATOR_STATUS_IDLE:
425 label = "idle";
426 break;
427 case REGULATOR_STATUS_STANDBY:
428 label = "standby";
429 break;
430 default:
431 return -ERANGE;
432 }
433
434 return sprintf(buf, "%s\n", label);
435 }
436 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438 static ssize_t regulator_min_uA_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443 if (!rdev->constraints)
444 return sprintf(buf, "constraint not defined\n");
445
446 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447 }
448 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450 static ssize_t regulator_max_uA_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455 if (!rdev->constraints)
456 return sprintf(buf, "constraint not defined\n");
457
458 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459 }
460 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462 static ssize_t regulator_min_uV_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467 if (!rdev->constraints)
468 return sprintf(buf, "constraint not defined\n");
469
470 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471 }
472 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474 static ssize_t regulator_max_uV_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479 if (!rdev->constraints)
480 return sprintf(buf, "constraint not defined\n");
481
482 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483 }
484 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486 static ssize_t regulator_total_uA_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488 {
489 struct regulator_dev *rdev = dev_get_drvdata(dev);
490 struct regulator *regulator;
491 int uA = 0;
492
493 mutex_lock(&rdev->mutex);
494 list_for_each_entry(regulator, &rdev->consumer_list, list)
495 uA += regulator->uA_load;
496 mutex_unlock(&rdev->mutex);
497 return sprintf(buf, "%d\n", uA);
498 }
499 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501 static ssize_t regulator_num_users_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 return sprintf(buf, "%d\n", rdev->use_count);
506 }
507
508 static ssize_t regulator_type_show(struct device *dev,
509 struct device_attribute *attr, char *buf)
510 {
511 struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513 switch (rdev->desc->type) {
514 case REGULATOR_VOLTAGE:
515 return sprintf(buf, "voltage\n");
516 case REGULATOR_CURRENT:
517 return sprintf(buf, "current\n");
518 }
519 return sprintf(buf, "unknown\n");
520 }
521
522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524 {
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 regulator_suspend_mem_uV_show, NULL);
531
532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 regulator_suspend_disk_uV_show, NULL);
541
542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 struct device_attribute *attr, char *buf)
544 {
545 struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 regulator_suspend_standby_uV_show, NULL);
551
552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554 {
555 struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557 return regulator_print_opmode(buf,
558 rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561 regulator_suspend_mem_mode_show, NULL);
562
563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return regulator_print_opmode(buf,
569 rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572 regulator_suspend_disk_mode_show, NULL);
573
574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 struct device_attribute *attr, char *buf)
576 {
577 struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579 return regulator_print_opmode(buf,
580 rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583 regulator_suspend_standby_mode_show, NULL);
584
585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587 {
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590 return regulator_print_state(buf,
591 rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594 regulator_suspend_mem_state_show, NULL);
595
596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return regulator_print_state(buf,
602 rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605 regulator_suspend_disk_state_show, NULL);
606
607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
609 {
610 struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612 return regulator_print_state(buf,
613 rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616 regulator_suspend_standby_state_show, NULL);
617
618
619 /*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
623 static struct device_attribute regulator_dev_attrs[] = {
624 __ATTR(name, 0444, regulator_name_show, NULL),
625 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
626 __ATTR(type, 0444, regulator_type_show, NULL),
627 __ATTR_NULL,
628 };
629
630 static void regulator_dev_release(struct device *dev)
631 {
632 struct regulator_dev *rdev = dev_get_drvdata(dev);
633 kfree(rdev);
634 }
635
636 static struct class regulator_class = {
637 .name = "regulator",
638 .dev_release = regulator_dev_release,
639 .dev_attrs = regulator_dev_attrs,
640 };
641
642 /* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644 static void drms_uA_update(struct regulator_dev *rdev)
645 {
646 struct regulator *sibling;
647 int current_uA = 0, output_uV, input_uV, err;
648 unsigned int mode;
649
650 err = regulator_check_drms(rdev);
651 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652 (!rdev->desc->ops->get_voltage &&
653 !rdev->desc->ops->get_voltage_sel) ||
654 !rdev->desc->ops->set_mode)
655 return;
656
657 /* get output voltage */
658 output_uV = _regulator_get_voltage(rdev);
659 if (output_uV <= 0)
660 return;
661
662 /* get input voltage */
663 input_uV = 0;
664 if (rdev->supply)
665 input_uV = regulator_get_voltage(rdev->supply);
666 if (input_uV <= 0)
667 input_uV = rdev->constraints->input_uV;
668 if (input_uV <= 0)
669 return;
670
671 /* calc total requested load */
672 list_for_each_entry(sibling, &rdev->consumer_list, list)
673 current_uA += sibling->uA_load;
674
675 /* now get the optimum mode for our new total regulator load */
676 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677 output_uV, current_uA);
678
679 /* check the new mode is allowed */
680 err = regulator_mode_constrain(rdev, &mode);
681 if (err == 0)
682 rdev->desc->ops->set_mode(rdev, mode);
683 }
684
685 static int suspend_set_state(struct regulator_dev *rdev,
686 struct regulator_state *rstate)
687 {
688 int ret = 0;
689
690 /* If we have no suspend mode configration don't set anything;
691 * only warn if the driver implements set_suspend_voltage or
692 * set_suspend_mode callback.
693 */
694 if (!rstate->enabled && !rstate->disabled) {
695 if (rdev->desc->ops->set_suspend_voltage ||
696 rdev->desc->ops->set_suspend_mode)
697 rdev_warn(rdev, "No configuration\n");
698 return 0;
699 }
700
701 if (rstate->enabled && rstate->disabled) {
702 rdev_err(rdev, "invalid configuration\n");
703 return -EINVAL;
704 }
705
706 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707 ret = rdev->desc->ops->set_suspend_enable(rdev);
708 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709 ret = rdev->desc->ops->set_suspend_disable(rdev);
710 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711 ret = 0;
712
713 if (ret < 0) {
714 rdev_err(rdev, "failed to enabled/disable\n");
715 return ret;
716 }
717
718 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720 if (ret < 0) {
721 rdev_err(rdev, "failed to set voltage\n");
722 return ret;
723 }
724 }
725
726 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728 if (ret < 0) {
729 rdev_err(rdev, "failed to set mode\n");
730 return ret;
731 }
732 }
733 return ret;
734 }
735
736 /* locks held by caller */
737 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738 {
739 if (!rdev->constraints)
740 return -EINVAL;
741
742 switch (state) {
743 case PM_SUSPEND_STANDBY:
744 return suspend_set_state(rdev,
745 &rdev->constraints->state_standby);
746 case PM_SUSPEND_MEM:
747 return suspend_set_state(rdev,
748 &rdev->constraints->state_mem);
749 case PM_SUSPEND_MAX:
750 return suspend_set_state(rdev,
751 &rdev->constraints->state_disk);
752 default:
753 return -EINVAL;
754 }
755 }
756
757 static void print_constraints(struct regulator_dev *rdev)
758 {
759 struct regulation_constraints *constraints = rdev->constraints;
760 char buf[80] = "";
761 int count = 0;
762 int ret;
763
764 if (constraints->min_uV && constraints->max_uV) {
765 if (constraints->min_uV == constraints->max_uV)
766 count += sprintf(buf + count, "%d mV ",
767 constraints->min_uV / 1000);
768 else
769 count += sprintf(buf + count, "%d <--> %d mV ",
770 constraints->min_uV / 1000,
771 constraints->max_uV / 1000);
772 }
773
774 if (!constraints->min_uV ||
775 constraints->min_uV != constraints->max_uV) {
776 ret = _regulator_get_voltage(rdev);
777 if (ret > 0)
778 count += sprintf(buf + count, "at %d mV ", ret / 1000);
779 }
780
781 if (constraints->uV_offset)
782 count += sprintf(buf, "%dmV offset ",
783 constraints->uV_offset / 1000);
784
785 if (constraints->min_uA && constraints->max_uA) {
786 if (constraints->min_uA == constraints->max_uA)
787 count += sprintf(buf + count, "%d mA ",
788 constraints->min_uA / 1000);
789 else
790 count += sprintf(buf + count, "%d <--> %d mA ",
791 constraints->min_uA / 1000,
792 constraints->max_uA / 1000);
793 }
794
795 if (!constraints->min_uA ||
796 constraints->min_uA != constraints->max_uA) {
797 ret = _regulator_get_current_limit(rdev);
798 if (ret > 0)
799 count += sprintf(buf + count, "at %d mA ", ret / 1000);
800 }
801
802 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803 count += sprintf(buf + count, "fast ");
804 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805 count += sprintf(buf + count, "normal ");
806 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807 count += sprintf(buf + count, "idle ");
808 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809 count += sprintf(buf + count, "standby");
810
811 rdev_info(rdev, "%s\n", buf);
812
813 if ((constraints->min_uV != constraints->max_uV) &&
814 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815 rdev_warn(rdev,
816 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817 }
818
819 static int machine_constraints_voltage(struct regulator_dev *rdev,
820 struct regulation_constraints *constraints)
821 {
822 struct regulator_ops *ops = rdev->desc->ops;
823 int ret;
824
825 /* do we need to apply the constraint voltage */
826 if (rdev->constraints->apply_uV &&
827 rdev->constraints->min_uV == rdev->constraints->max_uV) {
828 ret = _regulator_do_set_voltage(rdev,
829 rdev->constraints->min_uV,
830 rdev->constraints->max_uV);
831 if (ret < 0) {
832 rdev_err(rdev, "failed to apply %duV constraint\n",
833 rdev->constraints->min_uV);
834 return ret;
835 }
836 }
837
838 /* constrain machine-level voltage specs to fit
839 * the actual range supported by this regulator.
840 */
841 if (ops->list_voltage && rdev->desc->n_voltages) {
842 int count = rdev->desc->n_voltages;
843 int i;
844 int min_uV = INT_MAX;
845 int max_uV = INT_MIN;
846 int cmin = constraints->min_uV;
847 int cmax = constraints->max_uV;
848
849 /* it's safe to autoconfigure fixed-voltage supplies
850 and the constraints are used by list_voltage. */
851 if (count == 1 && !cmin) {
852 cmin = 1;
853 cmax = INT_MAX;
854 constraints->min_uV = cmin;
855 constraints->max_uV = cmax;
856 }
857
858 /* voltage constraints are optional */
859 if ((cmin == 0) && (cmax == 0))
860 return 0;
861
862 /* else require explicit machine-level constraints */
863 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864 rdev_err(rdev, "invalid voltage constraints\n");
865 return -EINVAL;
866 }
867
868 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869 for (i = 0; i < count; i++) {
870 int value;
871
872 value = ops->list_voltage(rdev, i);
873 if (value <= 0)
874 continue;
875
876 /* maybe adjust [min_uV..max_uV] */
877 if (value >= cmin && value < min_uV)
878 min_uV = value;
879 if (value <= cmax && value > max_uV)
880 max_uV = value;
881 }
882
883 /* final: [min_uV..max_uV] valid iff constraints valid */
884 if (max_uV < min_uV) {
885 rdev_err(rdev, "unsupportable voltage constraints\n");
886 return -EINVAL;
887 }
888
889 /* use regulator's subset of machine constraints */
890 if (constraints->min_uV < min_uV) {
891 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892 constraints->min_uV, min_uV);
893 constraints->min_uV = min_uV;
894 }
895 if (constraints->max_uV > max_uV) {
896 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897 constraints->max_uV, max_uV);
898 constraints->max_uV = max_uV;
899 }
900 }
901
902 return 0;
903 }
904
905 /**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916 static int set_machine_constraints(struct regulator_dev *rdev,
917 const struct regulation_constraints *constraints)
918 {
919 int ret = 0;
920 struct regulator_ops *ops = rdev->desc->ops;
921
922 if (constraints)
923 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924 GFP_KERNEL);
925 else
926 rdev->constraints = kzalloc(sizeof(*constraints),
927 GFP_KERNEL);
928 if (!rdev->constraints)
929 return -ENOMEM;
930
931 ret = machine_constraints_voltage(rdev, rdev->constraints);
932 if (ret != 0)
933 goto out;
934
935 /* do we need to setup our suspend state */
936 if (rdev->constraints->initial_state) {
937 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938 if (ret < 0) {
939 rdev_err(rdev, "failed to set suspend state\n");
940 goto out;
941 }
942 }
943
944 if (rdev->constraints->initial_mode) {
945 if (!ops->set_mode) {
946 rdev_err(rdev, "no set_mode operation\n");
947 ret = -EINVAL;
948 goto out;
949 }
950
951 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952 if (ret < 0) {
953 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954 goto out;
955 }
956 }
957
958 /* If the constraints say the regulator should be on at this point
959 * and we have control then make sure it is enabled.
960 */
961 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962 ops->enable) {
963 ret = ops->enable(rdev);
964 if (ret < 0) {
965 rdev_err(rdev, "failed to enable\n");
966 goto out;
967 }
968 }
969
970 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
971 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
972 if (ret < 0) {
973 rdev_err(rdev, "failed to set ramp_delay\n");
974 goto out;
975 }
976 }
977
978 print_constraints(rdev);
979 return 0;
980 out:
981 kfree(rdev->constraints);
982 rdev->constraints = NULL;
983 return ret;
984 }
985
986 /**
987 * set_supply - set regulator supply regulator
988 * @rdev: regulator name
989 * @supply_rdev: supply regulator name
990 *
991 * Called by platform initialisation code to set the supply regulator for this
992 * regulator. This ensures that a regulators supply will also be enabled by the
993 * core if it's child is enabled.
994 */
995 static int set_supply(struct regulator_dev *rdev,
996 struct regulator_dev *supply_rdev)
997 {
998 int err;
999
1000 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1001
1002 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1003 if (rdev->supply == NULL) {
1004 err = -ENOMEM;
1005 return err;
1006 }
1007
1008 return 0;
1009 }
1010
1011 /**
1012 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1013 * @rdev: regulator source
1014 * @consumer_dev_name: dev_name() string for device supply applies to
1015 * @supply: symbolic name for supply
1016 *
1017 * Allows platform initialisation code to map physical regulator
1018 * sources to symbolic names for supplies for use by devices. Devices
1019 * should use these symbolic names to request regulators, avoiding the
1020 * need to provide board-specific regulator names as platform data.
1021 */
1022 static int set_consumer_device_supply(struct regulator_dev *rdev,
1023 const char *consumer_dev_name,
1024 const char *supply)
1025 {
1026 struct regulator_map *node;
1027 int has_dev;
1028
1029 if (supply == NULL)
1030 return -EINVAL;
1031
1032 if (consumer_dev_name != NULL)
1033 has_dev = 1;
1034 else
1035 has_dev = 0;
1036
1037 list_for_each_entry(node, &regulator_map_list, list) {
1038 if (node->dev_name && consumer_dev_name) {
1039 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1040 continue;
1041 } else if (node->dev_name || consumer_dev_name) {
1042 continue;
1043 }
1044
1045 if (strcmp(node->supply, supply) != 0)
1046 continue;
1047
1048 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1049 consumer_dev_name,
1050 dev_name(&node->regulator->dev),
1051 node->regulator->desc->name,
1052 supply,
1053 dev_name(&rdev->dev), rdev_get_name(rdev));
1054 return -EBUSY;
1055 }
1056
1057 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1058 if (node == NULL)
1059 return -ENOMEM;
1060
1061 node->regulator = rdev;
1062 node->supply = supply;
1063
1064 if (has_dev) {
1065 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1066 if (node->dev_name == NULL) {
1067 kfree(node);
1068 return -ENOMEM;
1069 }
1070 }
1071
1072 list_add(&node->list, &regulator_map_list);
1073 return 0;
1074 }
1075
1076 static void unset_regulator_supplies(struct regulator_dev *rdev)
1077 {
1078 struct regulator_map *node, *n;
1079
1080 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1081 if (rdev == node->regulator) {
1082 list_del(&node->list);
1083 kfree(node->dev_name);
1084 kfree(node);
1085 }
1086 }
1087 }
1088
1089 #define REG_STR_SIZE 64
1090
1091 static struct regulator *create_regulator(struct regulator_dev *rdev,
1092 struct device *dev,
1093 const char *supply_name)
1094 {
1095 struct regulator *regulator;
1096 char buf[REG_STR_SIZE];
1097 int err, size;
1098
1099 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1100 if (regulator == NULL)
1101 return NULL;
1102
1103 mutex_lock(&rdev->mutex);
1104 regulator->rdev = rdev;
1105 list_add(&regulator->list, &rdev->consumer_list);
1106
1107 if (dev) {
1108 /* create a 'requested_microamps_name' sysfs entry */
1109 size = scnprintf(buf, REG_STR_SIZE,
1110 "microamps_requested_%s-%s",
1111 dev_name(dev), supply_name);
1112 if (size >= REG_STR_SIZE)
1113 goto overflow_err;
1114
1115 regulator->dev = dev;
1116 sysfs_attr_init(&regulator->dev_attr.attr);
1117 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1118 if (regulator->dev_attr.attr.name == NULL)
1119 goto attr_name_err;
1120
1121 regulator->dev_attr.attr.mode = 0444;
1122 regulator->dev_attr.show = device_requested_uA_show;
1123 err = device_create_file(dev, &regulator->dev_attr);
1124 if (err < 0) {
1125 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1126 goto attr_name_err;
1127 }
1128
1129 /* also add a link to the device sysfs entry */
1130 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131 dev->kobj.name, supply_name);
1132 if (size >= REG_STR_SIZE)
1133 goto attr_err;
1134
1135 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136 if (regulator->supply_name == NULL)
1137 goto attr_err;
1138
1139 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140 buf);
1141 if (err) {
1142 rdev_warn(rdev, "could not add device link %s err %d\n",
1143 dev->kobj.name, err);
1144 goto link_name_err;
1145 }
1146 } else {
1147 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148 if (regulator->supply_name == NULL)
1149 goto attr_err;
1150 }
1151
1152 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153 rdev->debugfs);
1154 if (!regulator->debugfs) {
1155 rdev_warn(rdev, "Failed to create debugfs directory\n");
1156 } else {
1157 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158 &regulator->uA_load);
1159 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160 &regulator->min_uV);
1161 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162 &regulator->max_uV);
1163 }
1164
1165 /*
1166 * Check now if the regulator is an always on regulator - if
1167 * it is then we don't need to do nearly so much work for
1168 * enable/disable calls.
1169 */
1170 if (!_regulator_can_change_status(rdev) &&
1171 _regulator_is_enabled(rdev))
1172 regulator->always_on = true;
1173
1174 mutex_unlock(&rdev->mutex);
1175 return regulator;
1176 link_name_err:
1177 kfree(regulator->supply_name);
1178 attr_err:
1179 device_remove_file(regulator->dev, &regulator->dev_attr);
1180 attr_name_err:
1181 kfree(regulator->dev_attr.attr.name);
1182 overflow_err:
1183 list_del(&regulator->list);
1184 kfree(regulator);
1185 mutex_unlock(&rdev->mutex);
1186 return NULL;
1187 }
1188
1189 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1190 {
1191 if (!rdev->desc->ops->enable_time)
1192 return 0;
1193 return rdev->desc->ops->enable_time(rdev);
1194 }
1195
1196 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1197 const char *supply,
1198 int *ret)
1199 {
1200 struct regulator_dev *r;
1201 struct device_node *node;
1202 struct regulator_map *map;
1203 const char *devname = NULL;
1204
1205 /* first do a dt based lookup */
1206 if (dev && dev->of_node) {
1207 node = of_get_regulator(dev, supply);
1208 if (node) {
1209 list_for_each_entry(r, &regulator_list, list)
1210 if (r->dev.parent &&
1211 node == r->dev.of_node)
1212 return r;
1213 } else {
1214 /*
1215 * If we couldn't even get the node then it's
1216 * not just that the device didn't register
1217 * yet, there's no node and we'll never
1218 * succeed.
1219 */
1220 *ret = -ENODEV;
1221 }
1222 }
1223
1224 /* if not found, try doing it non-dt way */
1225 if (dev)
1226 devname = dev_name(dev);
1227
1228 list_for_each_entry(r, &regulator_list, list)
1229 if (strcmp(rdev_get_name(r), supply) == 0)
1230 return r;
1231
1232 list_for_each_entry(map, &regulator_map_list, list) {
1233 /* If the mapping has a device set up it must match */
1234 if (map->dev_name &&
1235 (!devname || strcmp(map->dev_name, devname)))
1236 continue;
1237
1238 if (strcmp(map->supply, supply) == 0)
1239 return map->regulator;
1240 }
1241
1242
1243 return NULL;
1244 }
1245
1246 /* Internal regulator request function */
1247 static struct regulator *_regulator_get(struct device *dev, const char *id,
1248 int exclusive)
1249 {
1250 struct regulator_dev *rdev;
1251 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1252 const char *devname = NULL;
1253 int ret;
1254
1255 if (id == NULL) {
1256 pr_err("get() with no identifier\n");
1257 return regulator;
1258 }
1259
1260 if (dev)
1261 devname = dev_name(dev);
1262
1263 mutex_lock(&regulator_list_mutex);
1264
1265 rdev = regulator_dev_lookup(dev, id, &ret);
1266 if (rdev)
1267 goto found;
1268
1269 if (board_wants_dummy_regulator) {
1270 rdev = dummy_regulator_rdev;
1271 goto found;
1272 }
1273
1274 #ifdef CONFIG_REGULATOR_DUMMY
1275 if (!devname)
1276 devname = "deviceless";
1277
1278 /* If the board didn't flag that it was fully constrained then
1279 * substitute in a dummy regulator so consumers can continue.
1280 */
1281 if (!has_full_constraints) {
1282 pr_warn("%s supply %s not found, using dummy regulator\n",
1283 devname, id);
1284 rdev = dummy_regulator_rdev;
1285 goto found;
1286 }
1287 #endif
1288
1289 mutex_unlock(&regulator_list_mutex);
1290 return regulator;
1291
1292 found:
1293 if (rdev->exclusive) {
1294 regulator = ERR_PTR(-EPERM);
1295 goto out;
1296 }
1297
1298 if (exclusive && rdev->open_count) {
1299 regulator = ERR_PTR(-EBUSY);
1300 goto out;
1301 }
1302
1303 if (!try_module_get(rdev->owner))
1304 goto out;
1305
1306 regulator = create_regulator(rdev, dev, id);
1307 if (regulator == NULL) {
1308 regulator = ERR_PTR(-ENOMEM);
1309 module_put(rdev->owner);
1310 goto out;
1311 }
1312
1313 rdev->open_count++;
1314 if (exclusive) {
1315 rdev->exclusive = 1;
1316
1317 ret = _regulator_is_enabled(rdev);
1318 if (ret > 0)
1319 rdev->use_count = 1;
1320 else
1321 rdev->use_count = 0;
1322 }
1323
1324 out:
1325 mutex_unlock(&regulator_list_mutex);
1326
1327 return regulator;
1328 }
1329
1330 /**
1331 * regulator_get - lookup and obtain a reference to a regulator.
1332 * @dev: device for regulator "consumer"
1333 * @id: Supply name or regulator ID.
1334 *
1335 * Returns a struct regulator corresponding to the regulator producer,
1336 * or IS_ERR() condition containing errno.
1337 *
1338 * Use of supply names configured via regulator_set_device_supply() is
1339 * strongly encouraged. It is recommended that the supply name used
1340 * should match the name used for the supply and/or the relevant
1341 * device pins in the datasheet.
1342 */
1343 struct regulator *regulator_get(struct device *dev, const char *id)
1344 {
1345 return _regulator_get(dev, id, 0);
1346 }
1347 EXPORT_SYMBOL_GPL(regulator_get);
1348
1349 static void devm_regulator_release(struct device *dev, void *res)
1350 {
1351 regulator_put(*(struct regulator **)res);
1352 }
1353
1354 /**
1355 * devm_regulator_get - Resource managed regulator_get()
1356 * @dev: device for regulator "consumer"
1357 * @id: Supply name or regulator ID.
1358 *
1359 * Managed regulator_get(). Regulators returned from this function are
1360 * automatically regulator_put() on driver detach. See regulator_get() for more
1361 * information.
1362 */
1363 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1364 {
1365 struct regulator **ptr, *regulator;
1366
1367 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1368 if (!ptr)
1369 return ERR_PTR(-ENOMEM);
1370
1371 regulator = regulator_get(dev, id);
1372 if (!IS_ERR(regulator)) {
1373 *ptr = regulator;
1374 devres_add(dev, ptr);
1375 } else {
1376 devres_free(ptr);
1377 }
1378
1379 return regulator;
1380 }
1381 EXPORT_SYMBOL_GPL(devm_regulator_get);
1382
1383 /**
1384 * regulator_get_exclusive - obtain exclusive access to a regulator.
1385 * @dev: device for regulator "consumer"
1386 * @id: Supply name or regulator ID.
1387 *
1388 * Returns a struct regulator corresponding to the regulator producer,
1389 * or IS_ERR() condition containing errno. Other consumers will be
1390 * unable to obtain this reference is held and the use count for the
1391 * regulator will be initialised to reflect the current state of the
1392 * regulator.
1393 *
1394 * This is intended for use by consumers which cannot tolerate shared
1395 * use of the regulator such as those which need to force the
1396 * regulator off for correct operation of the hardware they are
1397 * controlling.
1398 *
1399 * Use of supply names configured via regulator_set_device_supply() is
1400 * strongly encouraged. It is recommended that the supply name used
1401 * should match the name used for the supply and/or the relevant
1402 * device pins in the datasheet.
1403 */
1404 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1405 {
1406 return _regulator_get(dev, id, 1);
1407 }
1408 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1409
1410 /**
1411 * regulator_put - "free" the regulator source
1412 * @regulator: regulator source
1413 *
1414 * Note: drivers must ensure that all regulator_enable calls made on this
1415 * regulator source are balanced by regulator_disable calls prior to calling
1416 * this function.
1417 */
1418 void regulator_put(struct regulator *regulator)
1419 {
1420 struct regulator_dev *rdev;
1421
1422 if (regulator == NULL || IS_ERR(regulator))
1423 return;
1424
1425 mutex_lock(&regulator_list_mutex);
1426 rdev = regulator->rdev;
1427
1428 debugfs_remove_recursive(regulator->debugfs);
1429
1430 /* remove any sysfs entries */
1431 if (regulator->dev) {
1432 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1433 device_remove_file(regulator->dev, &regulator->dev_attr);
1434 kfree(regulator->dev_attr.attr.name);
1435 }
1436 kfree(regulator->supply_name);
1437 list_del(&regulator->list);
1438 kfree(regulator);
1439
1440 rdev->open_count--;
1441 rdev->exclusive = 0;
1442
1443 module_put(rdev->owner);
1444 mutex_unlock(&regulator_list_mutex);
1445 }
1446 EXPORT_SYMBOL_GPL(regulator_put);
1447
1448 static int devm_regulator_match(struct device *dev, void *res, void *data)
1449 {
1450 struct regulator **r = res;
1451 if (!r || !*r) {
1452 WARN_ON(!r || !*r);
1453 return 0;
1454 }
1455 return *r == data;
1456 }
1457
1458 /**
1459 * devm_regulator_put - Resource managed regulator_put()
1460 * @regulator: regulator to free
1461 *
1462 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1463 * this function will not need to be called and the resource management
1464 * code will ensure that the resource is freed.
1465 */
1466 void devm_regulator_put(struct regulator *regulator)
1467 {
1468 int rc;
1469
1470 rc = devres_release(regulator->dev, devm_regulator_release,
1471 devm_regulator_match, regulator);
1472 if (rc == 0)
1473 regulator_put(regulator);
1474 else
1475 WARN_ON(rc);
1476 }
1477 EXPORT_SYMBOL_GPL(devm_regulator_put);
1478
1479 /* locks held by regulator_enable() */
1480 static int _regulator_enable(struct regulator_dev *rdev)
1481 {
1482 int ret, delay;
1483
1484 /* check voltage and requested load before enabling */
1485 if (rdev->constraints &&
1486 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1487 drms_uA_update(rdev);
1488
1489 if (rdev->use_count == 0) {
1490 /* The regulator may on if it's not switchable or left on */
1491 ret = _regulator_is_enabled(rdev);
1492 if (ret == -EINVAL || ret == 0) {
1493 if (!_regulator_can_change_status(rdev))
1494 return -EPERM;
1495
1496 if (!rdev->desc->ops->enable)
1497 return -EINVAL;
1498
1499 /* Query before enabling in case configuration
1500 * dependent. */
1501 ret = _regulator_get_enable_time(rdev);
1502 if (ret >= 0) {
1503 delay = ret;
1504 } else {
1505 rdev_warn(rdev, "enable_time() failed: %d\n",
1506 ret);
1507 delay = 0;
1508 }
1509
1510 trace_regulator_enable(rdev_get_name(rdev));
1511
1512 /* Allow the regulator to ramp; it would be useful
1513 * to extend this for bulk operations so that the
1514 * regulators can ramp together. */
1515 ret = rdev->desc->ops->enable(rdev);
1516 if (ret < 0)
1517 return ret;
1518
1519 trace_regulator_enable_delay(rdev_get_name(rdev));
1520
1521 if (delay >= 1000) {
1522 mdelay(delay / 1000);
1523 udelay(delay % 1000);
1524 } else if (delay) {
1525 udelay(delay);
1526 }
1527
1528 trace_regulator_enable_complete(rdev_get_name(rdev));
1529
1530 } else if (ret < 0) {
1531 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1532 return ret;
1533 }
1534 /* Fallthrough on positive return values - already enabled */
1535 }
1536
1537 rdev->use_count++;
1538
1539 return 0;
1540 }
1541
1542 /**
1543 * regulator_enable - enable regulator output
1544 * @regulator: regulator source
1545 *
1546 * Request that the regulator be enabled with the regulator output at
1547 * the predefined voltage or current value. Calls to regulator_enable()
1548 * must be balanced with calls to regulator_disable().
1549 *
1550 * NOTE: the output value can be set by other drivers, boot loader or may be
1551 * hardwired in the regulator.
1552 */
1553 int regulator_enable(struct regulator *regulator)
1554 {
1555 struct regulator_dev *rdev = regulator->rdev;
1556 int ret = 0;
1557
1558 if (regulator->always_on)
1559 return 0;
1560
1561 if (rdev->supply) {
1562 ret = regulator_enable(rdev->supply);
1563 if (ret != 0)
1564 return ret;
1565 }
1566
1567 mutex_lock(&rdev->mutex);
1568 ret = _regulator_enable(rdev);
1569 mutex_unlock(&rdev->mutex);
1570
1571 if (ret != 0 && rdev->supply)
1572 regulator_disable(rdev->supply);
1573
1574 return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(regulator_enable);
1577
1578 /* locks held by regulator_disable() */
1579 static int _regulator_disable(struct regulator_dev *rdev)
1580 {
1581 int ret = 0;
1582
1583 if (WARN(rdev->use_count <= 0,
1584 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1585 return -EIO;
1586
1587 /* are we the last user and permitted to disable ? */
1588 if (rdev->use_count == 1 &&
1589 (rdev->constraints && !rdev->constraints->always_on)) {
1590
1591 /* we are last user */
1592 if (_regulator_can_change_status(rdev) &&
1593 rdev->desc->ops->disable) {
1594 trace_regulator_disable(rdev_get_name(rdev));
1595
1596 ret = rdev->desc->ops->disable(rdev);
1597 if (ret < 0) {
1598 rdev_err(rdev, "failed to disable\n");
1599 return ret;
1600 }
1601
1602 trace_regulator_disable_complete(rdev_get_name(rdev));
1603
1604 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1605 NULL);
1606 }
1607
1608 rdev->use_count = 0;
1609 } else if (rdev->use_count > 1) {
1610
1611 if (rdev->constraints &&
1612 (rdev->constraints->valid_ops_mask &
1613 REGULATOR_CHANGE_DRMS))
1614 drms_uA_update(rdev);
1615
1616 rdev->use_count--;
1617 }
1618
1619 return ret;
1620 }
1621
1622 /**
1623 * regulator_disable - disable regulator output
1624 * @regulator: regulator source
1625 *
1626 * Disable the regulator output voltage or current. Calls to
1627 * regulator_enable() must be balanced with calls to
1628 * regulator_disable().
1629 *
1630 * NOTE: this will only disable the regulator output if no other consumer
1631 * devices have it enabled, the regulator device supports disabling and
1632 * machine constraints permit this operation.
1633 */
1634 int regulator_disable(struct regulator *regulator)
1635 {
1636 struct regulator_dev *rdev = regulator->rdev;
1637 int ret = 0;
1638
1639 if (regulator->always_on)
1640 return 0;
1641
1642 mutex_lock(&rdev->mutex);
1643 ret = _regulator_disable(rdev);
1644 mutex_unlock(&rdev->mutex);
1645
1646 if (ret == 0 && rdev->supply)
1647 regulator_disable(rdev->supply);
1648
1649 return ret;
1650 }
1651 EXPORT_SYMBOL_GPL(regulator_disable);
1652
1653 /* locks held by regulator_force_disable() */
1654 static int _regulator_force_disable(struct regulator_dev *rdev)
1655 {
1656 int ret = 0;
1657
1658 /* force disable */
1659 if (rdev->desc->ops->disable) {
1660 /* ah well, who wants to live forever... */
1661 ret = rdev->desc->ops->disable(rdev);
1662 if (ret < 0) {
1663 rdev_err(rdev, "failed to force disable\n");
1664 return ret;
1665 }
1666 /* notify other consumers that power has been forced off */
1667 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1668 REGULATOR_EVENT_DISABLE, NULL);
1669 }
1670
1671 return ret;
1672 }
1673
1674 /**
1675 * regulator_force_disable - force disable regulator output
1676 * @regulator: regulator source
1677 *
1678 * Forcibly disable the regulator output voltage or current.
1679 * NOTE: this *will* disable the regulator output even if other consumer
1680 * devices have it enabled. This should be used for situations when device
1681 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1682 */
1683 int regulator_force_disable(struct regulator *regulator)
1684 {
1685 struct regulator_dev *rdev = regulator->rdev;
1686 int ret;
1687
1688 mutex_lock(&rdev->mutex);
1689 regulator->uA_load = 0;
1690 ret = _regulator_force_disable(regulator->rdev);
1691 mutex_unlock(&rdev->mutex);
1692
1693 if (rdev->supply)
1694 while (rdev->open_count--)
1695 regulator_disable(rdev->supply);
1696
1697 return ret;
1698 }
1699 EXPORT_SYMBOL_GPL(regulator_force_disable);
1700
1701 static void regulator_disable_work(struct work_struct *work)
1702 {
1703 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1704 disable_work.work);
1705 int count, i, ret;
1706
1707 mutex_lock(&rdev->mutex);
1708
1709 BUG_ON(!rdev->deferred_disables);
1710
1711 count = rdev->deferred_disables;
1712 rdev->deferred_disables = 0;
1713
1714 for (i = 0; i < count; i++) {
1715 ret = _regulator_disable(rdev);
1716 if (ret != 0)
1717 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1718 }
1719
1720 mutex_unlock(&rdev->mutex);
1721
1722 if (rdev->supply) {
1723 for (i = 0; i < count; i++) {
1724 ret = regulator_disable(rdev->supply);
1725 if (ret != 0) {
1726 rdev_err(rdev,
1727 "Supply disable failed: %d\n", ret);
1728 }
1729 }
1730 }
1731 }
1732
1733 /**
1734 * regulator_disable_deferred - disable regulator output with delay
1735 * @regulator: regulator source
1736 * @ms: miliseconds until the regulator is disabled
1737 *
1738 * Execute regulator_disable() on the regulator after a delay. This
1739 * is intended for use with devices that require some time to quiesce.
1740 *
1741 * NOTE: this will only disable the regulator output if no other consumer
1742 * devices have it enabled, the regulator device supports disabling and
1743 * machine constraints permit this operation.
1744 */
1745 int regulator_disable_deferred(struct regulator *regulator, int ms)
1746 {
1747 struct regulator_dev *rdev = regulator->rdev;
1748 int ret;
1749
1750 if (regulator->always_on)
1751 return 0;
1752
1753 mutex_lock(&rdev->mutex);
1754 rdev->deferred_disables++;
1755 mutex_unlock(&rdev->mutex);
1756
1757 ret = schedule_delayed_work(&rdev->disable_work,
1758 msecs_to_jiffies(ms));
1759 if (ret < 0)
1760 return ret;
1761 else
1762 return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1765
1766 /**
1767 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1768 *
1769 * @rdev: regulator to operate on
1770 *
1771 * Regulators that use regmap for their register I/O can set the
1772 * enable_reg and enable_mask fields in their descriptor and then use
1773 * this as their is_enabled operation, saving some code.
1774 */
1775 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1776 {
1777 unsigned int val;
1778 int ret;
1779
1780 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1781 if (ret != 0)
1782 return ret;
1783
1784 return (val & rdev->desc->enable_mask) != 0;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1787
1788 /**
1789 * regulator_enable_regmap - standard enable() for regmap users
1790 *
1791 * @rdev: regulator to operate on
1792 *
1793 * Regulators that use regmap for their register I/O can set the
1794 * enable_reg and enable_mask fields in their descriptor and then use
1795 * this as their enable() operation, saving some code.
1796 */
1797 int regulator_enable_regmap(struct regulator_dev *rdev)
1798 {
1799 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1800 rdev->desc->enable_mask,
1801 rdev->desc->enable_mask);
1802 }
1803 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1804
1805 /**
1806 * regulator_disable_regmap - standard disable() for regmap users
1807 *
1808 * @rdev: regulator to operate on
1809 *
1810 * Regulators that use regmap for their register I/O can set the
1811 * enable_reg and enable_mask fields in their descriptor and then use
1812 * this as their disable() operation, saving some code.
1813 */
1814 int regulator_disable_regmap(struct regulator_dev *rdev)
1815 {
1816 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1817 rdev->desc->enable_mask, 0);
1818 }
1819 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1820
1821 static int _regulator_is_enabled(struct regulator_dev *rdev)
1822 {
1823 /* If we don't know then assume that the regulator is always on */
1824 if (!rdev->desc->ops->is_enabled)
1825 return 1;
1826
1827 return rdev->desc->ops->is_enabled(rdev);
1828 }
1829
1830 /**
1831 * regulator_is_enabled - is the regulator output enabled
1832 * @regulator: regulator source
1833 *
1834 * Returns positive if the regulator driver backing the source/client
1835 * has requested that the device be enabled, zero if it hasn't, else a
1836 * negative errno code.
1837 *
1838 * Note that the device backing this regulator handle can have multiple
1839 * users, so it might be enabled even if regulator_enable() was never
1840 * called for this particular source.
1841 */
1842 int regulator_is_enabled(struct regulator *regulator)
1843 {
1844 int ret;
1845
1846 if (regulator->always_on)
1847 return 1;
1848
1849 mutex_lock(&regulator->rdev->mutex);
1850 ret = _regulator_is_enabled(regulator->rdev);
1851 mutex_unlock(&regulator->rdev->mutex);
1852
1853 return ret;
1854 }
1855 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1856
1857 /**
1858 * regulator_count_voltages - count regulator_list_voltage() selectors
1859 * @regulator: regulator source
1860 *
1861 * Returns number of selectors, or negative errno. Selectors are
1862 * numbered starting at zero, and typically correspond to bitfields
1863 * in hardware registers.
1864 */
1865 int regulator_count_voltages(struct regulator *regulator)
1866 {
1867 struct regulator_dev *rdev = regulator->rdev;
1868
1869 return rdev->desc->n_voltages ? : -EINVAL;
1870 }
1871 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1872
1873 /**
1874 * regulator_list_voltage_linear - List voltages with simple calculation
1875 *
1876 * @rdev: Regulator device
1877 * @selector: Selector to convert into a voltage
1878 *
1879 * Regulators with a simple linear mapping between voltages and
1880 * selectors can set min_uV and uV_step in the regulator descriptor
1881 * and then use this function as their list_voltage() operation,
1882 */
1883 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1884 unsigned int selector)
1885 {
1886 if (selector >= rdev->desc->n_voltages)
1887 return -EINVAL;
1888
1889 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1890 }
1891 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1892
1893 /**
1894 * regulator_list_voltage_table - List voltages with table based mapping
1895 *
1896 * @rdev: Regulator device
1897 * @selector: Selector to convert into a voltage
1898 *
1899 * Regulators with table based mapping between voltages and
1900 * selectors can set volt_table in the regulator descriptor
1901 * and then use this function as their list_voltage() operation.
1902 */
1903 int regulator_list_voltage_table(struct regulator_dev *rdev,
1904 unsigned int selector)
1905 {
1906 if (!rdev->desc->volt_table) {
1907 BUG_ON(!rdev->desc->volt_table);
1908 return -EINVAL;
1909 }
1910
1911 if (selector >= rdev->desc->n_voltages)
1912 return -EINVAL;
1913
1914 return rdev->desc->volt_table[selector];
1915 }
1916 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1917
1918 /**
1919 * regulator_list_voltage - enumerate supported voltages
1920 * @regulator: regulator source
1921 * @selector: identify voltage to list
1922 * Context: can sleep
1923 *
1924 * Returns a voltage that can be passed to @regulator_set_voltage(),
1925 * zero if this selector code can't be used on this system, or a
1926 * negative errno.
1927 */
1928 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1929 {
1930 struct regulator_dev *rdev = regulator->rdev;
1931 struct regulator_ops *ops = rdev->desc->ops;
1932 int ret;
1933
1934 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1935 return -EINVAL;
1936
1937 mutex_lock(&rdev->mutex);
1938 ret = ops->list_voltage(rdev, selector);
1939 mutex_unlock(&rdev->mutex);
1940
1941 if (ret > 0) {
1942 if (ret < rdev->constraints->min_uV)
1943 ret = 0;
1944 else if (ret > rdev->constraints->max_uV)
1945 ret = 0;
1946 }
1947
1948 return ret;
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1951
1952 /**
1953 * regulator_is_supported_voltage - check if a voltage range can be supported
1954 *
1955 * @regulator: Regulator to check.
1956 * @min_uV: Minimum required voltage in uV.
1957 * @max_uV: Maximum required voltage in uV.
1958 *
1959 * Returns a boolean or a negative error code.
1960 */
1961 int regulator_is_supported_voltage(struct regulator *regulator,
1962 int min_uV, int max_uV)
1963 {
1964 int i, voltages, ret;
1965
1966 ret = regulator_count_voltages(regulator);
1967 if (ret < 0)
1968 return ret;
1969 voltages = ret;
1970
1971 for (i = 0; i < voltages; i++) {
1972 ret = regulator_list_voltage(regulator, i);
1973
1974 if (ret >= min_uV && ret <= max_uV)
1975 return 1;
1976 }
1977
1978 return 0;
1979 }
1980 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1981
1982 /**
1983 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1984 *
1985 * @rdev: regulator to operate on
1986 *
1987 * Regulators that use regmap for their register I/O can set the
1988 * vsel_reg and vsel_mask fields in their descriptor and then use this
1989 * as their get_voltage_vsel operation, saving some code.
1990 */
1991 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1992 {
1993 unsigned int val;
1994 int ret;
1995
1996 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1997 if (ret != 0)
1998 return ret;
1999
2000 val &= rdev->desc->vsel_mask;
2001 val >>= ffs(rdev->desc->vsel_mask) - 1;
2002
2003 return val;
2004 }
2005 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2006
2007 /**
2008 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2009 *
2010 * @rdev: regulator to operate on
2011 * @sel: Selector to set
2012 *
2013 * Regulators that use regmap for their register I/O can set the
2014 * vsel_reg and vsel_mask fields in their descriptor and then use this
2015 * as their set_voltage_vsel operation, saving some code.
2016 */
2017 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2018 {
2019 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2020
2021 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2022 rdev->desc->vsel_mask, sel);
2023 }
2024 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2025
2026 /**
2027 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2028 *
2029 * @rdev: Regulator to operate on
2030 * @min_uV: Lower bound for voltage
2031 * @max_uV: Upper bound for voltage
2032 *
2033 * Drivers implementing set_voltage_sel() and list_voltage() can use
2034 * this as their map_voltage() operation. It will find a suitable
2035 * voltage by calling list_voltage() until it gets something in bounds
2036 * for the requested voltages.
2037 */
2038 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2039 int min_uV, int max_uV)
2040 {
2041 int best_val = INT_MAX;
2042 int selector = 0;
2043 int i, ret;
2044
2045 /* Find the smallest voltage that falls within the specified
2046 * range.
2047 */
2048 for (i = 0; i < rdev->desc->n_voltages; i++) {
2049 ret = rdev->desc->ops->list_voltage(rdev, i);
2050 if (ret < 0)
2051 continue;
2052
2053 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2054 best_val = ret;
2055 selector = i;
2056 }
2057 }
2058
2059 if (best_val != INT_MAX)
2060 return selector;
2061 else
2062 return -EINVAL;
2063 }
2064 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2065
2066 /**
2067 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2068 *
2069 * @rdev: Regulator to operate on
2070 * @min_uV: Lower bound for voltage
2071 * @max_uV: Upper bound for voltage
2072 *
2073 * Drivers providing min_uV and uV_step in their regulator_desc can
2074 * use this as their map_voltage() operation.
2075 */
2076 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2077 int min_uV, int max_uV)
2078 {
2079 int ret, voltage;
2080
2081 /* Allow uV_step to be 0 for fixed voltage */
2082 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2083 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2084 return 0;
2085 else
2086 return -EINVAL;
2087 }
2088
2089 if (!rdev->desc->uV_step) {
2090 BUG_ON(!rdev->desc->uV_step);
2091 return -EINVAL;
2092 }
2093
2094 if (min_uV < rdev->desc->min_uV)
2095 min_uV = rdev->desc->min_uV;
2096
2097 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2098 if (ret < 0)
2099 return ret;
2100
2101 /* Map back into a voltage to verify we're still in bounds */
2102 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2103 if (voltage < min_uV || voltage > max_uV)
2104 return -EINVAL;
2105
2106 return ret;
2107 }
2108 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2109
2110 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2111 int min_uV, int max_uV)
2112 {
2113 int ret;
2114 int delay = 0;
2115 int best_val;
2116 unsigned int selector;
2117 int old_selector = -1;
2118
2119 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2120
2121 min_uV += rdev->constraints->uV_offset;
2122 max_uV += rdev->constraints->uV_offset;
2123
2124 /*
2125 * If we can't obtain the old selector there is not enough
2126 * info to call set_voltage_time_sel().
2127 */
2128 if (_regulator_is_enabled(rdev) &&
2129 rdev->desc->ops->set_voltage_time_sel &&
2130 rdev->desc->ops->get_voltage_sel) {
2131 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2132 if (old_selector < 0)
2133 return old_selector;
2134 }
2135
2136 if (rdev->desc->ops->set_voltage) {
2137 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2138 &selector);
2139 } else if (rdev->desc->ops->set_voltage_sel) {
2140 if (rdev->desc->ops->map_voltage)
2141 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2142 max_uV);
2143 else
2144 ret = regulator_map_voltage_iterate(rdev, min_uV,
2145 max_uV);
2146
2147 if (ret >= 0) {
2148 selector = ret;
2149 ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2150 }
2151 } else {
2152 ret = -EINVAL;
2153 }
2154
2155 if (rdev->desc->ops->list_voltage)
2156 best_val = rdev->desc->ops->list_voltage(rdev, selector);
2157 else
2158 best_val = -1;
2159
2160 /* Call set_voltage_time_sel if successfully obtained old_selector */
2161 if (_regulator_is_enabled(rdev) && ret == 0 && old_selector >= 0 &&
2162 rdev->desc->ops->set_voltage_time_sel) {
2163
2164 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2165 old_selector, selector);
2166 if (delay < 0) {
2167 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2168 delay);
2169 delay = 0;
2170 }
2171 }
2172
2173 /* Insert any necessary delays */
2174 if (delay >= 1000) {
2175 mdelay(delay / 1000);
2176 udelay(delay % 1000);
2177 } else if (delay) {
2178 udelay(delay);
2179 }
2180
2181 if (ret == 0)
2182 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2183 NULL);
2184
2185 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2186
2187 return ret;
2188 }
2189
2190 /**
2191 * regulator_set_voltage - set regulator output voltage
2192 * @regulator: regulator source
2193 * @min_uV: Minimum required voltage in uV
2194 * @max_uV: Maximum acceptable voltage in uV
2195 *
2196 * Sets a voltage regulator to the desired output voltage. This can be set
2197 * during any regulator state. IOW, regulator can be disabled or enabled.
2198 *
2199 * If the regulator is enabled then the voltage will change to the new value
2200 * immediately otherwise if the regulator is disabled the regulator will
2201 * output at the new voltage when enabled.
2202 *
2203 * NOTE: If the regulator is shared between several devices then the lowest
2204 * request voltage that meets the system constraints will be used.
2205 * Regulator system constraints must be set for this regulator before
2206 * calling this function otherwise this call will fail.
2207 */
2208 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2209 {
2210 struct regulator_dev *rdev = regulator->rdev;
2211 int ret = 0;
2212
2213 mutex_lock(&rdev->mutex);
2214
2215 /* If we're setting the same range as last time the change
2216 * should be a noop (some cpufreq implementations use the same
2217 * voltage for multiple frequencies, for example).
2218 */
2219 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2220 goto out;
2221
2222 /* sanity check */
2223 if (!rdev->desc->ops->set_voltage &&
2224 !rdev->desc->ops->set_voltage_sel) {
2225 ret = -EINVAL;
2226 goto out;
2227 }
2228
2229 /* constraints check */
2230 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2231 if (ret < 0)
2232 goto out;
2233 regulator->min_uV = min_uV;
2234 regulator->max_uV = max_uV;
2235
2236 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2237 if (ret < 0)
2238 goto out;
2239
2240 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2241
2242 out:
2243 mutex_unlock(&rdev->mutex);
2244 return ret;
2245 }
2246 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2247
2248 /**
2249 * regulator_set_voltage_time - get raise/fall time
2250 * @regulator: regulator source
2251 * @old_uV: starting voltage in microvolts
2252 * @new_uV: target voltage in microvolts
2253 *
2254 * Provided with the starting and ending voltage, this function attempts to
2255 * calculate the time in microseconds required to rise or fall to this new
2256 * voltage.
2257 */
2258 int regulator_set_voltage_time(struct regulator *regulator,
2259 int old_uV, int new_uV)
2260 {
2261 struct regulator_dev *rdev = regulator->rdev;
2262 struct regulator_ops *ops = rdev->desc->ops;
2263 int old_sel = -1;
2264 int new_sel = -1;
2265 int voltage;
2266 int i;
2267
2268 /* Currently requires operations to do this */
2269 if (!ops->list_voltage || !ops->set_voltage_time_sel
2270 || !rdev->desc->n_voltages)
2271 return -EINVAL;
2272
2273 for (i = 0; i < rdev->desc->n_voltages; i++) {
2274 /* We only look for exact voltage matches here */
2275 voltage = regulator_list_voltage(regulator, i);
2276 if (voltage < 0)
2277 return -EINVAL;
2278 if (voltage == 0)
2279 continue;
2280 if (voltage == old_uV)
2281 old_sel = i;
2282 if (voltage == new_uV)
2283 new_sel = i;
2284 }
2285
2286 if (old_sel < 0 || new_sel < 0)
2287 return -EINVAL;
2288
2289 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2290 }
2291 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2292
2293 /**
2294 *regulator_set_voltage_time_sel - get raise/fall time
2295 * @regulator: regulator source
2296 * @old_selector: selector for starting voltage
2297 * @new_selector: selector for target voltage
2298 *
2299 * Provided with the starting and target voltage selectors, this function
2300 * returns time in microseconds required to rise or fall to this new voltage
2301 *
2302 * Drivers providing ramp_delay in regulation_constraints can use this as their
2303 * set_voltage_time_sel() operation.
2304 */
2305 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2306 unsigned int old_selector,
2307 unsigned int new_selector)
2308 {
2309 unsigned int ramp_delay = 0;
2310 int old_volt, new_volt;
2311
2312 if (rdev->constraints->ramp_delay)
2313 ramp_delay = rdev->constraints->ramp_delay;
2314 else if (rdev->desc->ramp_delay)
2315 ramp_delay = rdev->desc->ramp_delay;
2316
2317 if (ramp_delay == 0) {
2318 rdev_warn(rdev, "ramp_delay not set\n");
2319 return 0;
2320 }
2321
2322 /* sanity check */
2323 if (!rdev->desc->ops->list_voltage)
2324 return -EINVAL;
2325
2326 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2327 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2328
2329 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2332
2333 /**
2334 * regulator_sync_voltage - re-apply last regulator output voltage
2335 * @regulator: regulator source
2336 *
2337 * Re-apply the last configured voltage. This is intended to be used
2338 * where some external control source the consumer is cooperating with
2339 * has caused the configured voltage to change.
2340 */
2341 int regulator_sync_voltage(struct regulator *regulator)
2342 {
2343 struct regulator_dev *rdev = regulator->rdev;
2344 int ret, min_uV, max_uV;
2345
2346 mutex_lock(&rdev->mutex);
2347
2348 if (!rdev->desc->ops->set_voltage &&
2349 !rdev->desc->ops->set_voltage_sel) {
2350 ret = -EINVAL;
2351 goto out;
2352 }
2353
2354 /* This is only going to work if we've had a voltage configured. */
2355 if (!regulator->min_uV && !regulator->max_uV) {
2356 ret = -EINVAL;
2357 goto out;
2358 }
2359
2360 min_uV = regulator->min_uV;
2361 max_uV = regulator->max_uV;
2362
2363 /* This should be a paranoia check... */
2364 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2365 if (ret < 0)
2366 goto out;
2367
2368 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2369 if (ret < 0)
2370 goto out;
2371
2372 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2373
2374 out:
2375 mutex_unlock(&rdev->mutex);
2376 return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2379
2380 static int _regulator_get_voltage(struct regulator_dev *rdev)
2381 {
2382 int sel, ret;
2383
2384 if (rdev->desc->ops->get_voltage_sel) {
2385 sel = rdev->desc->ops->get_voltage_sel(rdev);
2386 if (sel < 0)
2387 return sel;
2388 ret = rdev->desc->ops->list_voltage(rdev, sel);
2389 } else if (rdev->desc->ops->get_voltage) {
2390 ret = rdev->desc->ops->get_voltage(rdev);
2391 } else {
2392 return -EINVAL;
2393 }
2394
2395 if (ret < 0)
2396 return ret;
2397 return ret - rdev->constraints->uV_offset;
2398 }
2399
2400 /**
2401 * regulator_get_voltage - get regulator output voltage
2402 * @regulator: regulator source
2403 *
2404 * This returns the current regulator voltage in uV.
2405 *
2406 * NOTE: If the regulator is disabled it will return the voltage value. This
2407 * function should not be used to determine regulator state.
2408 */
2409 int regulator_get_voltage(struct regulator *regulator)
2410 {
2411 int ret;
2412
2413 mutex_lock(&regulator->rdev->mutex);
2414
2415 ret = _regulator_get_voltage(regulator->rdev);
2416
2417 mutex_unlock(&regulator->rdev->mutex);
2418
2419 return ret;
2420 }
2421 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2422
2423 /**
2424 * regulator_set_current_limit - set regulator output current limit
2425 * @regulator: regulator source
2426 * @min_uA: Minimuum supported current in uA
2427 * @max_uA: Maximum supported current in uA
2428 *
2429 * Sets current sink to the desired output current. This can be set during
2430 * any regulator state. IOW, regulator can be disabled or enabled.
2431 *
2432 * If the regulator is enabled then the current will change to the new value
2433 * immediately otherwise if the regulator is disabled the regulator will
2434 * output at the new current when enabled.
2435 *
2436 * NOTE: Regulator system constraints must be set for this regulator before
2437 * calling this function otherwise this call will fail.
2438 */
2439 int regulator_set_current_limit(struct regulator *regulator,
2440 int min_uA, int max_uA)
2441 {
2442 struct regulator_dev *rdev = regulator->rdev;
2443 int ret;
2444
2445 mutex_lock(&rdev->mutex);
2446
2447 /* sanity check */
2448 if (!rdev->desc->ops->set_current_limit) {
2449 ret = -EINVAL;
2450 goto out;
2451 }
2452
2453 /* constraints check */
2454 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2455 if (ret < 0)
2456 goto out;
2457
2458 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2459 out:
2460 mutex_unlock(&rdev->mutex);
2461 return ret;
2462 }
2463 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2464
2465 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2466 {
2467 int ret;
2468
2469 mutex_lock(&rdev->mutex);
2470
2471 /* sanity check */
2472 if (!rdev->desc->ops->get_current_limit) {
2473 ret = -EINVAL;
2474 goto out;
2475 }
2476
2477 ret = rdev->desc->ops->get_current_limit(rdev);
2478 out:
2479 mutex_unlock(&rdev->mutex);
2480 return ret;
2481 }
2482
2483 /**
2484 * regulator_get_current_limit - get regulator output current
2485 * @regulator: regulator source
2486 *
2487 * This returns the current supplied by the specified current sink in uA.
2488 *
2489 * NOTE: If the regulator is disabled it will return the current value. This
2490 * function should not be used to determine regulator state.
2491 */
2492 int regulator_get_current_limit(struct regulator *regulator)
2493 {
2494 return _regulator_get_current_limit(regulator->rdev);
2495 }
2496 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2497
2498 /**
2499 * regulator_set_mode - set regulator operating mode
2500 * @regulator: regulator source
2501 * @mode: operating mode - one of the REGULATOR_MODE constants
2502 *
2503 * Set regulator operating mode to increase regulator efficiency or improve
2504 * regulation performance.
2505 *
2506 * NOTE: Regulator system constraints must be set for this regulator before
2507 * calling this function otherwise this call will fail.
2508 */
2509 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2510 {
2511 struct regulator_dev *rdev = regulator->rdev;
2512 int ret;
2513 int regulator_curr_mode;
2514
2515 mutex_lock(&rdev->mutex);
2516
2517 /* sanity check */
2518 if (!rdev->desc->ops->set_mode) {
2519 ret = -EINVAL;
2520 goto out;
2521 }
2522
2523 /* return if the same mode is requested */
2524 if (rdev->desc->ops->get_mode) {
2525 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2526 if (regulator_curr_mode == mode) {
2527 ret = 0;
2528 goto out;
2529 }
2530 }
2531
2532 /* constraints check */
2533 ret = regulator_mode_constrain(rdev, &mode);
2534 if (ret < 0)
2535 goto out;
2536
2537 ret = rdev->desc->ops->set_mode(rdev, mode);
2538 out:
2539 mutex_unlock(&rdev->mutex);
2540 return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regulator_set_mode);
2543
2544 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2545 {
2546 int ret;
2547
2548 mutex_lock(&rdev->mutex);
2549
2550 /* sanity check */
2551 if (!rdev->desc->ops->get_mode) {
2552 ret = -EINVAL;
2553 goto out;
2554 }
2555
2556 ret = rdev->desc->ops->get_mode(rdev);
2557 out:
2558 mutex_unlock(&rdev->mutex);
2559 return ret;
2560 }
2561
2562 /**
2563 * regulator_get_mode - get regulator operating mode
2564 * @regulator: regulator source
2565 *
2566 * Get the current regulator operating mode.
2567 */
2568 unsigned int regulator_get_mode(struct regulator *regulator)
2569 {
2570 return _regulator_get_mode(regulator->rdev);
2571 }
2572 EXPORT_SYMBOL_GPL(regulator_get_mode);
2573
2574 /**
2575 * regulator_set_optimum_mode - set regulator optimum operating mode
2576 * @regulator: regulator source
2577 * @uA_load: load current
2578 *
2579 * Notifies the regulator core of a new device load. This is then used by
2580 * DRMS (if enabled by constraints) to set the most efficient regulator
2581 * operating mode for the new regulator loading.
2582 *
2583 * Consumer devices notify their supply regulator of the maximum power
2584 * they will require (can be taken from device datasheet in the power
2585 * consumption tables) when they change operational status and hence power
2586 * state. Examples of operational state changes that can affect power
2587 * consumption are :-
2588 *
2589 * o Device is opened / closed.
2590 * o Device I/O is about to begin or has just finished.
2591 * o Device is idling in between work.
2592 *
2593 * This information is also exported via sysfs to userspace.
2594 *
2595 * DRMS will sum the total requested load on the regulator and change
2596 * to the most efficient operating mode if platform constraints allow.
2597 *
2598 * Returns the new regulator mode or error.
2599 */
2600 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2601 {
2602 struct regulator_dev *rdev = regulator->rdev;
2603 struct regulator *consumer;
2604 int ret, output_uV, input_uV, total_uA_load = 0;
2605 unsigned int mode;
2606
2607 mutex_lock(&rdev->mutex);
2608
2609 /*
2610 * first check to see if we can set modes at all, otherwise just
2611 * tell the consumer everything is OK.
2612 */
2613 regulator->uA_load = uA_load;
2614 ret = regulator_check_drms(rdev);
2615 if (ret < 0) {
2616 ret = 0;
2617 goto out;
2618 }
2619
2620 if (!rdev->desc->ops->get_optimum_mode)
2621 goto out;
2622
2623 /*
2624 * we can actually do this so any errors are indicators of
2625 * potential real failure.
2626 */
2627 ret = -EINVAL;
2628
2629 if (!rdev->desc->ops->set_mode)
2630 goto out;
2631
2632 /* get output voltage */
2633 output_uV = _regulator_get_voltage(rdev);
2634 if (output_uV <= 0) {
2635 rdev_err(rdev, "invalid output voltage found\n");
2636 goto out;
2637 }
2638
2639 /* get input voltage */
2640 input_uV = 0;
2641 if (rdev->supply)
2642 input_uV = regulator_get_voltage(rdev->supply);
2643 if (input_uV <= 0)
2644 input_uV = rdev->constraints->input_uV;
2645 if (input_uV <= 0) {
2646 rdev_err(rdev, "invalid input voltage found\n");
2647 goto out;
2648 }
2649
2650 /* calc total requested load for this regulator */
2651 list_for_each_entry(consumer, &rdev->consumer_list, list)
2652 total_uA_load += consumer->uA_load;
2653
2654 mode = rdev->desc->ops->get_optimum_mode(rdev,
2655 input_uV, output_uV,
2656 total_uA_load);
2657 ret = regulator_mode_constrain(rdev, &mode);
2658 if (ret < 0) {
2659 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2660 total_uA_load, input_uV, output_uV);
2661 goto out;
2662 }
2663
2664 ret = rdev->desc->ops->set_mode(rdev, mode);
2665 if (ret < 0) {
2666 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2667 goto out;
2668 }
2669 ret = mode;
2670 out:
2671 mutex_unlock(&rdev->mutex);
2672 return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2675
2676 /**
2677 * regulator_register_notifier - register regulator event notifier
2678 * @regulator: regulator source
2679 * @nb: notifier block
2680 *
2681 * Register notifier block to receive regulator events.
2682 */
2683 int regulator_register_notifier(struct regulator *regulator,
2684 struct notifier_block *nb)
2685 {
2686 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2687 nb);
2688 }
2689 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2690
2691 /**
2692 * regulator_unregister_notifier - unregister regulator event notifier
2693 * @regulator: regulator source
2694 * @nb: notifier block
2695 *
2696 * Unregister regulator event notifier block.
2697 */
2698 int regulator_unregister_notifier(struct regulator *regulator,
2699 struct notifier_block *nb)
2700 {
2701 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2702 nb);
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2705
2706 /* notify regulator consumers and downstream regulator consumers.
2707 * Note mutex must be held by caller.
2708 */
2709 static void _notifier_call_chain(struct regulator_dev *rdev,
2710 unsigned long event, void *data)
2711 {
2712 /* call rdev chain first */
2713 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2714 }
2715
2716 /**
2717 * regulator_bulk_get - get multiple regulator consumers
2718 *
2719 * @dev: Device to supply
2720 * @num_consumers: Number of consumers to register
2721 * @consumers: Configuration of consumers; clients are stored here.
2722 *
2723 * @return 0 on success, an errno on failure.
2724 *
2725 * This helper function allows drivers to get several regulator
2726 * consumers in one operation. If any of the regulators cannot be
2727 * acquired then any regulators that were allocated will be freed
2728 * before returning to the caller.
2729 */
2730 int regulator_bulk_get(struct device *dev, int num_consumers,
2731 struct regulator_bulk_data *consumers)
2732 {
2733 int i;
2734 int ret;
2735
2736 for (i = 0; i < num_consumers; i++)
2737 consumers[i].consumer = NULL;
2738
2739 for (i = 0; i < num_consumers; i++) {
2740 consumers[i].consumer = regulator_get(dev,
2741 consumers[i].supply);
2742 if (IS_ERR(consumers[i].consumer)) {
2743 ret = PTR_ERR(consumers[i].consumer);
2744 dev_err(dev, "Failed to get supply '%s': %d\n",
2745 consumers[i].supply, ret);
2746 consumers[i].consumer = NULL;
2747 goto err;
2748 }
2749 }
2750
2751 return 0;
2752
2753 err:
2754 while (--i >= 0)
2755 regulator_put(consumers[i].consumer);
2756
2757 return ret;
2758 }
2759 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2760
2761 /**
2762 * devm_regulator_bulk_get - managed get multiple regulator consumers
2763 *
2764 * @dev: Device to supply
2765 * @num_consumers: Number of consumers to register
2766 * @consumers: Configuration of consumers; clients are stored here.
2767 *
2768 * @return 0 on success, an errno on failure.
2769 *
2770 * This helper function allows drivers to get several regulator
2771 * consumers in one operation with management, the regulators will
2772 * automatically be freed when the device is unbound. If any of the
2773 * regulators cannot be acquired then any regulators that were
2774 * allocated will be freed before returning to the caller.
2775 */
2776 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2777 struct regulator_bulk_data *consumers)
2778 {
2779 int i;
2780 int ret;
2781
2782 for (i = 0; i < num_consumers; i++)
2783 consumers[i].consumer = NULL;
2784
2785 for (i = 0; i < num_consumers; i++) {
2786 consumers[i].consumer = devm_regulator_get(dev,
2787 consumers[i].supply);
2788 if (IS_ERR(consumers[i].consumer)) {
2789 ret = PTR_ERR(consumers[i].consumer);
2790 dev_err(dev, "Failed to get supply '%s': %d\n",
2791 consumers[i].supply, ret);
2792 consumers[i].consumer = NULL;
2793 goto err;
2794 }
2795 }
2796
2797 return 0;
2798
2799 err:
2800 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2801 devm_regulator_put(consumers[i].consumer);
2802
2803 return ret;
2804 }
2805 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2806
2807 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2808 {
2809 struct regulator_bulk_data *bulk = data;
2810
2811 bulk->ret = regulator_enable(bulk->consumer);
2812 }
2813
2814 /**
2815 * regulator_bulk_enable - enable multiple regulator consumers
2816 *
2817 * @num_consumers: Number of consumers
2818 * @consumers: Consumer data; clients are stored here.
2819 * @return 0 on success, an errno on failure
2820 *
2821 * This convenience API allows consumers to enable multiple regulator
2822 * clients in a single API call. If any consumers cannot be enabled
2823 * then any others that were enabled will be disabled again prior to
2824 * return.
2825 */
2826 int regulator_bulk_enable(int num_consumers,
2827 struct regulator_bulk_data *consumers)
2828 {
2829 LIST_HEAD(async_domain);
2830 int i;
2831 int ret = 0;
2832
2833 for (i = 0; i < num_consumers; i++) {
2834 if (consumers[i].consumer->always_on)
2835 consumers[i].ret = 0;
2836 else
2837 async_schedule_domain(regulator_bulk_enable_async,
2838 &consumers[i], &async_domain);
2839 }
2840
2841 async_synchronize_full_domain(&async_domain);
2842
2843 /* If any consumer failed we need to unwind any that succeeded */
2844 for (i = 0; i < num_consumers; i++) {
2845 if (consumers[i].ret != 0) {
2846 ret = consumers[i].ret;
2847 goto err;
2848 }
2849 }
2850
2851 return 0;
2852
2853 err:
2854 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2855 while (--i >= 0)
2856 regulator_disable(consumers[i].consumer);
2857
2858 return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2861
2862 /**
2863 * regulator_bulk_disable - disable multiple regulator consumers
2864 *
2865 * @num_consumers: Number of consumers
2866 * @consumers: Consumer data; clients are stored here.
2867 * @return 0 on success, an errno on failure
2868 *
2869 * This convenience API allows consumers to disable multiple regulator
2870 * clients in a single API call. If any consumers cannot be disabled
2871 * then any others that were disabled will be enabled again prior to
2872 * return.
2873 */
2874 int regulator_bulk_disable(int num_consumers,
2875 struct regulator_bulk_data *consumers)
2876 {
2877 int i;
2878 int ret, r;
2879
2880 for (i = num_consumers - 1; i >= 0; --i) {
2881 ret = regulator_disable(consumers[i].consumer);
2882 if (ret != 0)
2883 goto err;
2884 }
2885
2886 return 0;
2887
2888 err:
2889 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2890 for (++i; i < num_consumers; ++i) {
2891 r = regulator_enable(consumers[i].consumer);
2892 if (r != 0)
2893 pr_err("Failed to reename %s: %d\n",
2894 consumers[i].supply, r);
2895 }
2896
2897 return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2900
2901 /**
2902 * regulator_bulk_force_disable - force disable multiple regulator consumers
2903 *
2904 * @num_consumers: Number of consumers
2905 * @consumers: Consumer data; clients are stored here.
2906 * @return 0 on success, an errno on failure
2907 *
2908 * This convenience API allows consumers to forcibly disable multiple regulator
2909 * clients in a single API call.
2910 * NOTE: This should be used for situations when device damage will
2911 * likely occur if the regulators are not disabled (e.g. over temp).
2912 * Although regulator_force_disable function call for some consumers can
2913 * return error numbers, the function is called for all consumers.
2914 */
2915 int regulator_bulk_force_disable(int num_consumers,
2916 struct regulator_bulk_data *consumers)
2917 {
2918 int i;
2919 int ret;
2920
2921 for (i = 0; i < num_consumers; i++)
2922 consumers[i].ret =
2923 regulator_force_disable(consumers[i].consumer);
2924
2925 for (i = 0; i < num_consumers; i++) {
2926 if (consumers[i].ret != 0) {
2927 ret = consumers[i].ret;
2928 goto out;
2929 }
2930 }
2931
2932 return 0;
2933 out:
2934 return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2937
2938 /**
2939 * regulator_bulk_free - free multiple regulator consumers
2940 *
2941 * @num_consumers: Number of consumers
2942 * @consumers: Consumer data; clients are stored here.
2943 *
2944 * This convenience API allows consumers to free multiple regulator
2945 * clients in a single API call.
2946 */
2947 void regulator_bulk_free(int num_consumers,
2948 struct regulator_bulk_data *consumers)
2949 {
2950 int i;
2951
2952 for (i = 0; i < num_consumers; i++) {
2953 regulator_put(consumers[i].consumer);
2954 consumers[i].consumer = NULL;
2955 }
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2958
2959 /**
2960 * regulator_notifier_call_chain - call regulator event notifier
2961 * @rdev: regulator source
2962 * @event: notifier block
2963 * @data: callback-specific data.
2964 *
2965 * Called by regulator drivers to notify clients a regulator event has
2966 * occurred. We also notify regulator clients downstream.
2967 * Note lock must be held by caller.
2968 */
2969 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2970 unsigned long event, void *data)
2971 {
2972 _notifier_call_chain(rdev, event, data);
2973 return NOTIFY_DONE;
2974
2975 }
2976 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2977
2978 /**
2979 * regulator_mode_to_status - convert a regulator mode into a status
2980 *
2981 * @mode: Mode to convert
2982 *
2983 * Convert a regulator mode into a status.
2984 */
2985 int regulator_mode_to_status(unsigned int mode)
2986 {
2987 switch (mode) {
2988 case REGULATOR_MODE_FAST:
2989 return REGULATOR_STATUS_FAST;
2990 case REGULATOR_MODE_NORMAL:
2991 return REGULATOR_STATUS_NORMAL;
2992 case REGULATOR_MODE_IDLE:
2993 return REGULATOR_STATUS_IDLE;
2994 case REGULATOR_STATUS_STANDBY:
2995 return REGULATOR_STATUS_STANDBY;
2996 default:
2997 return 0;
2998 }
2999 }
3000 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3001
3002 /*
3003 * To avoid cluttering sysfs (and memory) with useless state, only
3004 * create attributes that can be meaningfully displayed.
3005 */
3006 static int add_regulator_attributes(struct regulator_dev *rdev)
3007 {
3008 struct device *dev = &rdev->dev;
3009 struct regulator_ops *ops = rdev->desc->ops;
3010 int status = 0;
3011
3012 /* some attributes need specific methods to be displayed */
3013 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3014 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3015 status = device_create_file(dev, &dev_attr_microvolts);
3016 if (status < 0)
3017 return status;
3018 }
3019 if (ops->get_current_limit) {
3020 status = device_create_file(dev, &dev_attr_microamps);
3021 if (status < 0)
3022 return status;
3023 }
3024 if (ops->get_mode) {
3025 status = device_create_file(dev, &dev_attr_opmode);
3026 if (status < 0)
3027 return status;
3028 }
3029 if (ops->is_enabled) {
3030 status = device_create_file(dev, &dev_attr_state);
3031 if (status < 0)
3032 return status;
3033 }
3034 if (ops->get_status) {
3035 status = device_create_file(dev, &dev_attr_status);
3036 if (status < 0)
3037 return status;
3038 }
3039
3040 /* some attributes are type-specific */
3041 if (rdev->desc->type == REGULATOR_CURRENT) {
3042 status = device_create_file(dev, &dev_attr_requested_microamps);
3043 if (status < 0)
3044 return status;
3045 }
3046
3047 /* all the other attributes exist to support constraints;
3048 * don't show them if there are no constraints, or if the
3049 * relevant supporting methods are missing.
3050 */
3051 if (!rdev->constraints)
3052 return status;
3053
3054 /* constraints need specific supporting methods */
3055 if (ops->set_voltage || ops->set_voltage_sel) {
3056 status = device_create_file(dev, &dev_attr_min_microvolts);
3057 if (status < 0)
3058 return status;
3059 status = device_create_file(dev, &dev_attr_max_microvolts);
3060 if (status < 0)
3061 return status;
3062 }
3063 if (ops->set_current_limit) {
3064 status = device_create_file(dev, &dev_attr_min_microamps);
3065 if (status < 0)
3066 return status;
3067 status = device_create_file(dev, &dev_attr_max_microamps);
3068 if (status < 0)
3069 return status;
3070 }
3071
3072 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3073 if (status < 0)
3074 return status;
3075 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3076 if (status < 0)
3077 return status;
3078 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3079 if (status < 0)
3080 return status;
3081
3082 if (ops->set_suspend_voltage) {
3083 status = device_create_file(dev,
3084 &dev_attr_suspend_standby_microvolts);
3085 if (status < 0)
3086 return status;
3087 status = device_create_file(dev,
3088 &dev_attr_suspend_mem_microvolts);
3089 if (status < 0)
3090 return status;
3091 status = device_create_file(dev,
3092 &dev_attr_suspend_disk_microvolts);
3093 if (status < 0)
3094 return status;
3095 }
3096
3097 if (ops->set_suspend_mode) {
3098 status = device_create_file(dev,
3099 &dev_attr_suspend_standby_mode);
3100 if (status < 0)
3101 return status;
3102 status = device_create_file(dev,
3103 &dev_attr_suspend_mem_mode);
3104 if (status < 0)
3105 return status;
3106 status = device_create_file(dev,
3107 &dev_attr_suspend_disk_mode);
3108 if (status < 0)
3109 return status;
3110 }
3111
3112 return status;
3113 }
3114
3115 static void rdev_init_debugfs(struct regulator_dev *rdev)
3116 {
3117 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3118 if (!rdev->debugfs) {
3119 rdev_warn(rdev, "Failed to create debugfs directory\n");
3120 return;
3121 }
3122
3123 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3124 &rdev->use_count);
3125 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3126 &rdev->open_count);
3127 }
3128
3129 /**
3130 * regulator_register - register regulator
3131 * @regulator_desc: regulator to register
3132 * @config: runtime configuration for regulator
3133 *
3134 * Called by regulator drivers to register a regulator.
3135 * Returns 0 on success.
3136 */
3137 struct regulator_dev *
3138 regulator_register(const struct regulator_desc *regulator_desc,
3139 const struct regulator_config *config)
3140 {
3141 const struct regulation_constraints *constraints = NULL;
3142 const struct regulator_init_data *init_data;
3143 static atomic_t regulator_no = ATOMIC_INIT(0);
3144 struct regulator_dev *rdev;
3145 struct device *dev;
3146 int ret, i;
3147 const char *supply = NULL;
3148
3149 if (regulator_desc == NULL || config == NULL)
3150 return ERR_PTR(-EINVAL);
3151
3152 dev = config->dev;
3153 WARN_ON(!dev);
3154
3155 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3156 return ERR_PTR(-EINVAL);
3157
3158 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3159 regulator_desc->type != REGULATOR_CURRENT)
3160 return ERR_PTR(-EINVAL);
3161
3162 /* Only one of each should be implemented */
3163 WARN_ON(regulator_desc->ops->get_voltage &&
3164 regulator_desc->ops->get_voltage_sel);
3165 WARN_ON(regulator_desc->ops->set_voltage &&
3166 regulator_desc->ops->set_voltage_sel);
3167
3168 /* If we're using selectors we must implement list_voltage. */
3169 if (regulator_desc->ops->get_voltage_sel &&
3170 !regulator_desc->ops->list_voltage) {
3171 return ERR_PTR(-EINVAL);
3172 }
3173 if (regulator_desc->ops->set_voltage_sel &&
3174 !regulator_desc->ops->list_voltage) {
3175 return ERR_PTR(-EINVAL);
3176 }
3177
3178 init_data = config->init_data;
3179
3180 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3181 if (rdev == NULL)
3182 return ERR_PTR(-ENOMEM);
3183
3184 mutex_lock(&regulator_list_mutex);
3185
3186 mutex_init(&rdev->mutex);
3187 rdev->reg_data = config->driver_data;
3188 rdev->owner = regulator_desc->owner;
3189 rdev->desc = regulator_desc;
3190 if (config->regmap)
3191 rdev->regmap = config->regmap;
3192 else
3193 rdev->regmap = dev_get_regmap(dev, NULL);
3194 INIT_LIST_HEAD(&rdev->consumer_list);
3195 INIT_LIST_HEAD(&rdev->list);
3196 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3197 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3198
3199 /* preform any regulator specific init */
3200 if (init_data && init_data->regulator_init) {
3201 ret = init_data->regulator_init(rdev->reg_data);
3202 if (ret < 0)
3203 goto clean;
3204 }
3205
3206 /* register with sysfs */
3207 rdev->dev.class = &regulator_class;
3208 rdev->dev.of_node = config->of_node;
3209 rdev->dev.parent = dev;
3210 dev_set_name(&rdev->dev, "regulator.%d",
3211 atomic_inc_return(&regulator_no) - 1);
3212 ret = device_register(&rdev->dev);
3213 if (ret != 0) {
3214 put_device(&rdev->dev);
3215 goto clean;
3216 }
3217
3218 dev_set_drvdata(&rdev->dev, rdev);
3219
3220 /* set regulator constraints */
3221 if (init_data)
3222 constraints = &init_data->constraints;
3223
3224 ret = set_machine_constraints(rdev, constraints);
3225 if (ret < 0)
3226 goto scrub;
3227
3228 /* add attributes supported by this regulator */
3229 ret = add_regulator_attributes(rdev);
3230 if (ret < 0)
3231 goto scrub;
3232
3233 if (init_data && init_data->supply_regulator)
3234 supply = init_data->supply_regulator;
3235 else if (regulator_desc->supply_name)
3236 supply = regulator_desc->supply_name;
3237
3238 if (supply) {
3239 struct regulator_dev *r;
3240
3241 r = regulator_dev_lookup(dev, supply, &ret);
3242
3243 if (!r) {
3244 dev_err(dev, "Failed to find supply %s\n", supply);
3245 ret = -EPROBE_DEFER;
3246 goto scrub;
3247 }
3248
3249 ret = set_supply(rdev, r);
3250 if (ret < 0)
3251 goto scrub;
3252
3253 /* Enable supply if rail is enabled */
3254 if (_regulator_is_enabled(rdev)) {
3255 ret = regulator_enable(rdev->supply);
3256 if (ret < 0)
3257 goto scrub;
3258 }
3259 }
3260
3261 /* add consumers devices */
3262 if (init_data) {
3263 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3264 ret = set_consumer_device_supply(rdev,
3265 init_data->consumer_supplies[i].dev_name,
3266 init_data->consumer_supplies[i].supply);
3267 if (ret < 0) {
3268 dev_err(dev, "Failed to set supply %s\n",
3269 init_data->consumer_supplies[i].supply);
3270 goto unset_supplies;
3271 }
3272 }
3273 }
3274
3275 list_add(&rdev->list, &regulator_list);
3276
3277 rdev_init_debugfs(rdev);
3278 out:
3279 mutex_unlock(&regulator_list_mutex);
3280 return rdev;
3281
3282 unset_supplies:
3283 unset_regulator_supplies(rdev);
3284
3285 scrub:
3286 if (rdev->supply)
3287 regulator_put(rdev->supply);
3288 kfree(rdev->constraints);
3289 device_unregister(&rdev->dev);
3290 /* device core frees rdev */
3291 rdev = ERR_PTR(ret);
3292 goto out;
3293
3294 clean:
3295 kfree(rdev);
3296 rdev = ERR_PTR(ret);
3297 goto out;
3298 }
3299 EXPORT_SYMBOL_GPL(regulator_register);
3300
3301 /**
3302 * regulator_unregister - unregister regulator
3303 * @rdev: regulator to unregister
3304 *
3305 * Called by regulator drivers to unregister a regulator.
3306 */
3307 void regulator_unregister(struct regulator_dev *rdev)
3308 {
3309 if (rdev == NULL)
3310 return;
3311
3312 if (rdev->supply)
3313 regulator_put(rdev->supply);
3314 mutex_lock(&regulator_list_mutex);
3315 debugfs_remove_recursive(rdev->debugfs);
3316 flush_work_sync(&rdev->disable_work.work);
3317 WARN_ON(rdev->open_count);
3318 unset_regulator_supplies(rdev);
3319 list_del(&rdev->list);
3320 kfree(rdev->constraints);
3321 device_unregister(&rdev->dev);
3322 mutex_unlock(&regulator_list_mutex);
3323 }
3324 EXPORT_SYMBOL_GPL(regulator_unregister);
3325
3326 /**
3327 * regulator_suspend_prepare - prepare regulators for system wide suspend
3328 * @state: system suspend state
3329 *
3330 * Configure each regulator with it's suspend operating parameters for state.
3331 * This will usually be called by machine suspend code prior to supending.
3332 */
3333 int regulator_suspend_prepare(suspend_state_t state)
3334 {
3335 struct regulator_dev *rdev;
3336 int ret = 0;
3337
3338 /* ON is handled by regulator active state */
3339 if (state == PM_SUSPEND_ON)
3340 return -EINVAL;
3341
3342 mutex_lock(&regulator_list_mutex);
3343 list_for_each_entry(rdev, &regulator_list, list) {
3344
3345 mutex_lock(&rdev->mutex);
3346 ret = suspend_prepare(rdev, state);
3347 mutex_unlock(&rdev->mutex);
3348
3349 if (ret < 0) {
3350 rdev_err(rdev, "failed to prepare\n");
3351 goto out;
3352 }
3353 }
3354 out:
3355 mutex_unlock(&regulator_list_mutex);
3356 return ret;
3357 }
3358 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3359
3360 /**
3361 * regulator_suspend_finish - resume regulators from system wide suspend
3362 *
3363 * Turn on regulators that might be turned off by regulator_suspend_prepare
3364 * and that should be turned on according to the regulators properties.
3365 */
3366 int regulator_suspend_finish(void)
3367 {
3368 struct regulator_dev *rdev;
3369 int ret = 0, error;
3370
3371 mutex_lock(&regulator_list_mutex);
3372 list_for_each_entry(rdev, &regulator_list, list) {
3373 struct regulator_ops *ops = rdev->desc->ops;
3374
3375 mutex_lock(&rdev->mutex);
3376 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3377 ops->enable) {
3378 error = ops->enable(rdev);
3379 if (error)
3380 ret = error;
3381 } else {
3382 if (!has_full_constraints)
3383 goto unlock;
3384 if (!ops->disable)
3385 goto unlock;
3386 if (!_regulator_is_enabled(rdev))
3387 goto unlock;
3388
3389 error = ops->disable(rdev);
3390 if (error)
3391 ret = error;
3392 }
3393 unlock:
3394 mutex_unlock(&rdev->mutex);
3395 }
3396 mutex_unlock(&regulator_list_mutex);
3397 return ret;
3398 }
3399 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3400
3401 /**
3402 * regulator_has_full_constraints - the system has fully specified constraints
3403 *
3404 * Calling this function will cause the regulator API to disable all
3405 * regulators which have a zero use count and don't have an always_on
3406 * constraint in a late_initcall.
3407 *
3408 * The intention is that this will become the default behaviour in a
3409 * future kernel release so users are encouraged to use this facility
3410 * now.
3411 */
3412 void regulator_has_full_constraints(void)
3413 {
3414 has_full_constraints = 1;
3415 }
3416 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3417
3418 /**
3419 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3420 *
3421 * Calling this function will cause the regulator API to provide a
3422 * dummy regulator to consumers if no physical regulator is found,
3423 * allowing most consumers to proceed as though a regulator were
3424 * configured. This allows systems such as those with software
3425 * controllable regulators for the CPU core only to be brought up more
3426 * readily.
3427 */
3428 void regulator_use_dummy_regulator(void)
3429 {
3430 board_wants_dummy_regulator = true;
3431 }
3432 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3433
3434 /**
3435 * rdev_get_drvdata - get rdev regulator driver data
3436 * @rdev: regulator
3437 *
3438 * Get rdev regulator driver private data. This call can be used in the
3439 * regulator driver context.
3440 */
3441 void *rdev_get_drvdata(struct regulator_dev *rdev)
3442 {
3443 return rdev->reg_data;
3444 }
3445 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3446
3447 /**
3448 * regulator_get_drvdata - get regulator driver data
3449 * @regulator: regulator
3450 *
3451 * Get regulator driver private data. This call can be used in the consumer
3452 * driver context when non API regulator specific functions need to be called.
3453 */
3454 void *regulator_get_drvdata(struct regulator *regulator)
3455 {
3456 return regulator->rdev->reg_data;
3457 }
3458 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3459
3460 /**
3461 * regulator_set_drvdata - set regulator driver data
3462 * @regulator: regulator
3463 * @data: data
3464 */
3465 void regulator_set_drvdata(struct regulator *regulator, void *data)
3466 {
3467 regulator->rdev->reg_data = data;
3468 }
3469 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3470
3471 /**
3472 * regulator_get_id - get regulator ID
3473 * @rdev: regulator
3474 */
3475 int rdev_get_id(struct regulator_dev *rdev)
3476 {
3477 return rdev->desc->id;
3478 }
3479 EXPORT_SYMBOL_GPL(rdev_get_id);
3480
3481 struct device *rdev_get_dev(struct regulator_dev *rdev)
3482 {
3483 return &rdev->dev;
3484 }
3485 EXPORT_SYMBOL_GPL(rdev_get_dev);
3486
3487 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3488 {
3489 return reg_init_data->driver_data;
3490 }
3491 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3492
3493 #ifdef CONFIG_DEBUG_FS
3494 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3495 size_t count, loff_t *ppos)
3496 {
3497 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3498 ssize_t len, ret = 0;
3499 struct regulator_map *map;
3500
3501 if (!buf)
3502 return -ENOMEM;
3503
3504 list_for_each_entry(map, &regulator_map_list, list) {
3505 len = snprintf(buf + ret, PAGE_SIZE - ret,
3506 "%s -> %s.%s\n",
3507 rdev_get_name(map->regulator), map->dev_name,
3508 map->supply);
3509 if (len >= 0)
3510 ret += len;
3511 if (ret > PAGE_SIZE) {
3512 ret = PAGE_SIZE;
3513 break;
3514 }
3515 }
3516
3517 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3518
3519 kfree(buf);
3520
3521 return ret;
3522 }
3523 #endif
3524
3525 static const struct file_operations supply_map_fops = {
3526 #ifdef CONFIG_DEBUG_FS
3527 .read = supply_map_read_file,
3528 .llseek = default_llseek,
3529 #endif
3530 };
3531
3532 static int __init regulator_init(void)
3533 {
3534 int ret;
3535
3536 ret = class_register(&regulator_class);
3537
3538 debugfs_root = debugfs_create_dir("regulator", NULL);
3539 if (!debugfs_root)
3540 pr_warn("regulator: Failed to create debugfs directory\n");
3541
3542 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3543 &supply_map_fops);
3544
3545 regulator_dummy_init();
3546
3547 return ret;
3548 }
3549
3550 /* init early to allow our consumers to complete system booting */
3551 core_initcall(regulator_init);
3552
3553 static int __init regulator_init_complete(void)
3554 {
3555 struct regulator_dev *rdev;
3556 struct regulator_ops *ops;
3557 struct regulation_constraints *c;
3558 int enabled, ret;
3559
3560 mutex_lock(&regulator_list_mutex);
3561
3562 /* If we have a full configuration then disable any regulators
3563 * which are not in use or always_on. This will become the
3564 * default behaviour in the future.
3565 */
3566 list_for_each_entry(rdev, &regulator_list, list) {
3567 ops = rdev->desc->ops;
3568 c = rdev->constraints;
3569
3570 if (!ops->disable || (c && c->always_on))
3571 continue;
3572
3573 mutex_lock(&rdev->mutex);
3574
3575 if (rdev->use_count)
3576 goto unlock;
3577
3578 /* If we can't read the status assume it's on. */
3579 if (ops->is_enabled)
3580 enabled = ops->is_enabled(rdev);
3581 else
3582 enabled = 1;
3583
3584 if (!enabled)
3585 goto unlock;
3586
3587 if (has_full_constraints) {
3588 /* We log since this may kill the system if it
3589 * goes wrong. */
3590 rdev_info(rdev, "disabling\n");
3591 ret = ops->disable(rdev);
3592 if (ret != 0) {
3593 rdev_err(rdev, "couldn't disable: %d\n", ret);
3594 }
3595 } else {
3596 /* The intention is that in future we will
3597 * assume that full constraints are provided
3598 * so warn even if we aren't going to do
3599 * anything here.
3600 */
3601 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3602 }
3603
3604 unlock:
3605 mutex_unlock(&rdev->mutex);
3606 }
3607
3608 mutex_unlock(&regulator_list_mutex);
3609
3610 return 0;
3611 }
3612 late_initcall(regulator_init_complete);
This page took 0.108403 seconds and 5 git commands to generate.